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Abstract

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations
of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1

2
; 1). We apply our results

to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically
non-normal, and converges in the mean-square, after normalization, to a standard Rosenblatt random variable.
To cite this article: A. Chronopoulou, C. A. Tudor, F. G. Viens, C. R. Math�ematique, xxx (2009).

R�esum�e

Application du calcul de Malliavin �a l'estimation du param�etre de m�emoire longue pour des pro-
cessus non-gaussiens. Nous servant des int�egrales multiples de Wiener-Itô et du calcul de Malliavin, nous
�etudions la variation quadratique renormalis�ee d'un processus de Hermite g�en�eral d'ordre q avec param�etre de
m�emoire longue H 2 ( 1

2
; 1). Nous appliquons nos r�esultats �a la construction d'un estimateur fortement consistent

pour H. Il est d�emontr�e que l'estimateur est asymptotiquement non-normal, et converge en moyenne de carr�es,
apr�es normalisation, vers une variable al�eatoire de Rosenblatt standard. Pour citer cet article : A. Chronopoulou,
C. A. Tudor, F. G. Viens, C. R. Math�ematique, xxx (2009).

1. Introduction

A stochastic process fXt : t 2 [0; 1]g is called self-similar with self-similarity parameter H 2 (0; 1)
when typical sample paths look qualitatively the same irrespective of the distance from which we look
at them, i.e. for any �xed time-scaling constant for c > 0, the processes c�HXct and Xt have the same
distribution. Self-similar stochastic processes are well suited to model physical phenomena that exhibit
long memory. The most popular among these processes is the fractional Brownian motion (fBm), because
it generalizes the standard Brownian motion and its self-similarity parameter can be interpreted as the
long memory parameter.
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In this article we study a more general family of processes, the Hermite processes. Every process in this
family has the same covariance structure, and thus the same long memory property, as fBm:

Cov (Xt; Xs) = E[XtXs] = 2
�1�s2H + t2H � jt� sj2H�; s; t 2 [0; 1]: (1)

A Hermite process can be de�ned in two ways: as a multiple integral with respect to a standard Wiener
process or as a multiple integral with respect to an fBm with suitable H. We adopt the �rst approach.

De�nition 1.1 The Hermite process (Z
(q;H)
t )t2[0;1] of order q � 1 and parameter H 2 ( 12 ; 1) is given by

Z
(q;H)
t = d(H)

Z t

0

: : :

Z t

0

dWy1 : : : dWyq

 Z t

y1_:::_yq
@1K

H0
(u; y1) : : : @1K

H0
(u; yq)du

!
; t 2 [0; 1] (2)

where W is a standard Wiener process, KH0
is the kernel of fBm (see [4, Chapter 5]) and H 0 = 1+ H�1

q .

The constant d(H) := (2(2H�1))1=2
(H+1)H1=2 is chosen to match the covariance formula (1). As a multiple Itô

integral of order q of a non-random function with respect to Brownian motion, Z(q;H) belongs in the qth
Wiener chaos. For q > 1, it is far from Gaussian. Like fBm, all Hermite processes Z(q;H) are H-self-similar
and have stationary increments and H�older-continuous paths of any order � < H. Moreover, they exhibit
long-range dependence in the sense that the auto-correlation function is not summable. They encompass
the fBm (q = 1) and the Rosenblatt process (q = 2).
The statistical estimation of H is of great interest and importance, since H describes the memory of

the process as well as other regularity properties. Several methodologies to the long-memory estimation
problem have been proposed, such as wavelets, variations, maximum likelihood methods (see [1]). Our
approach is based on the quadratic variation of the process, by analogy to the techniques which have
been used for fBm for many years (see references in [2]).

2. Variations of the Hermite Process.

Let Zq;H be a Hermite process of order q with self-similarity index H 2 ( 12 ; 1) as in De�nition 1.1.
Assume Zq;H is observed at discrete times f iN : i = 0; : : : ; Ng and de�ne the centered quadratic variation
statistic VN :

VN = �1 +
1

N

N�1X
i=0

N2H
�
Z
(q;H)
i+1
N

� Z(q;H)i
N

�2
: (3)

Note that N�2H = E[(Z
(q;H)
(i+1)=N � Z(q;H)i=N )2] is a normalizing factor. To compute the variance of VN

we expand VN in the Wiener chaos. Using De�nition 1.1 one sees that Z
(q;H)
(i+1)=N � Z

(q;H)
i=N = Iq (fi;N ),

where Iq(�) is the Wiener-Itô integral of order q and fi;N (y1; : : : ; yq) is a non-random symmetric H-
dependent function of q variables. Using the product formula for multiple Wiener-Itô integrals (see [4,

Proposition 1.1.3]), we can write jIq(fi;N )j2 =
Pq

l=0 l!(C
l
q)
2I2q�2l (fi;N 
l fi;N ) ; where the f 
l g denotes

the l-contraction of the functions f and g. In this way we obtain the Wiener-chaos expansion of VN

VN = T2q + c2q�2T2q�2 + : : :+ c4T4 + c2T2; (4)

where c2q�2k := k!
�
q
k

�2
are the combinatorial constants from the product formula for 0 � k � q � 1, and

T2q�2k := N
2H�1I2q�2k(

PN�1
i=0 fi;N 
k fi;N ). This decomposition allows us to �nd VN 's precise order of

magnitude via its variance's asymptotics, as proved in the following lemma.

Lemma 2.1 With cH;q :=
4d(H)4(H0(2H0�1))2q�2

(4H0�3)(4H0�2) , it holds that

lim
N!1

E
h
c�1H;qN

2(2�2H0)c�22 V 2N

i
= lim

N!1
E
h
c�1H;qN

2(2�2H0)c�22 T 22

i
= 1:
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Proof. To establish this result we only need to estimate the L2-norm of each term appearing in the chaos
decomposition, since they are orthogonal in L2 (
). This calculation is achieved by using the so-called
isometry property (see [4, Section 1.1.2]) which states that E[jIk (f) j2] = k!jjf jj2L2([0;1]k). It turns out
that limN!1E[c

�1
H;qN

(2�2H0)(2)T 22 ] = 1 and E[N2(2�2H0)T 22q�2k] = O(N�2(2�2H0)2(q�k�1)). Therefore
the dominant term in the decomposition is T2, and the result follows.

The following theorem gives the precise asymptotic distribution of VN . Unlike the case q = 1, when
q � 2 there is no range of H for which asymptotic normality holds.

Theorem 2.2 For H 2 (1=2; 1) and q = 2; 3; 4; : : : , let Z(q;H) be a Hermite process of order q and

parameter H (see De�nition 1.1). Then c
�1=2
H;q c

�1
2 N

2�2H
q VN converges in L2(
) as N !1 to a standard

Rosenblatt random variable R with parameter H 00 := 2(H � 1)=q + 1; that is, R is the value at time 1 of
a Hermite process of order 2 and parameter H 00.

Proof. Let Ii := [
i
N ;

i+1
N ], let H 0 = 1 + (H � 1)=q, and a (H 0) = H 0(2H 0 � 1). In order to understand

the behavior of the renormalized VN , it su�ces to study the limit of the term N2�2H0
T2. Indeed, from

the proof of Lemma 2.1, the remaining terms in the chaos expansion of N2�2H0
VN , i.e. N

(2�2H0)T2q�2k,

converge to zero. Since N2�2H0
T2 is a second chaos random variable it is now necessary and su�cient to

prove that its symmetric kernel converges in L2([0; 1]2) to c
1=2
H;q times the kernel of the Rosenblatt process

at time 1 (see [4, Section 1.1.2]). Observe that the kernel of N2�2H0
T2 can be written as a sum of two

terms: N2(H�H0)+1
PN�1

i=0 fi;N 
q�1 fi;N = fN2 + r2, with

fN2 (y; z) := N
2(H�H0)+1d(H)2a(H 0)q�1

PN�1
i=0 1y_z� i

N

RR
Ii�Ii dvdu@1K(u; y)@1K(v; z)ju�vj

2(H0�1)(q�1):

We can show that the remainder term r2(y; z) converges to zero in L
2([0; 1]2), as N ! 1. Next, for

each �xed i, one replaces u and v by the left endpoint of Ii, namely i=N . This approximation results
in a function �fN2 which is pointwise asymptotically equivalent to fN2 ; equivalence in L

2([0; 1]2) is ob-
tained via dominated convergence. The approximant �fN2 itself is immediately seen to be a Riemann
sum approximation, for �xed y; z, of the integral de�ning the kernel of the Rosenblatt process at time
1, as in De�nition 1.1 for q = 2. To pass from pointwise to L2([0; 1]2) convergence, dominated con-

vergence is used again, the key point being that one calculates by hand that


cst �fN2 

2L2([0;1]2) equalsPN�1

i;j=0N
�2
���R i^j=N0

@1K
H0
(u; y)@1K

H0
(j=N; y)dy

���2; bounding this expression by correlations of incre-
ments of fBm, one �nds an explicit series which is bounded if H 0 > 5=8; this always holds since q � 2
implies H 0 � 3=4.

In addition to T2, it is interesting to explore the behavior of the remaining terms in the chaos expansion
of VN . In the following theorem we study the convergence of the term of greatest order in this expansion,
T2q. It turns out this term does have a normal limit when H < 3=4; this familiar threshold (see [2]) is
the one obtained for normal convergence of VN in the case of fBm (q = 1). What we discover here is
that when q = 1, the only term in VN is to be interpreted as T2q, not T2; but when q � 2, the term T2q
dominates T2, and therefore VN cannot converge normally.

Theorem 2.3 Let Z(q;H) be a Hermite process as in the previous theorem. Let T2q be the term of order

2q in the Wiener chaos expansion of VN . For every H 2 (1=2; 3=4), x�1=21;H

p
NT2q converges to a standard

normal distribution, where x1;H is a constant depending only on H.

Proof. In order to prove this result we use a characterization of the convergence of a sequence of multiple
stochastic integrals to a Normal law by Nualart and Ortiz-Latorre (Theorem 4 in [5], which states that if

FN is in the qth chaos and E[F
2
N ]! 1 and E[(kD�FNk2L2[0;1]� 2q)2]! 0 then FN converges to a normal;

see also [3]). Let FN = x
�1=2
1;H

p
NT2q. Using the same method as in Lemma 2.1, we get limN!1E[F

2
N ] = 1.

Thus, it remains to check that the Malliavin derivative norm kD�FNk2L2[0;1] ! 2q in L2(
). Using E[F 2N ]!
1 and a general immediate calculation, we get limN!1EkDFNk2L2[0;1] = 2q. The proof is completed by
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checking that kDFNk2L2[0;1] converges in L2 (
) to its mean. To do this, since it is a variable with a �nite
chaos expansion, it is su�cient to check that its variance converges to 0. The ensuing calculations begin

with the explicit computation of DrFN as x
�1=2
1;H

p
NN2H�1(2q)I2q�1

�PN�1
i=0 (fi;N 
 fi;N )(�; r)

�
, and are

are similar to those needed to prove Theorem 2.2; their higher complexity reduces via polarization.

Remark 1 It is possible to give the limits of the terms T2q�2 to T4 appearing in the decomposition of VN .
All these renormalized terms should converge to Hermite random variables of the same order as their
indices. This \reproduction" property will be investigated in a subsequent article.

3. Estimation of the long-memory parameter H

Assume that we observe a Hermite process of order q and self-similarity index H in discrete time.

From these data we can compute the quadratic variationn SN := 1
N

PN�1
i=0 (Z

(q)
(i+1)=N � Z

(q)
i=N )

2. We can

immediately relate SN to the scaled quadratic variation VN : we have 1 + VN = N2HSN . By Lemma
2.1, limN!1 VN = 0 in L2(
); since VN has a �nite Wiener chaos decomposition, the convergence also
holds in any Lp (
). Taking p large enough, the Borel-Cantelli lemma implies that VN ! 0 almost surely.
Therefore, taking logarithms, 2H logN + logSN ! 0 almost surely. We have thus proved the following.

Proposition 3.1 Let ĤN := � log SN
2 logN ; it is a strongly consistent estimator for H: limN!1 ĤN = H a.s.

The next step is to determine the asymptotic distribution of ĤN . It turns out that we have convergence
to a Rosenblatt random variable in L2(
), according to the following theorem.

Theorem 3.2 There is a standard Rosenblatt random variable R with parameter 2H 0 � 1 such that

lim
N!1

E

����2N2�2H0
�
H � Ĥ

�
logN � c2c1=2H;qR

���2� = 0:
Proof. By de�nition of ĤN in Proposition 3.1, and the relation 1 + VN = N

2HSN , we have

2
�
H � ĤN

�
logN = log (1 + VN ) (5)

From Theorem 2.2 we already know that a standard Rosenblatt r.v. R with parameter 2H 0 � 1 exists
such that limN!1E[jN2�2H0

VN � cRj2] = 0. From (5) we immediately get

E
h
j2N2�2H0

(H � Ĥ) logN � cRj2
i
� 2E

h
jN2�2H0

VN � cRj2
i
+ 2N4�4H0

E
h
jVN � log (1 + VN )j2

i
:

The theorem follows by showing that E
h
jVN � log (1 + VN )j2

i
= o

�
N4H0�4

�
, which is easily obtained.

Indeed, this expectation is of order E[V 4N ], which, since VN has a �nite chaos expansion, is of order

(E[V 2N ])
2 = O

�
N8H0�8

�
by Lemma 2.1.
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