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Abstract 
For most materials, the symmetry group is known a priori  and deduced from the 
realization process. This allows many simplifications for the measurements of the 
stiffness tensor. We deal here with the case where the symmetry is a priori  unknown, 
as for biological or geological materials, or when the process makes the material 
symmetry axis uncertain (some composites, monocrystals). The measurements are then 
more complicated and the raw stiffness tensor obtained does not exhibit any symmetry 
in the Voigt's matricial form, as it is expressed in the arbitrarily chosen specimen's base. 
A complete ultrasonic measurement of the stiffness tensor from redundant 
measurements is proposed. In a second time, we show how to make a plane symmetry 
pole figure able to give visual information about the quasi-symmetries of a raw stiffness 
tensor determined by any measurement method. Finally we introduce the concept of 
distance from a raw stiffness tensor to one of the eight symmetry classes available for a 
stiffness tensor. The method provides the nearest tensor (to the raw stiffness tensor) 
possessing a chosen symmetry class, with its associated natural symmetry base. 
 

1. Introduction 
1.1. Basic problem: the material symmetries are unknown 
This paper addresses a general problem: the knowledge of the symmetry class and the 
symmetry axis of a material whose stiffness tensor is obtained through different 
experimental techniques, either mechanical or acoustic. For most of the materials, the 
manufacturing process implies the material symmetry. However, the symmetry axis can 
be hardly known when the process is difficult to control: the growing direction of our 
monocrystal (made of the  phase of a nickel-based superalloy) is not precisely known, 
although the atomic disposition involves a cubic symmetry. In the case of geological 
materials the symmetry class is often unknown. No simplification is then available on 
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the measurement of the stiffness tensor, the 21 constants have to be identified. This 
tensor has to be studied to point out the possible symmetry class of the material. 
1.2. Measurement of the entire stiffness tensor 
The first step is to determine the stiffness tensor of the material before analyzing the 
possible symmetries of this tensor. Hayes(1969) has solved the theoretical problem of 
the determination of the stiffness tensor C even if the material symmetry is unknown. 
The proposed mechanical tests appear to be difficult to perform. Six classic tensile tests 
in six independent directions (François, 1995) are also able to give C once the strains in 
different directions are measured for each test. This later method implies a tedious 
machining and off-axis mechanical tests that are always difficult to perform (Boehler et 
al., 1994). In the particular case of a priori known symmetries the identification of the 
symmetric tensor Cs is easily done (up to orthotropy) with various tensile specimens 
machined with respect to the symmetries of the material. 
The ultrasonic measurements are used for biological (Van Bursirk et al., 1986) or 
geological (Harder, 1985) materials because they are the only method that allows the 
measurement of the elastic properties on very small specimens. The transducers are 
directly stuck on parallel faces of the sample. This is called the direct contact method. 
The direction of the propagation of the ultrasonic waves is then fixed by the geometry 
of the specimen. To avoid the problem of coupling between the transducer and the 
material and to examine various directions of propagation, the immersion method, in 
which transducers are sending the waves to the sample through immobile water, is 
preferred for plate-shaped composite materials (Castagnède et al., 1990) Combined with 
digital signal processing, this technique ensures a high accuracy of the measurement of 
the velocity and involves continuously varying directions of the wave propagation as 
the plate is rotated. This method has been fully developed and is practically able to give 
stiffness tensors up to orthotropy either in the case of exactly aligned specimen or non 
aligned specimen (Baste and Hosten, 1990; Chu et al., 1994) but does not seem to have 
yet been applied to a real triclinic material. The direct contact method has been retained 
in our experiments on small specimens. This technique allows the determination of the 
raw stiffness tensor Co in the base Bo linked to the specimen. The expression raw 
stiffness tensor  refers to a tensor that is perturbed by errors due to uncertainties of the 
measurements, to a possible non homogeneity of the tested specimen. 
1.3. Quasi symmetries: indicators and visualization 
At this step we suppose a raw stiffness tensor Co determined by some experimental 
method in the specimen’s base Bo, for example the acoustical method. The 6x6 Voigt’s 
representation table of Co does not exhibit generally the symmetry of the stiffness 
tensor as the base Bo has no relation with the (unknown) possible principal directions of 
the material. Furthermore the raw tensor Co is perturbed by experimental errors. It has 
generally no exact symmetry (triclinic) but may be close to a symetry level (in this case 
we say that it has a quasi symmetry ). This forbids (or makes complex) the use of 
classical indicators like the contractions Cijkk and Cikkj (Jaric, 1994) of a stiffness 
tensor C. 
In order to have a qualitative information on the quasi symmetries of Co, we developed 
a map based on the crystallographic pole figures. These maps represent, on a colored 
scale, the relative discrepancy between Co and its symmetric according to the plane of 
normal r. The "spots" or "lines" indicate the normals of the planes for which Co is close 
to be monoclinic. Their number and their relative position reveal the level(s) of 
symmetry(ies) Co is close to. For example, we will see that the monocrystal exhibits 
clearly nine spots corresponding to the cubic symmetry although the tensor is stricto 
sensu  triclinic. 
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1.4. The nearest symmetric stiffness tensor 
Once a symmetry class is chosen using the above pole figure for the stiffness tensor we 
have to compute the symmetric tensor Cs belonging to the chosen class of symmetry 
and that is the nearest to the raw tensor Co. The natural base Bs is the base for which 
the tensor Cs has the classical form in the 6x6 Voigt matricial representation. One way 
to find Cs and Bs is to look for the base B that minimizes a function deduced from the 
classical relations between the components of the tensor that allow the Voigt's 
representation (Arts, 1993). The choice of such minimization functions remains 
arbitrary and leads to non-intrinsic functions.  
We propose an intrinsic function that creates from Co and the arbitrary base B a tensor 
Cb which has the chosen symmetry group G. This function calculates the average of Co 
on its orbit according to GB related to the base B. The natural symmetry base Bs is the 
one for which the relative discrepancy  D(B) between Cb and Co is minimum. Then Cb 
is Cs, the nearest (to Co) symmetric stiffness tensor and D(Bs) can be called the 
distance from Co to Cs; in other words the distance to the symmetry group G. 
This knowledge can be useful in other cases than the basic problem described above. 
We can imagine, for example, the simplified resolution of some mechanical problems 
while using a tensor of a higher symmetry group (fewer independent components), with 
some acceptable error. 

 
2. Acoustic measurements 
2.1. Description of a direct contact measurement 
The propagation of acoustic waves in solid media is mainly described by the acoustic or 
Cristoffel’s tensor  (Auld, 1973). It is linked to the unknown stiffness tensor C and for 
a given direction n of the wave propagation by the following relation: 
 (n) = n.C.n (1) 
This symmetric second order tensor (n) can be written in a diagonal form. Each 
eigenvector (at least three) represents a direction of vibration of the particles ui, and 
each corresponding eigenvalue represents the product Vi)2 where  is the mass 
density, and Vi the velocity of the body wave polarized in the direction ui. The direction 
u1, the closest to the propagation direction n, is called the quasi-longitudinal  wave and 
the two others, u2,3, the quasi-transverse  waves. This allows us to write (n) in the 
following different form (where "" represents the tensorial product): 

 (n) = 
i=1

3

(Vi)2 u i � u i  (2a) 

Let us call m the direction of the vibration  (polarization vector) of both the ultrasonic 
transducers: the emitter and the receiver. They are stuck on two parallel faces of the 
specimen. In the case of transverse  emission m is in the plane orthogonal to n and the 
transducers are coupled by a rod (Figure 1). In the case of longitudinal  emission m is 
equal to n. The generated wave polarized in the direction m is decomposed in the 
material in the three directions ui (with a displacement proportional to the scalar 
product ui.m) allowed by the material and each wave propagates at the velocity Vi. As 
these waves reach successively the receiver the displacement measured by the receiver 
is given by ui.m. The measure (supposing that the transducer has a linear response) is 
then proportional to (ui.m)2. 
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Figure 1: experimental set-up for acoustical measurements. 

 
This allows the operator, when using transverse transducers (m.n=0), to measure the 

polarization angle  ̂ i from the direction X3 to the direction X2 in the set-up 
coordinates Xi (X1 is equal to the direction of propagation n) (Figure 1), while 
searching for the maximum of received signal, i.e.  when ui.m is maximum (Figure 2). 
Pratically this is not possible for the quasi-longitudinal wave as u1.n is close to 1, u1.m 

is close to 0 and too weak to be measured: ̂ 1 cannot be measured with our equipment. 

 

Figure 2: measurement of the polarization ̂  with transversal transducers. 

For each direction n, the three wave speeds V̂ i and the two polarization ̂  angles 
(with  = 2, 3) of the quasi-transverse waves are finally measured. In this ideal case the 
measure is called a complete measure. The two deflection angles  between the plane 
n (orthogonal to n) and u (Figure 2) remain unknown. For each direction n we can 

define the measured acoustic tensor ̂(n) equal to:  

 ̂(n) = 
i=1

3

̂(V̂i)2 ûi � ûi(2b)  

All the measured values of a quantity x are denoted by  x̂ . The tensor ̂  should be 

equal to  (eqn 1) if the measured values ̂ , V̂ i and û i were exact. For each 

measurement along the direction n we have five experimental values (V̂ i and ̂ ) and 
two additional unknowns (). Then the determination of the 21 values of the unknown 
stiffness tensor requires at least 7 different directions n (in case of complete 
measurements). 
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2.2. The specimen and the measures 
equipment 
The geometry of the specimen is a compromise between simple machining, high 
number of faces and small specimen. It has here 13 pairs of parallel faces (Figure 3). 
This will give redundant data (we have seen that the minimum is 7). This redundancy 
will reduce the effect of the experimental errors, through a minimization scheme. The 
equidistant faces are cut orthogonal to the three vectors xo1, xo2, xo3 of the specimen's 
base  Bo, to its bisectors, and the same after a rotation along xo2 (Table 1). We used 5 
MHz “Panametrics” transducers with a 12 mm diameter and a “Saphir” card integrated 
in a PC computer. Software has been developed to measure the velocities (using an 

intercorrelation technique) and the directions  ̂ . 
 

face A B C I J K L M N    

normal's 1 0 0 0 1/ 2  1/ 2 0 -1/ 2 -1/ 2 1/2 -1/2 -1/2 1/2 

coordinate
s 

0 1 0 1/ 2  0 1/ 2 1/ 2 0 1/ 2 1/ 2 1/ 2  1/ 2  1/ 2  

in Bo 0 0 1 1/ 2  1/ 2  0 -1/ 2 1/ 2 0 1/2 1/2 -1/2 -1/2 

X2 B C A A-L -B -C-N -A-I -B C-K -M- J- M- -J- 

Table 1: position of the specimen's faces. 
 

 
Figure 3: 26-faces oak specimen. 

 
practical experimentation 

Table 2 gives the values of the velocities Vi and of the angles  ̂  for all the faces of the 
superalloy specimen. The distance between two parallel faces is 18.5 mm. The data 
given (Table 2) have been obtained after three measurements (under the same 
conditions) on the same specimen. This allows us to evaluate the uncertainty of the 
experimental procedure. The accuracy of the velocity measurement can be estimated to 
± 3%  and to be about ± 5° for the angle. We can remark that the values given for the 
faces A, C,  and are uncertain because the signal was weak and distorted. They will 
be removed from the set of data. As a consequence it is possible to have either complete 
measurement (faces B, I , J, K, L, M and N for example) or incomplete measurement if 
the other faces are also considered to get more experimental data. The following two 
sections will deal with the case of complete and incomplete measurements. 
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face A B C I J K L M N    
V̂ 1 (m/s) 5437 5316 6131 6098 6066 6098 6151 6066 6165 6275 6244 6296 6307

V̂ 2 (m/s) 3826 3863 3867 3918 3826 3840 3959 3863 3955 3615* 3615* 3676 2712

̂ 2 
(d )

0 0 115 115 165 110 125 175 135 130 130 145 37*

V̂ 3 (m/s) 1869* 3863 1815* 2237 2143 2212 2134 2154 2244 2674 2396 2460* 3615

̂ 3 
(d )

90 90 25* 25 69 35 35 85 37 45 35* 55* 145*
Table 2 : acoustical measurements for the monocrystal. The * indicates doubtful data. 

 
2.3. Discrepancy tensor and minimization function J 
The basic idea is to find the set of components of Co that makes every acoustic tensor 

(n) (eqn 1) as close as possible to every experimental acoustic tensor ̂(n) (eqn 2b) . 
For every measure (for every n) we define the function j(n) from the Euclidean norm of 

the discrepancy between (n) and ̂(n) : 

 j(n) = 
1
2 ((n) - ̂(n)) 2 (3) 

minimization strategy 
The "best" raw tensor Co (of every C) and the best deflection angles  are those that 
minimize the sum J of j over the set of different directions n with complete 
measurements. As the two sets of variables (the components of C and the deflection 
angles ) have a completely different role, we chose to use an iterative process: the 
minimisation will be done alternately on each set. The first step is relative to the 
components of C, while the deflection angles are set at zero at the beginning of the 
iterative procedure (this is the value corresponding to an isotropic tensor).  
minimization of J with respect to the components Cijkl 
The condition for J to be a minimum with respect to the components of C is the nullity 
of the following gradient: 

 
∂j(n)
∂C   = n  (n.C.n)  n - 

i=1

3

̂(V̂i)2 n � ûi � ûi � n  (4) 

The measured ̂  and the unknown  define  û  but not û 1. This vector û 1 is 

assumed to be orthogonal to û 2 and û 3 as required for exact measurements1. The 
classic symmetries of C are guaranteed by 60 Lagrangian multipliers m. We show the 
first of these terms  
 1 (C1112 - C1121) = 0 (5) 

The 81 equations (4) and the 60 equations (5) are disposed in a matrix form A.X = B̂  in 
which the m and the Cijkl are stored in the "vector" X, their multipliers in A and the 

second members of equations (4) in B̂ . This linear matricial system is directly and 
quickly resolved, giving the best components Cijkl of C for the given deflection angles 

. 
minimization of each j with respect to the deflection angles  
We now have to minimize J with respect to the deflection angles , with C fixed. As 
the (n) play an independent role in each j(n), we can minimize independently each 
                                                           
1 Even if û 2 and û 3 are not exactly orthogonal at this step of the calculation. 
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j(n) with respect to the two deflection angles. The gradient of j with respect to the 
deflection angles  is given by the following equations (in which "" represents the 
vectorial product): 

 
∂j(n)
∂

  = - ((n) - ̂(n) ) : 
i=1

3

̂(V̂i)2 (ûi�
∂ûi

∂
 + 

∂ûi

∂
�ûi)  (6) 

with 
∂û

∂
  =  (- sin m + cos n) (7) 

and 
∂û1

∂
  = v - û 1 (v.û 1) (8) 

with v = 






∂(û2�û3)

∂
||û2�û3||

  (9) 

The knowledge of this gradient allows us to solve this non-linear problem through a 
B.F.G.S. (Burlish and Stoer, 1980)  method. 
convergence - stopping criteria 
Two criteria are retained for stopping the calculation. A first test is done on the value of 
J which can be zero if the measurements are simulated ones, and the second involves 
the rate of convergence. This rate commonly tends to 10-2 after ten iterations. 
practical procedure 
One can compute the values of the speeds and of the polarizations given by this 
stiffness tensor Co and compare these values to the experimental ones. This may be 
useful to check doubtful measurements. The energy velocities are also computed to 
distinguish the waves that cannot reach the receiver without parasite reflection. This is 
the case for a strong anisotropy and for measurement direction n that are far from the 
symmetry axis. In such a case the corresponding measures are removed. Sometimes the 
received signal may be too weak to distinguish clearly a shear wave or to obtain its 

angle ̂ . In these cases the set of measurements is incomplete.  
2.4. Incomplete measurements 

Let us suppose that the speed V̂ k (and of course, if it corresponds to a transverse wave, 

the direction m̂ k) has not been detected or corresponds to very doubtful data (see Table 
2). This situation is more realistic especially with natural material (biology, geology).  

We introduce the component Lij from the components of ( - ̂ ) in the base û iûj 
(i, j ≠ k). 

 Lij = (û in) : C : (nûj) - ij ̂(V̂i) 2 (10) 
We now define the new function h replacing j by: 

 h(n) = 
1
2 

i,j

knowns

 L2
ij   (11) 

This definition is similar to that of j (equation 3) if the û i are orthogonal. The global 
minimization function J has to be the sum of all the functions j(n) corresponding to 
complete measures and all the functions h(n) corresponding to incomplete ones. This 
theory cannot work for a measurement in which two speeds are not known. If the 

unknown polarization is quasi transverse, e.g.  = 3, a polarization angle ̂ 3 is missing 

and forbids us to calculate the quasi-longitudinal direction of vibration û 1 as before 
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(orthogonal to û 2 and û 3). We know that the û i have to be an orthonormed base. This 
is written: 

 sin2 sin3 + cos2 cos3 cos(̂ 2 - ̂ 3) = 0 (12) 

Given the variables 2 and 3, this condition gives two solutions for  ̂ 3 (so for û 3); 
one of them is good (gives the lowest value for j). The gradient of h(n) with respect to 
C is given by: 

 
∂h(n)
∂C   = 

i,j

known

   Lij nûiûjn (13) 

Its structure is still linear with respect to the Cijkl and allows us to complete the 
matricial direct resolution described above. The gradient with respect to the variables 
 allowing a B.F.G.S. resolution is given by 

 
∂h(n)
∂

  = 
i,j

known

  Lij (C :: (n
∂ûi

∂
ûjn + nûi

∂ûj

∂
n)) (14) 

We detail here the derivatives of û i. If the unknown polarization corresponds to the 
quasi-longitudinal wave the calculation remains the same as before (eqn 7, 8, 9). If the 

unknown polarization corresponds to the quasi-transverse wave û 3, the derivative ∂û 
2/∂2 is calculated as before (equation 7), but û 1 and its derivative now depend on the 

value of ̂ 3 itself dependent on 3 (equation 12). We have, in this case: 

 
∂û1

∂2
  = - sin2 m̂ 2û3+ cos2 nû3 (15) 

 
∂û1

∂3
  = - sin3 û 2m̂3+ cos3 û 2n + 

 ± 
tan2

cos3
 

1

1-tan22 tan23
   [ ]cos2 cos3 cos(̂3-̂2) n - sin2 m̂3   (16) 

The value of ± is given by the choice of the best ̂ 3 described before (equation 12).  
practical results 

243 136 135 22 52 -17  
136 239 137 -28 11 16  
135 137 233 29 -49 3  
22 -28 29 133 -10 -4  
52 11 49 -10 119 -2  
-17 16 3 -4 -2 130 Bo

Table 3: raw tensor Co obtained for the monocrystal (GPa). 
 

From the above measurements (Table 2), we obtained the following raw stiffness tensor 
Co for our superalloy specimen (Table 3). The components of this tensor are given in 
GPa and in the base attached to the specimen. One can also point out that some 
components are negative. This is admissible once the eigenvalues of this tensor are 
positives which is true in this case. As said, these matrices (written under Voigt's 
convention) do not reveal the possible nature of the symmetry of Co; this tensor looks 
triclinic. As expressed in Bo, Co cannot, at this step, be compared to the stiffness tensor 
measured by the micro-hardness method (Table 4) expressed in the natural symmetry 
base Bs related to the lattice. 
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213 (180) 149 (103) 149 (103) 0 0 0  

149 (103) 213 (180) 149 (103) 0 0 0  

149 (103) 149 (103) 213 (180) 0 0 0  

0 0 0 140 (100) 0 0  

0 0 0 0 140 (100) 0  

0 0 0 0 0 140 (100) Bs 
Table 4: nearest cubic tensor Cs for the monocrystal (GPa). Values in italic are 

obtained from microhardness tests. 
 

3. Visualization of the quasi-symmetries: pole 
figures 
3.1. principle 
Let Co be a "raw" stiffness tensor determined by any experimental method, e.g., the 
acoustical one presented before. As said in the introduction, this tensor is generally 
triclinic (without symmetries) due to experimental errors and expressed in the randomly 
chosen specimen's base Bo. The pole figures classically used in crystallography 
represent the elements of the symmetry group G. Each symmetry level (of the eight 
possible (Forte and Vianello, 1996)) has a different set of symmetry planes (Figure 4). 
Plotting the symmetry planes will allow us to distinguish the symmetry level. Let us 
introduce the discrepancy function  d(Co, r): 

 d(Co, r) = 
| || |Co - S[r](Co)

| || |Co
  (17) 

In this expression S[r](Co) represents the stiffness tensor, symmetrical to Co with 
respect to the plane r, orthogonal to r (see eqn 17a,b in the appendix)2. The norm is 
taken as the Euclidian one (see eqn 17c in the appendix). The distance d is, of course, 
null if r is a symmetry plane for Co. As said, Co is here generally triclinic but may be 
"close" to belonging to a higher symmetry group. In this case, some directions r will be 
such that d(Co,r) has a "low" value. Let us now plot d(Co,r) for each r of the half 
space; we obtain the pole figure of symmetry planes. We can see (Figures 5 and 6) some 
of these pole figures. The xo3 axis is the normal to sheet plane, xo1 is on the right hand, 
and xo2 is upwards. To each "spot" corresponds a plane of "quasi-symmetry". We recall 
here, for an easier interpretation, the shape of pole figures in the case of the following 
quasi-symmetries (although this can be read on Figure 4): 

                                                           
2 Remark: the computation is about 10 time faster while using the Bond's matrices [1] 



 page 10 

- triclinic: no spots 
- monoclinic: one spot 
- trigonal: three spots (coplanar, at 120°) 
- transverse isotropic: one band (infinity of coplanar normals) and one spot 

(orthogonal) 
- orthotropic: three spots (the normals are orthogonal each other) 
- tetragonal: five spots (four coplanar normals at 45° and one orthogonal) 
- cubic: nine spots (normals of nine cube's symmetry planes) 
- isotropic: all the map is black 

 
Figure 4: symmetry planes for each symmetry level. 

 
3.2. Examples 
A brief analysis of Figure 5 reveals the cubic nature of our monocrystal. We can clearly 
distinguish the nine spots. The cubic symmetry is however non exact, as the value 0 is 
nowhere reached for d(Co, r). This cubic symmetry is that of the crystal's atomic 
structure and we can remark that the x03 axis of the specimen is 6 degrees apart from the 
symmetry axis of the crystal 3.  
When the measurements provide less accuracy, the pole figure is not very contrasted 
and as a consequence different levels of symmetry are possible. We can see that on the 
pole figure obained from a stifness tensor Co measured on an oak specimen (Figure 6). 
At a first sight transverse isotropy appears (horizontal zone). A closer examination also 
shows two spots in this zone that reveal a tendency to orthotropy. The ultrasonic 
measurements are less accurate than those of the monocrystal as the material has some 
important heterogeneity. The minimum value of d(Co,r) can be an indicator of the 
measurements' precision if the material is assumed to have some symmetry. 
                                                           
3 x03 is the axis of the cylinder (before machining the specimen), but x01 and x02 are randomly chosen. 
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Figure 5: pole figure of symmetry planes obtained from the superalloy's raw stifness 

tensor Co 

 
Figure 6: pole figure of symmetry planes obtained from the oak's raw stifness tensor 

 

4. Computation of the nearest symmetric stiffness 
tensor 
The last example reveals that a more precise definition of the "distance" between the 
raw stiffness tensor and the different possible symmetries is necessary for the engineer 
to choose the most appropriate symmetry level. Furthermore it is necessary to compute 
the nearest (to Co) stiffness tensor Cs that belongs to this class of symmetry and its 
associated natural base Bs (in which Cs has the classic matricial Voigt's expression). 
4.1. general principle 
The chosen symmetry for the studied material has a symmetry group G. This group is a 
subgroup of the orthogonal group O(3) but, as all the (fourth-rank) stiffness tensors 
have the punctual symmetry -I, one can consider G as a subgroup of SO(3) without loss 
of information. Most of the notations in the present paper are the ones used by Forte & 
Vianello (1996).  
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Figure 7: representation of the construction of a trigonal tensor Cb from a triclinic 

tensor Co. 
 

Let GB be a symmetry group G located by an orthonormed base B (in comparison with 
the specimen’s base Bo). 
The raw stiffness tensor Co is a priori  triclinic. We now define the orbit  GB o Co as 
the collection of all the transformations of Co by the elements of GB. The average 
<GB o Co> of this orbit has, of course, GB as symmetry group. Let us call Cb such an 
average4, which is the nearest to Co stiffness tensor, having GB as symmetry group: 
 Cb = < GB o Co > (18) 
We now can define a distance between Cb and Co. The following one has the same 
definition as d(Co, r) (eqn 17) when G is the symmetry group of the monoclinic 
symmetry: 

 D(B) = 
|| Co - < GB o Co > ||

|| Co ||   (19) 

Then, the distance Ds from Co to the considered symmetry group G can be defined as 
the minimum of the distance D(B) when B varies: 
 Ds = minB (D(B)) (20) 
This minimum is numerically found by a simplex (Faurre, 1988) method that 
determines three positioning Eulerian angles. One can remark that this distance does not 
depend on the arbitrary choice of Bo as the norm above is invariant relative to the 
choice of the base. The natural base Bs is the argument of the previous minimum: 
 Ds = D(Bs) (20) 
And the nearest stiffness tensor Cs can now be given as the average of Co on its orbit 
according to GBs : 
 Cs = < GBs o Co > (21) 
4.2. symmetry groups of stiffness tensors 
In this section we detail the symmetry group for each symmetry level possible for a 
stiffness tensor (Forte & Vianello, 1996). As said, we only take into account the 
elements of SO(3). 
triclinic 
In the case of the triclinic symmetry, the symmetry group G is reduced to the identity 
{I}. The distance D is of course zero and the base Bs is undefined. 
symmetries based on Dn 
We consider as symmetry group GB the dihedral group Dn: in the orthonormed base 
B=(i, j, k), Dn is generated by Zn (a cyclic subgroup with n elements, generated by the 
rotations Q(k, 2/n) about z of an angle 2/n) and the rotation Q(i, ). Dn has 2n 

                                                           
4 It can be noticed that, as B is positionning the symmetry group GB, Cb can generally not be obtained 

from a rotation of another Cb' of this average in comparison to another base B'. 
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elements. The value of n decides (eqn 18 & 21) of the symmetry class of Cb and, of 
course, Cs. We have: 
- n  {1, 2} Cb is monoclinic 
- n  {3, 6} Cb is trigonal 
- n  {4} Cb is orthotropic 
- n  {5,7,9,...,} Cb is transverse isotropic 
- n  {8} Cb is tetragonal 
In order to clarify this calculation, Figure 7 illustrates how we can obtain a trigonal 
tensor Cb when calculating the average of D3oCo. The result for the transverse isotropy 
is justified as a stiffness tensor cannot have these symmetry groups Dn (see theorem 1, 
Forte & Vianello (1996)). The symmetry group obtained is the transverse isotropy as it 
contains Dn. 
cubic 
The symmetry group GB of cubic stiffness tensors is O. It is generated, in the base 
B=(i, j, k), by the dihedral group D4 (defined above) and the rotations Q(i+j+k, 2/3). 
It has 24 elements. 
isotropic 
In this case the symmetry group GB of isotropic stiffness tensors is SO(3). As this group 
has an infinite number of elements, this result cannot give directly the nearest stiffness 
tensor Cs. We propose here two ways to reach the isotropic symmetry. 
The first possibility is to observe that O is a maximal subgroup of SO(3). That means 
that SO(3) is generated by O and every subgroup S not included in O. This method 
gives an isotropic stiffness tensor Cs. 
The second method proposed here is to take as GB the symmetry group of the 
dodecahedron I . It has 60 elements in the following rotations: the rotations Q(ni, 2/5) 
around the 12 normals of the faces ni, the rotations Q(cj, 2/3) around the 12 corners cj 
and the rotations Q(ek, 2/2) around the 30 edges ek. It can be understood that as the 
stiffness tensor C cannot have the dodechedral symmetry (Theorem 1, (Forte and 
Vianello, 1996)), the following group is SO(3) himself. The result is, of course, 
independent of the choice of the position of B (i.e. the position of the dodecahedron or 
it’s conjugated dodecahedron). 
4.3. exemple 
The stiffness tensor Co measured from the superalloy measurements (Table 3) is now 
considered. The Table 5 gives the distance Ds to each level of symmetry. We can notice 
that Co is really close to the left branch of the tree (the “orthotropic branch”); on the 
contrary, the “trigonal branch” is far from Co. It is obvious that the order relation 
between the symmetry levels has to be respected. Practically this requires avoiding 
local minima  while searching for the base Bs (eqn 20); the position of base B is first 
manually set close to the real minima (using the pole figures of symmetry plane). For 
low level symmetries it is generally necessary to try many combinations before finding 
the absolute minima. 

isotropic 34.6 %
cubic 10.5 % transverse 

i t i
21.8 %

tetragonal 9.9 %   

orthotropic 8.1 % trigonal 21.3 %

monoclinic 4.2 % 
triclinic 0 % 

Table 5: distance from the raw stiffness tensor Co to each symmetry level 
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Comparing the distance from Co to each symmetry level of the left branch leads us to 
notice that Co is only 2.4% further to the cubic symmetry than to the orthotropic 
symmetry. The high level (only three independant constants) cubic symmetry appears, 
without any other choice constraints, to be the "right" symmetry level for this material. 
The nearest cubic tensor Cs is given Table 4. The monocrystal has a cubic lattice and 
X-ray diffraction measurements allows us to validate the obtained symmetry and 
position of the base B. Furthermore, every Cs can be compared to data from mechanical 
tests made using microhardness tests (Espié, 1996). They allow the measurement of the 
stiffness tensor especially on small specimens by using load-unload paths. These 
measurements have been done with the hypothesis that the stiffness tensor has a cubic 
symmetry related to the corresponding symmetry of the microstructure. The values 
obtained in the two cases are different but are close to be proportionnal (Table 4). This 
is probably due to the difficulty of performing mechanical tests on these materials that 
exhibit some microplasticity even for low strains. 

 
5. Conclusion 
We propose in this paper a complete method able to provide the entire stiffness tensor 
of an unknown elastic material and the full analysis of this tensor. The measurement 
and the analysis can be used separately as many methods are now able to give the raw 
stiffness tensor. 
Our proposed ultrasonic method is therefore easy and seems reliable for homogeneous 
materials. The experimental set-up is very simple as a pair of transducers, a card 
plugged in PC, a software are sufficient to perform the measurements. A possible 
extension of this work concerns the measurements of induced anisotropy, for example 
due to damage. 
The planes symmetry pole figures are, in our opinion, a straightforward visualisation of 
the symmetry level of the complex elements that are the stiffness tensors. Their 
application may be extended to other tensors (different levels, or with different indicial 
symmetries). 
Finally, the presented computation of the nearest stiffness tensor Cs gives a powerful, 
complete and fast analysis of the stiffness tensor. Some interesting mathematical 
developments will be possible in the case of isotropic symmetry generated by the 
symmetry group of the dodecahedron. The concept of distance to a symmetry group 
leads to some surpises: in the case of our oak specimen, one can consider it, without any 
great loss of information, as transverse isotropic (only 5 constants) instead of the classic 
orthotropic symmetry level (9 constants) that is commonly used for woods. 
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Appendix: Cartesian notation with indices 

If not specified, the convention summation follows on indices. ij is the Kronekker 
symbol and ijk the direct permutation symbol. 

 pq = ni Cpijq nj (A1) 

 pq = (V i)2(ui)p (ui)q
i1

3

  (A2a) 

 ̂ pq = 
i=1

3

(Vi)2 (ûi)p (ûi)q  (A2b) 

 j(n) = 
1
2 (pq(n) - ̂pq(n)) (pq(n) - ̂pq(n))  (A3) 
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∂û


i

∂
  =  (- sin m


i   + cos ni) (A7) 

and 
∂û
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with v

i   = 









∂(ijk û
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r  û
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 Lij = (û
i
p nq) Cpqrs (nrû

j
s ) - ij ̂(V̂i) 2 (A10) 

 
∂h(n)
∂Cpqrs

  = 
i,j

known

   Lij np û
i
q û

j
r ns (A13) 

∂h(n)
∂

  = 
i,j

known

  Lij (Cpqrs (np 
∂û

i
q

∂
 û

j
r  ns + np û

i
q 
∂û

j
r

∂
  ns)) (A14) 

 (S[r](Co))ijkl = Sip Sjq Skr Sls Copqrs (A17a) 

 Sij = ij - 2 ri rj (A17b) 

 || Co || = Coijkl Coijkl (A17c) 

 


