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Abstract- This paper deals with the Quincke rotation of small insulating particles. This DC 
electro-rotation of insulating objects immersed in a slightly conducting liquid is usually 
explained by looking at the action of the free charges present in the liquid. Under the effect of 
the DC electric field, the charges accumulate at the surface of the insulating particle which, in 
turn, acquires a dipole moment in the direction opposite to that of the field and begins to 
rotate in order to flip its dipole moment. In the classical Quincke model, the charge 
distribution around the rotor is supposed to be purely superficial. A consequence of this 
assumption is that the angular velocity does not depend on the rotor size. Nevertheless, this 
hypothesis holds only if the rotor size is much larger than the characteristic ion layer thickness 
around the particle. In the opposite case, we show thanks to numerical calculations that the 
bulk charge distribution has to be accounted for to predict the electro-mechanical behaviour of 
the rotor. We consider the case of an infinite insulating cylinder whose axis is perpendicular 
to the DC electric field. We use the finite element method to solve the conservation equations 
for the positive and the negative ions coupled with Navier-Stokes and Poisson equations. 
Doing so, we compute the bulk charge distribution and the velocity field in the liquid 
surrounding the cylinder. For sufficiently small cylinders, we show that the smaller the 
cylinder is, the smaller its angular velocity when submitted to a DC electric field. This size 
effect is shown to originate both in ion diffusion and electro-migration in the charge layer. At 
last, we propose a simple analytical model which allows calculating the angular velocity of 
the rotor when electro-migration is present but weak and diffusion can be neglected. 
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I. Introduction 

When a non conducting particle immersed in a low conducting liquid is submitted to a 

sufficiently high DC field, it can rotate spontaneously around itself along any axis 

perpendicular to the electric field. This symmetry break is known as Quincke rotation from 

the name of the man who first observed it at the end of the 19th century [1]. As explained by 

Secker and Scialom [2] and later by Melcher [3], the mechanism responsible for Quincke 

rotation deals with the action of the free electric charges which are contained in the liquid. 

Indeed, when the E field, E0, is applied, the charges contained both in the liquid and in the 

particle migrate under coulombic force. Then, as stated by Jones [4], depending on the 

relative magnitude of the charge relaxation times in the liquid and in the particle, the 

superficial charge distribution which builds at the particle/liquid interface is equivalent to a 

dipole, P, which is either in the direction of the field or in the opposite direction. In the 

following, we will call P the retarded dipole moment since, as it is associated with the charge 

distribution at the particle/liquid interface, it evolves with a finite characteristic time, named 

Maxwell-Wagner time, MW.  

The charge relaxation times in the liquid, 1, and in the particle, 2, are given by the ratio of 

the permittivity, i, to the conductivity, i, i=1,2 refers to the liquid and the particle 

respectively. When 2 <1, the induced dipole is along the E field direction and the 

configuration is stable. In the opposite case, i.e . 2 >1 (for instance, when an insulating 

particle is immersed in a conducting liquid), the dipole, P, which has been created by the 

accumulation of the charges at the particle/liquid interface is opposite to the E field direction 

(figure 1.a.). In this last case, if the particle is slightly rotated, the deviation of its dipole 

moment P produces a torque, E=PE0, which tends to increase the angular tilt further. So, if 
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the E field intensity is high enough for the electric torque to balance the viscous resistant 

torque exerted by the surrounding liquid on the particle, the particle will rotate continuously 

around itself with an axis pointing in any direction perpendicular to DC field (figure 1.b.). A 

noteworthy feature of Quincke rotation is that the angular velocity of the particle is expected 

not to depend on its size. 

Quincke rotation has many implications on mechanical systems. Dielectric motors 

consisting of a cylindrical rotor placed between two plane electrodes have been proposed 

[2,5]. The behaviour of an ensemble of particles undergoing Quincke rotation is also of 

interest. These last few years, we have been working on the consequences of Quincke rotation 

on the electrical and mechanical behaviours of a suspension. In particular, we have 

demonstrated that the particle rotation can be responsible for a sensitive increase of the 

conductivity of a suspension [6] since the particle rotation facilitates the ion migration. On the 

other hand, the particle rotation causes a substantial decrease of the apparent viscosity of a 

suspension [7]. These two effects have been both demonstrated with suspensions containing 

particles whose diameter is comprised between 50 and 100 microns. It would be interesting to 

decrease the particle size since the control of the conductivity or of the viscosity of a 

suspension may have valuable applications in xerography where the pigments are submicronic 

[8]. Also, it may be of interest to use a single particle as a micro-motor in microfluidics 

devices [9].  

A priori, following the classical model used to predict the electro-mechanical behaviour of 

a particle undergoing Quinke rotation, the size of the particle does not play any role. 

Nevertheless, a common hypothesis made in this model consists in assuming that the electric 

charge distribution created by the field around the particle is purely superficial. One can 

wonder if this hypothesis remains valid whatever the particle size. Indeed, because of thermal 

diffusion, the thickness of the charged layer around the particle is a priori expected to be of 
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the order of the Debye length 1D where D is the thermal diffusion coefficient of the ions 

whose typical value in the non polar fluids we study is 2.5 10-11m2s-1 (typically, the viscosity 

of the fluid is 10 mPa.s. and the ion size 1 nanometer). Since the order of magnitude of the 

charge relaxation time is comprised between 1 and 100 ms, the charge layer thickness is 

expected to be in the range of one tenth of a micron up to one micron. As a consequence, one 

can guess that the rotation of small particles should depend on their size if not much larger 

than the charge layer thickness. The purpose of the present paper is to study numerically this 

size effect in Quincke rotation. 

While various theoretical and numerical studies deal with the AC electro-rotation of 

colloidal particles dispersed in an aqueous medium [10], [11], [12], the microscopic analysis 

of a small particle undergoing Quincke rotation has never been addressed. For the sake of 

simplicity, we will carry out a 2D numerical study where the rotation of an infinite cylinder 

whose revolution axis is perpendicular to the applied DC electric field will be considered. 

Furthermore, only the case of a perfectly insulating cylinder will be considered in the 

numerical study. In the first part, the usual model of Quincke rotation is reminded. In the 

second part, we present the electrohydrodynamic equations which have been used to 

determine the ions distribution around the insulating cylinder and the velocity field in the 

liquid. The following section is devoted to the presentation of the finite elements method, 

used to solve the above equations and of the main results concerning the dependence of the 

cylinder spin rate on its diameter. At last, we propose an analytical extension of the classical 

Quincke rotation model by accounting for the charge electro-migration inside the ionic layer 

around the cylinder and we analyse the numerical results thanks to this modified Quincke 

rotation model. 
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II. Classical treatment of Quincke rotation in two dimensions, macroscopic description. 

We consider an infinite cylinder (radius a, conductivity 2, permittivity 2) immersed in a 

dielectric liquid (viscosity , conductivity 1, permittivity 1) and subjected to a DC E field 

perpendicular to its revolution axis: E0= -E0ex (figure 2). As described in the introduction, the 

rotation of the cylinder is explained by the action of the electric field on the charges which 

have accumulated at its surface. The electric field exerts on the charges that are supposed to 

be stuck on the cylinder an electric torque (per cylinder unit length) that is written as 

2
2

e 1
0

a ( )E ( a, )d


     E
zΓ  e   (1) 

where e is the surface charge distribution. 

A conservation equation for the surface charge can be obtained performing a charge 

balance on an elementary surface, dS=a dz d of the cylinder. The time variation of the charge 

contained on dS is given by the sum of two terms: 

-The difference of the conduction currents outside and inside the cylinder, crossing dS: 

2 2 1( ). dS  1E E e  

-The current coming from the displacement of the interfacial charges carried by the 

rotation of the cylinder:  e  a dz d


   


 where  is the angular velocity of the cylinder 

around (Oz). 

We then obtain: 

e e1 2
1 2

at 

    
        

 (2) 

 

where 1 and 2 denote the electrostatic potentials outside and inside the cylinder  which can 

be split up into two parts: the instantaneous potential created by the charges that are present 
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on the electrodes surface, 1,2
  and the electric potential associated with the superficial charge 

distribution, 1,2
 . 

   Assuming that the charge distribution is dipolar, the potentials are written as: 

1

2

1

2

2

0

0

2

0 0

0 0

a
A E cos

(1 B)E cos

a
C E cos( )

D E cos( )









 
      

   

  


   

  (3) 

where 0 is the direction of the dipole moment created by the charge distribution and A B, C 

and D are constants. All these five quantities are determined from equation (2) and the 

boundary conditions: 

 

1 2

1 2

2 1
2 1

a

2 1
e 2 1

a

( a) ( a)

( a) ( a)

0

 

 

 



 



   

   

  
   

   

  
    

   

   

 

Finally, in the stationary regime, we obtain: 

A B    

0

2 2
MW

C D
1

 
 

 
  (5) 

 0 MWarctan    and e= -(1+2)CE0 cos(0) 
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where 1 2
MW

1 2

 
 

 
 is the Maxwell Wagner time which is the characteristic time for the 

interfacial charge (or equivalently for the dipole moment) to relax and = 2 1

1 2

 
 

 and 

0= 2 1

1 2

 
 

 are the Clausius-Mossotti factors of the cylinder at high and zero frequency 

respectively. 

 

In stationary state, the electric torque (eq.1) is balanced by the resistant viscous torque exerted 

by the fluid on the cylinder: 

HΓ   (6) 

where =4a2 is the rotational friction coefficient of the cylinder (per unit length),  being 

the liquid viscosity. 

The stationary behaviour of such a Quincke rotor has been widely studied and shows some 

interesting features: the rotation of the cylinder depends on a threshold value of the electric 

field intensity, Ec, and, above this critical value, the particle rotates around itself with an axis 

pointing in any direction perpendicular to the field : 

  
2

0

MW c

E1
1

E

 
     

 with 
 c 0

MW 1

2
E

 

 


   
 (7)  

Furthermore, as mentioned in the introduction, this model predicts that the angular 

velocity of the cylinder does not depend on its diameter. In the following, we will show that 

this model is valid only if the thickness of the charge distribution around the cylinder is thin 

enough compared to the cylinder diameter and if the ion diffusion and electro-migration can 

be neglected on the cylinder size scale.  

 

III. Microscopic analysis 
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III.A Balance equations 

Modelling Quincke rotation where electric field and fluid dynamic effects are coupled is 

based on the combination of continuum equations for the electric and the flow fields in the 

bulk with balance equations for the ion density [13]. 

The bulk charge distribution around the cylinder and the fluid velocity field are 

determined upon solving the charge conservation equations and the Navier-Stokes equation in 

the liquid. Some simplifying assumptions are made: the conductivity of the cylinder is 

considered to be much smaller than that of the liquid so that 20 and the dielectric constants 

of the cylinder and of the liquid are assumed to be equal: 1=2=. Furthermore, we will 

restrict our study to low polar materials for which there exist a dynamical equilibrium 

between free ions and ionic pairs :  

 

  (8) 

Where kr and kd are respectively the recombination and the dissociation constants which, 

at thermodynamic equilibrium, are related by: 

2
d 0 r 0k c k n   (9)  

where c0=[A+B-] and n0=n+=n-=[A+]=[B-], at thermodynamic equilibrium. 

Following Debye [14], 

10
r B i

e (K K )
k (1 exp( l / a )) 
  


 where e0 is the elementary charge, 

2
0

B
e

l
8 kT




, the 

Bjerrum length and ai, the distance between ions in an ionic pair (k being the Boltzmann 

constant and T, the temperature). K+ and K- are the electrophoretic mobilities of the positive 

and negative ions which, in the following, are assumed to be the same: K+=K-=K.  

In non-polar fluids, most of the ions are associated in ionic pair (c0>>n0) and lB>>ai so 

that the recombination constant reduces to the Langevin constant for gases [15]: 

kr

kd 
(A B ) A B   �
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 kr2Ke0/.   (10) 

The ion conservation equation for the positive and the negative species is written as [13]: 

  d r
n

n K D n k c k n n
t


   


      
� v     (11) 

In this equation, v is the velocity of the fluid and D is the ionic diffusion coefficient 

which has been chosen equal for both the positive and the negative ions. c is the concentration 

of the neutral species. In the following, it will be considered that, everywhere, the ion 

concentration, c, is equal to c0 and also to the initial concentration of electrolyte added to the 

liquid, since, as usual in low polar liquids, the dissociation coefficient is supposed to be small. 

 The charge density and the electric potential must satisfy Poisson's equation: 

.()=-e0(n+-n-)  (12) 

At last, the fluid flow is governed by the Navier-Stokes equation and the continuity 

equation for an incompressible fluid: 

f f 0( . p+ e (n n )
t  


      


v

v v v     (13) 

0v   (14) 

where p is the pressure and f, the fluid density. 

In a non dimensional form, equations (11), (12), (13) and (14) become: 

  

   r r
r r

m D

n
n . n n 1 n n

t


    
  

     
  
         


v      (15) 

 2 m

r

n n
2  


  


      (16) 

m
2
r

r
( . p+ (n n )

t 2
 

        

         

v

v v v   Re  (17) 

=0v    (18) 
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where the dimensionless variables are: 

t t ; =
a


  ; =

a
v

v ; 
0

n
n

n


   ; 
0aE


  and  

p
p


 . 

2
f a 




Re  is the Reynolds 

number,
2

0

c

E
r

E

 
 
 

where Ec is the threshold field defined in eq.(7). Beside 1/, 3 time scales 

appear in equations (15)-(17) . MW
r

1 2


  


 is the charge relaxation time, 

2

D
a

D
   is the 

characteristic time for the tangential diffusion around the cylinder. At last, m
0

a

KE
   is the 

characteristic time for ion electro-migration around the cylinder.  

 Considering eqs. (15)-(17), it is worth noting that 1/m and 1/D represent the magnitude 

of the electro-migration flux and of the tangential  diffusion flux respectively. 

 

III.B orders of magnitude 

Now we shall see how the above characteristic times compare to each other for different 

cylinder sizes. Besides the cylinder size, various physical parameters of the liquid appear in 

these characteristic times. In the following, we will fix them to the typical values they have in 

the systems we use to study experimentally [6], [7]: 20, 110-8S/m, 10-2Pa.s, K10-

9m2V-1s-1.and D2.5 10-11 m2s-1.  Using these values we get the intensity of the critical field, 

Ec=5.7 105V/m and the orders of magnitude of the characteristic times which are reported in 

table 1 for different cylinder radii. It should be noted that whatever the size of the cylinder 

(comprised between 1 and 100µm), the diffusion time is always larger than the other ones. 

But, when the radius of the cylinder becomes as small as 1 µm, the electro-migration time and 

the charge relaxation time are of the same order of magnitude and the diffusion time is only 

40 times larger than them. So we expect diffusion to play a role for particles smaller than a 

few microns and electro-migration for particles smaller than a few tens of microns. 
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III.C  Numerical study 

In this section, we will show how the relative magnitude of the different characteristic 

times influences the cylinder angular velocity.  

Numerical technique.  

The equations have been solved with the software Comsol Multiphysics TM for an 

infinite cylinder. The solutions are supposed to be invariant under translation along the 

cylinder axis (2D approximation). Using the non-dimensional variables of eq. (15)-(18), the 

cylinder radius equals 1, and the velocity of the fluid at the surface is purely tangential and 

equals 1 too. The cylinder is placed at the centre of a square box with edge length 40. The 

boundary conditions in the non-dimensional variables are displayed in figure 3. Jn+  and Jn- are 

the components of the flux density of ions normal to the boundary. We note that when the 

characteristic times are varied, the geometry and the boundary conditions are kept unchanged, 

while the equations are modified. 

The mesh is automatically generated by the software. The number of nodes on the 

cylinder boundary (circle) is fixed, so as to impose the typical size on an element at this 

position. We usually work with 4000 nodes on the cylinder boundary. As already mentioned, 

the smaller length of the problem is the charge layer thickness. With 4000 nodes on the 

boundary, the typical size of an element is 1.5 10-3, so that, as it will be shown in section IV, 

the dense layer is always larger than 3 or 4 times this length. Furthermore, we have checked 

that the mesh density was sufficient to ensure that the result did not depend on the mesh size. 

 The non linear solver performs iterative computation, until the relative error estimate 

was lower than 10-3, but, usually, the final error estimate is lower than 10-6. 

 

Numerical procedure 
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 For each set of parameters
2

0 , ,m D

c r r

E

E

 
 

   
  
   

, the angular velocity  is increased from 

zero, and for each value of the solution of equations 15-18 is �sought and the viscous 

torque exerted on the cylinder is computed from the fluid velocity field. If the electric field is 

large enough (higher than a critical value), the viscous torque is positive for low values of , 

which means that the fluid drives the cylinder (figure 4). For increasing values of , the 

viscous torque cancels and then becomes negative. The spontaneous rotation velocity is the 

value of  for which the viscous torque cancels. 

 

Numerical results 

 As already mentioned, the purpose of the present paper is to evaluate the effect of the 

rotor size on its angular velocity. Nevertheless, as it can be seen eq. (15)-(17), the control 

parameters of the system are the field intensity and the ratios of the electro-migration time and 

of the diffusion time to the charge relaxation time. As a consequence, in a first step, we shall 

present an analysis of the electro-mechanical behaviour of the cylinder in terms of the 

characteristic times. After that, we shall focus on the variation of the cylinder spin rate with 

its diameter, all other parameters being fixed.  

 First, we examine the variation of the cylinder spin rate as a function of the squared E 

field intensity for various values of the migration time and of the diffusion time (figure 5). 

One can observe a strong dependence of the angular velocity on both the migration time, m 

and the diffusion time, D. The dependence is particularly significant when these two 

characteristic times are not very large compared to the relaxation time. When it is not the case 

(i.e. when D>>r and m>>r), as expected, the rotor behaviour is very close from that 

predicted by the Quincke rotation model. At constant D, when the migration time decreases, 

the rotor spin rate is reduced. The same observation can be made when the diffusion time is 
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decreased at constant m (and when D is not much larger than m). The qualitative 

interpretation to these two observations is straightforward since the tangential diffusion is 

expected to smooth the angular dependence of the charge density profile and since the ion 

electro-migration around the cylinder will decrease the local charge density. Both effects lead 

to a decrease of the torque exerted by the E field on the ion distribution. 

 Since the purpose of this paper is to estimate the influence of the rotor size on the 

Quincke rotation, let us fix all other parameters: =10-2 Pa.s, 0, =10-8S/m, K=10-

9m2V-1s-1 and D=2.5 10-11m2s-1 (Ec570 V/mm and r1.8 ms) and let us vary the cylinder 

radius. The dependence of the cylinder squared spin rate as a function of the normalised 

squared electric field intensity for different cylinder sizes (a=2.5, 3, 5 and 10µm) is shown by 

the symbols (the meaning of the lines will be given in the next section) in figure 6. In this 

representation, the control parameters which are kept constant along each curve of the figure 6 

are D and the product 2
mr . 

An interesting feature to note on this figure is that, whatever the size of the rotor, the 

qualitative dependence of the angular velocity on the field intensity is the same as in the 

classical Quincke model: 

c

2

0
* *
MW

E1
1

E

 
   
   

  

where *
cE  and *

MW  are function of the parameters 2
mr and D or equivalently of the cylinder 

radius but do not depend on the electric field intensity. The smaller the cylinder radius is, the 

lower its angular velocity: the critical field increases and the slope of the curves decreases 

when the size decreases. 

 Besides this qualitative description, it should be stressed that, in the parameter range we have 

considered, the tangential diffusion time is always much higher than both the charge 
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relaxation and electro-migration times (for a= 2.5µm, D/r =140 and 57<D/m<228 for 

Ec<E0<4Ec; for a= 10 µm, D/r =2200 and 228<D/m<912). Therefore, consistently with 

figure 5, the tangential  diffusion is not expected to play a significant role. On the opposite, m 

is of the same order of magnitude as r (0.4<m/r<1.7 for a= 2.5µm and 1.7<m/r<6.9 for 

a=10µm). As a consequence, one can guess that the rotor angular velocity is mainly controlled 

by the electro-migration.  In the following section we show how to account for the tangential 

electro-migration flux in the prediction of the cylinder angular velocity.  

 

IV. Discussion 

 In this section, we propose a simple analytical model which holds in the case of 

negligible tangential diffusion. We show that the migration flux results in an equivalent 

surface conductivity which can be included in the classical Quincke model. Let us suppose 

that the surface charge is distributed in a thin layer around the cylinder, so that the ion density 

is much higher in the layer than in the bulk liquid. 

The charge carriers present in this layer are responsible for a local increase of the 

conductivity. We take it into account by integrating the tangential migration flux over the 

layer thickness, : 

 
a

S a
J n n eKE d



       (19) 

This expression is further simplified upon supposing that the tangential electric field is 

constant within the layer and that, whatever the angular position, one type of charge carrier is 

predominant so that n++n-n+-n-. 

 The migration flux is given by:  

 
a

S ea
J E n n eKd KE



           (20)  

where the second approximate equality assumes that the layer is thin (<<a).
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Equation (20) defines a surface conductivity, ()=e()K. For the sake of simplicity, we 

introduce the average surface conductivity 

2
e K 

      (21) 

Taking into account this surface conductivity and assuming as in section III that the cylinder 

is perfectly insulating, equation (2) becomes: 

2
e e1 1

1 2 2
a a

t a


 

       
             

 (22) 

Looking for a dipolar solution  2 0cos  � , and using the continuity of the electrostatic 

potential at the cylinder surface, it follows: 

2
1 2

2
a

1

a 

   
     

  (23) 

so that equation (22) becomes: 

 e e1 2
1

at a




     
        

 (24) 

Comparing equations (2) and (24), we note that the surface conductivity is equivalent to a 

bulk conductivity in the cylinder /a [16]. Supposing 1=2 as in section III, Equation (5) 

and (7) together with equations (21) and (24) result in a self-consistent determination of : 

 

 

2 r

2
1 m

MW

2

MW
2

1 R 1
R 2

1 R
1

1 R

1 R
r 1

1 R 1 R

  
  

       

       

 (25) 

Eliminating  in the equations (25), the expression of the normalized equivalent bulk 

conductivity in the cylinder is obtained: 
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2

2 m
2

1 rm

r

1
1 2 r 1

r

                

 (26) 

 This expression deserves one important remark: the equivalent bulk conductivity is 

a function of the single parameter r(m/r
 )2.  In particular, turning to the physical parameters, 

2

21
24

m

r

r a
K

 
 

 
 

 
 so that 2/1 does not depend on the electric field intensity, but on the 

cylinder radius. Thus, for a given rotor size, the angular velocity obeys equation (7) with the 

constant cylinder conductivity (26). We note that D does not appear in eq.(26). Indeed, the 

tangential diffusion flux has been neglected. 

 The results of this model together with the numerical computation are displayed on 

figure 6. Firstly, concerning the intermediate sizes 10 and 5 microns, corresponding to values 

of r(m/r
 )2 equal to 100 and 25 respectively, the surface conduction model agrees quite 

convincingly with the f.e.m. computation, even as the latter differs sensibly from the Quincke 

model. However, for high field intensities, we note a slight deviation from the linear 

behaviour. When r(m/r
 )2 decreases and becomes smaller than a typical value of 10, the 

discrepancies grow up, and the model turns out to be inadequate.  

 To try to better understand this discrepancy, we can examine the numerical results 

concerning the radial charge distribution that are displayed in figure 7 for two values of the 

cylinder radius (a=10µm and a=2.5µm). It appears clearly that, whatever the angular velocity 

of the cylinder, the ionic cloud is much more extended when the cylinder is small. More 

precisely, apart from the very dense and thin layer close to the surface, there exists a diffuse 

layer which can be much thicker.  For instance, the normalized charge density has decayed to 

about one-thousandth of its surface value at a typical normalized distance of 0.15 for a=10µm 

and 1.5 for a=2.5µm. Furthermore, for this last rotor size, in the direction where the charge 
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density is maximum, only approximately half the charge is contained in the dense layer. In 

that case, the thin layer approximation may be very crude. In particular, the velocity field of 

the liquid around the particle, which is coupled to the charge distribution, will be quite 

different from the 1/ velocity profile that is supposed to take place in the Quincke rotation 

model and that results in the viscous torque expression (6). More generally, all the fluxes may 

play a role in the building of the charge layer. For that reason, it seems difficult to give an 

analytical description of the system, and even to evaluate the thickness of the layer. Anyway, 

we have checked that it could be as large as ten times the Debye length ( r
r

D

D a


 


). 

 However, an order of magnitude of the dense layer thickness, , may be obtained 

by equating the radial diffusion and migration ion fluxes at the insulating cylinder surface: 

Kn±E0D n±/  

m

Da




�    (28) 

 Analysing the numerical computation of the charge profiles, we have been able to 

confirm that eq. (28) gives the right order of magnitude for the dense layer thickness. Indeed, 

in table 2, one can see a comparison between the results provided on one hand by the 

expression (28) and on the other hand by the analysis of the numerical charge profiles in the 

direction where the charge density is maximum, for different values of r and a. From a 

numerical point of view, the layer thickness is evaluated by assuming that the charge density 

profile is exponential and by dividing its value at the cylinder surface by e, the Euler's 

number.  

 Again, for cylinder sizes larger than typically five microns, the charge is mainly 

contained in the thin layer, and the thin layer hypothesis holds. On the opposite, for smaller 

sizes, both thick and thin layer have to be considered, and the electro-mechanical behaviour of 

the system has to be studied numerically. 
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V. Conclusion 

 Using a finite element method, a numerical study of Quincke rotation has been 

performed in order to evaluate the influence of the rotor size on its angular velocity when 

subjected to a DC electric field. To solve this problem, the charge conservation equations and 

the Navier-Stokes and Poisson equations have been written in a non-dimensional form where, 

beside the inverse of the cylinder spin rate, three characteristic times appear: the diffusion 

time and the ion electro-migration time over the rotor radius, and the charge relaxation time. 

A study of the influence of the magnitude of these different characteristic times has been 

addressed and it has been shown that both electro-migration and diffusion result in a decrease 

of the angular velocity of the cylinder and an increase of the threshold field. A modified 

Quincke model has been proposed to calculate analytically the rotor spin rate. This model 

accounts for the electro-migration inside the charge layer which is present around the rotor 

thanks to an equivalent surface conductivity. Its results agree with the numerical ones if the 

charge layer thickness is small compared to the cylinder radius. The numerical computation 

shows that it is the case if the cylinder radius is larger than typically five microns. For smaller 

particles, the estimation of the charge thickness may be difficult due to the large number of 

coupled parameters that play a role (electro-migration, diffusion, convection). However, we 

have shown that the charge layer consists in a dense and thin layer at the cylinder surface 

surrounded by a diffuse layer whose thickness can be as large as ten times the Debye length.. 
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Table caption 

Table 1. Variation of the 3 characteristic times with the radius of the rotor. The electric field 

intensity is 106 V/m and the physical parameters used to calculate these times are: 20, 

110-8S/m, 10-2Pa.s, K10-9m2V-1s-1.and D2.5 10-11 m2s-1. 

 

Table 2. Thin layer thickness around the rotating cylinder for various cylinder radii and 

various field intensities: a comparison between the layer thickness obtained thanks to the 

numerical computation (/a) and the order of magnitude resulting from the balance of the 

radial diffusion and the tangential electro-migration fluxes (m/D). 
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Figure caption 

 

Figure1. If the charge relaxation time is larger in the particle than in the liquid, the superficial 

charge distribution is equivalent to that of a dipole in the direction opposite to the DC E field 

(a). The particle starts rotating to flip its dipole in the field direction. In stationary regime, the 

dipole forms a constant non zero angle with the field (b). 

 

Figure 2. An insulating cylinder (symmetry axis along z) is submitted to a DC electric field 

pointing in the (-x) direction. 

 

Figure 3. Boundary conditions for the normalized equations. An insulating cylinder 

(normalized radius, 1) is placed in a square box (normalized edge length, 40). 

 

Figure 4.  Normalized viscous torque of the cylinder versus its angular velocity. This curve 

has been obtained for (E0/Ec)
2=4, m/r=2.5 andD/r=564. 

 

Figure 5. Squared normalized spin rate versus r=(E0/EC)² for different values of m/r 

andD/r: solid lines: D/r =2000, dashed lines: D/r =200, dotted lines: D/r =20, circles: 

m/r =20, triangles: m/r =2,squares: m/r =0.8. The thick line corresponds to the predictions 

of the classical Quincke rotation model. 

 

Figure 6. Squared normalized spin rate versus r=(E0/EC)² for different values of the cylinder 

radius. The lines correspond to the predictions of the model and the symbols to the numerical 

computations: circles, dashed line: a=10µm (r(m/r)
2=100); triangles, dotted line: a=5µm 

(r(m/r)
2=25); squares, dot-dashed line: a=3µm (r(m/r)

2=11); stars, solid line: a=2.5µm 
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(r(m/r)
2=6.25). The thick line corresponds to the predictions of the classical Quincke rotation 

model. 

 

Figure 7. Normalized charge density profile for two values of the cylinder radius. The diffuse 

layer normalized thickness is far larger in the case of the smallest cylinder. 
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Cylinder radius (µm) 1 2.5 10 100 

r=



  (s) 
1.8 10-3 1.8 10-3 1.8 10-3 1.8 10-3 

m

0

a

KE
   (s) 

10-3 2.5 10-3 10-2 10-1 

D

2a

D
   (s) 

410-2 0.25 4  400 

 

 

 

 

Table 1 
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 r=2 r=4 r=9 r=16  

a=10 m 2.4 10-3 2.8 10-3 3.6 10-3  /a  
3.2 10-3 2.2 10-3 1.5 10-3  m/d 

a=5 m 4.8 10-3 4 10-3 4 10-3  /a 
6.3 10-3 4.4 10-3 2.9 10-3  m/d 

a=3 m  5.6 10-3 4.4 10-3 3.2 10-3 /a 
 7.4 10-3 4.9 10-3 3.7 10-3 m/d 

a=2.5 m   5.2 10-3 4.4 10-3 /a 
  5.9 10-3 4.4 10-3 m/d  

 
 

 

 

Table 2 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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