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Abstract. In this paper we present our work on the parametrization of
Random Forests (RF), and more particularly on the number K of fea-
tures randomly selected at each node during the tree induction process.
It has been shown that this hyperparameter can play a significant role
on performance. However, the choice of the value of K is usually made
either by a greedy search that tests every possible value to choose the
optimal one, either by choosing a priori one of the three arbitrary values
commonly used in the literature. With this work we show that none of
those three values is always better than the others. We thus propose an
alternative to those arbitrary choices of K with a new ”push-button” RF
induction method, called Forest-RK, for which K is not an hyperparam-
eter anymore. Our experimentations show that this new method is at
least as statistically accurate as the original RF method with a default
K setting.

Key words: Classification, Classifier Ensemble, Classifier Combination,
Random Forests, Decision Trees, Bagging

1 Introduction

Random Forest is a family of classifier ensemble methods that use randomization
to produce a diverse pool of individual classifiers, as for Bagging [1] or Random
Subspaces methods [2]. It can be defined as a generic principle of classifier com-
bination that uses L tree-structured base classifiers {h(x, ©y), k = 1,...L} where
{6y} is a family of independent identically distributed random vectors, and x
is an input data. The particularity of this kind of ensemble is that each decision
tree is built from a random vector of parameters. A Random Forest can be built
for example by randomly sampling a feature subset for each decision tree (as in
Random Subspaces), and/or by randomly sampling a training data subset for
each decision tree (as in Bagging). Since they have been introduced in 2001, RF's
have been studied in many ways, both theoretically and experimentally [3—11].
In most of those works, it has been shown that RFs are particularly competitive
with one of the most efficient learning principles, i.e. boosting [5, 7, 10]. However,
the mechanisms that explain the good performance of this type of classifier en-
semble are not clearly identified and one has to admit that it is still a complex



task for the practitioner to take full benefits of the potential of those methods.
For example considering the reference RF method called Forest-RI, introduced
by Breiman in [5] (cf. section 2), an important hyperparameter has been iden-
tified : the number K of features randomly selected at each node during the
tree induction process. Yet, in those research works that have experimented this
method, the value of K is arbitrarily or empirically set, and sometimes without
any theoretical nor experimental justification.

In this paper we propose an alternative to those arbitrary settings of K.
Indeed, it appears that this hyperparameter setting is crucial for accuracy in
RF induced with Forest-RI algorithm [3]. However, the choice of the value of
K is usually made either by a greedy search that tests every possible value to
choose the optimal one, either by choosing a priori one of the three arbitrary
values commonly used in the literature. With this work we show that none
of those three values is always better than the others and that none of them
consequently represent a good setting. We thus propose a new RF algorithm,
called Forest-RK, based on Forest-RI but for which the setting of K does not
play a crucial role anymore for growing accurate RF classifiers. We show that
this new method is at least as statistically accurate as the ”classic” Forest-RI
algorithm with default settings.

The paper is thus organized as follows: in the following section, we detail
the Forest-RI algorithm used in our experiments; in section 3, we describe our
experimental protocol, the datasets used, and compare the results obtained with
different settings of the hyperparameter K. We finally draw some conclusions
and future works in the last section.

2 The Forest-RI algorithm

One can see RFs as a family of methods, made of different decision tree ensemble
induction algorithms, such as the Breiman Forest-RI method often cited as the
reference algorithm in the literature [5]. In this algorithm the Bagging principle
is used with another randomization technique called Random Feature Selection.
The training step consists in building an ensemble of decision trees, each one
trained from a bootstrap sample of the original training set — i.e. applying the
Bagging principle — and with a decision tree induction method called Random
Tree. In this induction algorithm, a feature subset is randomly drawn for each
node, from which the best splitting criterion is then selected. Thus, the Forest-RI
method grows a decision tree using the following process :

— Let N be the size of the original training set. N instances are randomly
drawn with replacement, to form the bootstrap sample, which is then used
to build a tree.

— Let M be the dimensionality of the original feature space, and K a prelimi-
nary fixed parameter so that K € [1, M]. For each node of the tree, a subset
of K features is randomly drawn without replacement, among which the best
split is then selected.

— The tree is thus built to reach its maximum size. No pruning is performed.



This process is thus led by an important hyperparameter: the number K of
randomly selected features in the splitting process. Whereas this parameter has
already shown to be critical for RF performance, no research work has been
specifically devoted to study its setting and its real influence on performance,
and only a few have empirically dealt with this issue.

In [8] for example, Guerts et al. have proposed a new method of RF induction,
called Extras-Trees for Extremely Randomized Tree Ensemble, that modifies the
Forest-RI algorithm to accentuate the randomization. Here the Random Feature
Selection is still used but modified so that the best splitting criterion selection
is one step further randomized. The authors have designed their experimental
protocol to study the influence of K on performance. Even if this method is partly
different from the Forest-RI algorithm, this work allows to draw some intuitions
on the RF behavior according to K. It highlights for example that their default
setting K = v/M, where M stands for the dimensionality of the original feature
space, is most of times closed to the optimal setting, at least for the Extras-Trees
method and on several representative datasets. Another example is Breiman’s
work on performance according to this K parameter [5]. In these experiments,
a large number of RF has been grown on three databases of the UCI repository,
for which the test set error rate has been monitored. Actually only one of those
three experiments was really concerned by the Forest-RI algorithm, since the
two others have been run with a different induction algorithm that uses feature
combinations in the splitting criterion, instead of single features. Hence, even if
Breiman draws some tendencies [5], those experiments do not allow to conclude
on RF behavior according to the setting of K . We also noticed that in his Forest-
RI experiments, Breiman has decided to use two values of K : 1 and logs(M)+1.
While the first value is intuitively interesting since it corresponds to a decision
tree induction that selects in a fully random manner the splitting criterion among
features for each node, the second one seems to be more arbitrary or at least is
not justified.

Finally, implementation and experimentation of the Forest-RI algorithm re-
quire to fix the value of the hyperparameter K but as we have shown, there
actually does not exist any theoretical rule that can be used to fix it. As men-
tioned previously, only arbitrary default values are proposed in the literature
and nothing guarantees that these values are close to the optimal setting, as
we will show in section section 3.3. We thus propose an alternative to those
settings, with a new push-button RF induction algorithm for which K is not
an hyperparameter anymore. We describe in the following section our new algo-
rithm and compare it with the ”classic” Forest-RI algorithm, through extensive
experiments on several datasets and with predefined values of K.

3 Investigating the influence of K on Forest-RI
performance

The purpose of this set of experiments is to compare accuracies of Forest-RI
algorithm with default settings of K on the one hand, to our new push-button



RF algorithm in which K is not an hyperparameter anymore, on the other hand.
In this new algorithm, called Forest-RK, K still exists since Random Feature
Selection is still used, but is randomly chosen for each splitting node. Instead of
fixing the value of K so that it is identical for all the decision trees, a new value
of K is randomly chosen at each node of the trees, and used for this current
node splitting only. The new Forest-RK decision tree induction procedure can
be summarized as below:

— Let N be the size of the original training set. N instances are randomly
drawn with replacement, to form the bootstrap sample, which is then used
to build a tree.

— Let M be the dimensionality of the original feature space. Randomly set a
number K € [1, M] for each node of the tree, so that a subset of K features
is randomly drawn without replacement, among which the best split is then
selected.

— The tree is thus built to reach its maximum size. No pruning is performed.

As shown in the above algorithm, the main difference between Forest-RI and
Forest-RK lies in that K is randomly chosen for each node of the tree leading
therefore to more diverse trees in the Forest-RK than in the Forest-RI. Two
ideas have led us to this new algorithm: i) it avoids the greedy iterative test of
every possible value of K to find the best one, while being at least as accurate
as the traditional Forest-RI algorithm parametrized with default values; ii) it
is an alternative to default settings of K, since as shown in section 3.3, those
values are arbitrary and are not always the best choice. Thus the problem is
now to determine which of the two algorithms, Forest-RI or Forest-RK, will
produce more accurate classifiers when trained and tested on the same datasets.
To answer to this question, 7.e. assessing which of the two algorithms performs
better, we lean on the comparison of five approximate statistical tests, compared
in [13]. In this paper, it is recommended to use McNemar’s test [14], for which it
is shown that it better suits to experimental protocols like ours. The McNemar’s
test is firstly used here to determine whether or not two sets of predictions differ
significantly. That is to say, under the null hypothesis Hy, the two algorithms
should have the same error rate. Given two algorithms A and B producing two
classifiers h4 and hpg, the contingency table is constructed, so that it gives the
four values : ngg = # samples misclassified by both h4 and hg; ng; = # samples
misclassified by ha4 but not by hg; n1g = # samples misclassified by hp but not
by ha and ny; = # samples misclassified by neither h4 nor hg. McNemar’s
test is then based on a x? test for goodness-of-fit that compares the distribution
of counts expected under the null hypothesis to the observed counts. It thus
states that the statistics X2 (equation 1) can be considered as following a x?
distribution with 1 degree of freedom.

(Jnor — niol —1)?
no1 + N1o

X? = ~ X1 0.05 = 3.841459 (1)

Consequently Hj is rejected, i.e. one of the two algorithms is considered to be
”better” than the other, if X? is greater than x7 ;o5 = 3.841459. Finally, when



applied on a specific testing set, three answers can be obtained through the
McNemar test :

— Hj is rejected and ng; > nig: Algorithm B produces significantly more
accurate classifiers than algorithm A.

— Hy is rejected and ng; < nip: Algorithm A produces significantly more
accurate classifiers than algorithm B.

— Hy is accepted: The two algorithms do not produce classifiers significantly
different in term of accuracy.

With such a procedure, we are able to assess if Forest-RK statistically outper-
forms or not the Forest-RI algorithm with default K parameter settings. We
first describe in the following subsection the datasets used. We then detail our
experimental protocol to compare the two algorithms and discuss the obtained
results.

3.1 Datasets

The 10 datasets that have been used for these experimentations are described in
table 1: The first 8 datasets have been selected from the UCI repository [12]; the
two last, Twonorm and Ringnorm, are synthetic datasets designed by Breiman
[15]. Those datasets have firstly been selected because they are representative of
typical machine learning issues in terms of number of classes, of features and of
samples. They have also been chosen because they do not contain any missing
values and because the features are all numerical. All those datasets are not
preliminary divided into training and testing subsets. Thus for our experiments
we have decided to randomly split each original dataset, with two thirds of the
instances used for training, and the other third for testing. In order to make sure
that our results do not depend on this arbitrary splitting this process has been
repeated 10 times with various splittings.

Table 1. Datasets description

lDataset “ Size [Features[Classes“Dataset HSize[Features[Classes‘

Diabetes || 768 8 2 Spambase ||4610 57 2
Gamma (/19020 10 2 Vehicle 946 18 4
Letter 20000 16 26 ||Waveform||5000 40 3
Pendigits|| 10992 16 10 ||Ringnorm||7400| 20 2
Segment || 2310 19 7 Twonorm ||7400| 20 2

3.2 Experimental protocol

In this section our experimental protocol is described. It performs compara-
tive tests on the datasets detailed in table 1. For all the experiments described



Algorithm 1 Experimental Protocol

Input: N the number of instances in the original dataset.

Input: M the number of features in the original dataset.

for i =1 to 10 do

Randomly draw without replacement % x N of the original dataset instances to
form a training subset T'r;. The remaining instances form the test subset T's;, and
the couple (T'r;,T's;) is denoted T;.
Grow three Random Forests, on the training set Tr;, noted hi, h g7 and

hiogs(ar)+1, according to Forest-RI algorithm with K respectively equal to 1, VM

and loga (M) + 1.

for j =1 to 50 do
Grow a Random Forest, noted hg;, according to Forest-RK algorithm, on the
training set T'r;.
Apply McNemar test on classifier pairs (hi,hr;), (hyz7 hr;) and
(htoga(a)+1, hRr; ), With the testing set T's;. Store the results.

end for

end for

in this section, the number of trees grown in the forests has been set to 100. This
choice is based on a previous experimental work presented in [3], in which we
have shown that it is a reasonable value to grow an accurate RF, and considering
that we do not seek to reach intrinsic optimal performance. First, each dataset
has been randomly split into training and testing subsets, as explained in the
previous section. This splitting procedure has been repeated 10 times so that
10 different training sets and testing sets are thus available, each set contain-
ing two thirds and one third of the original dataset respectively. We denote by
T; = (T'r;, Ts;) such a split, with 7 € [1,10] and where Tr; and T's; stand respec-
tively for the training part and the test part. Then, for each T;, the Forest-RI
algorithm has been run with the three following default values of K: K = 1,
K =M and K = loga(M) + 1; and Forest-RK has been run 50 times. By this
way, 10 x 50 x 3 = 1500 comparisons between Forest-RI and Forest-RK have
been performed for each dataset. Algorithm 1 summarizes the whole experimen-
tal protocol applied to each dataset. This procedure outputs for each dataset 3
tables of 500 McNemar test outputs, i.e. values € {—1,0,1}, corresponding to
the three possible cases enumerated previously. Those results are presented and
discussed in the next section.

3.3 Results

Table 2 presents a synthesis of our results obtained by the experimental protocol
detailed in Algorithm 1. As mentioned above, 3 tables of 500 comparison results
are firstly obtained for each dataset. For those 3 tables, the number of occur-
rences of the three possible cases have been counted and detailed in table 2. The
first observation that can be made from this table is that, when all the results
are summed for each of the three McNemar possible answers, the second case for
which the two algorithms have shown to be statistically equivalent, is strongly in



the majority. Thus, considering all the comparisons performed between Forest-RI
and Forest-RK, the two algorithms are as accurate as each other. Then looking
at each cell of the table the same observation can be made : for each case —
except for two of them, i.e. Letter/K = 1 and Ringnorm/K = 1 — the two
algorithms have shown to be equivalent most of the times. Hence, the McNemar
test indicates that the two algorithms are ”globally” equivalent; however, as the
first and third values in each cell of the table are not always strictly null, one can
say that one of the two algorithms is sometimes better than the other. Thus, let
us consider only cases for which the McNemar test indicates that one algorithm
outperforms the other, by comparing the first and the third values in each cell
of the table: we can notice that in 19 of the 30 duels, Forest-RI outperforms
Forest-RK most of times, and in 9 of the 30 duels it is the contrary. But con-
cerning the Forest-RI algorithm, when looking at each dataset, it appears to be
more interesting to use K = 1 for 3 datasets (Spambase,Ringnorm,Twonorm),
to use K = /M for 4 datasets (Pendigits,Gamma,Letter,Segment) and to use
K =loga(M)+1 for 3 datasets (Diabetes, Vehicle, Waveform). Finally, choosing
the best value of K in Forest-RI algorithm still remains an unsolved problem
since it depends on the intrinsic characteristics of the tested dataset. Conse-
quently the Forest-RK algorithm is a good alternative to Forest-RI for produc-
ing accurate Random Forest classifiers since it provides a means to avoid the
selection of the optimal value of K while providing the same good performance
in average than those obtained with the best value of K.

Table 2. McNemar test results. In each cell the first number corresponds to cases
for which Forest-RK outperforms Forest-RI; the second number to cases for which
neither of the two algorithms outperforms the other; and the third number to cases
for which Forest-RI outperforms Forest-RK. The number in brackets represents the
corresponding value of K.

Dataset H K=1 \ K=+vM \K =log2(M) + 1‘
Diabetes || 4/482/14 [0/490/10 (3) | 12/471/17 (4)
Gamma 3/495/2 | 8/473/19 (3)| 6/488/6 (4)
Letter 425/75/0 [1/350/149 (4)| 0/374/126 (5)
Pendigits || 38/467/0 | 4/491/5 (4) | 49/451/0 (5)
Segment || 142/358/0 | 7/490/3 (4) | 6/494/0 (5)
Spambase| 1/408/91 |0/416/84 (8)| 0/452/48 (7)
Vehicle 5/495/0 | 6/491/3 (4) | 5/490/5 (5)
Waveform|| 50/450/0 |1/447/52 (6)| 0/440/60 (6)
Ringnorm|| 0/3/497 |0/414/86 (4)| 1/479/20 (5)
Twonorm || 0/296/204 |1/485/14 (4)| 1/483/16 (5)
[Sums  [[627/3034/839] 20/4074/406 | 74/4134/292




4 Conclusions

Investigations on RF parametrization have been presented in this paper, that
have focused on the number K of features randomly selected at each node dur-
ing the tree induction process. A new push-button algorithm has been presented
for which the setting of K is not a crucial issue anymore. Experimental com-
parisons with the reference algorithm Forest-RI, using the McNemar statistical
test of significance, have shown that this new algorithm produces classifiers that
are statistically as accurate as the Forest-RI inducted RF with default settings
of K usually found in the literature. Since the setting of K for the Forest-RI
algorithm is still an unsolved issue, it appears that Forest-RK is a good alter-
native for producing accurate classifiers. However, some issues still remain when
focusing on hyperparameter K : Is there any other value than those proposed in
the literature, that can make Forest-RI produce more accurate classifiers? How
can the optimal setting be determined? Answering to those questions would fur-
thermore be interesting for adapting this new algorithm so that it would be able
to change the setting of K to a value known to be useful to produce a more
accurate classifier.
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