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Regularity of the Exercise Boundary for American Put Options on Assets with Discrete Dividends

We analyze the regularity of the optimal exercise boundary for the American Put option when the underlying asset pays a discrete dividend at a known time t d during the lifetime of the option. The ex-dividend asset price process is assumed to follow Black-Scholes dynamics and the dividend amount is a deterministic function of the ex-dividend asset price just before the dividend date. The solution to the associated optimal stopping problem can be characterised in terms of an optimal exercise boundary which, in contrast to the case when there are no dividends, may no longer be monotone. In this paper we prove that when the dividend function is positive and concave, then the boundary is non-increasing in a left-hand neighbourhood of t d , and tends to 0 as time tends to t - d with a speed that we can characterize. When the dividend function is linear in a neighbourhood of zero, then we show continuity of the exercise boundary and a high contact principle in the left-hand neighbourhood of t d . When it is globally linear, then right-continuity of the boundary and the high contact principle are proved to hold globally. Finally, we show how all the previous results can be extended to multiple dividend payment dates in that case.

Introduction

We consider the American Put option with strike K > 0 and maturity T > 0 on an underlying stock. We assume that the stochastic dynamics of the ex-dividend price process of this stock can be modelled by the Black-Scholes model and that at the I ∈ N given times t I d < t I-1 d < ... < t 1 d in the time interval (0, T ), discrete stock dividends are paid. The case without dividends is denoted by I = 0 and we will use the convention that t I+1 d = 0 and t 0 d = T throughout the paper. The value of the dividend payments are functions D j : R + → R + (1 ≤ j ≤ I) of the ex-dividend asset price. This means that the stock price process satisfies dS u = σS u dW u + rS u du - for an initial price S 0 , interest rate r and volatility σ which are assumed to be positive and with W a standard Brownian Motion.

Throughout the paper we assume that the dividend functions D j are non-negative and nondecreasing for all 1 ≤ j ≤ I and such that x ∈ R + → x -D j (x) is non-negative and nondecreasing. We will pay particular attention to the following special cases :

• D j (x) = (1ρ j )x where ρ j ∈ (0, 1), which we will call the proportional dividend case,

• D j (x) = D j ∧ x with D j > 0, which we will call the constant dividend case, and • D j (x) = min{a j +b j x, c j x} with a j , b j , c j ≥ 0 and c j ≤ 1, which we call the mixed dividend case.

We will see that the behaviour of D j around zero determines the behaviour of the exercise boundary at the dividend dates t j d so the latter case will turn out to be very similar to the one where we have proportional dividends.

For t ∈ [0, T ], let U t = ess. sup

τ ∈T [t,T ]
E[e -r(τ -t) (K -S τ ) + |F t ] (0.2)

denote the price at time t of the American Put option, where T [t,T ] is the set of stopping times with respect to the filtration F t def = σ(W s , 0 ≤ s ≤ t) taking values in [t, T ]. The solution to this optimal stopping problem for the case without dividends (i.e. I = 0) goes back to the work of McKean [START_REF] Mckean | Appendix: a free boundary problem for the heat equation arising from a problem of mathematical economics[END_REF] and Van Moerbeke [START_REF] Van Moerbeke | On optimal stopping and free boundary problems[END_REF]. The optimal stopping time is the first time that the asset price process falls below a time-dependent value (the so-called exercise boundary which we will denote by c 0 ), and McKean derived a free-boundary problem involving both the pricing function u 0 such that U t = u 0 (t, S t ) and c 0 . Van Moerbeke derived an integral equation which involves both c 0 and its derivative, but in later work by Kim [14], Jacka [START_REF] Jacka | Local times, optimal stopping and semimartingales[END_REF] and Carr, Jarrow and Myneni [START_REF] Carr | Alternative characterizations of American puts[END_REF] an integral equation was derived which only involves c 0 itself. The regularity and uniqueness of solutions to this equation was left as an open problem in those papers. Uniqueness was proven by Peskir [START_REF] Peskir | On the American option problem[END_REF], using his change-of-variable formula with local time on curves [START_REF] Peskir | A change-of-variable formula with local times on curves[END_REF]. It is known that the optimal exercise boundary is convex [START_REF] Chen | Convexity of the exercise boundary of the American put option on a zero dividend asset[END_REF][START_REF] Ekström | Convexity of the optimal stopping boundary for the American put option[END_REF] and its asymptotic behaviour at maturity is given in [START_REF] Lamberton | Critical price for an American option near maturity[END_REF]. But although it was claimed in several papers (for example [START_REF] Myneni | The pricing of the American option[END_REF]) that it is C1 at all points prior to maturity, a complete proof has been given only recently by Chen and Chadam [START_REF] Chen | Mathematical analysis of the optimal exercise bounary for American put options[END_REF]. In fact, in that paper it was actually shown that it is C ∞ in all those points and a later paper by Bayraktar and Xing [START_REF] Bayraktar | Analysis of the Optimal Exercise Boundary of American Options for Jump Diffusions[END_REF] shows that this remains true if the underlying asset pays continuous dividends at a fixed rate. In practice, continuous dividends are not a satisfying model since dividends are paid once a year or quarterly. That is why we are interested in dividends that are paid at a number of discrete points in time. To begin with, we deal in this paper with the simplest situation where there is only one dividend time t 1 d before the maturity T of the Put option 1 . Afterwards we show how some results can be extended to the case of multiple dividends.

When we assume discrete dividend payments such as the proportional or fixed dividend payments mentioned above, the optimal exercise boundary will become discontinuous at the dividend dates and before the dividend dates it may not be monotone (see Figure 1). Integral formulas for the exercise boundary which are similar to the ones in [START_REF] Carr | Alternative characterizations of American puts[END_REF] have been derived under the assumption that the boundary is Lipschitz continuous (see Göttsche and Vellekoop [START_REF] Göttsche | The early exercise premium for the American put under discrete dividends[END_REF]) or locally monotonic In the second Section, we therefore first look at the single dividend case only and prove that when the dividend function is positive and concave, then the boundary is non-increasing in a left-hand neighbourhood of t d , and tends to 0 as time tends to t - d with a speed that we can characterize. In the third Section we assume moreover that the dividend function is linear in a neighbourhood of 0, a condition satisfied in the proportional, the constant and the mixed dividend cases. Then we show that the exercise boundary is continuous and a high contact principle holds in a left-hand neighbourhood of t d . In the proportional dividend case, right-continuity of the boundary and the high contact principle are proved to hold globally. Finally, we show how results for a single dividend date can be extended to multiple dividend dates in that case.

Notations and definitions :

• For t ∈ [0, T ] and x ≥ 0, we use the notation Sx t = xe σWt+(r-σ 2 2 )t for the stock price at time t when the initial price is equal to x and when there is no dividend (i.e. I = 0). We also denote by L y t ( Sx ) the local time at level y > 0 and time t of the process Sx and by p(t, y) =

1 {y>0} σy √ 2πt exp - (log(y/x)-(r-σ 2 2 )t) 2 2σ 2 t
the density of Sx t with respect to the Lebesgue measure when t, x > 0.

• Let A denote the infinitesimal generator of the Black-Scholes model without dividends :

Af (x) = σ 2 x 2 2 f ′′ (x) + rxf ′ (x) -rf (x). • If (t, x) ∈ [0, T ] × R + and 1 ≤ i ≤ I we write S x,t,i u
for the solution to

dS x,t,i v = σS x,t,i v dW v + rS x,t,i v dv - i j=1 D j (S x,t,i v -)d1 {v≥t j d } (0.3)
for u ≥ t under the initial condition that S x,t,i t = x. Note that we still retain the notation introduced in (0.1) so S u = S S 0 ,0,I u .

• Let N (y) = y -∞ e -z 2 /2 dz √ 2π be the cumulative distribution function of the standard normal law.

• Let C denote a constant with may change from line to line.

• We say that D : R + → R + is positive when ∀x > 0, D(x) > 0.

• By a left-hand neighbourhood of x ∈ R, we mean an open interval (xε, x) for some ε > 0.

• We will often denote the value function u 0 for the case without dividends by ū and the value function u 1 for the case of one dividend by u.

Preliminary results

The following results, which have been proven in [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF][START_REF] Karoui | A probabilistic approach of the reduite[END_REF][START_REF] Hamadéne | Reflected BSDEs and mixed game problem[END_REF][START_REF] Peskir | Optimal Stopping and Free-Boundary Problems[END_REF], provide an optimal stopping time in (0.2).

Proposition 1.1 Let {G t , t ∈ [0, T ]} be an (F t )-adapted right-continuous upper-semicontinuous process with E(sup t∈[0,T ] |G t |) < ∞.
Then the càdlàg version of the Snell envelope

U t = ess. sup τ ∈T [t,T ] E(G τ | F t ) is continuous on [0, T ] and the stopping time τ = inf{s ≥ t : U s = G s } is optimal : U t = E(G τ | F t ).
The conditions for this result are satisfied by G i t = e -rt (K -S S 0 ,0,i t ) + since for all t ∈ [0, T ] we have |G i t | ≤ K and G i t is right-continuous and upper semicontinuous for all t ∈ [0, T ] since the jump sizes of S S 0 ,0,i t at t = t j d are non-positive for all 1 ≤ j ≤ i (for a Call option G i t = e -rt (S S 0 ,0,i t -K) + is no longer upper-semicontinuous and, in the single dividend case, Battauz and Pratelli [START_REF] Battauz | Optimal stopping and American options with discrete dividends and exogenous risk[END_REF] artificially stretch the time-interval [0, T ] by introducing a ficticious interval [t 1 d , t1 d ] where t 1 d denotes the end of the cum-dividend date and t1 d the beginning of the ex-dividend date to reduce the evaluation problem to the computation of the Snell envelope on stopping times taking values in [0,

t 1 d ] ∪ [ t1 d , T ]).
According to [START_REF] Karoui | A probabilistic approach of the reduite[END_REF], there thus exists pricing functions u i defined as follows:

Proposition 1.2 Take 1 ≤ i ≤ I and a constant S 0 > 0. The Snell envelop U i of {G i t = e -rt (K -S S 0 ,0,i t ) + , t ∈ [0, T ]} is such that U i t = e -rt u(t, S S 0 ,0,i t )
where

∀(t, x) ∈ [0, T ] × R + , u i (t, x) def = sup τ ∈T [t,T ]
E(e -r(τ -t) (K -S x,t,i τ

) + ).
Moreover the previous supremum is attained for τ = inf{s ≥ t :

u i (s, S x,t,i s ) = (K -S x,t,i s ) + }.
Let us now derive some properties of the pricing functions u i and define the exercise boundaries c i .

Lemma 1.3 Let for all 1 ≤ j ≤ I the dividend functions D j be non-negative, non-decreasing and such that x ∈ R + → x -D j (x) is non-negative and non-decreasing. Then we have

∀0 ≤ i ≤ I, ∀t ∈ [0, T ], ∀x > y ≥ 0, 0 ≤ u i (t, y) -u i (t, x) ≤ x -y. (1.1) For t ∈ [0, T ], let c i (t) = inf{x > 0 : u i (t, x) > (K -x) + }.
Then c i (t) < K for t ∈ [0, T ) and we have that {x ≥ 0 :

u i (t, x) = (K -x) + } = [0, c i (t)].
Last the functions c i cannot vanish on an interval.

Figure 1 plots the exercise boundary t → c 1 (t) of the Put option with strike K = 100 and maturity T = 4 in the model (0.1) with r = 0.04, σ = 0.3, t 1 d = 3.5 and proportional dividends with ρ 1 = 0.05. This exercise boundary was computed by a binomial tree method (see [START_REF] Vellekoop | Efficient Pricing of Derivatives on Assets with Discrete Dividends[END_REF]). Proof . For the first part, we use a similar proof as in [START_REF] Göttsche | The early exercise premium for the American put under discrete dividends[END_REF]. For a fixed t ∈ [0, T ] take x > y ≥ 0 which, with the monotonicity of z → z -D j (z) for all 1 ≤ j ≤ I implies that S x,t,i v ≥ S y,t,i v for all v ∈ [t, T ]. Now fix the value of i with 0 ≤ i ≤ I. For τ x ∈ T [t,T ] such that u i (t, x) = E[e -r(τx-t) (K -S x,t,i τx ) + ], since τ x need not be optimal for the case where the stock price at time t equals y, we deduce

u i (t, x) -u i (t, y) ≤ E[e -r(τx-t) ((K -S x,t,i τx ) + -(K -S y,t,i τx ) + )] ≤ 0.
For τ y ∈ T [t,T ] such that u i (t, y) = E[e -r(τy-t) (K -S y,t,i τy ) + ],

u i (t, y) -u i (t, x) ≤ E[e -r(τy-t) (K -S y,t,i τy ) + ] -E[e -r(τy-t) (K -S x,t,i τy ) + ] ≤ E[e -r(τy-t) (S x,t,i τy -S y,t,i τy )] = x -y - i j=1
E[e -r(τy-t) 1 {τy ≥t j d >t} (D j (S x,t,i

t j d - ) -D j (S y,t,i t j d - )) S1 τy-t j d ] ≤ x -y because S x,t,i t j d - ≥ S y,t,i t j d -
and the function D j is non-decreasing.

Since u i (t, x) ≥ (Kx) + for all t ∈ [0, T ] and x ≥ 0, the definition of c i (t) implies that u i (t, x) = (Kx) + for x ∈ [0, c i (t)) and by the continuity of x → u i (t, x) -(Kx) + this must then be true for x = c i (t) as well when

c i (t) > 0. When c i (t) = 0, u i (t, c i (t)) = K = (K -c i (t)) + . If x > c i (t)
then, by definition of c i (t) there exists y ∈ (c i (t), x] such that u i (t, y) > (Ky) + and u i (t, x) ≥ u i (t, y) + yx > Kx. For t ∈ [0, T ), since u i (t, x) ≥ E(e -r(T -t) (K -S x,t,i T ) + ) > 0, one deduces that u i (t, x) > (Kx) + for x > c i (t) and that c i (t) < K. Last, c i (T ) = +∞. Assume that there exists an interval [t 1 , t 2 ) with 0 ≤ t 1 ≤ t 2 ≤ T such that c i is zero in every point of this interval, and for x > 0, let τ x ∈ T [t 1 ,T ] be such that we have that u

i (t 1 , x) = Let A i = ([0, T )\{t k d , 1 ≤ k ≤ i})×R + . By continuity of u i on A i , the set {(t, x) ∈ A i : x > c i (t)} is an open subset of A i . Let (t, x) ∈ A i and B be an open neighbourhood of (t, x) with regular boundary ∂B such that B is included in the connected component of A i which contains (t, x). Define the stopping times τ = inf{v ≥ t : S x,t,i v ≤ c i (v)} and τ B c = inf{v ≥ t : S x,t,i v ∈ B c } < τ .
The flow property for the Black-Scholes model without dividends implies that for v ≥ τ B c ,

S x,t,i v = S S x,t,i τ B c ,τ B c ,i v and τ = inf{v ≥ τ B c : S S x,t,i τ B c ,τ B c ,i v ≤ c i (v)}.
Using the strong Markov property for the third equality, one deduces

u i (t, x) = E[e -r(τ -t) (K -S x,t,i τ ) + ] = E[e -r(τ B c -t) E[e -r(τ -τ B c ) (K -S S x,t,i τ B c ,τ B c ,i τ ) + |F τ B c ]] = E[e -r(τ B c -t) u i (τ B c , S x,t,i τ B c )]. (1.2)
Let f (s, x) be a solution to the Dirichlet problem where ∂ s f + Af = 0 on B and f = u i on ∂B. By Theorem 3.6.3. in [START_REF] Friedman | Stochastic Differential Equations and Applications: I[END_REF] this function f is C 1,2 in B and continuous on B. But then

u i (t, x) = E[e -r(τ B c -t) u i (τ B c , S x,t,i τ B c )] = E[e -r(τ B c -t) f (τ B c , S x,t,i τ B c )] = f (t, x) + E τ B c t e -r(s-t) (∂ s f + Af )(s, S x,t,i s )ds = f (t, x)
by optional sampling so u i = f on B and therefore its partial derivatives exist in (t, x) and they satisfy ∂ t u i (t, x)

+ Au i (t, •)(x) = 0.
The characterization of the restriction of u i to [0, t i d )×R + as the pricing function of an American option in the Black-Scholes model without dividends, as stated in the next proposition, is the key to the study of the exercise boundaries c i (t) performed in the following sections.

Proposition 1.5 Under the assumptions of Lemma 1.3, we have for all 0 ≤ i ≤ I,

∀(t, x) ∈ [0, t i d ) × R + , u i (t, x) = sup τ ∈T [0,t i d -t] E[e -rτ ( (K -Sx τ ) + 1 {τ <t i d -t} + g i ( Sx t i d )1 {τ =t i d -t} )].
where

g 0 (x) def = (K -x) + and g i (x) def = u i-1 (t i d , x -D i (x)) for i ≥ 1, and the supremum is attained for τ = inf{s ∈ [0, t i d -t) : Sx s ≤ c i (t + s)}∧ t i d -t (with the convention that inf ∅ = +∞). Moreover, for all 0 ≤ j ≤ i and t ∈ [t j+1 d , T ], we have that c i (t) = c j (t) and u i (t, x) = u j (t, x) for all positive x.
Proof . For i = 0 the statement is trivial so assume i ≥ 1. The last statement of the proposition is obvious because when 0 ≤ j ≤ i, the optimal stopping problems in proposition 1.2 which define the values u i (t, x) and u j (t, x) and the values c i (t) and c j (t) are the same for t ≥ t j+1 d and x ≥ 0 because we then have that

S t,x,i v = S t,x,j v for v ∈ [t, T ]. Take t ∈ [0, t i d ) and x ≥ 0 and define τ x = inf{v ≥ t : S x,t,i v ≤ c i (v)}.
Arguing like in the derivation of (1.2), one easily checks that

E e -r(τx-t) (K -S x,t,i τx ) + 1 {τx≥t i d } = E e -r(t i d -t) u i (t i d , S x,t,i t i d )1 {τx≥t i d } = E e -r(t i d -t) u i-1 (t i d , S x,t,i t i d )1 {τx≥t i d } = E e -r(t i d -t) g i (S x,t,i t i d -)1 {τx≥t i d }
where we used the previous result for j = i -1 to obtain the second equality. We thus deduce that

u i (t, x) = E e -r(τx-t) (K -S x,t,i τx ) + 1 {τx<t i d } + e -r(t i d -t) g i (S x,t,i t i d -)1 {τx≥t i d } = E e -rτ (K -Sx τ ) + 1 {τ <t i d -t} + e -r(t i d -t) g i ( Sx t i d -t )1 {τ =t i d -t} , when τ = inf{s ∈ [0, t i d -t) : Sx s ≤ c i (t + s)} ∧ t i d -t. Let now τ be any stopping time in T [0,t i d -t] . For f : C([0, t i d -t], R) → [0, t i d ] such that τ = f (W s , 0 ≤ s ≤ t i d -t), the random variable τ x def = t + f (W s -W t , t ≤ s ≤ t i d ) if t + f (W s -W t , t ≤ s ≤ t i d ) < t i d inf{s ≥ t i d : S x,t,i s ≤ c i (s)} otherwise belongs to T [t,T ] and is such that E e -rτ (K -Sx τ ) + 1 {τ <t i d -t} + e -r(t i d -t) g i ( Sx t i d -t )1 {τ =t i d -t} = E e -r(τx-t) (K -S x,t,i τx ) + 1 {τx<t i d } + e -r(t i d -t) u i-1 (t i d , S x,t,i t i d )1 {τx≥t i d } = E e -r(τx-t) (K -S x,t,i τx ) + ≤ u i (t, x).
This result shows that it is natural to consider the case with only one dividend date first and then use the results to generalize to multiple dividend dates. This will allow us to prove the following result for the multiple dividend problem:

Theorem 1.6 Let for all 1 ≤ j ≤ I the dividend functions D j be non-negative, non-decreasing and such that x ∈ R + → x -D j (x) is non-negative and non-decreasing. Then for all 1 ≤ i ≤ I the exercise boundaries c i are strictly positive and locally bounded away from zero on

[t i+1 d , t i d ). If D i is positive, then lim t→t i d -c i (t) = 0 with c i (t) ≤ rK(t i d -t) inf x>0 x D i (x) + o(t i d -t) as t → t i d - when D i is also concave. Moreover, if for all 1 ≤ j ≤ i we have D j (x) = (1 -ρ j )x for some ρ j ∈ (0, 1) then • for all t ∈ [0, T ] the value function u i (x, t) is convex in x, • c i is right-continuous on [0, T ] and ∀t ∈ [0, T ), ∂ x u i (t, c i (t) + ) = -1 i.e.

the smooth contact property holds, and

• there exist

ε i > 0 such that on (t i d -ε i , t i d ), the function c i is continuous and non-increasing with c i (t) ∼ rK(t i d -t)/(1 -ρ i ) as t → t i d -.
The proof for this Theorem can be found in the Appendix. It is based on the stronger results that we will prove for the single dividend case in this section and the next two sections. Remember that in the single dividend case we use the shorthand notation u(t, x) = u 1 (t, x), g(x) = g 1 (x), D(x) = D 1 (x) and t d = t 1 d and that ū(t, x) = u 0 (t, x) and c(t) = c 0 (t) are used for the case when no dividends are present. We will also write S x,t for S x,t,1 now that I = 1.

We first derive some properties of the function g

(x) = ū(t d , x -D(x)). Lemma 1.7 Assume that D is a non-negative concave function such that x -D(x) is non- negative. Then D is continuous, non-decreasing and such that x -D(x) is non-decreasing. Let D ′ -(x)
and D ′′ (dx) respectively denote the left-hand derivative of D and the non-positive Radon measure equal to the second order distribution derivative of D on (0, +∞). The function g is continuous, non-increasing and g(x) ≥ (Kx) + for all x ≥ 0. The function

γ(x) def = σ 2 x 2 2 (1 -D ′ -(x)) 2 ∂ 22 ū(t d , x -D(x)) + rx(1 -D ′ -(x))∂ 2 ū(t d , x -D(x)) -rū(t d , x -D(x))
where, by convention, ∂ 22 ū(t d , c(t d )) = 0, is not greater than -rK on (0, x ⋆ ) where x ⋆ def = sup{x : x -D(x) < c(t d )} > 0, and globally bounded.

If g is convex, then there is a constant ρ ∈ [0, 1] such that g(x) = Kρx and D(x) = (1ρ)x for x < x ⋆ , the second order distribution derivative of g admits a density g ′′ w.r.t. the Lebesgue measure and Ag(x) is equal to -rK on (0, x ⋆ ) and dx a.e. on (x ⋆ , +∞), Ag(x) ≥ -rK.

To prove this lemma, we need the following properties of the pricing function ū in the model without dividends.

Lemma 1.8 For the case without dividends we have that the partial derivatives

∂ t ū(t, x), ∂ x ū(t, x) and ∂ xx ū(t, x) exist and ∂ t ū(t, x) + Aū(t, •)(x) = 0 for all t ∈ [0, T ) and x > c(t). Moreover, ∀t ∈ [0, T ], x → ū(t, x) is convex and C 1 on R + . Last, ∀t ∈ [0, T ), ∀x > c(t), ∂ t ū(t, x) ≥ - e -r(T -t) σK 2 2π(T -t) exp - (log(K/x) -(r -σ 2 2 )(T -t)) 2 2σ 2 (T -t) .
Before proving these Lemmas, let us give some examples of functions g obtained for different choices of the dividend function D.

Examples of functions g :

• In the constant dividend case, x ⋆ = c(t d ) + D and the function g is equal to K on [0, D] and to K + D -x for x ∈ (D, x ⋆ ), C 1 on [0, D) ∪ (D, +∞) with g ′ taking its values in [-1, 0], C 2 on [0, D) ∪ (D, x ⋆ ) ∪ (x ⋆ , +∞) and such that Ag(dx) = γ(x)dx -σ 2 D 2 2 δ D (dx)
where γ is equal to -rK on (0, D) and to -r(K + D) on (D, x ⋆ ).

• In the proportional dividend case, x ⋆ = c(t d )/ρ and g(x) = ū(t d , ρx) is convex, C 1 with g ′ taking its values in [-ρ, 0] and C 2 on [0, x ⋆ ) ∪ (x ⋆ , +∞).
• The proportional dividend case provides an example of a non-negative concave function D such that x -D(x) is non-negative which leads to a convex function g. This example is not unique. For instance, let ρ ∈ (0, 1). The function y → ū(t d , y) is convex positive nonincreasing and such that lim y→+∞ ū(t d , y) = 0. So it is continuous and decreasing and admits an inverse

V (t d , .) : (0, K] → [0, +∞). For x ∈ (c(t d )/ρ, K/ρ), we set d(x) = x -V (t d , K -ρx). The continous function d ′ (x) = 1 + ρ/∂ 2 ū(t d , V (t d , K -ρx)
) is nonincreasing on (c(t d )/ρ, K/ρ) by the non-increasing property of both V (t d , .) and -∂ 2 ū(t d , .) and the positivity of this last function. It tends respectively to 1-ρ and -∞ as x → c(t d )/ρ and x → K/ρ. Let being non-negative and equal to 0 for x = 0, is non-decreasing. Since x → ū(t d , x) is continuous,

x 0 = sup{x ∈ (c(t d )/ρ, K/ρ) : d ′ (x) ≥ 0}. One has d ′ (x 0 ) = 0 which also writes ∂ 2 ū(t d , x 0 -d(x 0 )) = -ρ. The function D(x) = (1 -ρ)x for x ∈ [0, c(t d )/ρ] d(x ∧ x 0 ) for x > c(t d )/ρ is non-negative, concave and such that x -D(x) is non-negative. The convexity of x → ū(t d , x) combined with the equality ∂ 2 ū(t d , x 0 -d(x 0 )) = -ρ implies that g(x) = K -ρx for x ∈ [0, x 0 ] ū(t d , x -d(x 0 )) for x > x 0 is convex.
x K K D c(t d ) x 0 ū(t d , x) Const div D = 1
Prop div ρ = 0.75

Convex example

Figure 2: Examples of functions g non-increasing and not smaller than (Kx) + , the same properties hold for g.

For x ∈ (0, x ⋆ ), γ(x) = rx(D ′ -(x) -1) -r(K -x + D(x)) = -rK -r(D(x) -xD ′ -(x)). By concavity of D, ∀x > 0, D(x) -xD ′ -(x) ≥ D(0) = 0. (1.3)
So γ is not greater than -rK on (0, x ⋆ ). The constant x ⋆ is infinite if and only if D is the identity function and then γ is constant and equal to -rK. When x ⋆ < +∞, γ is bounded from below by -r(K + D(x ⋆ )) on (0, x ⋆ ). Moreover, since D is concave, continuous and

D(0) = 0, ∀x > x ⋆ , D(x) x ≤ D(x ⋆ ) x ⋆ = x ⋆ -c(t d ) x ⋆ and x -D(x) ≥ xc(t d ) x ⋆ > c(t d ). (1.4) One has γ(x) -Aū(t d , .)(x -D(x)) = σ 2 2 ∂ 22 ū(t d , x -D(x))[x 2 (1 -D ′ -(x)) 2 -(x -D(x)) 2 ] (1.5) + r(D(x) -xD ′ -(x))∂ 2 ū(t d , x -D(x))
where the last term is non-positive by (1.3) 

(x) ∈ [0, 1], one concludes that when x ⋆ < +∞, ∀x > x ⋆ , γ(x) ≤ M + (M + rK) x ⋆2 -c(t d ) 2 c(t d ) 2 . For x > x ⋆ , since xD ′ -(x)∂ 2 ū(t d , x -D(x)) and ∂ 22 ū(t d , x -D(x))[x 2 (1 -D ′ -(x)) 2 -(x -D(x)) 2 ] are non-negative and Aū(t d , .)(x -D(x)) = -∂ t ū(t d , x -D(x)) > 0, we have by (1.5), γ(x) ≥ rD(x)∂ 2 ū(t d , x -D(x)) ≥ r x ⋆ -c(t d ) c(t d ) (x -D(x))∂ 2 ū(t d , x -D(x)) = r x ⋆ -c(t d ) c(t d ) -K + x-D(x) c(t d ) y∂ 22 ū(t d , y)dy + ū(t d , x -D(x)) ≥ -rK x ⋆ -c(t d ) c(t d ) ,
where we used that D(x) ≤ (x -D(x))(x *c(t d ))/c(t d ) by (1.4) for the second inequality and the smooth fit property ∂ 2 ū(t d , c(t d )) = -1 and a partial integration for the equality.

Last, assume that g is convex. If g ′ + and D ′ + respectively denote the right-hand derivatives of g and D, one has

g ′ + (x) -g ′ -(x) = -∂ 2 ū(t d , x -D(x))(D ′ + (x) -D ′ -(x)
) and since ∂ 2 ū is negative and D ′ + -D ′ -non-positive, the right-hand-side of this equality is non-positive and the left-hand-side is non-negative. So both are zero and the functions g and

D are C 1 with g ′ (x) = ∂ 2 ū(t d , x -D(x))(1 -D ′ (x)
). The first factor in the right-hand-side being globally continuous and C 1 on (0, x ⋆ )∪(x ⋆ , +∞), one deduces that the distribution derivative of g ′ is equal to

∂ 22 ū(t d , x-D(x))(1-D ′ (x)) 2 dx -∂ 2 ū(t d , x-D(x))D ′′ (dx)
. This measure being non-negative by convexity of g, D ′′ is absolutely continuous with respect to the Lebesgue measure and so is the second order distribution derivative of g. For x < x ⋆ , g ′ (x) = D ′ (x) -1 where the left-handside is non-decreasing and the right-hand-side non-increasing. So there is a constant ρ ∈ [0, 1] such that g(x) = Kρx and D(x) = (1ρ)x for x < x ⋆ . As a consequence x ⋆ = c(t d )/ρ and Ag(x) = rxg ′ (x)-rg(x) = -rK on (0, x ⋆ ). The convexity of g implies that rxg ′ (x)-rg(x) is nondecreasing and therefore that dx a.e. on (x ⋆ , +∞), Ag(x) = σ 2 x 2 2 g ′′ (x)+ rxg ′ (x)-rg(x) ≥ -rK.

Proof of Lemma 1.8.

The proof of the first statement is similar to the one of the last statement in Lemma 1.4. Moreover,

x → ū(t, x) = sup τ ∈T [0,T -t] E e -rτ (K -xe σWτ +(r-σ 2 2 )τ ) +
is convex as the supremum of convex functions. We refer for instance to Lemma 7.8 in Section 2.6 [START_REF] Karatzas | Methods of mathematical finance[END_REF] for the continuous differentiability property of this function. Let 0 ≤ s ≤ t ≤ T , x > 0, and take

τ ∈ T [0,T -s] such that ū(s, x) = E(e -rτ (K -Sx τ ) + ) and τ = τ ∧ (T -t). One has ū(t, x) ≥ E e -rτ (K -Sx τ ) + = ū(s, x) -E 1 {τ >T -t} e -rτ (K -Sx τ ) + -e -r(T -t) (K -Sx T -t ) + By Tanaka's formula, when τ > T -t, (K -Sx τ ) + = (K -Sx T -t ) + - τ T -t 1 { Sx v ≤K} (σ Sx v dW v + r Sx v dv) + 1 2 (L K τ ( Sx ) -L K T -t ( Sx )).
One deduces that

ū(t, x) ≥ ū(s, x) - e -r(T -t) 2 E(L K T -s ( Sx ) -L K T -t ( Sx )) = ū(s, x) - e -r(T -t) σ 2 K 2 2 t s p(T -v, K)dv.
2 Limit behaviour and monotonicity of the exercise boundary as t → t - d Using the results in the previous section, we first check that c(t) tends to 0 as t → t - d if D is positive (i.e. ∀x > 0, D(x) > 0). 

• if D is such that x D(x) admits a finite limit as x → 0 + then c(t) ≤ rK(t d -t) lim x→0 + x D(x) + o(t d -t) as t → t - d ,
• if D is concave, g is convex and the constant ρ such that, according to Lemma 1.7, ∀x ∈

(0, x ⋆ ), D(x) = (1 -ρ)x belongs to (0, 1) then ∀t ∈ [0, t d ), c(t) < 1-e -r(t d -t) 1-ρ K. When ρ = 0 i.e. D is the identity function, then ∀t ∈ [0, t d ), c(t) ≤ (1 -e -r(t d -t) )K.
Note that when D is postive and concave, then x D(x) admits a finite limit as

x → 0 + which is equal to inf x>0 x D(x) . Proof . Suppose that lim sup t→t - d c(t) > d 0 ∧ c(t d )
, then there exists a y > 0 and a sequence (t n ) n∈N such that t n ↑ t d with c(t n ) > y > d 0 ∧ c(t d ) and since c(t n ) ≤ K we have y < K and we may choose y such that it is not one of the countably many discontinuity points of D. Then Ky = u(t n , y) for all t n and taking the limit and applying Lemma 1.4 gives that Ky = ū(t d , y -D(y)) but either y > d 0 and then ū(t d , y -D(y)) ≥ (Ky + D(y)) + = Ky + D(y) > Ky or y > c(t d ) and then ū(t d , y -D(y)) ≥ ū(t d , y) > Ky so in both cases we get a contradiction. Assume that D is such that µ def = lim x→0 + x D(x) exists and is finite. Since both D(x) and x -D(x) are non-negative, necessarily µ ≥ 1. For (t,

x) ∈ [0, t d ) × R * + , u(t, x) ≥ E(e -r(t d -t) g( Sx t d -t )) ≥ E e -r(t d -t) K -Sx t d -t + D( Sx t d -t ) Sx t d -t Sx t d -t ≥ e -r(t d -t) K -x + inf 0<y≤4rKµ(t d -t) D(y) y x -E e -r(t d -t) Sx t d -t 1 { Sx t d -t >4rKµ(t d -t)} ≥ e -r(t d -t) K + inf 0<y≤4rKµ(t d -t)y D(y) y -1 x -xN   log( x 4rKµ(t d -t) ) + (r + σ 2 2 )(t d -t) σ √ t d -t   . For x ≤ 2rKµ(t d -t) and (t d -t) ≤ log(2) 2r+σ 2 , log( x 4rKµ(t d -t) )+(r+ σ 2 2 )(t d -t) σ √ t d -t ≤ -log(2) 2σ √ t d -t which implies N log( x 4rKµ(t d -t) )+(r+ σ 2 2 )(t d -t) σ √ t d -t ≤ 2σ √ t d -t √ 2π log(2) e - log 2 (2) 8σ 2 (t d -t) . With lim t→t - d inf 0<y≤4rKµ(t d -t) D(y) y = 1 µ , one deduces that, as t → t - d , for x ≤ 2rKµ(t d -t), u(t, x) ≥ K-x+ x µ -rK(t d -t) +o(t d -t)
where the o(t dt) does not depend on x. One easily deduces the desired upper-bound for c(t).

When g is also convex, according to Lemma 1.7, either D is the identity function and g is constant and equal to K or there is a constant ρ ∈ (0, 1) such that D(x) = (1ρ)x for x ∈ (0, c(t d )/ρ]. In the latter case, one has g(x) = Kρx for x ∈ (0, c(t d )/ρ] and g(x) ≥ (Kρx) + for x > c(t d )/ρ. As a consequence, E(e -r(t d -t) g( Sx

t d -t )) > E(e -r(t d -t) (K -ρ Sx t d -t )) = e -r(t d -t) K -ρx. One deduces that when x ≥ 1-e -r(t d -t) 1-ρ K, u(t, x) > K -x which implies that c(t) < 1-e -r(t d -t) 1-ρ K.
When D is the identity function, the inequality is obvious.

We now obtain monotonicity of the exercise boundary in a left-hand neighbourhood of the dividend date t d . Proposition 2.2 If D is a positive concave function such that x -D(x) is non-negative, there exists a constant ε > 0 such that for x ∈ (0, ε), t → u(t, x) is non-decreasing on (t dε, t d ). Moreover, we have for all t ∈ [0, t d ) and all x > c(t) that

∂ t u(t, x) ≥ -e -r(t d -t) sup y>0 γ + (y) (2.1)
σ 2 x 2 2 ∂ xx u(t, x) ≤ e -r(t d -t) sup y>0 γ + (y) + r(x + K). (2.2) Last, for any t ∈ [0, t d ) such that c(t) > 0, ∀x > c(t), x c(t) |∂ xx u(t, y)|dy < +∞ and x → ∂ x u(t, x) admits a right-hand limit ∂ x u(t, c(t) + ) ∈ [-1, 0] as x → c(t) + .
One easily deduces the following Corollary. 

Corollary 2.3 If the dividend function D is non-negative, non-decreasing and such that

x ∈ R + → x -D(x)
S t = (S 0 -De -rt d )e σWt+(r-σ 2 2 )t + De -r(t d -t) 1 {t<t d }
where D is a positive constant, the boundary is actually equal to 0 on a left-hand neighbourhood of t d . Indeed, reasoning like in the proof of Proposition 1.5, one can check that for (t, x) ∈ (0, t d ) × R + , the value function in this model is

u(t, x) = sup τ ∈T [0,t d -t] E e -rτ ((K -De -r(t d -τ ) -Sy τ ) + 1 {τ <t d -t} + ū(t d , Sy t d -t )1 {τ =t d -t} ) where y = x -De -r(t d -t) . Since E e -r(t d -t) ū(t d , Sy t d -t ) ≥ E e -r(t d -t) (K -Sy t d -t ) + ≥ (Ke -r(t d -t) -y) + ,
early exercise is never optimal when K -De -r(t d -t) < Ke 

∈ N, c(t n ) ≤ rK μ(t d -t n ). For n ∈ N, let x n = µ+μ 2 rK(t d -t n ) and τ n = inf{s ∈ [0, t d -t n ) : Sxn s ≤ c(t n + s)} ∧ (t d -t n )
denote the optimal stopping time starting from x n at time t n . One has

u(t n , x n ) ≤ KP ∃s ∈ [0, t d -t n ) : Sxn s ≤ c(t n ) + E e -r(t d -tn) g( Sxn t d -tn ) ≤ KP σ inf s∈[0,t d -tn] W s ≤ log( 2μ µ + μ ) + (r - σ 2 2 ) -(t d -t n ) + E(e -r(t d -tn) g( Sxn t d -tn )) = KP |W t d -tn | ≥ 1 σ log( µ + μ 2μ ) -(r - σ 2 2 ) -(t d -t n ) + E(e -r(t d -tn) g( Sxn t d -tn )) = E(e -r(t d -tn) g( Sxn t d -tn )) + o(t d -t n ) (2.3)
where we used the monotonicity of c on (t dε, t d ) for the first inequality and a reasoning similar to the one made when D is concave in the proof of Lemma 2.1 for the last equality.

Assume that D is not the identity function which implies x ⋆ < +∞. Using the monotonicity of both g and D(x)

x , one gets that for (t,

x) ∈ [0, t d ) × R * + , E(e -r(t d -t) g( Sx t d -t )) is not greater than E e -r(t d -t) (K -Sx t d -t + D( Sx t d -t ))1 { Sx t d -t ≤x ⋆ } + e -r(t d -t) g(x ⋆ )P( Sx t d -t > x ⋆ ) ≤ e -r(t d -t) K -x + E e -r(t d -t) Sx t d -t 1 { Sx t d -t >x ⋆ } + x µ + e -r(t d -t) g(x ⋆ )P( Sx t d -t > x ⋆ ).
Hence for x ∈ (0, x ⋆ /2), E(e -r(t d -t) g( Sx

t d -t )) ≤ K -x + x µ -rK(t d -t) + o(t d -t)
with the o(t dt) not depending on x ≤ x ⋆ /2. This inequality still holds when D is the identity function, since then µ = 1 and E(e -r(t d -t) g( Sx

t d -t )) = e -r(t d -t) K. With (2.3), one deduces that u(t n , x n ) ≤ K -x n + rK μ-µ 2µ (t d -t n ) + o(t d -t n ). Hence for n large enough u(t n , x n ) < K -x n which provides the desired contradiction. Proof of Proposition 2.2. Let 0 ≤ t ≤ s < t d , x > 0 and τ ∈ T [0,t d -t] be such that u(t, x) = E e -rτ (K -Sx τ ) + 1 {τ <t d -t} + e -r(t d -t) g( Sx t d -t )1 {τ =t d -t} . Since by Lemma 1.7, ∀x > 0, g(x) ≥ (K -x) + , u(t, x) ≤ E e -rτ (K -Sx τ ) + 1 {τ <t d -s} + e -rτ g( Sx τ )1 {τ ≥t d -s} = E e -rτ (K -Sx τ ) + 1 {τ <t d -s} + e -r(t d -s) g( Sx t d -s )1 {τ ≥t d -s} + E 1 {τ >t d -s} e -rτ g( Sx τ ) -e -r(t d -s) g( Sx t d -s ) .
(2.4) By Tanaka's formula,

d( Sx v -D( Sx v )) = (1 -D ′ -( Sx v ))d Sx v - 1 2 +∞ 0 D ′′ (da)dL a v ( Sx ). In particular d Sx -D( Sx ) v = (σ Sx v (1 -D ′ -( Sx v ))) 2 dv. The function x → ū(t d , x
) is convex and C 1 on [0, +∞) and C 2 on [0, c(t d )) and (c(t d ), +∞). Hence its second order distribution derivative is equal to ∂ 22 ū(t d , x)dx where, by convention, ∂ 22 ū(t d , c(t d )) = 0. Applying again Tanaka's formula and the occupation times formula, one deduces that

dg( Sx v ) = ∂ 2 ū(t d , Sx v -D( Sx v ))d( Sx v -D( Sx v )) + σ 2 2 ∂ 22 ū(t d , Sx v -D( Sx v ))((1 -D ′ -( Sx v )) Sx v ) 2 dv.
One deduces that for γ defined in Lemma 1.7,

d(e -rv g( Sx v )) = e -rv ∂ 2 ū(t d , Sx v -D( Sx v )) (1 -D ′ -( Sx v ))σ Sx v dW v - 1 2 +∞ 0 D ′′ (da)dL a v ( Sx ) + γ( Sx v )dv . (2.5)
The process (

v 0 e -rw σ Sx w ∂ 2 ū(t d , Sx w -D( Sx w ))(1 -D ′ -( Sx w ))dW w ) v is a martingale since ∂ 2 ū ∈ [-1, 0] by (1.1) and (1 -D ′ -) ∈ [0, 1] according to Lemma 1.7. With (2.4), one deduces that u(s, x) -u(t, x) ≥ -E 1 {τ >t d -s} τ t d -s e -rv γ( Sx v )dv = -E t d -t t d -s
1 {τ >v} e -rv γ( Sx v )dv .

(2.6)

One easily deduces (2.1) and, since by Lemma 1.7,

C def = sup x>0 γ(x) < +∞ and γ(x) is not greater than -rK for x < x ⋆ , u(s, x) ≥ u(t, x) + t d -t t d -s e -rv rKP(τ > Sx v < x ⋆ ) -CP(τ > v, Sx v ≥ x ⋆ ) dv. (2.7) 
Define ĉ(s) = sup v∈[t d -s,t d ) c(v) and let α ∈ (0, t d ] be such that ĉ(α) < x ⋆ . The existence of α is ensured by Lemma 2.1 which applies since, according to the proof of Lemma 1.7, the function D is continuous and both D and x -D(x) are non-decreasing. We now choose t ∈ [t dα, t d ) and x ∈ (c(t), y) where y ∈ (ĉ(α), x ⋆ ). One has

τ = inf{v ∈ [0, t d -t) : Sx v ≤ c(t + v)} with convention inf ∅ = t d -t. Let τ y = inf{v ≥ 0 : Sx v = y}. For v ∈ [0, t d -t)
, by the Markov property, one has

P(τ > v, Sx v ≥ x ⋆ ) = P(τ > v, τ y ≤ v, Sx v ≥ x ⋆ ) ≤ P(τ y ≤ v, τ > τ y )P max w∈[0,v] S1 w ≥ x ⋆ /y .
In the same time,

P(τ > v) ≥ P(τ y ≤ v, τ > v) ≥ P(τ y ≤ v, τ > τ y )P min w∈[0,v] S1 w > ĉ(α)/y .
Combining both inequalities, one obtains

P(τ > v, Sx v ≥ x ⋆ ) ≤ P(τ > v) P max w∈[0,α] S1 w ≥ x ⋆ /y P min w∈[0,α] S1 w > ĉ(α)/y .
The ratio

P(max w∈[0,β] S1 w ≥z) P(min w∈[0,β] S1 w >η) equals N (( r σ -σ 2 )β -log z σ ) + e 2 log z σ ( r σ -σ 2 ) N (-( r σ -σ 2 )β -log z σ ) 1 -N ( log η σ -( r σ -σ 2 )β) -e 2 log η σ ( r σ -σ 2 ) N ( log η σ + ( r σ -σ 2 )β)
and for β > 0 and z > 1 > η > 0 this converges to 0 as β and η go to 0 + while z goes to +∞. Since by Lemma 2.1, ĉ(α) converges to 0 as α goes to 0 + , one may choose positive constants y, α such that y ∈ (ĉ(α), x ⋆ ) and

P max w∈[0,α] S1 w ≥ x ⋆ /y P min w∈[0,α] S1 w > ĉ(α)/y ≤ rK rK + C . With P(τ > v, Sx v < x ⋆ ) = P(τ > v) -P(τ > v, Sx v ≥ x ⋆
) and (2.7), we conclude that

∀t d -α ≤ t ≤ s < t d , ∀x ∈ (0, y), u(t, x) ≤ u(s, x).
Since for t ∈ (0, t d ) and x > c(t),

σ 2 x 2 2 ∂ xx u(t, x) = -∂ t u(t, x) -rx∂ x u(t, x) + ru(t, x) with ∂ x u ∈ [-1, 0] according to (1.1) and u ≤ K, (2.2) easily follows from (2.1). Let t ∈ [0, t d ) be such that c(t) > 0. For z ≥ x > c(t), one has ∂ x u(t, x) = ∂ x u(t, z) - z x ∂ xx u(t, y)dy. By (1.1), ∂ x u(t, x) ∈ [-1, 0]. With (2.2), one deduces that y → ∂ xx u(t, y) is integrable on [c(t)
, z] and the right-hand limit ∂ x u(t, c(t) + ) makes sense.

Remark 2.5 When T = +∞ i.e. when the Put option is perpetual,

u(t d , x) = K -x if x < c(t d ) = -Kα 1-α (K -c(t d ))(x/c(t d )) α otherwise , where α = - 2r σ 2 .
In the

proportional dividend case, γ(x) = -rK1 {x<c(t d )/ρ} since Af (x) = 0 for f (x) = x α . With (2.6), one deduces that for any x > 0, t → u(t, x) is non-decreasing on [0, t d ).
In the constant dividend case,

γ(x) =      -rK if x ∈ (0, D) -r(K + D) if x ∈ (D, c(t d ) + D) -α(K -c(t d ))c(t d ) -α D(rx + σ 2 2 (2x -D))(x -D) α-2 if x > c(t d ) + D is positive on (c(t d ) + D, +∞).

Continuity of the exercise boundary and high contact principle

We can now state our main result concerning the continuity of the exercise boundary c(t) for the single dividend case. Note that it applies to the proportional, the constant and the more general mixed dividend cases.

Proposition 3.1 Assume that D is a positive concave function such that x -D(x) is non- negative. Then for t ∈ [0, t d ) such that c is right-continuous at t, the smooth contact property holds ∂ x u(t, c(t) + ) = -1 and lim s→t + ∂ x u(s, c(s) + ) = -1. If g is convex, then t → c(t) is right-continuous on [0, t d ). More generally, if D is such that ∃x 0 > 0, ∃ρ ∈ [0, 1), ∀x ∈ (0, x 0 ), D(x) = (1 -ρ)x, (3.1) 
then there exists an ε ∈ (0,

t d ] such that t → c(t) is continuous on (t d -ε, t d ).

Remark 3.2 On any open interval on which c is non-decreasing, it is right-continuous by uppersemicontinuity and therefore the smooth contact property holds.

In order to prove the Proposition, we will need the following estimations of the first order time derivative and the second order spatial derivative of the pricing function u in the continuation region. 

Lemma 3.3 Assume that D is a non-negative concave function such that x -D(x) is non- negative. Then ∀t ∈ [0, t d ), ∀x > c(t), ∂ t u(t, x) ≤ -e -r(t d -t) inf y>0 γ(y) + σx 2 2π(t d -t) (3.2) and σ 2 x 2 2 ∂ xx u(t, x) ≥ e -r(t d -t) inf y>0 γ(y) - σx 2 2π(t d -t) + r(K -x) + . (3.3) If g is convex, then for t ∈ [0, t d ), x → u(t,
∂ x u(s, c(s) + ) -∂ x u(t, c(t) + ) = 1 x -c(s) u(s, x) -u(t, x) + u(t, c(s)) -u(s, c(s)) + 1 x -c(s) x c(s) (x -y)(∂ xx u(t, y) -∂ xx u(s, y))dy + c(s) c(t)
∂ xx u(t, y)dy.

(3.6)

We decompose the proof in three steps using the above expansions. First we check that when t 0 ∈ [0, t d ) is such that c is right-continuous at t 0 , then lim t→t + 0 ∂ x u(t, c(t) + ) = ∂ x u(t 0 , c(t 0 ) + ). In the second step, we check that when c is right-continuous at t 0 , then the smooth contact property holds at t 0 . In the last step, we prove that c is right-continuous at t 0 for t 0 close to t d under (3.1) and with no restriction in the convex case.

Step 1 : Let t 0 ∈ [0, t d ) be such that c is right-continuous at t 0 and x > c(t 0 ). For t > t 0 such that c(t) < x, by (3.6), |∂ x u(t 0 , c(t 0 ) + ) -∂ x u(t, c(t) + )| is smaller than

1 x -c(t) ∨ c(t 0 ) |u(t 0 , x) -u(t, x) + u(t, c(t) ∨ c(t 0 )) -u(t 0 , c(t) ∨ c(t 0 ))| + 1 x -c(t) ∨ c(t 0 ) x c(t)∨c(t 0 ) (x -y)|∂ xx u(t, y) -∂ xx u(t 0 , y)|dy + c(t)∨c(t 0 ) c(t)∧c(t 0 ) |∂ xx u(t, y)| + |∂ xx u(t 0 , y)|dy
By continuity of u, the first term converges to 0 as t → t + 0 . Moreover, (2.2) and (3.3) ensure that the second term is arbitrarily small uniformly for t < (t 0 + t d )/2 when x is close enough to c(t 0 ). Last, with the right-continuity of c at t 0 , the third term converges to 0 as t → t + 0 , which ensures the desired right-continuity property.

Step 2 : Let us now assume that for t 0 ∈ [0, t d ) such that c is right-continuous at t 0 , ∂ x u(t 0 , c(t 0 ) + ) > -1 and obtain a contradiction. Let t ∈ (t 0 , t 0 +t d

2 ) be such that c(t) ≤ c(t 0 ). According to (3.2) and (3.3), there exists a constant C ∈ (0, +∞) such that u(t, c(t 0 )) ≤ Kc(t 0 ) + C(tt 0 ) and

c(t 0 ) c(t) (c(t 0 ) -y)∂ xx u(t, y)dy ≥ -C (c(t 0 )-c(t)) 2 c(t) 2
. Writing (3.4) for x = c(t 0 ), one deduces that

1 + ∂ x u(t, c(t) + ) -C c(t 0 ) -c(t) c(t) 2 (c(t 0 ) -c(t)) ≤ C(t -t 0 ).
Since ∂ x u(t, c(t) + ) tends to ∂ x u(t 0 , c(t 0 ) + ) > -1 as t → t + 0 and c is right-continuous at t 0 , one deduces the existence of ε ∈ (0,

t d -t 0 ) such that ∀t ∈ [t 0 , t 0 + ε], c(t) -c(t 0 ) ≥ - 2C(t -t 0 ) 1 + ∂ x u(t 0 , c(t 0 ) + ) . (3.7) 
For x > c(t 0 ), let τ x = inf{s > 0 : Sx s ≤ c(t 0 + s)} ∧ (t dt 0 ) denote the stopping time such that

u(t 0 , x) = E e -rτx (K -Sx τx ) + 1 {τx<t d -t 0 } + e -r(t d -t 0 ) g( Sx τx )1 {τx=t d -t 0 } .
One has u(t 0 , c(t 0 )) ≥ E e -rτx (K -Sc(t 0 ) τx ) + 1 {τx<t d -t 0 } + e -r(t d -t 0 ) g( Sc(t 0 ) τx )1 {τx=t d -t 0 } . Computing the difference, using the monotonicity of g and the Lipschitz continuity of y → (Ky) + one deduces that

u(t 0 , x) -u(t 0 , c(t 0 )) x -c(t 0 ) ≤ -E e -rτx S1 τx 1 {τx<t d -t 0 } . (3.8) By (3.7), τ x ≤ τx def = inf{s ∈ (0, ε] : Sx s ≤ c(t 0 ) -2Cs/(1 + ∂ x u(t 0 , c(t 0 ) + ))} ∧ (t d -t 0 )
. When x tends to c(t 0 ) + , τx converges a.s. to inf{s ∈ (0, ε] : S1 s < 1 -2Cs/(c(t 0 )(1 + ∂ x u(t 0 , c(t 0 ) + )))} ∧ (t dt 0 ) which is equal to 0 according to the iterated logarithm law satisfied by the Brownian motion W . Hence τ x converge a.s. to 0 as x → c(t 0 ) + . Since E(sup s∈[0,t d -t 0 ] S1 s ) < +∞, by Lebesgue's theorem, the right-hand-side of (3.8) converges to -1 as x → c(t 0 ) + which implies the desired contradiction : ∂ x u(t 0 , c(t 0 ) + ) ≤ -1.

Step 3 : Let t 0 ∈ [0, t d ) be such that c is not right-continuous at t 0 . We are going to derive a contradiction when g is convex or t 0 close to t d under (3.1). The continuity of c on a left-hand neighbourhood of t d then follows from the left-continuity stated in Corollary 2.3. By the uppersemicontinuity of c and the positivity of inf t∈[0, t 0 +t d sequence (s k ) k∈N in (t 0 , t d ) converging to t 0 as k → ∞ and such that lim k→∞ c(s k ) ∈ (0, c(t 0 )). Let x, z ∈ (lim k→∞ c(s k ), c(t 0 )) with x > z. For k large enough c(s k ) < z and we may use (3.5) for t = s k . The left-hand-side is not smaller than -1. When k tends to ∞, by continuity of u, the first term in the right-hand-side tends to K-x-(K-z)

x-z = -1. Moreover by (3.3), there is a constant C ∈ (0, +∞) not depending on k such that 

z c(s k ) ∂ xx u(s k , y)dy + 1 x -z x z (x -y)∂ xx u(s k , y)dy ≥ - C c 2 (s k ) (2(z -c(s k )) + (x -z)) . Hence lim sup k→∞ ∂ x u(s k , c(s k ) + ) ≤ -1+ C lim k→∞ c 2 (s k ) (x + z -2 lim k→∞ c(s k )) and one deduces lim k→∞ ∂ x u(s k , c(s k ) + ) = -1 ( 
y∂ xx u(t, y)dy = x∂ x u(t, x) -c(t)∂ x u(t, c(t) + ) -u(t, x) + u(t, c(t)) = x∂ x u(t, x) -u(t, x) + K -c(t) 1 + ∂ x u(t, c(t) + ) .
With the equality ∂ t u(t, x) + Au(t, x) = 0 and Lemma 3.3, one deduces that for t and t 0 close to t d under (3.1) and with no restriction in the convex case, . With (3.9) and (3.10), one deduces that for t 0 close to t d under (3.1) and with no restriction in the convex case, for k large enough,

∀x ∈ (c(t), c(t 0 )), σ 2 x 2 2 ∂ xx u(t, x) + r x c(t) y∂ xx u(t, y)dy = rK -∂ t u(t, x) -rc(t)(1 + ∂ x u(t, c(t) + ) ≥ rK(1 -e -r(t d -t) ) 2 -rc(t) 1 + ∂ x u(t, c(t) + ) . ( 3 
• ∀y ∈ c(s k ), c(t 0 ) ∧ c(s k )e K(1-e -r(t d -s k ) ) 8C , σ 2 y 2 2 ∂ xx u(s k , y) ≥ rK(1-e -r(t d -s k ) ) 4 ,
• and therefore for x, z ∈ lim l→∞ c(s l ), c(t 0 ) ∧ lim l→∞ c(s l )e

K(1-e -r(t d -t 0 ) ) 16C with x > z, z c(s k ) ∂ xx u(s k , y)dy + 1 x -z x z (x -y)∂ xx u(s k , y)dy ≥ rK(1 -e -r(t d -s k ) ) 4σ 2 x 2 (x + z -2c(s k )).
Taking the limit k → ∞ in (3.5) written for t = s k , we now obtain lim sup k→∞ ∂ x u(s k , c(s k ) + ) < -1, which contradicts (3.9).

Proof of Lemma 3.3. Let t ∈ [0, t d ). When g is convex, since x → (K -x) + is also convex, for each stopping time τ ∈ T [0,t d -t] , x → E(e -rτ (K -Sx τ ) + 1 {τ <t d -t} + e -r(t d -t) g( Sx t d -t )1 {τ =t d -t} ) is convex. So x → u(t, x) which is equal to the supremum over τ of the previous functions is convex. Let now 0 ≤ t ≤ s < t d , x > 0 and τ ∈ T [0,t d -s] be such that u(s, x) = E e -rτ (K -Sx τ ) + 1 {τ <t d -s} + e -r(t d -s) g( Sx t d -s )1 {τ =t d -s} . Since u(t, x) ≥ E e -rτ (K -Sx τ ) + 1 {τ <t d -s} + e -r(t d -t) g( Sx t d -t )1 {τ =t d -s} , one has u(t, x) -u(s, x) ≥ E 1 {τ =t d -s} e -r(t d -t) g( Sx t d -t ) -e -r(t d -s) g( Sx t d -s ) .
When g is convex, according to Lemma 1.7, Ag is a function bounded from below by -rK, the right-hand-side is equal to E 1 {τ =t d -s} t d -t t d -s e -rv Ag( Sx v )dv , so one easily concludes. In general, by (2.5) and the martingale property of the process (

v 0 e -rw σ Sx w ∂ 2 ū(t d , Sx w -D( Sx w ))(1- D ′ -( Sx w ))dW w ) v , the previous inequality writes u(t, x) -u(s, x) ≥ E 1 {τ =t d -s} t d -t t d -s e -rv γ( Sx v )dv - ∂ 2 ū(t d , Sx v -D( Sx v )) 2 ∞ 0 D ′′ (da)dL a v ( Sx ) . (3.11) 
Since ∂ 2 ū(t d , y) ≥ -1, using the occupation times formula, one deduces that

u(s, x) -u(t, x) ≤ t d -t t d -s e -rv -inf y>0 γ(y) - +∞ 0 σ 2 a 2 2 p(v, a)D ′′ (da) dv.
Since D(x) and x -D(x) are both non-decreasing, D ′′ ((0, +∞)) ≥ -1. Using moreover

∀v ∈ [0, t d -t], ∀a > 0, a 2 p(v, a) = xe rv σ √ 2πv e -(log(a/x)-(r+ σ 2 2 )v) 2 2σ 2 v ≤ xe rv σ √ 2πv , one deduces (3.2). The inequality (3.3) follows since for x > c(t) we have σ 2 x 2 2 ∂ xx u(t, x) = -∂ t u(t, x) -rx∂ x u(t, x) + ru(t, x) ≥ -∂ t u(t, x) + r(K -x) + .
Assume (3.1). Then γ is equal to -rK on (0, x 0 ∧ x ⋆ ), D ′′ ((0, x 0 )) = 0 and (3.11) implies that u(s, x)-u(t, x) ≤ 

t d -t t d -s e -rv rK -(inf y>0 γ(y) + rK)P( Sx v ≥ x 0 ∧ x ⋆ ) - +∞ x 0 σ 2 a 2 2 p(v, a)D ′′ (da) dv. For x ∈ (0, x 0 e -(r+ σ 2 2 )(t d -t) ], one has ∀v ∈ [0, t d -t], ∀a ≥ x 0 , a 2 p(v, a) ≤ xe rv σ √ 2πv e -(log(x 0 /x)-(r+ σ 2 
Bounding from above the two last terms like in the derivation of the upper-bound for c(t) in the proof of Lemma 2.1, one deduces the last assertion.

Conclusions and Further Research

We have proven local results concerning the regularity of the exercise boundary for a dividendpaying asset. Even in the simplest case of proportional dividends, it would be of great interest to prove the following feature observed in numerical calculations: for a single dividend payment, when t d is large, the exercise boundary is non-decreasing for small times and monotonicity seems to change only once before t d . We also would like to extend the results that we have obtained for multiple dividend payments in the proportional case to more general functions D i . The key issue in this perspective is to derive global estimates on the derivatives of the value function u 1 before t 1 d to replace those which follow from the convexity in the variable x in the proportional case.

Another interesting matter to investigate would be the optimal exercise boundary for the alternative model for dividends known as the Escrowed Model. As we have shown in Remark 2.4, this boundary is zero on an interval with strictly positive length before every dividend date, but other properties of this boundary have yet to be established.

A Proof of Theorem 1.6

The two first statements can easily be deduced by respectively adapting the comparison argument given at the beginning of the proof of Corollary 2.3 and the proof of Lemma 2.1.

Let us now consider the case of multiple proportional dividends. We will prove by induction on i that the statement holds together with the following lemma.

Lemma A.1 If for all 1 ≤ j ≤ i we have D j (x) = (1ρ j )x for some ρ j ∈ (0, 1) then g i is convex and C 1 on R + and C 2 on [0,

x ⋆ i ) ∪ (x ⋆ i , +∞) for x ⋆ i def = c i-1 (t i d ) ρ i
. Moreover, the function in a left-hand neighbourhood of t i+1 d and that (A.1) and (A.2) hold with i + 1 replacing i. Next, with these bounds on the derivatives of u i+1 , one adapts the proof of Proposition 3.1 to obtain right-continuity of the exercise boundary c i+1 on [0, t i+1 d ) and smooth contact : ∀t ∈ [0, t i+1 d ), ∂ x u i+1 (t, c i+1 (t) + ) = -1. This proves the statement for i + 1 and concludes the proof.

γ i (x) def = Ag i (x)

Figure 1 :

 1 Figure 1: Exercise boundary t → c 1 (t) (K = 100, T = 4, t 1 d = 3.5, r = 0.04, σ = 0.3, proportional dividends : ρ 1 = 0.05) obtained by a binomial tree method

Figure 2

 2 Figure 2 illustrates the construction of the function g from x → ū(t d , x) on the three previous examples of dividend functions. Proof of Lemma 1.7. Since the concave function D is non-negative, it is continuous and non-decreasing. And since x -D(x) is non-negative, D(0) = 0. The convex function x -D(x) being non-negative and equal to 0 for x = 0, is non-decreasing. Since x → ū(t d , x) is continuous,

Lemma 2 . 1

 21 Let D be a non-negative and non-decreasing function s.t. x → x -D(x) is nonnegative and non-decreasing. Assume moreover that there exists a d 0 ≥ 0 such that D is zero on [0, d 0 ] and positive on ]d 0 , ∞[, then we have lim sup t→td c(t) ≤ d 0 ∧c(t d ). When d 0 = 0 i.e. D is positive, then lim t→t d -c(t) = 0 and

  With x-D(x), which is larger than c(t d ), substituted in (1.6), and using (1.4) and D ′ -

and since ∂ 2 ū ≤ 0. Define M = sup x>c(t d ) Aū(t d , .)(x) which is finite by Lemma 1.8. Since ū(t d , x) -x∂ x ū(t d , x) is non-increasing by convexity of x → ū(t d , x) and equal to K on [0, c(t d )), one deduces ∀x > c(t d ), ∂ xx ū(t d , x) ≤ 2(M + rK) σ 2 x 2 . (1.6)

  is non-negative and non-decreasing, then the exercise boundary does not vanish on [0, T ]. Moreover, for all t ∈ [0, t d ), inf s∈[0,t] c(s) > 0.

If D is a positive concave function such that x -D(x) is non-negative, then t → c(t) is nonincreasing and left-continuous on (t dε, t d ). Moreover, c(t) ∼ rK(t dt) inf x>0 x D(x) as t → t - d . Remark 2.4 In contrast to the result of Corollary 2.3, we notice that in the alternative model formulation known as the Escrowed model

  Put in the Black-Scholes model without dividends. For (t, x) ∈ [0, t d ) × R + , by Proposition 1.5, the pricing function u(t, x) is smaller than the one corresponding to the identity dividend function. Therefore for t ∈ [0, c(t d )), c(t) is larger than the associated boundary. For the identity dividend function the function γ is constant and equal to -rK so that the exercise boundary is non-increasing on [0, t d ) by (2.1) and therefore does not vanish by Lemma 1.3.Let us now assume that D is a positive concave function such that x -D(x) is non-negative. The monotonicity of c is a consequence of Proposition 2.2 and the left continuity then follows from the upper-semicontinuity. Let us now assume that c(t) is not equivalent to rKµ(t dt) where µ = inf x>0 x D(x) as t → t - d and obtain a contradiction. Because of the upper-bound stated in Lemma 2.1, this implies the existence of a constant μ ∈ (0, µ) and a sequence (t n ) n∈N in (t dε, t d ) such that lim n→∞ t n = t d and ∀n

-r(t d -t) i.e. t dt < 1 r log K+D K . Proof of Corollary 2.3. For t ∈ [t d , T ], c(t) is larger than the exercise boundary 2rK σ 2 +2r of the perpetual

  Proof of Proposition 3.1. For t ∈ [0, t d ), c(t) > 0 by Corollary 2.3, and by Proposition 2.2, the following Taylor expansion makes sense

	∀x ≥ c(t), u(t, x) = (K -c(t)) + (x -c(t))∂ x u(t, c(t) + ) +	x c(t)	(x -y)∂ xx u(t, y)dy.	(3.4)
	Substituting z for x in (3.4) and subtracting the result from (3.4) itself gives for x > z ≥ c(t)
	∂ x u(t, c(t) + ) =	u(t, x) -u(t, z) x -z	-	z c(t)	∂ xx u(t, y)dy -	1 x -z	z	x	(x -y)∂ xx u(t, y)dy.	(3.5)
	If s ∈ [0, t d ) is such that c(s) ≥ c(t), choosing z = c(s) and computing ∂ x u(s, c(s) + ) from (3.5) written with s replacing t, one deduces that for x > c(s),

x) is convex and for x > c(t), ∂ t u(t, x) ≤ rKe -r(t d -t) and ∂ xx u(t, x) ≥ 0. More generally, under (3.1), there exists ε ∈ (0, t d ] such that for all t ∈ (t dε, t d ) and for all x ∈ (c(t), c(t) + ε) we have ∂ t u(t, x) ≤ rK 1+e -r(t d -t)

2

.

  3.9) by letting x and z go to lim k→∞ c(s k ). By (3.4) and Proposition 2.2,

		x
	∀x > c(t),	c(t)

  For t close enough to t d we have that c(t) < x 0 e -(r+ σ 22 )(t d -t) by Lemma 2.1 and for x ∈ (c(t),x 0 e -(r+ σ 2 2 )(t d -t) ), ∂ t u(t, x) ≤e -r(t d -t) rK -(inf

			2σ 2 v	2 )v) 2	.
	+	σx 2 2π(t d -t)	y>0 e -(log(x 0 /x)-(r+ σ 2 γ(y) + rK)N 2 )(t d -t)) 2 log(x/(x 0 ∧ x ⋆ )) + (r -σ 2 2 )(t d -t) σ √ t d -t 2σ 2 (t d -t)

  is equal to -rK on [0, x ⋆ i ), not smaller than -rK and bounded on (x ⋆ i , +∞) and satisfies ∀t ∈ [0, t i For i = 1, the result is a consequence of Propositions 2.2 and 3.1, Corollary 2.3 and Lemma 3.3, the refinement over (2.2) in the last inequality in (A.2) following from the monotonicity of x → x∂ x u 1 (t, x)u 1 (t, x) which is a consequence of the convexity of x → u 1 (t, x).Assume the induction hypothesis to be true for a certaini ≥ 1. Then x → g i+1 (x) = u i (t i+1 d , ρ i+1 x) is convex and arguing like in the beginning of the proof of Lemma 3.3, one obtains that for t ∈ [0,t i+1 d ), x → u i+1 (t, x) = sup τ ∈T [0,t i+1 d -t] E[e -rτ ( (K -Sx τ ) + 1 {τ <t i+1 d -t} + g i+1 ( Sx t i+1 d -t )1 {τ =t i+1 d -t} )] is convex and nonincreasing. The function g i+1 is C 1 on R + by the smooth contact property for u i at time t i+1 d and C 2 on [0, x ⋆ i+1 ) ∪ (x ⋆ i+1 , +∞) by the regularity properties of u i stated in Lemma 1.4. Moreover the functionγ i+1 (x) = Au i (t i+1 d , .)(ρ i+1 x) is equal to -rK on [0, x ⋆ i+1 ),not smaller than -rK and bounded on (x ⋆ i+1 , +∞) respectively by convexity of x → u i (t i+1 d , x) and by the lower bound in (A.1) combined with the equality ∂ t u i (t i+1 d , x) + Au i (t i+1 d , x) = 0 which is satisfied for x > c i (t i+1 d ). One may now adapt the proofs of Proposition 2.2, Lemma 3.3 and Corollary 2.3 to check that the exercise boundary c i+1 (t) is non-increasing and equivalent to

	y>0	γ + i (y) + rK.	(A.2)
	rK(t i+1 d -t) 1-ρ i+1		

d ), ∀x > c i (t),e -r(t i d -t) sup y>0 γ + i (y) ≤ ∂ t u i (t, x) ≤ e -r(t i d -t) rK (A.1)

and 0 ≤ σ 2 x 2 2 ∂ xx u i (t, x) ≤ e -r(t i d -t) sup

When there is only one dividend date, i.e. I = 1, we will often suppress the value i = 1 in our notation, so we will write t d instead of t 1 d , D for D 1 and so on.

] c(t) stated in Corollary 2.3, there exists a

This research benefited from the support of the "Chair Risques Financiers", Fondation du Risque. Research was partially completed while the author was visiting the Institute for Mathematical Sciences, National University of Singapore in 2009. The visit was supported by the institute.