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Regularity of the Exercise Boundary for

American Put Options on Assets with Discrete Dividends

B. Jourdain∗ and M. Vellekoop†

November 26, 2009

Abstract

We analyze the regularity of the optimal exercise boundary for the American Put option
when the underlying asset pays a discrete dividend at a known time td during the lifetime of
the option. The ex-dividend asset price process is assumed to follow Black-Scholes dynamics
and the dividend amount is a deterministic function of the ex-dividend asset price just
before the dividend date. The solution to the associated optimal stopping problem can be
characterised in terms of an optimal exercise boundary which, in contrast to the case when
there are no dividends, is no longer monotone. In this paper we prove that when the dividend
function is positive and concave, then the boundary tends to 0 as time tends to t−

d
and is

non-increasing in a left-hand neighbourhood of td. We also show that the exercise boundary
is continuous and a high contact principle holds in such a neighbourhood when the dividend
function is moreover linear in a neighbourhood of 0.

Introduction

We consider the American Put option with strike K > 0 and maturity T > 0 on an underlying
stock. We assume that the stochastic dynamics of the ex-dividend price process of this stock can
be modelled by the Black-Scholes model and that at a given time td ∈ (0, T ) a discrete dividend
is paid. The value of this dividend is a function D : R+ → R+ of the ex-dividend asset price
Std−. This means that

dSu = σSudWu + rSudu − D(Su−)d1{u≥td} (0.1)

for an initial price S0, interest rate r and volatility σ which are assumed to be positive and with
W a standard Brownian Motion.

Throughout the paper we assume that the dividend function D is non-negative and non-
decreasing and such that x ∈ R+ 7→ x − D(x) is non-negative and non-decreasing. We will
pay particular attention to the following special cases :

• D(x) = (1 − ρ)x where ρ ∈ (0, 1), which we will call the proportional dividend case,
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• D(x) = D ∧ x with D > 0, which we will call the constant dividend case.

For t ∈ [0, T ], let
Ut = ess. sup

τ∈T[t,T ]

E[e−r(τ−t)(K − Sτ )
+|Ft] (0.2)

where T[t,T ] is the set of stopping times with respect to the filtration Ft
def
= σ(Ws, 0 ≤ s ≤ t)

taking values in [t, T ] denote the price at time t of the American Put option.

The solution to this optimal stopping problem for the case without dividends goes back to the
work of McKean [15] and Van Moerbeke [20]. The optimal stopping time is the first time that
the asset price process falls below a time-dependent value (the so-called exercise boundary which
we will denote by c̄), and McKean derived a free-boundary problem involving both the pricing
function ū such that Ut = ū(t, St) and c̄. Van Moerbeke derived an integral equation which
involves both c̄ and its derivative, but in later work by Kim [13], Jacka [11] and Carr, Jarrow
and Myneni [2] an integral equation was derived which only involves c̄ itself. The regularity and
uniqueness of solutions to this equation was left as an open problem in those papers. Uniqueness
was proven by Peskir [18], using his change-of-variable formula with local time on curves [17].
It is known that the optimal exercise boundary is convex [4, 5] and its asymptotic behaviour at
maturity is given in [14]. But although it was claimed in several papers (for example [16]) that
it is C1 at all points prior to maturity, a complete proof has been given only recently by Chen
and Chadam [3]. In fact, in that paper it was actually shown that it is C∞ in all those points
and a later paper by Bayraktar and Xing [1] shows that this remains true if the underlying asset
pays continuous dividends at a fixed rate.
In practice, continuous dividends are not a satisfying model since dividends are paid once a year
or quaterly. That is why we are interested in discrete dividends. To begin with, we deal in this
paper with the simplest situtation where there is only one dividend time td before the maturity T
of the Put option. When we assume discrete dividend payments such as the proportional or fixed
dividend payments mentioned above, the optimal exercise boundary will become discontinuous
at the dividend date and before the dividend date it may not be monotone (see Figure 1). Integral
formulas for the exercise boundary which are similar to the ones in [2] have been derived under
the assumption that the boundary is Lipschitz continuous (see Göttsche and Vellekoop [9]) or
locally monotonic (Vellekoop & Nieuwenhuis [22]). In this paper we therefore study conditions
under which such regularity properties of the optimal exercise boundary under discrete dividend
payments can be proven.

In the first Section, we introduce the pricing function u of the American Put option in the model
(0.1) and the associated exercise boundary c. We also explain that, on the time-interval [0, td),
the American Put price is equal to the price of an American option with maturity td, Put payoff
x 7→ (K − x)+ when exercised early and a modified payoff x 7→ ū(td, x − D(x)) when exercised
at maturity td in the Black-Scholes model with no dividends. Last, we study properties of this
function x 7→ ū(td, x − D(x)). In the second Section, we prove that when the dividend function
is positive and concave, then the boundary tends to 0 as time tends to t−d and is non-increasing
in a left-hand neighbourhood of td. In the third Section we assume moreover that the dividend
function is linear in a neighbourhood of 0, a condition satisfied in both the proportional and
the constant dividend cases. Then we show that the exercise boundary is continuous and a high
contact principle holds in a left-hand neighbourhood of td.
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Notations and definitions :

• For t ∈ [0, T ] and x ≥ 0, we use the notation S̄x
t = xeσWt+(r−σ2

2
)t for the stock price at

time t when the initial price is equal to x for the case where there is no dividend (i.e.
D ≡ 0). We also denote by Ly

t (S̄
x) the local time at level y > 0 and time t of the process

S̄x and by p(t, y) =
1{y>0}

σy
√

2πt
exp

(

− (log(y/x)−(r−σ2

2
)t)2

2σ2t

)

the density of S̄x
t with respect to

the Lebesgue measure when t, x > 0.

• Let A denote the infinitesimal generator of the Black-Scholes model without dividends :
Af(x) = σ2x2

2 f ′′(x) + rxf ′(x) − rf(x).

• If (t, x) ∈ [0, T ] × R+, we write Sx,t
u for the solution to (0.1) for u ≥ t under the initial

condition that Sx,t
t = x.

• Let N(y) =
∫ y
−∞ e−z2/2 dz√

2π
be the cumulative distribution function of the standard normal

law.

• Let C denote a constant with may change from line to line.

• We say that D is positive when ∀x > 0, D(x) > 0.

• By a left-hand neighbourhood of x ∈ R, we mean an open interval (x − ε, x) for some
ε > 0.

1 Preliminary results

The following results, which have been proven in [6, 7, 10, 19], provide an optimal stopping time
in (0.2).

Proposition 1.1 Let {Gt, t ∈ [0, T ]} be an (Ft)-adapted right-continuous upper-semicontinuous
process with E(supt∈[0,T ] |Gt|) < ∞.
Then the càdlàg version of the Snell envelope Ut = ess. supτ∈T[t,T ]

E(Gτ | Ft) is continuous on

[0, T ] and the stopping time τ = inf{s ≥ t : Us = Gs} is optimal : Ut = E(Gτ | Ft).

The conditions for this result are satisfied by Gt = e−rt(K −St)
+ since for all t ∈ [0, T ] we have

|Gt| ≤ K and Gt is right-continuous and upper semicontinuous for all t ∈ [0, T ] since the jump
size of St at t = td is non-positive. According to [7], there exists a pricing function u such that
Ut = u(t, St) :

Proposition 1.2 The Snell envelop U of {Gt = e−rt(K − St)
+, t ∈ [0, T ]} is such that Ut =

e−rtu(t, St) where

∀(t, x) ∈ [0, T ] × R+, u(t, x)
def
= sup

τ∈T[t,T ]

E(e−r(τ−t)(K − Sx,t
τ )+).

Moreover the previous supremum is attained for τ = inf{s ≥ t : u(s, Sx,t
s ) = (K − Sx,t

s )+}.

Let us now derive some properties of the pricing function u which ensure existence of the exercise
boundary.
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Lemma 1.3 Let the dividend function D be non-negative, non-decreasing and such that x ∈
R+ 7→ x − D(x) is non-negative and non-decreasing. Then we have

∀t ∈ [0, T ], ∀x > y ≥ 0, 0 ≤ u(t, y) − u(t, x) ≤ x − y. (1.1)

For t ∈ [0, T ], let
c(t) = inf{x > 0 : u(t, x) > (K − x)+}.

Then we have that {x ≥ 0 : u(t, x) = (K − x)+} = [0, c(t)] and the function c cannot vanish on
an interval.

Figure 1 plots the exercise boundary t 7→ c(t) of the Put option with strike K = 100 and
maturity T = 4 in the model (0.1) with r = 0.04, σ = 0.3, td = 3.5 and proportional dividends
with ρ = 0.95. This exercise boundary was computed by a binomial tree method (see [21]).
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Figure 1: Exercise boundary t 7→ c(t) (K = 100, T = 4, td = 3.5, r = 0.04, σ = 0.3, proportional

dividends : ρ = 0.05) obtained by a binomial tree method

Proof . For the first part, we use a similar proof as in [9]. For a fixed t ∈ [0, T ] take x > y ≥ 0
which, with the monotonicity of z 7→ z − D(z) implies that Sx,t

v ≥ Sy,t
v for all v ∈ [t, T ]. For

τx ∈ T[t,T ] such that u(t, x) = E[e−r(τx−t)(K − Sx,t
τx )+], since τx need not be optimal for the case

where St = y, we deduce

u(t, x) − u(t, y) ≤ E[e−r(τx−t)((K − Sx,t
τx

)+ − (K − Sy,t
τx

)+)] ≤ 0.

For τy ∈ T[t,T ] such that u(t, y) = E[e−r(τy−t)(K − Sy,t
τy )+],

u(t, y) − u(t, x) ≤ E[e−r(τy−t)(K − Sy,t
τy

)+] − E[e−r(τy−t)(K − Sx,t
τy

)+]

≤ E[e−r(τy−t)(Sx,t
τy

− Sy,t
τy

)]

= x − y − E[e−r(τy−t)1{τy≥td}(D(Sx,t

t−d
) − D(Sy,t

t−d
))S1,td

τy
] ≤ x − y

because of our assumption that D is non-decreasing.
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Since u(t, x) ≥ (K − x)+ for all t ∈ [0, T ] and x ≥ 0, the definition of c(t) implies that u(t, x) =
(K − x)+ for x ∈ [0, c(t)) and by the continuity of x → u(t, x) − (K − x)+ this must then be
true for x = c(t) as well when c(t) > 0. When c(t) = 0, u(t, c(t)) = K = (K − c(t))+. If
x > c(t) then, by definition of c(t) there exists y ∈ (c(t), x] such that u(t, y) > (K − y)+ and
u(t, x) ≥ u(t, y) + y − x > K − x. Since u(t, x) ≥ E(e−r(T−t)(K − Sx,t

T )+) > 0, one deduces that
u(t, x) > (K − x)+ for x > c(t).
Assume that there exists an interval [t1, t2] with 0 ≤ t1 ≤ t2 ≤ T such that c is zero in every
point of this interval, and for x > 0, let τx ∈ T[t1,T ] be such that we have that u(t1, x) =

E[e−r(τx−t1)(K − Sx,t1
τx )+]. Then τx ≥ t2 so Ke−r(t2−t1) ≥ KE[e−r(τx−t1)] ≥ u(t1, x) ≥ (K − x)+.

Letting x → 0+, one deduces that t2 = t1.

Let us now prove some regularity properties of the pricing function u.

Lemma 1.4 Under the assumptions of Lemma 1.3, the function u is continuous on [0, td)×R+

and for all x outside the at most countable set of discontinuities of D, the limit limt→t−d
u(t, x)

exists and is equal to u(td, x − D(x)).
Moreover, for all t ∈ (0, td) and x > c(t) the partial derivatives ∂tu(t, x), ∂xu(t, x) and ∂xxu(t, x)
exist and Au(t, ·)(x) + ∂tu(t, x) = 0.

Proof . Let us check the behaviour of u as t → t−d , the continuity of this function on [0, td)×R+

following from a similar but easier argument.
Since Std = St−d

− D(St−d
), one has, using (1.1) for the inequality,

|u(t, St−d
) − u(td, St−d

− D(St−d
))| = |u(t, St−d

) − u(td, Std)| ≤ |St − St−d
| + |u(t, St) − u(td, Std)|.

By continuity of the process (u(t, St))t∈[0,T ] ensured by Propositions 1.1 and 1.2, one deduces
that a.s., limt→t−d

u(t, St−d
) = u(td, St−d

− D(St−d
)). Since St−d

admits a positive density w.r.t.

the Lebesgue measure on (0,+∞), dx a.e. limt→t−d
u(t, x) = u(td, x − D(x)). By continuity of

x 7→ u(td, x), the function x 7→ u(td, x − D(x)) is continuous outside the at most countable set
of discontinuities of the non-decreasing function D. With (1.1), one concludes that for all x
outside this set, limt→t−d

u(t, x) = u(td, x − D(x)).

By continuity of u on [0, td) × R+, {(t, x) ∈ [0, td) × R+ : x > c(t)} which by Lemma 1.3 is
equal to {(t, x) ∈ [0, td) × R+ : u(t, x) > (K − x)+} is an open subset of [0, td) × R+. Let
t ∈ (0, td), x > c(t) and B be an open neighbourhood of (t, x) with regular boundary ∂B such
that y > c(s) and s < td for all (s, y) ∈ B. Define the stopping times τ = inf{v ≥ t : Sx,t

v ≤ c(v)}
and τBc = inf{v ≥ t : Sx,t

v ∈ Bc} < τ . The flow property for the Black-Scholes model without

dividends implies that for v ≥ τBc , Sx,t
v = S

Sx,t
τBc ,τBc

v and τ = inf{v ≥ τBc : S
Sx,t

τBc ,τBc

v ≤ c(v)}.
Using the strong Markov property for the third equality, one deduces

u(t, x) = E[e−r(τ−t)(K − Sx,t
τ )+] = E[e−r(τBc−t)

E[e−r(τ−τBc )(K − S
Sx,t

τBc ,τBc

τ )+|FτBc ]]

= E[e−r(τBc−t)u(τBc , Sx,t
τBc )]. (1.2)

Let f(s, x) be a solution to the Dirichlet problem where ∂sf + Af = 0 on B and f = u on ∂B.
By Theorem 3.6.3. in [8] this function f is C1,2 in B and continuous on B̄. But then u(t, x) =
E[e−r(τBc−t)u(τBc , Sx,t

τBc )] = E[e−r(τBc−t)f(τBc , Sx,t
τBc )] = f(t, x) + E

∫ τBc

t (∂sf + Af)(s, Sx,t
s )ds =

f(t, x) by optional sampling so u = f on B and therefore its partial derivatives exist in (t, x)
and satisfy ∂tu(t, x) + Au(t, ·)(x) = 0.
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The interpretation of the restriction of u to [0, td) × R
∗
+ as the pricing function of an American

option in the Black-Scholes model with no dividends stated in the next Proposition is the key
of the study of the exercise boundary c(t) performed in the following sections.

Proposition 1.5 Under the assumptions of Lemma 1.3,

∀(t, x) ∈ [0, td) × R+, u(t, x) = sup
τ∈T[0,td−t]

E[e−rτ ( (K − S̄x
τ )+1{τ<td−t} + g(S̄x

td
)1{τ=td−t} )].

where g(x)
def
= u(td, x − D(x)) and the supremum is attained for τ = inf{s ∈ [0, td − t) : S̄x

s ≤
c(t + s)} ∧ td − t (convention inf ∅ = +∞). Moreover, the restriction of u to [td, T ] × R+

coincides with the one of the pricing function ū of the American Put option with maturity T in
the Black-Scholes model without dividends. In particular, ∀x ≥ 0, g(x) = ū(td, x − D(x)).

Proof . The second statement is obvious since no dividend is payed on the time interval [td, T ].
Let (t, x) ∈ [0, td) × R+ and τx = inf{v ≥ t : Sx,t

v ≤ c(v)}. Arguing like in the derivation of
(1.2), one easily checks that

E

[

e−r(τx−t)(K − Sx,t
τx

)+1{τx≥td}
]

= E

[

e−r(td−t)u(td, S
x,t
td

)1{τx≥td}
]

= E

[

e−r(td−t)g(Sx,t

t−d
)1{τx≥td}

]

and deduces that

u(t, x) = E

[

e−r(τx−t)(K − Sx,t
τx

)+1{τx<td} + e−r(td−t)g(Sx,t

t−d
)1{τx≥td}

]

= E

[

e−rτ (K − S̄x
τ )+1{τ<td−t} + e−r(td−t)g(S̄x

td−t)1{τ=td−t}
]

,

when τ = inf{s ∈ [0, td − t) : S̄x
s ≤ c(t + s)} ∧ td − t.

Let now τ be any stopping time in T[0,td−t]. For f : C([0, td − t], R) → [0, td] such that τ =
f(Ws, 0 ≤ s ≤ td − t),

τx
def
=

{

t + f(Ws − Wt, t ≤ s ≤ td) if t + f(Ws − Wt, t ≤ s ≤ td) < td

inf{s ≥ td : Sx,t
s ≤ c(s)} otherwise

belongs to T[t,T ] and is such that

E

[

e−rτ (K − S̄x
τ )+1{τ<td−t} + e−r(td−t)g(S̄x

td−t)1{τ=td−t}
]

= E

[

e−r(τx−t)(K − Sx,t
τx

)+1{τx<td} + e−r(td−t)u(td, S
x,t
td

)1{τx≥td}
]

= E

[

e−r(τx−t)(K − Sx,t
τx

)+
]

≤ u(t, x).

We now derive some properties of the function g(x) = ū(td, x − D(x)). We will write c̄ for
the optimal exercise boundary of the American Put when there are no dividends. Obviously,
c(t) = c̄(t) for t ∈ [td, T ].

Lemma 1.6 Assume that D is a non-negative concave function such that x − D(x) is non-
negative. Then D is continuous, non-decreasing and such that x − D(x) is non-decreasing. Let
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D′
−(x) and D′′(dx) respectively denote the left-hand derivative of D and the non-positive Radon

measure equal to the second order distribution derivative of D on (0,+∞). The function g is
continuous, non-increasing and g(x) ≥ (K − x)+ for all x ≥ 0. The function

γ(x)
def
=

σ2x2

2
(1−D′

−(x))2∂22ū(td, x−D(x))+rx(1−D′
−(x))∂2ū(td, x−D(x))−rū(td, x−D(x))

where, by convention, ∂22ū(td, c̄(td)) = 0, is not greater than −rK on (0, x⋆) where x⋆ def
= sup{x :

x − D(x) < c̄(td)} > 0, and globally bounded.

If g is convex, then there is a constant ρ ∈ [0, 1] such that g(x) = K − ρx and D(x) = (1 − ρ)x
for x < x⋆, the second order distribution derivative of g admits a density g′′ w.r.t. the Lebesgue
measure and Ag(x) is equal to −rK on (0, x⋆) and dx a.e. on (x⋆,+∞), Ag(x) ≥ −rK.

To prove this lemma, we need the following properties of the pricing function ū in the model
without dividends.

Lemma 1.7 For the case without dividends we have that the partial derivatives ∂tū(t, x), ∂xū(t, x)
and ∂xxū(t, x) exist and ∂tū(t, x) + Aū(t, ·)(x) = 0 for all t ∈ [0, T ) and x > c̄(t). Moreover,
∀t ∈ [0, T ], x 7→ ū(t, x) is convex and C1 on R+. Last,

∀t ∈ [0, T ), ∀x > c̄(t), ∂tū(t, x) ≥ − e−r(T−t)σ2K

2σ
√

2π(T − t)
exp

(

−(log(K/x) − (r − σ2

2 )(T − t))2

2σ2(T − t)

)

.

Before proving these Lemmas, let us give some examples of functions g obtained for different
choices of the dividend function D.

Examples of functions g :

• In the constant dividend case, x⋆ = c̄(td) + D and the function g is equal to K on [0,D]
and to K + D − x for x ∈ (D,x⋆), C1 on [0,D) ∪ (D,+∞) with g′ taking its values in

[−1, 0], C2 on [0,D) ∪ (D,x⋆) ∪ (x⋆,+∞) and such that Ag(dx) = γ(x)dx − σ2D2

2 δD(dx)
where γ is equal to −rK on (0,D) and to −r(K + D) on (D,x⋆).

• In the proportional dividend case, x⋆ = c̄(td)/ρ and g(x) = ū(td, ρx) is convex, C1 with g′

taking its values in [−ρ, 0] and C2 on [0, x⋆) ∪ (x⋆,+∞).

• The proportional dividend case provides an example of a non-negative concave function
D such that x − D(x) is non-negative which leads to a convex function g. This example
is not unique. For instance, let ρ ∈ (0, 1). The function y 7→ ū(td, y) is convex positive
nonincreasing and such that limy→+∞ ū(td, y) = 0. So it is continuous and decreasing
and admits an inverse V (td, .) : (0,K] → [0,+∞). For x ∈ (c̄(td)/ρ,K/ρ), we set d(x) =
x − V (td,K − ρx). The continous function d′(x) = 1 + ρ/∂2ū(td, V (td,K − ρx)) is non-
increasing on (c̄(td)/ρ,K/ρ) by the non-increasing property of both V (td, .) and −∂2ū(td, .)
and the positivity of this last function. It tends respectively to 1−ρ and −∞ as x → c̄(td)/ρ
and x → K/ρ. Let x0 = sup{x ∈ (c̄(td)/ρ,K/ρ) : d′(x) ≥ 0}. One has d′(x0) = 0 which
also writes ∂2ū(td, x0 − d(x0)) = −ρ. The function

D(x) =

{

(1 − ρ)x for x ∈ [0, c̄(td)/ρ]

d(x ∧ x0) for x > c̄(td)/ρ

7



is non-negative, concave and such that x − D(x) is non-negative. The convexity of x 7→
ū(td, x) combined with the equality ∂2ū(td, x0 − d(x0)) = −ρ implies that

g(x) =

{

K − ρx for x ∈ [0, x0]

ū(td, x − d(x0)) for x > x0

is convex.

Figure 2 illustrates the construction of the function g from x 7→ ū(td, x) on the three previous
examples of dividend functions.

x

K

KD c̄(td) x0

ū(td, x)

Const div D = 1

Prop div ρ = 0.75

Convex example

Figure 2: Examples of functions g

Proof of Lemma 1.6. Since the concave function D is non-negative, it is continuous and
non-decreasing. And since x − D(x) is non-negative, D(0) = 0. The convex function x − D(x)
being non-negative and equal to 0 for x = 0, is non-decreasing. Since x 7→ ū(td, x) is continuous,
non-increasing and not smaller than (K − x)+, the same properties hold for g.
For x ∈ (0, x⋆), γ(x) = rx(D′

−(x) − 1) − r(K − x + D(x)) = −rK − r(D(x) − xD′
−(x)). By

concavity of D,

∀x > 0, D(x) − xD′
−(x) ≥ D(0) = 0. (1.3)

So γ is not greater than −rK on (0, x⋆). The constant x⋆ is infinite if and only if D is the
identity function and then γ is constant and equal to −rK. When x⋆ < +∞, γ is bounded from
below by −r(K + D(x⋆)) on (0, x⋆). Moreover, since D is concave, continuous and D(0) = 0,

∀x > x⋆,
D(x)

x
≤ D(x⋆)

x⋆
=

x⋆ − c̄(td)

x⋆
and x − D(x) ≥ xc̄(td)

x⋆
> c̄(td). (1.4)
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One has

γ(x) −Aū(td, .)(x − D(x)) =
σ2

2
∂22ū(td, x − D(x))[x2(1 − D′

−(x))2 − (x − D(x))2] (1.5)

+ r(D(x) − xD′
−(x))∂2ū(td, x − D(x))

where the last term is non-positive by (1.3) and since ∂2ū ≤ 0. Define M = supx>c̄(td) Aū(td, .)(x)
which is finite by Lemma 1.7. Since ū(td, x) − x∂xū(td, x) is non-increasing by convexity of
x 7→ ū(td, x) and equal to K on [0, c̄(td)), one deduces

∀x > c̄(td), ∂xxū(td, x) ≤ 2(M + rK)

σ2x2
. (1.6)

With x−D(x), which is larger than c̄(td), substituted in (1.6), and using (1.4) and D′
−(x) ∈ [0, 1],

one concludes that when x⋆ < +∞,

∀x > x⋆, γ(x) ≤ M + (M + rK)
x⋆2 − c̄(td)

2

c̄(td)2
.

For x > x⋆, since xD′
−(x))∂2ū(td, x−D(x)) and ∂22ū(td, x−D(x))[x2(1−D′

−(x))2−(x−D(x))2]
are non-negative and Aū(td, .)(x − D(x)) = −∂tū(td, x − D(x)) > 0, we have by (1.5),

γ(x) ≥ rD(x)∂2ū(td, x − D(x)) ≥ r
x⋆ − c̄(td)

c̄(td)
(x − D(x))∂2ū(td, x − D(x))

= r
x⋆ − c̄(td)

c̄(td)

(

−K +

∫ x−D(x)

c̄(td)
y∂22ū(td, y)dy + ū(td, x − D(x))

)

≥ −rK
x⋆ − c̄(td)

c̄(td)
,

where we used that D(x) ≤ (x − D(x))(x∗ − c̄(td))/c̄(td) by (1.4) for the second inequality
and the smooth fit property ∂2ū(td, c̄(td)) = −1 and a partial integration for the equality.
Last, if g is convex, then the left-hand derivative g′−(x) = ∂2ū(td, x − D(x))(1 − D′

−(x)) is
non-decreasing. But g′−(x) − g′−(x−) = −∂2ū(td, x − D(x))(D′

−(x) − D′
−(x−)) and since ∂2ū

is negative and D′
− non-increasing, the right-hand-side of this equality is non-positive and the

left-hand-side is non-negative so both are zero and the function g′− is continuous. So g and D
are C1 with g′(x) = ∂2ū(td, x − D(x))(1 − D′(x)). The first factor in the right-hand-side being
globally continuous and C1 on (0, x⋆) ∪ (x⋆,+∞), one deduces that the distribution derivative
of g′ is equal to ∂22ū(td, x − D(x))(1 − D′(x))2dx − ∂2ū(td, x − D(x))D′′(dx). This measure
being non-negative by convexity of g, D′′ is absolutely continuous with respect to the Lebesgue
measure and so is the second order distribution derivative of g. For x < x⋆, g′(x) = D′(x) − 1
where the left-hand-side is non-decreasing and the right-hand-side non-increasing. So there
is a constant ρ ∈ [0, 1] such that g(x) = K − ρx and D(x) = (1 − ρ)x for x < x⋆. As a
consequence x⋆ = c̄(td)/ρ and Ag(x) = rxg′(x) − rg(x) = −rK on (0, x⋆). The convexity
of g implies that rxg′(x) − rg(x) is non-decreasing and therefore that dx a.e. on (x⋆,+∞),

Ag(x) = σ2x2

2 g′′(x) + rxg′(x) − rg(x) ≥ −rK.

Proof of Lemma 1.7. The proof of the first statement is similar to the one of Lemma

1.4. Moreover, x 7→ ū(t, x) = supτ∈T[0,T−t]
E

(

e−rτ (K − xeσWτ +(r−σ2

2
)τ )+

)

is convex as the

supremum of convex functions. We refer for instance to Lemma 7.8 in Section 2.6 [12] for the
continuous differentiability property of this function.
Let 0 ≤ s ≤ t ≤ T , x > 0, and take τ ∈ T[0,T−s] such that ū(s, x) = E(e−rτ (K − S̄x

τ )+) and
τ̃ = τ ∧ (T − t). One has

ū(t, x) ≥ E
(

e−rτ̃ (K − S̄x
τ̃ )+

)

= ū(s, x) − E

(

1{τ>T−t}
(

e−rτ (K − S̄x
τ )+ − e−r(T−t)(K − S̄x

T−t)
+
))
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By Tanaka’s formula, when τ > T − t,

(K − S̄x
τ )+ = (K − S̄x

T−t)
+ −

∫ τ

T−t
1{S̄x

v≤K}(σS̄x
v dWv + rS̄x

v dv) +
1

2
(LK

τ (S̄x) − LK
T−t(S̄

x)).

One deduces that

ū(t, x) ≥ ū(s, x)− e−r(T−t)

2
E(LK

T−s(S̄
x)−LK

T−t(S̄
x)) = ū(s, x)− e−r(T−t)σ2K2

2

∫ t

s
p(T −v,K)dv.

2 Limit behaviour and monotonicity of the exercise boundary

as t → t−d

Using the results in the previous section, we first check that c(t) tends to 0 as t → t−d if D is
positive (i.e. ∀x > 0, D(x) > 0).

Lemma 2.1 Let D be a non-negative and non-decreasing function s.t. x 7→ x − D(x) is non-
negative and non-decreasing. Then t 7→ c(t) is upper-semicontinuous on [0, td).

Assume moreover that D is positive, then we have limt→t−d
c(t) = 0, and

• if D is concave, then for all y > 0, there is a left-hand neighbourhood of td in which
c(t) ≤ rKy

D(y)(td − t) + o(td − t),

• if D is concave and g is convex then ∀t ∈ [0, td), c(t) < 1−e−r(td−t)

1−ρ K where ρ ∈ [0, 1) is
the constant such that, according to Lemma 1.6, ∀x ∈ (0, x⋆), D(x) = (1 − ρ)x.

Proof . By Lemma 1.4, {(t, x) ∈ [0, td) × R+ : u(t, x) = (K − x)+} which is equal to {(t, x) ∈
[0, td) × R+ : 0 ≤ x ≤ c(t)} by Lemma 1.3 is a closed subset of [0, td) × R+. As a consequence
t 7→ c(t) is upper-semicontinuous on [0, td).
To prove that limt→t−d

c(t) = 0 assume that there exists a sequence (tn)n∈N such that tn ↑ td

with c(tn) > y for some y > 0 which we may take smaller than K and such that y is not one
of the countably many discontinuity points of D. Then u(tn, y) = K − y for all tn and taking
the limit and applying Lemma 1.4 gives that u(td, y − D(y)) = K − y but u(td, y − D(y)) ≥
(K − y + D(y))+ = K − y + D(y) which contradicts the assumption that D is positive.

Assume that D is concave and positive and let y > 0. Then ∀z ∈ (0, y), D(z) ≥ zD(y)
y and for

(t, x) ∈ [0, td) × R
∗
+,

u(t, x) ≥ E(e−r(td−t)g(S̄x
td−t)) ≥ E(e−r(td−t)(K − S̄x

td−t + D(S̄x
td−t)))

≥ e−r(td−t)K − x +
xD(y)

y
E

(

e−r(td−t)S̄1
td−t1{S̄x

td−t≤y}
)

= e−r(td−t)K − x +
xD(y)

y
N

(

log(y/x) − (r + σ2

2 )(td − t)

σ
√

td − t

)

.
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For x ≤ y
3 and td − t ≤ log(3)

2
“

r+ σ2

2

” , one has
log(y/x)−(r+ σ2

2
)(td−t)

σ
√

td−t
≥ log(3)

2σ
√

td−t
and

u(t, x) ≥ Ke−r(td−t) − x +
xD(y)

y

(

1 − 2σ
√

td − t√
2π log(3)

e
− log2(3)

8σ2(td−t)

)

which ensures that u(t, x) > K−x when x > (y/D(y))K(1−e−r(td−t))(1− 2σ
√

td−t√
2π log(3)

e
− log2(3)

8σ2(td−t) )−1.

The upper-bound for c(t) easily follows.

When g is also convex, according to Lemma 1.6, either D is the identity function and g is constant
and equal to K or there is a constant ρ ∈ (0, 1) such that D(x) = (1−ρ)x for x ∈ (0, c̄(td)/ρ]. In
the latter case, one has g(x) = K−ρx for x ∈ (0, c̄(td)/ρ] and g(x) ≥ (K−ρx)+ for x > c̄(td)/ρ.
As a consequence, E(e−r(td−t)g(S̄x

td−t)) > E(e−r(td−t)(K − ρS̄x
td−t)) = e−r(td−t)K − ρx. One

deduces that when x ≥ 1−e−r(td−t)

1−ρ K, u(t, x) > K − x which implies that c(t) < 1−e−r(td−t)

1−ρ K.

This obviously still holds with ρ = 0 when D is the identity function.

We now obtain monotonicity of the exercise boundary in a left-hand neighbourhood of the
dividend date td.

Proposition 2.2 If D is a positive concave function such that x − D(x) is non-negative, there
exists a constant ε > 0 such that for x ∈ (0, ε), t 7→ u(t, x) is non-decreasing on (td − ε, td).
Moreover, we have for all t ∈ [0, td) and all x > c(t) that

∂tu(t, x) ≥ −e−r(td−t) sup
y>0

γ(y) (2.1)

σ2x2

2
∂xxu(t, x) ≤ e−r(td−t) sup

y>0
γ(y) + r(x + K). (2.2)

Last, for any t ∈ [0, td) such that c(t) > 0, ∀x > c(t),
∫ x
c(t) |∂xxu(t, y)|dy < +∞ and x 7→ ∂xu(t, x)

admits a right-hand limit ∂xu(t, c(t)+) ∈ [−1, 0] as x → c(t)+.

One easily deduces the following Corollary, where the positivity is a consequence of the mono-
tonicity and the fact that the function c(.) cannot vanish on an interval according to Lemma
1.3 and the left continuity follows from the monotonicity and the upper-semicontinuity.

Corollary 2.3 If D is a positive concave function such that x − D(x) is non-negative, then
t 7→ c(t) is non-increasing, positive and left-continuous on (td − ε, td).

Proof of Proposition 2.2. Let 0 ≤ t ≤ s < td, x > 0 and τ ∈ T[0,td−t] be such that

u(t, x) = E
(

e−rτ (K − S̄x
τ )+1{τ<td−t} + e−r(td−t)g(S̄x

td−t)1{τ=td−t}
)

. Since by Lemma 1.6, ∀x >
0, g(x) ≥ (K − x)+,

u(t, x) ≤ E
(

e−rτ (K − S̄x
τ )+1{τ<td−s} + e−rτg(S̄x

τ )1{τ≥td−s}
)

= E

(

e−rτ (K − S̄x
τ )+1{τ<td−s} + e−r(td−s)g(S̄x

td−s)1{τ≥td−s}
)

+ E

(

1{τ>td−s}
(

e−rτg(S̄x
τ ) − e−r(td−s)g(S̄x

td−s)
))

. (2.3)
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By Tanaka’s formula,

d(S̄x
v − D(S̄x

v )) = (1 − D′
−(S̄x

v ))dS̄x
v − 1

2

∫ +∞

0
D′′(da)dLa

v(S̄
x).

In particular d
〈

S̄x − D(S̄x)
〉

v
= (σS̄x

v (1 − D′
−(S̄x

v )))2dv. The function x 7→ ū(td, x) is convex
and C1 on [0,+∞) and C2 on [0, c̄(td)) and (c̄(td),+∞). Hence its second order distribution
derivative is equal to ∂22ū(td, x)dx where, by convention, ∂22ū(td, c̄(td)) = 0. Applying again
Tanaka’s formula and the occupation times formula, one deduces that

dg(S̄x
v ) = ∂2ū(td, S̄

x
v − D(S̄x

v ))d(S̄x
v − D(S̄x

v )) +
σ2

2
∂22ū(td, S̄

x
v − D(S̄x

v ))((1 − D′
−(S̄x

v ))S̄x
v )2dv.

One deduces that for γ defined in Lemma 1.6,

d(e−rvg(S̄x
v )) = e−rv

(

∂2ū(td, S̄
x
v − D(S̄x

v ))

[

(1 − D′
−(S̄x

v ))σS̄x
v dWv −

1

2

∫ +∞

0
D′′(da)dLa

v(S̄
x)

]

+ γ(S̄x
v )dv

)

. (2.4)

The process (
∫ v
0 e−rwσS̄x

w∂2ū(td, S̄
x
w − D(S̄x

w))(1 − D′
−(S̄x

w))dWw)v is a martingale since ∂2ū ∈
[−1, 0] by (1.1) and (1 − D′

−) ∈ [0, 1] according to Lemma 1.6. With (2.3), one deduces that

u(s, x) − u(t, x) ≥ −E

(

1{τ>td−s}

∫ τ

td−s
e−rvγ(S̄x

v )dv

)

= −E

(
∫ td−t

td−s
1{τ>v}e

−rvγ(S̄x
v )dv

)

.

(2.5)

One easily deduces (2.1) and, since by Lemma 1.6, C
def
= supx>0 γ(x) < +∞ and γ(x) is not

greater than −rK for x < x⋆,

u(s, x) ≥ u(t, x) +

∫ td−t

td−s
e−rv

(

rKP(τ > v, S̄x
v < x⋆) − CP(τ > v, S̄x

v ≥ x⋆)
)

dv. (2.6)

Define ĉ(s) = supv∈[td−s,td) c(v) and let α ∈ (0, td] be such that ĉ(α) < x⋆. The existence of α is
ensured by Lemma 2.1 which applies since, according to the proof of Lemma 1.6, the function
D is continuous and both D and x − D(x) are non-decreasing. We now choose t ∈ [td − α, td)
and x ∈ (c(t), y) where y ∈ (ĉ(α), x⋆). One has τ = inf{v ∈ [0, td − t) : S̄x

v ≤ c(t + v)} with
convention inf ∅ = td − t. Let τy = inf{v ≥ 0 : S̄x

v = y}. For v ∈ [0, td − t), by the Markov
property, one has

P(τ > v, S̄x
v ≥ x⋆) = P(τ > v, τy ≤ v, S̄x

v ≥ x⋆) ≤ P(τy ≤ v, τ > τy)P

(

max
w∈[0,v]

S̄1
w ≥ x⋆/y

)

.

In the same time,

P(τ > v) ≥ P(τy ≤ v, τ > v) ≥ P(τy ≤ v, τ > τy)P

(

min
w∈[0,v]

S̄1
w > ĉ(α)/y

)

.

Combining both inequalities, one obtains

P(τ > v, S̄x
v ≥ x⋆) ≤ P(τ > v)

P
(

maxw∈[0,α] S̄
1
w ≥ x⋆/y

)

P
(

minw∈[0,α] S̄1
w > ĉ(α)/y

) .
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The ratio
P(maxw∈[0,β] S̄1

w≥z)
P(minw∈[0,β] S̄1

w>η)
equals

N(( r
σ − σ

2 )β − log z
σ ) + e

2 log z
σ

( r
σ
−σ

2
)N(−( r

σ − σ
2 )β − log z

σ )

1 − N( log η
σ − ( r

σ − σ
2 )β) − e

2 log η
σ

( r
σ
−σ

2
)N( log η

σ + ( r
σ − σ

2 )β)

and for β > 0 and z > 1 > η > 0 this converges to 0 as β and η go to 0+ while z goes to +∞.
Since by Lemma 2.1, ĉ(α) converges to 0 as α goes to 0+, one may choose positive constants
y, α such that y ∈ (ĉ(α), x⋆) and

P
(

maxw∈[0,α] S̄
1
w ≥ x⋆/y

)

P
(

minw∈[0,α] S̄1
w > ĉ(α)/y

) ≤ rK

rK + C
.

With P(τ > v, S̄x
v < x⋆) = P(τ > v) − P(τ > v, S̄x

v ≥ x⋆) and (2.6), we conclude that

∀td − α ≤ t ≤ s < td, ∀x ∈ (0, y), u(t, x) ≤ u(s, x).

Since for t ∈ (0, td) and x > c(t), σ2x2

2 ∂xxu(t, x) = −∂tu(t, x) − rx∂xu(t, x) + ru(t, x) with
∂xu ∈ [−1, 0] according to (1.1) and u ≤ K, (2.2) easily follows from (2.1). Let t ∈ [0, td) be
such that c(t) > 0. For z ≥ x > c(t), one has ∂xu(t, x) = ∂xu(t, z) −

∫ z
x ∂xxu(t, y)dy. By (1.1),

∂xu(t, x) ∈ [−1, 0]. With (2.2), one deduces that y 7→ ∂xxu(t, y) is integrable on [c(t), z] and the
right-hand limit ∂xu(t, c(t)+) makes sense.

Remark 2.4 When T = +∞ i.e. when the Put option is perpetual,

u(td, x) =

{

K − x if x < c̄(td) = −Kα
1−α

(K − c̄(td))(x/c̄(td))
α otherwise

, where α = −2r

σ2
.

In the proportional dividend case, γ(x) = −rK1{x<c̄(td)/ρ} since Af(x) = 0 for f(x) = xα. With
(2.5), one deduces that for any x > 0, t 7→ u(t, x) is non-decreasing on [0, td).

In the constant dividend case,

γ(x) =











−rK if x ∈ (0,D)

−r(K + D) if x ∈ (D, c̄(td) + D)

−α(K − c̄(td))c̄(td)
−αD(rx + σ2

2 (2x − D))(x − D)α−2 if x > c̄(td) + D

is positive on (c̄(td) + D,+∞).

3 Continuity of the exercise boundary and high contact princi-

ple

We can now state our main result concerning the continuity of the exercise boundary c(t). Note
that it applies to both the proportional and the constant dividend cases.

Proposition 3.1 Assume that D is a positive concave function such that x − D(x) is non-
negative and let tni = inf{t ∈ [0, td) : v 7→ c(v) is non-increasing on [t, td)}.
Then for t ∈ (tni, td), lims→t+ ∂xu(s, c(s)+) = −1 and, when c is continuous at t, the smooth
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contact property ∂xu(t, c(t)+) = −1 holds.
If g is convex, then t 7→ c(t) is continuous on (tni, td). More generally, if D is such that

∃x0 > 0,∃ρ ∈ [0, 1), ∀x ∈ (0, x0), D(x) = (1 − ρ)x, (3.1)

then there exists an ε ∈ (0, td] such that t 7→ c(t) is continuous on (td − ε, td).

In order to prove the Proposition, we will need the following estimations of the first order time
derivative and the second order spatial derivative of the pricing function u in the continuation
region.

Lemma 3.2 Assume that D is a non-negative concave function such that x − D(x) is non-
negative. Then

∀t ∈ [0, td), ∀x > c(t), ∂tu(t, x) ≤ −e−r(td−t) inf
y>0

γ(y) +
σx

2
√

2π(td − t)
(3.2)

and
σ2x2

2
∂xxu(t, x) ≥ e−r(td−t) inf

y>0
γ(y) − σx

2
√

2π(td − t)
+ r(K − x)+. (3.3)

If g is convex, then for (t, x) ∈ [0, td) × R
∗
+ such that x > c(t), ∂tu(t, x) ≤ rKe−r(td−t) and

∂xxu(t, x) ≥ 0.
More generally, under (3.1), there exists ε ∈ (0, td] such that for all t ∈ (td − ε, td) and for all

x ∈ (c(t), c(t) + ε) we have ∂tu(t, x) ≤ rK 1+e−r(td−t)

2 .

Proof of Proposition 3.1. For t ∈ (0, td) such that c(t) > 0, which is true for t ∈ (tni, td),
by Proposition 2.2, the following Taylor expansion makes sense

∀x ≥ c(t), u(t, x) = (K − c(t)) + (x − c(t))∂xu(t, c(t)+) +

∫ x

c(t)
(x − y)∂xxu(t, y)dy. (3.4)

Let t0 ∈ (tni, td) be such that c is continuous at t0. To prove that ∂xu(t0, c(t0)
+) = −1, we

are first going to check that limt→t+0
∂xu(t, c(t)+) = ∂xu(t0, c(t0)

+). Let x ∈ (c(t0), 2c(t0)).

Substituting c(t+0 ) for x in (3.4) and subtracting the result from (3.4) itself gives

∂xu(t, c(t)+) =
u(t, x) − u(t, c(t+0 ))

x − c(t+0 )
−
∫ c(t+0 )

c(t)
∂xxu(t, y)dy − 1

x − c(t+0 )

∫ x

c(t+0 )
(x − y)∂xxu(t, y)dy.

(3.5)

Computing ∂xu(t0, c(t0)
+) from (3.4) written with t0 replacing t, one deduces

∂xu(t0, c(t0)
+) − ∂xu(t, c(t)+) =

1

x − c(t0)

(

u(t0, x) − u(t, x) + u(t, c(t0)) − u(t0, c(t0))

)

+
1

x − c(t0)

∫ x

c(t0)
(x − y)(∂xxu(t, y) − ∂xxu(t0, y))dy

+

∫ c(t0)

c(t)
∂xxu(t, y)dy. (3.6)

By (2.1) and (3.2) one checks that for fixed x ∈ (c(t0), 2c(t0)), the first term in the r.h.s. of
(3.6) converges to 0 as t → t+0 . Moreover, (2.2) and (3.3) ensure that the second term in the
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r.h.s. of (3.6) is arbitrarily small uniformly for t < (t0 + td)/2 when x is close enough to c(t0).
Last, with the continuity of c at t0, the third term converges to 0 as t → t+0 , which ensures the
desired right-continuity property.
Let us now assume that ∂xu(t0, c(t0)

+) > −1 and obtain a contradiction. Let t ∈ (t0,
t0+td

2 ).
According to (3.2) and (3.3), there exists a constant C ∈ (0,+∞) such that u(t, c(t0)) ≤ K −
c(t0) + C(t − t0) and

∫ c(t0)
c(t) (c(t0) − y)∂xxu(t, y)dy ≥ −C (c(t0)−c(t))2

c(t)2
. Writing (3.4) for x = c(t0),

one deduces that
(

1 + ∂xu(t, c(t)+) − C
c(t0) − c(t)

c(t)2

)

(c(t0) − c(t)) ≤ C(t − t0).

Since ∂xu(t, c(t)+) tends to ∂xu(t0, c(t0)
+) > −1 as t → t+0 and c is continuous at t0, one deduces

the existence of ε ∈ (0, td − t0) such that

∀t ∈ [t0, t0 + ε], c(t) − c(t0) ≥ − 2C(t − t0)

1 + ∂xu(t0, c(t0)+)
. (3.7)

For x > c(t0), let τx = inf{s > 0 : S̄x
s ≤ c(t0 + s)} ∧ (td − t0) denote the stopping time such that

u(t0, x) = E

(

e−rτx(K − S̄x
τx

)+1{τx<td−t0} + e−r(td−t0)g(S̄x
τx

)1{τx=td−t0}
)

.

One has u(t0, c(t0)) ≥ E

(

e−rτx(K − S̄
c(t0)
τx )+1{τx<td−t0} + e−r(td−t0)g(S̄

c(t0)
τx )1{τx=td−t0}

)

. Com-

puting the difference, using the monotonicity of g and the Lipschitz continuity of y 7→ (K − y)+

one deduces that

u(t0, x) − u(t0, c(t0))

x − c(t0)
≤ −E

(

e−rτx S̄1
τx

1{τx<td−t0}
)

. (3.8)

By (3.7), τx ≤ τ̃x
def
= inf{s ∈ (0, ε] : S̄x

s ≤ c(t0) − 2Cs/(1 + ∂xu(t0, c(t0)
+))} ∧ (td − t0). When x

tends to c(t0)
+, τ̃x converges a.s. to inf{s ∈ (0, ε] : S̄1

s < 1− 2Cs/(c(t0)(1 + ∂xu(t0, c(t0)
+)))} ∧

(td − t0) which is equal to 0 according to the iterated logarithm law satisfied by the Brownian
motion W . Hence τx converge a.s. to 0 as x → c(t0)

+. Since E(sups∈[0,td−t0] S̄
1
s ) < +∞, by

Lebesgue’s theorem, the right-hand-side of (3.8) converges to −1 as x → c(t0)
+ which implies

the desired contradiction : ∂xu(t0, c(t0)
+) ≤ −1.

Combination of the two first steps of the proof ensures that if c is continuous at t0 ∈ (tni, td),

lim
t→t+0

∂xu(t, c(t)+) = −1. (3.9)

Let now t0 ∈ (tni, td) be such that c(t+0 ) < c(t0). We are going to prove (3.9) before obtaining
a contradiction when g is convex or t0 is close to td under (3.1). Let x ∈ (c(t+0 ), c(t0)) and
t ∈ (t0,

t0+td
2 ). The left-hand-side of (3.5) is not smaller than −1. When t tends to t+0 , by

continuity of u, the first term in the right-hand-side tends to
K−x−(K−c(t+0 ))

x−c(t+0 )
= −1. The second

term converges to 0 according to (3.3) and (2.2). Moreover, by (3.3), there is a constant C ∈
(0,+∞) such that

1

x − c(t+0 )

∫ x

c(t+0 )
(x − y)∂xxu(t, y)dy ≥ 1

x − c(t+0 )

∫ x

c(t+0 )
(x − y)(−2C/c(t+0 )2)dy = −C(x − c(t+0 ))

c(t+0 )2
.

Hence

lim sup
t→t+0

∂xu(t, c(t)+) ≤ −1 +
C(x − c(t+0 ))

c(t+0 )2
.
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Letting x decrease to c(t+0 ), one concludes that (3.9) holds.

By (3.4) and Proposition 2.2,

∀x > c(t),

∫ x

c(t)
y∂xxu(t, y)dy = x∂xu(t, x) − c(t)∂xu(t, c(t)+) − u(t, x) + u(t, c(t))

= x∂xu(t, x) − u(t, x) + K − c(t)
(

1 + ∂xu(t, c(t)+)
)

.

With the equality ∂tu(t, x) + Au(t, x) = 0 and Lemma 3.2, one deduces that for t0 close to td
under (3.1) and with no restriction in the convex case,

∀x ∈ (c(t), c(t0)),
σ2x2

2
∂xxu(t, x) + r

∫ x

c(t)
y∂xxu(t, y)dy = rK − ∂tu(t, x) − rc(t)(1 + ∂xu(t, c(t)+)

≥ rK(1 − e−r(td−t))

2
− rc(t)

(

1 + ∂xu(t, c(t)+)
)

. (3.10)

According to (2.2), there is a finite constant C such that ∀t ∈ [0, td), ∀x > c(t), y∂xxu(t, y) ≤ C
y

so r
∫ x
c(t) y∂xxu(t, y)dy ≤ rK(1 − e−r(td−t))/8 if we take x/c(t) ≤ e

K(1−e−r(td−t))
8C . With (3.9) and

(3.10), one deduces the existence of η ∈ (0, td − t0) such that for t0 close to td under (3.1) and
with no restriction in the convex case,

∀x ∈
(

c(t+0 ), c(t0) ∧ c(t+0 )e
K(1−e−r(td−t0))

16C

)

, ∀t ∈ (t0, t0 + η),
σ2x2

2
∂xxu(t, x) ≥ rK(1 − e−r(td−t))

4

and
1

x − c(t+0 )

∫ x

c(t+0 )
(x − y)∂xxu(t, y)dy ≥ rK(1 − e−r(td−t))

4σ2x2
(x − c(t+0 )).

Taking the limit t → t+0 in (3.5), we now obtain lim supt→t+0
∂xu(t, c(t)+) < −1, which contradicts

(3.9).

Proof of Lemma 3.2. Let t ∈ [0, td). When g is convex, since x 7→ (K − x)+ is also convex,
for each stopping time τ ∈ T[0,td−t], x 7→ E(e−rτ (K− S̄x

τ )+1{τ<td−t} +e−r(td−t)g(S̄x
td−t)1{τ=td−t})

is convex. So x 7→ u(t, x) which is equal to the supremum over τ of the previous functions is
convex.
Let now 0 ≤ t ≤ s < td, x > 0 and τ ∈ T[0,td−s] be such that

u(s, x) = E

(

e−rτ (K − S̄x
τ )+1{τ<td−s} + e−r(td−s)g(S̄x

td−s)1{τ=td−s}
)

.

Since u(t, x) ≥ E
(

e−rτ (K − S̄x
τ )+1{τ<td−s} + e−r(td−t)g(S̄x

td−t)1{τ=td−s}
)

, one has

u(t, x) − u(s, x) ≥ E

(

1{τ=td−s}
(

e−r(td−t)g(S̄x
td−t) − e−r(td−s)g(S̄x

td−s)
))

.

When g is convex, according to Lemma 1.6, Ag is a function bounded from below by −rK,

the right-hand-side is equal to E

(

1{τ=td−s}
∫ td−t
td−s e−rvAg(S̄x

v )dv
)

, so one easily concludes. In

general, by (2.4) and the martingale property of the process (
∫ v
0 e−rwσS̄x

w∂2ū(td, S̄
x
w−D(S̄x

w))(1−
D′

−(S̄x
w))dWw)v, the previous inequality writes

u(t, x) − u(s, x)

≥ E

(

1{τ=td−s}

∫ td−t

td−s
e−rv

[

γ(S̄x
v )dv − ∂2ū(td, S̄

x
v − D(S̄x

v ))

2

∫ ∞

0
D′′(da)dLa

v(S̄
x)

])

.

(3.11)
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Since ∂2ū(td, y) ≥ −1, using the occupation times formula, one deduces that

u(s, x) − u(t, x) ≤
∫ td−t

td−s
e−rv

(

− inf
y>0

γ(y) −
∫ +∞

0

σ2a2

2
p(v, a)D′′(da)

)

dv.

Since D(x) and x − D(x) are both non-decreasing, D′′((0,+∞)) ≥ −1. Using moreover

∀v ∈ [0, td − t], ∀a > 0, a2p(v, a) =
xerv

σ
√

2πv
e−

(log(a/x)−(r+σ2

2 )v)2

2σ2v ≤ xerv

σ
√

2πv
,

one deduces (3.2). The inequality (3.3) follows since for x > c(t) we have σ2x2

2 ∂xxu(t, x) =
−∂tu(t, x) − rx∂xu(t, x) + ru(t, x) ≥ −∂tu(t, x) + r(K − x)+.

Assume (3.1). Then γ is equal to −rK on (0, x0 ∧ x⋆), D′′((0, x0)) = 0 and (3.11) implies that

u(s, x)−u(t, x) ≤
∫ td−t

td−s
e−rv

(

rK − (inf
y>0

γ(y) + rK)P(S̄x
v ≥ x0 ∧ x⋆) −

∫ +∞

x0

σ2a2

2
p(v, a)D′′(da)

)

dv.

For x ∈ (0, x0e
−(r+ σ2

2
)(td−t)], one has ∀v ∈ [0, td−t], ∀a ≥ x0, a2p(v, a) ≤ xerv

σ
√

2πv
e−

(log(x0/x)−(r+ σ2

2 )v)2

2σ2v .

For t close enough to td we have that c(t) < x0e
−(r+ σ2

2
)(td−t) by Lemma 2.1 and for x ∈

(c(t), x0e
−(r+ σ2

2
)(td−t)),

∂tu(t, x) ≤e−r(td−t)

(

rK − (inf
y>0

γ(y) + rK)N

(

log(x/(x0 ∧ x⋆)) + (r − σ2

2 )(td − t)

σ
√

td − t

))

+
σx

2
√

2π(td − t)
e
− (log(x0/x)−(r+ σ2

2 )(td−t))2

2σ2(td−t) .

Bounding from above the two last terms like in the derivation of the upper-bound for c(t) in the
proof of Lemma 2.1, one deduces the last assertion.

4 Conclusions and Further Research

We have proven local results concerning the regularity of the exercise boundary for a dividend-
paying asset. Even in the simplest case of proportional dividends, it would be of great interest
to check the following feature observed in numerical simulations : when td is large, the exercise
boundary is non-decreasing for small times and monotonicity seems to change only once before
td.

Different dividend models have been considered in the present paper, but in all cases the dividend
could be written as a fixed function D of the ex-dividend stock price. In an alternative model
for dividends, known as the Escrowed Dividend Model, the dividend payment consists of a
deterministic amount D > 0 and the stock price dynamics are given by

St = (S0 − De−rtd)eσWt+(r−1
2σ2)t + De−r(td−t)1{t<td}. (4.1)

Establishing the properties of the optimal exercise boundary for the American Put option under
these stock dynamics would be an interesting topic for further research.
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