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Synopsis 

The rheological behaviour of a suspension of insulating particles dispersed in a slightly 

conducting liquid under the action of a DC electric field is studied. The polarisation of the 

particles induced by the field is shown to be responsible for a rotation of the particles 

(Quincke rotation) which, in turn, leads to a drastic decrease of the apparent viscosity of the 

suspension. The purpose of the paper is to provide a relation between the apparent viscosity of 

the suspension and the E field intensity. First, the steady state solutions are searched for the 

angular velocity of a particle subjected to both DC E field and simple shear flow. Since the 

solutions are multivalued, their stability is studied using a linear stability analysis. Then, the 

stable solution for the particle angular velocity is used to deduce the value of the apparent 

viscosity of the suspension. The predictions of the model are compared to experimental data 

which have been obtained on a suspension of PMMA particles dispersed in a low polar  

dielectric liquid. The agreement between experiments and theory is rather good even if the 

model overestimates the viscosity decrease induced by the field. 
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I. INTRODUCTION 

The control of the viscosity of a suspension by the application of an electric field has 

attracted considerable attention these last years because it can be used in various kinds of 

industrial devices such as active dampers, clutches or brakes [Phani and Venkatraman (2005), 

Lim et al. (2005), Tan et al. (2006)]. Usually, the so-called electrorheological (ER) fluids  are 

made of relatively polarizable particles dispersed in a nonconducting liquid. 

When the suspension is subject to an electric field, the particles group together in 

elongated aggregates aligned in the direction of the external field. This structuring of the 

suspension leads, in the rheology of the ER fluids, to the fast and reversible change from a 

liquid to a solid state. Most of ER fluids are used with an AC electric field; in this case, it is 

the permittivity mismatch between the particles and the liquid which is responsible for the 

polarisation of the particles [Marshall et al. (1989)]. DC electric fields are more rarely 

employed and when they are, the polarisation of the particles comes from the conductivity 

difference between the solid and the liquid phases. If the conductivity of the particles is higher 

than that of the suspending liquid, the dipole moments of the particles are collinear to the E 

field direction and a particle-chaining happens, exactly like in the AC case [Atten et al. 

(1997)]. But, if the particles are less conducting than the suspending liquid, the dipole 

moments of the particles lie in a direction opposite to the field and, if the E field intensity is 

high enough, this orientation is unstable and can give rise to a rotation of the particles. This 

particles' spinning is known as Quincke rotation [Quincke (1896)]. In such a case, the 

particles behave like colloidal motors which drive the suspending liquid and the viscosity of 

the suspension is lessened by the application of the field so that we can speak about "negative 

ER effect" [Lobry and Lemaire (1999)].  

A negative ER effect has already been reported in the literature but the involved 

mechanism is quite different: Atten et al (1995) showed that it was possible to decrease the 
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viscosity of a suspension of electrically charged particles upon the application of a DC 

electric field. Indeed, the charged particles group together on the electrode of opposite charge. 

The suspension is therefore composed of two phases: the first one has a high particles 

concentration and its volume fraction is close to that of the packing while the second phase is 

only constituted of the suspending liquid. The resulting mean apparent viscosity was shown to 

be lower than that of the homogeneous suspension (its value is comprised between that of the 

suspending liquid and that of the suspension). 

 The possibility of decreasing the viscosity of a suspension by exerting a torque on its 

particles has been demonstrated on ferrofluids subject to AC or rotating magnetic fields [Bacri 

(1995)]. The ferrofluids are suspensions of rigid dipoles so that a time-varying external 

magnetic field is able to exert a torque which results in the particles rotation. Recently, C. 

Rinaldi et al (2005) demonstrated the possibility of obtaining "negative viscosity" when the 

ferrofluid is placed in a cylindrical Couette geometry and subject to a uniform rotating field. 

In the present paper, we develop a model to predict the viscosity reduction induced by 

the application of a DC electric field to a suspension. This work is an extension of a previous 

study [Cebers (2000)] where the direction of the axis of rotation of the particles was assumed 

fixed. This assumption was responsible for a divergence of the apparent "negative viscosity" 

of the suspension at low shear rate. Here, we show that, if the direction of the rotation axis of 

the particles is not necessarily chosen along the vorticity direction, the "negative viscosity" 

divergence disappears and the model is able to fit the experimental data. The paper begins 

with a presentation of the model which allows the prediction of the viscosity as a function of 

the applied electric field (part II). The first subsection is dedicated to a discussion of  the 

mechanisms involved in Quincke rotation and of the conditions for such a DC electro-rotation 

to take place. In the second subsection, the Quincke rotation of particles in the presence of a 

shear flow is analysed and, at last ,we state how the electro-rotation of the particles modifies 
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the apparent viscosity of the suspension. The following section (part III) is experimental, both 

the samples and the experimental procedure are described. The last part is devoted to the 

presentation of the results and to their analysis. 

 

 

 

II. THEORY 

 

A. Mechanism of Quincke rotation. 

 

Even though the rotation of small particles dispersed in a dielectric liquid and subject 

to a DC electric field, E0, was observed as early as 1896, it was only at the end of the 20th 

century that a correct analysis of the phenomenon was proposed. The analysis proposed by 

Melcher (1974) is based on the role played by the free electrical charges on the particle 

surface and the necessary condition for the Quincke rotation to appear deals with the relative 

magnitude of the charge relaxation times in the liquid and in the particle. The charge 

relaxation time is given by the ratio of the dielectric permittivity to the conductivity: i=i/i, 

i=l,p refers to the liquid and the particle respectively. Indeed, if the charge relaxation time is 

shorter in the liquid than in the particles, when the E field is applied, the superficial charge 

which builds at the interface between the particle and the liquid is equivalent to that of a 

dipole moment, P, which is in the direction opposite to the DC field (fig.1a). Any angular 

deviation of the particle produces a torque, E=PE0, which tends to increase its rotation 

further and the particle begins to rotate with an angular velocity .  

The dipole moment P is named "retarded dipole moment" and is given by a relaxation 

equation [Pannacci (2007a)]: 
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where the characteristic relaxation time for the polarisation to relax is the Maxwell-Wagner 

time: 
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 and 0 and  are the polarisability factors of the particle (radius a) at low and high 

frequencies respectively: 
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When the particle is rotating at angular velocity , it undergoes a viscous resistant torque, : 

  

where 0 is the angular velocity of the surrounding fluid (half the vorticity) and a the 

rotational friction coefficient of the spherical particle,  being the viscosity of the liquid. 

The dynamics of the particle is therefore determined upon solving Eq.(1) coupled with 

the angular momentum principle: 

 0
d

I ( )
dt

   0
ω

P×E ω ω  (5) 

where I is the moment of inertia of the particle. In a previous paper, we have shown both 

experimentally and theoretically that a particle undergoing Quincke rotation in a quiescent 

fluid could exhibit a complex dynamical behaviour. In particular, when the field intensity is 

sufficiently high, the rotor can exhibit a chaotic behaviour which is exactly described by the 

Lorenz equations [Peters (2005)]. 

As for the stationary behaviour of a particle undergoing Quincke rotation in a 

quiescent liquid (=0) has been studied in detail [Jones (1984)] and it is well known that the 

particle rotation depends on a threshold value of the field, Ec and that, above this critical field, 
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the particle rotates around itself with an axis pointing in any direction perpendicular to the DC 

field. The modulus of its angular velocity is given by: 
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If the liquid vorticity is non-zero, the resolution of Eqs. (1) and (5), even in the stationary 

case, is much more complicated. This problem is solved in the following sub-section. 

 

 

B. Quincke rotation in the presence of a simple shear flow 

Let us consider a suspension of spheres (volume fraction  subject to a DC electric 

field applied in z-direction. If the liquid is at rest, the particles start rotating around 

themselves in any direction perpendicular to the field and so the average spin rate of the 

suspension is zero (figure 2.a). But, when a velocity gradient is applied along the E field 

direction, the particles rotation axes will be favoured in the vorticity direction (x-direction). 

Therefore, the degeneracy of the rotation direction will be lifted giving rise to a non zero spin 

rate of the ensemble of particles (figure 2.b).  

The angular velocity of the suspension, s, viewed like a macrocontinuum, is given by 

the volume average of the angular velocity over the particles and the suspending liquid 

[Brenner (1970)]: 

 
1

(1 )
2 2


       xv e    


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where v=v(z)ey is the suspension velocity field and  , the macroscopic shear rate. For 

the following, we have to keep in mind that   is the only external parameter of Eq.(7) while  

and 0 are coupled variables. 
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Upon using Eq. (7)  to express the suspending fluid angular velocity, , in terms of   

and , the projections of Eqs. (1) and (5) on the axes Ox, Oy and Oz (see figure 2) give rise to 

a system of five scalar equations: 
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where the variables are dimensionless: 
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and where we have introduced the ratio of the electric field intensity to the threshold 

value: 
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and the ratio of the Maxwell-Wagner time to the characteristic mechanical time: 

Pr   
I


  

In stationary state, this system of equations admits 5 solutions which can be divided 

into two groups. The solutions of the first group correspond to a rotation of the particles in x-

direction while the few intuitive solutions of the second group correspond to zero-vorticity of 
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the suspending liquid (=0) and a non-zero value for the y-component of the angular 

velocity. Let us give some details about these 5 solutions: 

 

First group of solutions: =ex , X=X1, 2, 3 

=0 and the variables Y, Z can be expressed as a function of X which is the solution of the 

following third order equation: 

  3 2X X 1-(1 )r X 0
2 2

 
    
 

 (9) 

When the shear rate tends toward zero, the particles rotate only if the E field intensity 

is higher than a critical value, E*: 

cE
E*

1



 (10) 

When the electrical field intensity is lower than E*, Eq.(9) admits only one solution 

which corresponds to a rotation of the particles in the direction of the vorticity (X1 in figure 

3). For higher field intensities, there exist either one or three solutions to equation (9) (see 

figure 3),depending on the value of  . X1, which is always a solution, corresponds to a 

rotation of the particles in the vorticity direction while the other two possible solutions 

represent a rotation in the opposite direction (X2 and X3 in figure 3). 

 

Second group of solutions: y0, X=X4 
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For  and  to be real, this double solution exists only if :  
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* 2 r 1         (12)  

The x-component of the angular velocity of the particles does not depend on the E 

field intensity and, according to eq.(7), this non intuitive solution corresponds to a zero 

vorticity of the suspending liquid (X0=0=0) . Then, the modulus of the particles' angular 

velocity is equal to the value we have defined previously when there was no shear flow 

(Eq.6). At last, it should be stressed that this solution is compatible with the flow geometry 

wherein the y-component of the velocity gradient is zero. This requirement is achieved if the 

y-component of the angular velocity correspond to clockwise rotation (<0) for half of the 

particles and counter-clockwise (>0) for the other half. 

All the X-solutions of the system of equations (8) are plotted in figures 4.a and 4.b. In 

appendix I, we study the stability of these solutions and we show that the solution X4 is 

always a stable solution. When the shear rate is higher than the critical value * ,  X4 does not 

exist any more but X1 becomes stable. In figures 4.a and 4.b, the thick lines represent the 

stable solutions. 

 

 

C. Influence of electric driving torque on the value of the apparent viscosity of the 

suspension. 

 

The zy-component of the total stress tensor in the suspension, zy is obtained upon 

adding its symmetric and anti-symmetric parts. Its symmetric part is the viscous stress while 

its anti-symmetric part is equal to the half of the x-component of the volume torque exerted 

on the suspension, E: 
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where  is the viscosity of the suspension in the absence of an electric field. 

In the following, we shall use the expression of the viscosity proposed  by Brenner 

(1970) since, as it can be seen in figure 5, for rather low volume fractions of particles, it 

captures the variation of the viscosity with the particles' concentration: 
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The volume torque is given by adding the torques, E, exerted on each particle 

contained in a unit volume: 

 E E
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The apparent viscosity of the suspension is then given by the ratio of the total 

tangential stress in the suspension to the mean shear rate: 
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and the apparent viscosity normalised by the viscosity of the suspension when no field 

is applied is given by: 

 app*
app 3
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3 Y
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( ) 1
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Since the y-component of P (see figure 2.b) is negative, it appears clear that the 

apparent viscosity is lowered by the application of a DC electric field. It should be stressed 

that expressing Py in terms of x, Eq. (17) is formally equivalent to the expression for the 

viscosity of a suspension of rotating spheres  proposed by Brenner:  
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where  is the suspending liquid viscosity. 

 

The variation of *
app  with normalised shear rate is shown in figures 6.a and 6.b for 

various volume concentrations and field intensities. As mentioned before, the value of the low 

shear rate viscosity plateau does not depend on the field intensity but only on the particle 

volume fraction. In particular, when  is lower than 1/6, the value of the plateau is negative. 

 

 

  

III. EXPERIMENTS 

 

A. Materials 

We studied the rheological behaviour of a suspension of PMMA particles (poly-

methyl-methacrylate, ICI Acrylics, grade 2041) dispersed into a mixture of transformer oil 

(dielec S, Hafa, France) and Ugilec (Elf Atochem). The resulting suspending liquid is such 

that its density is the same as that of the particles, =1.18 103kg/m3 and its viscosity at 25°C is 

13 mPa.s. Its dielectric constant was measured to be 3.69 0 and its conductivity has been 

raised to 1.5 10-8S/m upon addition of AOT salt (Sigma Aldrich, sodium dioctyl-

sulfosuccinate). Although Quincke rotation effect is not expected to depend on the particles 

size, the particles were sieved between 50 and 63 µm. Their dielectric constant is 2.6 0 and 

their conductivity is about 10-14 S/m so that, compared to the suspending liquid, they are 
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regarded  as insulating. The volume fraction is varied between 5 and 20%. All these physical 

properties give the following values for the parameters introduced previously:  

=3 ms; Ec=830 V/mm; Pr= 720. 

 

B. Rheological measurements 

 

The rheological measurements were carried out with a controlled stress rheometer, 

Carrimed CSL 100, in Couette flow geometry. The coaxial cylinders also serve as electrodes 

so that the E field is applied along the velocity gradient direction (radial direction). A high 

voltage is applied to the outer stator (radius R1) while the inner rotor (radius R2) is grounded 

to the earth through an electrode dipping in a mercury reservoir situated at the top of the 

rotation axis of the rheometer. The gap between the two cylinders (1 mm) is narrow compared 

to their radii (R2=14.5 and R1=15.5 mm) so that the flow can be approximated by a simple 

shear flow,  , where the shear rate is related to the angular velocity of the inner cylinder  by: 

1

2 1

R

R R





  (19) 

Furthermore, since the gap is narrow, the shear stress, , can be considered as 

homogeneous in the suspension and given by: 

2 2
1 2

2 2
1 2

R RM

4 h R R





 (20) 

where M is the mechanical torque exerted on the inner cylinder. Then from the measurement 

of the variation of  with M, using relations (19) and (20) the experimental value of the 

viscosity is determined. The rheological measurements are made at equilibrium: first, in the 

absence of an electric field, a constant shear stress is applied as long as necessary ( 10 s) to 

record a constant viscosity value, (). Then the E field is applied and the value of app  is 
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estimated when the shear rate has become constant. After that, the viscosity in the absence of 

the electric field is again measured to verify that the suspension has not been heated by the 

electric current which passes through the suspension when the electric field is present. 

  

 

IV. RESULTS AND DISCUSSION 

 

The variation of *
app  with the normalised shear rate is shown in figures 7.a, 7.b and 

7.c, for three volume fractions, 5, 10 and 20%, respectively. The solid symbols and dashed 

lines correspond to the experimental results while the open symbols and the solid lines 

represent the theoretical predictions given by Eq.(18) wherein Y has been substituted by its 

stable stationary value. The qualitative agreement between model and experiment is quite 

good since there is no free parameter. In particular, for the highest fields and the highest 

volume fractions, the data display a clear viscosity plateau at low shear rates. Whatever the 

field intensity, the concordance between experimental data and theoretical values of the 

viscosity is satisfactory at high shear rates. A discrepancy appears for low values of the shear 

rate, especially in the case of low field intensities for which the experiments show that the 

field is responsible for an increase of the viscosity ( *
app >1) while the theory predicts a 

decrease. In a previous paper [Pannacci (2007b)] we have attributed this discrepancy to a 

structuring of the suspension which occurs at low shear rates and for moderate E field 

intensities. We have shown in this paper that the E field had two opposite effects on the 

structure of a suspension. Indeed, it induces dipole-dipole interactions between particles, 

which tend to structure the suspension but, because of particles' spinning, the E field also 

gives rise to hydrodynamic forces which tend to break the structures. These two antagonistic 

actions of the E field explain why no structuring of the suspension takes place for the highest 
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field intensities, contrary to what would have happened in a classical ER fluid. These 

theoretical predictions have been confirmed by experimental observations of the suspension 

structuring carried out with semi-transparent cylinders mounted on the rheometer which allow 

the observation of the structure of the suspension when an electric field is applied. 

 For the highest field intensities, the low shear rate viscosity plateau is observed as 

expected from the model and that's an important point since the presence of this plateau 

substantiates the existence of the solution X4 (and associated values of X0, Y, Z ,  and ). 

The model presented in section II and the stability analysis reported in appendix I predicts that 

the solution X4 is stable and so is observable for shear rates lower than a critical value, *  

which is an increasing function of the particle volume fraction and of the field intensity 

(Eq.(12)). Even though it is difficult to determine an accurate value for *  from the 

experimental rheological curves, the low shear rate plateau seems to be longer the higher the 

field intensity and the particle volume fraction are. Despite this rather good qualitative 

agreement, it is worth noting that the viscosity decrease is overestimated by the theory. This 

disagreement could originate, as already said, in the dipolar forces but also in the 

hydrodynamic interactions between particles which could lead to a dispersion in their spin 

velocities. There exists a third possible source of the discrepancy which lies in a tendency of 

the suspension to separate into two phases, one constituted by only the suspending liquid 

while the other contains a high concentration of particles. This kind of phase separation is 

illustrated by the picture in figure 8 which represents the Couette cell filled with a suspension 

containing 10% of particles after application of an electric field of 2000V/mm and of a shear 

stress of 5 Pa for 5 minutes. Since the value of the viscosity plateau is an increasing function 

of the spinning particle concentration, the phase separation of the suspension is responsible 

for an increase of the measured apparent viscosity. We have observed that the demixing was 

the most pronounced for the most diluted suspension so that the discrepancy of the 
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experimental and theoretical values of the viscosity plateau is the greatest in the case of the 

less concentrated suspensions.  

 

V. CONCLUSION 

The study of the rheological behavior of a suspension of insulating particles suspended 

in a slightly conducting liquid submitted to a DC electric has shown that it was possible to 

drastically reduce the apparent viscosity. The model we use to predict the viscosity reduction 

is based on the calculation of the angular velocity of the particles subject to a DC field in a 

shear flow. We have been able to qualitatively explain the viscosity decrease and to derive a 

model which captures the essential variation of the suspension viscosity with the E field 

intensity and with the shear rate. In particular, we have shown that if the direction of the axis 

of rotation of the particles is not fixed, the low shear rate viscosity is expected to be constant 

and independent of the electric field intensity. These predictions are corroborated by the 

experimental observation of a low shear rate viscosity plateau. 

 From an application point of view, this electric field-induced viscosity reduction 

should develop in an interesting way since it is easy to achieved and the viscosity changes are 

quite important. We have already demonstrated the possibility of using DC electrorotation to 

increase the flow rate in a capillary [Cebers (2002)]. Besides these applications in 

microfluidics, these fluids should be used as smart fluids in a variety of applications, 

including damping or vibration control. 
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APPENDIX A:  Stability analysis of the solutions 

 A linear stability analysis of system of equations (8) is conducted to discriminate the 

stable solution from the unstable ones. All the 5 variables, v, of the system (8) are perturbed 

around their stationary values: 

X=XS+Xet*, Y=YS+Yet*, Z=ZS+Zet*, =S+et*=S+et*         

where vS  represents the equilibrium values (solutions of eq.(9) and associated values 

of the other variables and eq.(10)) and vet* the first order perturbation with , the 

normalised growth rate of the perturbation. 

Around vS, the system of equations (8) is written: 

 

 (+Pr/(1-)) X –Pr Y=0 

 (ZS-r)X + (Y + XS Z =0 (A1) 

 -YSX – XS Y + (Z =0  

 ( -(ZS-r) =0 

 Pr + (+Pr)



To have nontrivial solutions, the determinant of the system of 5 equations has to be zero or: 

 

  2 2
S S

S

S S
S

Pr
( Pr)( 1) Pr(Z r) ( ) X ( 1)

1

XPr 2 ( 1) X (X ) 0
1 X 2


               


              
 




 (A2) 

In particular, the determinant is zero if the first factor of the left-hand side of Eq.(A2) 

is zero: 

 
2

S
1,2

(Pr 1) (Pr 1) 4 Pr(Z r 1)

2

      
   (A3) 
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So, if ZS-r+1<0, or equivalently from Eq.(7) and the first two equations of Eq.(8) if 

0X
0

X
 , there exists a positive real solution for  and the perturbation grows. As a result, if 

the directions of the angular velocity of the particles and of the vorticity of the suspending 

liquid are opposite, the solution can not be stable. Therefore, X2 and X3 are always unstable 

solutions. Now let us find a condition for which X1 and X0 have opposite signs. The 

instability criterion implies that X1 becomes unstable when X0 changes its sign. Cancelling X0 

and expressing X1 in terms of   in Eqs. (8) we obtain that X1 is unstable if 

* 2 r 1        .  

A numerical study of the second term of the determinant shows that, for the 

experimental system which will be described hereafter (Pr700, 0�r�20, 0�  �2), the values 

of  which cancel this term are always negative if 0X
0

X
  so that the stability criterion defined 

before is still valid.  

As a summary, the stable solutions are X4 for *     and X1 for *    . At last, it 

should be stressed that if the rotation axis of the particle is fixed (=ex), the solution X4 

does not exist and the solutions X1 and X2 are both stable. This is reported in Cebers (2000) 

and studied in detail in a recent paper by Dolinsky and Elperin (2007). 
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Figure captions 
 
Figure 1: Representation of the particle dipole, P, coming from the interfacial charge 

distribution. If the charge relaxation time is higher in the particle than in the host liquid 

(1<2), P is anticollinear to the field direction (a). If the E field intensity is high enough this 

situation is unstable and the particle rotates either in clockwise or counter-clock-wise 

direction. In such a case, the rotation of the particle at constant velocity and the tilt of P 

correspond the stationary equilibrium of the system. 

 

Figure 2: Representation of the suspension subject to a DC E field. If the suspension is 

quiescent, the particles rotate around themselves with any axis perpendicular to the field so 

that the average spin rate is zero. When a shear flow is applied, all the particle rotation axes 

may be aligned in the direction of the mean vorticity of the suspension and the collective 

movement of the particles drives the suspending liquid in such a way that the apparent 

viscosity of the suspension is lessened. 

  
Figure 3: Variation of the driving electric torque (solid lines) and of the opposite of the 

viscous resistant torque (dashed lines) exerted on a particle with its angular velocity. The 

electric torque has been drawn for two intensities of the electric field and the viscous one for 

two values of the average shear rate in the suspension. Depending both on the values of the 

field intensity and of the mean shear rate, there exists either one or three solutions for the 

angular velocity of the particle. 

 

Figure 4: Normalised average angular velocity of the particles of a suspension (=10%). (a): 

variation with the square of the normalised field intensity for an average normalised shear rate 

of 0.2. (b): variation with the normalised shear rate for r=2. The thick lines represent the 

stable values of the angular velocity. 

 

Figure 5: Variation of the viscosity of a suspension of PMMA particles dispersed in neutrally 

buoyant mixture of dielec S and Ugilec with the particle volume fraction. The solid line 

represents the values of the viscosity predicted by Brenner (1970). 
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Figure 6: Variation of the normalised apparent viscosity of the suspension with the average 

normalised shear rate. (a): for different values of the E field intensity and for =10%. (b): for 

different particle volume fractions and r=2.  

 

Figure 7: Comparison between experimental (solid symbols and dotted lines) and theoretical 

results (open symbols and solid lines) for the variation of the apparent viscosity of a 

suspension of PMMA particles dispersed in a neutrally buoyant mixture of dielec S and 

Ugilec with the shear rate for different E field intensities: squares 500 V/mm, triangles 

1000 V/mm, circles 2000 V/mm, diamonds 3000 V/mm . (a): =5%, (b): =10%, (c): =20%. 

  

Figure 8: Phase separation in the Couette geometry. The suspension has been subject to a 

shear stress of 10 Pa and to a DC electric field of 2000V/mm for 5 minutes. 
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