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In this article, we study the decomposition of weight-sl 2n -modules of degree 1 to a dual pair (sl 2 , sl n ). We show that in some generic cases we have an explicit branching rule leading to a Howe-type correspondence between simple highest weight modules. We also give a Howe-type correspondence in the non-generic case. This latter involves some (non simple) Verma modules.

. All these articles deal with the minimal representation of some Lie algebra or Lie group.

. The vector space of the representation is some kind of polynomial algebra and the action is via differential operators.

The correspondence is completely explicit (see theorems 3.3, 3.7 and 3.8).

In the first part of this article we give the construction of the representation and some of its properties. The second part is devoted to the description of the dual pair (sl 2 , sl n ) of sl 2n and its action on the representation of the first part. In the last part we prove the Howe-type correspondence for this module with respect to our dual pair.
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Simple weight-modules of degree 1

Let m be a positive integer greater than 1. Let g denote the complex Lie algebra sl m of traceless m × m matrices. Let h denote its standard Cartan subalgebra, consisting of traceless diagonal matrices. In [START_REF] Benkart | Modules with bounded weight multiplicities for simple Lie algebras[END_REF], Benkart, Britten and Lemire described all the simple infinite dimensional weight g-modules of degree 1. Recall that a weight module is a module for which the action of h is semisimple with finite multiplicities. A weight module is of degree 1 if all its non-trivial weight spaces are 1-dimensional.

The definition of the representations which we are interested in uses the Weyl algebra W m which is the associative algebra with generators q i and p i for i ∈ {1, . . . , m} subject to the relations [q i , q j ] = 0 = [p i , p j ] and [p j , q i ] = δ i,j .

Let a ∈ C m . Set P a = {b ∈ C m such that b i -a i ∈ Z for all i ∈ {1, . . . , m} and b i < 0 ⇐⇒ a i < 0}.

We consider the following vector space W (a) := b∈Pa Cx(b) whose basis elements x(b) are parametrized by the set P a . Now we give a structure of W m -module to W (a). To do so, we should think of the element x(b) as a monomial x b1 1 • • • x bm m and of the q i and p i as operators of multiplication and derivation. Let ǫ i denote the m-tuple whose all entries are 0 except i-th entry which is 1. We then define the (almost) natural representation of W m on W (a) by

q i • x(b) = (b i + 1)x(b + ǫ i ) if b i ∈ Z - x(b + ǫ i ) otherwise ( 1a 
)
p j • x(b) = x(b -ǫ j ) if b j ∈ Z - b j x(b -ǫ j ) otherwise (1b)
From theorem 2.9 in [START_REF] Benkart | Modules with bounded weight multiplicities for simple Lie algebras[END_REF], we know that the W m -module W (a) is simple.

We can embed g (and more generally gl m ) into W m by sending the elementary matrix E i,j to q i p j . We now restrict our set of parameters. Set P a := {b ∈ P a : A m-uple b ∈ P a is called admissible and a vector x(b) associated to b ∈ P a is called an admissible vector. Now we have the following Theorem 1.1 (Benkart, Britten, Lemire). [1, proposition 2.12, theorem 5.8]

i b i = i a i }
The vector subspace N (a) of W (a) is a simple weight g-module of degree 1.

Conversely if M is an infinite dimensional simple weight g-module of degree 1, then there exists a = (a 1 , . . . , a m ) ∈ C m , there exist two integers k and l with -

a i = -1 for i = 1, . . . , k -1, -a i ∈ C \ Z for i = k, . . . , l, -and a i = 0 for i = l + 1, . . . , m, such that M ∼ = N (a).
Recall that a g-module M is cuspidal if the action on M of E i,j is injective for all (i, j) with i = j. Using the theorem 1.1 and equations [START_REF] Benkart | Modules with bounded weight multiplicities for simple Lie algebras[END_REF], one shows that the cuspidal simple weight g-modules of degree 1 are those N (a) for which a ∈ (C -Z) m .

From now on, we suppose m = 2n with n > 1. In what follows we consider only the modules of the form

N (-1, . . . , -1 n-1 , a 1 , a 2 , 0, . . . , 0 n-1 ) with a 1 , a 2 ∈ C -Z.
We denote N a1,a2 this module for short. We set a = (-1, . . . , -1, a 1 , a 2 , 0, . . . , 0). Remark that if b is admissible then b i < 0 if i < n and b j ≥ 0 if j > n + 1. We let α 1 , . . . , α 2n-1 denote the standard set of simple roots for the root system R of (g, h). Then the conditions a 1 and a 2 ∈ C -Z ensure that the root vectors X ±αn act injectively on N a1,a2 . From the action of q i and p j on W (a) we derive the action of g on N a1,a2 . For example we have:

X -αi • x(b) =    (b i+1 + 1)x(b -ǫ i + ǫ i+1 ) if i < n -1 x(b -ǫ n-1 + ǫ n ) if i = n -1 b i x(b -ǫ i + ǫ i+1 ) if i ≥ n (2a) X αi • x(b) =    (b i + 1)x(b + ǫ i -ǫ i+1 ) if i < n -1 b n (b n-1 + 1)x(b + ǫ n-1 -ǫ n ) if i = n -1 b i+1 x(b + ǫ i -ǫ i+1 ) if i ≥ n (2b) H αi • x(b) = (b i -b i+1 )x(b) (2c)
Remark from this action that the root vectors X αi with i = n act trivially on elements of the form x(-1, . . . , -1, a 1 + b, a 2 -b, 0, . . . 0), with b ∈ Z.

Highest weight vectors for the action of b on N a1,a2

Set θ := {α 1 , . . . , α 2n-1 } \ {α n } and let θ denote the roots in R which are linear combinations of the simple roots in θ. To each root α ∈ R, we denote by g α the associated root space. Then we associate the following Levi subalgebra l θ := h ⊕ ⊕ α∈ θ g α . This Levi subalgebra is the following set of matrices:

l θ = A 0 0 B , A, B ∈ M n (C), tr(A + B) = 0 .
Remark that the semisimple part of l θ is the sum of two copies of sl n . We denote by l + θ the set of all the matrices A 0 0 B in l θ with A and B upper triangular with zeros on the diagonal. We denote by h(θ) the Cartan subalgebra of this semisimple part consisting of diagonal matrices. From this decomposition we can construct a dual pair (a, b) (which is C-admissible in the terminology of [START_REF] Rubenthaler | Les paires duales dans les algèbres de Lie réductives[END_REF]). Define

b := A 0 0 A , with A ∈ sl n .
Let h n denote the following Cartan subalgebra of b:

D 0 0 D , with D diagonal and traceless.
The commutant of b is easily seen to be a := X, H, Y , where

X = n i=1 X -(αi+•••+αn+i-1) , Y = n i=1 X αi+•••+αn+i-1 ,
and

H = H α1 + 2H α2 + • • • + nH αn + (n -1)H αn+1 + • • • + 2H α2n-2 + H α2n-1 .
The Lie algebra a is isomorphic to sl 2 while b is isomorphic to sl n . It is easy to see that (a, b) is a dual pair. Note that b ⊂ l θ and that the center of l θ is the Cartan subalgebra h θ := CH of a.

Now we describe the action of l θ on the module N a1,a2 .

Proposition 2.1. As a l θ -module, the module N a1,a2 decomposes into a direct sum of infinite dimensional simple highest weight modules. Moreover the decomposition is multiplicity free and the highest weight vectors are the x(-1, . . . , -1, 1. The action of E n,n+1 and E n+1,n on M is injective.

a 1 + b, a 2 -b, 0, . . . , 0) for b ∈ Z, whose highest weight under h(θ)×h θ is (0, . . . , 0 n-2 , -1- a 1 -b, a 2 -b, 0, . . . , 0 n-2 ) ⊗ (-(n -1) + a 1 -a 2 + 2b).
2. As a l θ -module, M is a direct sum of simple highest weight modules.

See [START_REF] Tomasini | On a generalisation of Bernstein-Gelfand-Gelfand category O[END_REF] for a general definition of the categories O ∆,θ , and their properties.

For later use, let us compute the action of the root vectors occuring in X and Y ∈ a: Lemma 2.3. For i ∈ {1, . . . , n}, we have

X αi+...+αn+i-1 x(b) = (b i + 1)b n+i x(b -ǫ n+i + ǫ i ) if i < n, b 2n x(b -ǫ 2n + ǫ n ) if i = n, (3a) X -(αi+...+αn+i-1) x(b) = x(b + ǫ n+i -ǫ i ) if i < n, b n x(b + ǫ 2n -ǫ n ) if i = n, ( 3b 
)
Proof. The root vector X αi+...+αn+i-1 correspond to the elementary matrix E i,n+i . The root vector X -(αi+...+αn+i-1) correspond to the elementary matrix E n+i,i . Now the lemma follows from equations [START_REF] Benkart | Modules with bounded weight multiplicities for simple Lie algebras[END_REF].

⊓ ⊔

The first step toward a correspondence is to understand the action of b on N a1,a2 . We set b + the subalgebra of b consisting of the matrices A 0 0 A in b such that A is upper triangular with zero diagonal. From proposition 2.1, we obtain that the action of b + is locally finite. We will now investigate the subspace

M 0 := N b + a1,a2 = {x ∈ N a1,a2 : X • x = 0, ∀ X ∈ b + }. Define X i := X αi + X αn+i , X -i := X -αi + X -αn+i , and 
H i = [X i , X -i ].
From equation (2b) we get

X i •x(b) = (b i + 1)x(b + ǫ i -ǫ i+1 ) + b n+i+1 x(b + ǫ n+i -ǫ n+i+1 ) if i < n -1 b n (b n-1 + 1)x(b -ǫ n + ǫ n-1 ) + b 2n x(b + ǫ 2n-1 -ǫ 2n ) if i = n -1 (4) Lemma 2.4. Let x = k λ k x(b k ) ∈ M 0 be a weight vector for h θ ⊕ h n . Then there exist indices k 0 and k 1 such that x(b k0 ) = x(-1, . . . , -1, b k0 n , . . . , b k0 2n ) and x(b k1 ) = x(b k1 1 , . . . , b k1 n+1 , 0, . . . , 0). Proof. If b is admissible, then b 1 < 0. Let i 1 be an index such that λ i1 = 0 and b i1 1 is maximal among the possible values of the different b k 1 occuring in x. Suppose b i1 1 = -1. Then applying X 1 to x(b i1
) gives according to equation ( 4) the following sum of two vectors:

(b i1 1 + 1)x(b i1 + ǫ 1 -ǫ 2 ) + b i1 n+2 x(b i1 + ǫ n+1 -ǫ n+2 ).
The first summand is a vector

x(b ′ ) such that b ′ 1 = b i1 1 + 1 > b i1 1 . The second summand is of the form x(b ′′ ) with b ′′ 1 = b i1 1 .
But by our hypothesis on x, we have X 1 •x = 0. We look at the other occurences of the vector x(b ′ ) in X 1 •x. By the maximality of b i1

1 , this vector only occur as the first summand of

X 1 • x(b i1 ). Thus its coefficient in X 1 • x is b i1 1 + 1 which is non zero by our hypothesis on b i1 1 , contradicting the fact that x ∈ M 0 . Hence b i1 1 = -1. If b is admissible, then we also have b 2 < 0. So let now i 2 denote an index such that λ i2 = 0, b i2 1 = -1 and b i2 2 is maximal among the possible values of the different b k
2 occuring in x and subject to the condition that b k 1 = -1. We apply the same reasonning using equation ( 4) for the action of X 2 to prove that b i2 2 = -1. Applying then X 3 , . . . X n-1 we get an index k 0 satisfying the condition of the lemma, i.e. b k0

1 = • • • = b k0 n-1 = -1. If b is admissible, then b 2n ≥ 0.
Therefore to find k 1 we do the same thing starting from the action of X n-1 to a vector x(b j1 ) such that λ j1 = 0 and b j1 2n is minimal among the possible b k 2n . We prove that necessarily b j1 2n = 0. Applying successively X n-2 , . . . , X 1 we obtain an index k 1 satisfying the condition of the lemma, i.e. b k1

2n = • • • = b k1 n+1 = 0. ⊓ ⊔
Corollary 2.5. Let the notations be as in lemma 2.4. Then there are integers c n , c n+1 , c 2n with c 2n ≥ 0 such that

x(b k0 ) = x(-1, . . . , -1, a 1 + c n , a 2 + c n+1 , 0, . . . , 0, c 2n ) and x(b k1 ) = x(-1 -c ′ 1 , -1, . . . , -1, a 1 + c ′ n , a 2 + c ′ n+1 , 0, . . . , 0), with c n + c n+1 + c 2n = 0, c ′ 1 = c 2n , c ′ n = c n + c 2n and c ′ n+1 = -c n . Proof. Set b k0 n = a 1 + c n , b k0 n+1 = a 2 + c n+1 , b k0 n+i = c n+i for 2 ≤ i ≤ n. Set also b k1 n = a 1 + c ′ n , b k1 n+1 = a 2 + c ′ n+1 , b k1 i = -1 -c ′ i for 1 ≤ i ≤ n -1. Therefore, b k0 = (-1, . . . , -1, a 1 + c n , a 2 + c n+1 , c n+2 , . . . , c 2n ), b k1 = (-1 -c ′ 1 , . . . , -1 -c ′ n-1 , a 1 + c ′ n , a 2 + c ′ n+1 , 0, . . . , 0
). The two vectors x(b k0 ) and x(b k1 ) should be admissible vectors and should have the same weight with respect to the Cartan subalgebras of a (since it commutes with b) and to the Cartan subalgebra of b (generated by H 1 , . . . , H n-1 ). This gives rise to the following equations admissibility of x(b k0 ) :

c n + c n+1 + . . . + c 2n = 0 admissibility of x(b k1 ) : -(c ′ 1 + . . . + c ′ n-1 ) + c ′ n + c ′ n+1 = 0 h θ -weight of x(b k0 ) and x(b k1 ) : c n -(c n+1 + . . . + c 2n ) = -(c ′ 1 + . . . + c ′ n-1 ) + c ′ n -c ′ n+1 weight of x(b k0 ) and x(b k1 ) under H 1 , . . . , H n-1 :            c n+1 -c n+2 c n+2 -c n+3 c 2n-2 -c 2n-1 -c n + c 2n-1 -c 2n = = . . . = = c ′ 2 -c ′ 1 + c ′ n+1 c ′ 3 -c ′ 2 c ′ n-1 -c ′ n-2 -c ′ n-1 -c ′ n Some calculations show that the unique solution in the c ′ i 's variables of this system is        c ′ 1 = -c n -c n+1 c ′ i = -c n+i , 1 < i < n c ′ n = c 2n + c n c ′ n+1 = -c n
But now as the vectors x(b k0 ) and x(b k1 ) must be admissible, we should have

c n+i ≥ 0 for 2 ≤ i ≤ n and c ′ j ≥ 0 for 1 ≤ j ≤ n -1. This imposes that c n+i = c ′ i = 0 for 2 ≤ i ≤ n -1. Then taking into account that c n + c n+1 + • • • + c 2n = 0
again by admissibity of b k0 , we finally obtain

c n+1 = -c n -c 2n , c 2n ≥ 0, c ′ 1 = c 2n , c ′ n = c n + c 2n , c ′ n+1 = -c n (5)

⊓ ⊔

From now on, we shall write x(b k0 ) = x(-1, . . . , -1, a 1 +b, a 2 -b-c, 0, . . . , 0, c) where b and c are integers and c ≥ 0. Let us investigate which admissible vectors x(b) have the same weight with respect to h θ ⊕ h n than x(b k0 ). This is the following lemma:

Lemma 2.6. Set x := x(-1-b 1 , . . . , -1-b n-1 , a 1 +b n , a 2 +b n+1 , b n+2 , . .

. , b 2n ) an admissible vector. Then x has the same weight than x(b k0 ) under the action of h θ ⊕ h n if and only if

       b n+i = b i , 2 ≤ i ≤ n -1 b n = b + b 1 + • • • + b n-1 b n+1 = b 1 -(b + c) b 2n = c -(b 1 + • • • + b n-1 )
Proof. As in the proof of corollary 2.5, we write down the equations obtained by expressing the admissibility of x and the fact that x and x(b k0 ) have the same weight under h θ and h n :

-(b 1 + • • • + b n-1 ) + b n + • • • + b 2n = 0 (6) -(b 1 + . . . + b n-1 ) + b n -(b n-1 + • • • + b 2n ) = 2b (7)            b 2 -b 1 + b n+1 -b n+2 b 3 -b 2 + b n+2 -b n+3 b n-1 -b n-2 + b 2n-2 -b 2n-1 -b n-1 -b n + b 2n-1 -b 2n = = . . . = = -b -c 0 0 -b -c (8)
Then we set bi = b i -b n+i for 1 ≤ i ≤ n -1 and bn = b n + b 2n . We rewrite equations ( 6) and ( 8) in the new variables bi :

-( b1 + • • • + bn-1 ) + bn = 0            b2 -b1 b3 -b2 bn-1 -bn-2 -bn-1 -bn = = . . . = = -b -c 0 0 -b -c
The unique solution of this system in the bi 's variables is b2 =

• • • = bn-1 = 0, b1 = b + c, bn = b + c. Therefore, we have b n + b 2n = c + b, b n+1 = b 1 -c -b, and b n+i = b i for 2 ≤ i ≤ n -1.
Then using equation [START_REF] Rubenthaler | Les paires duales dans les algèbres de Lie réductives[END_REF], we express b n+i for i ≥ 0 in the b j 's variables for 1 ≤ j ≤ n -1, which gives the lemma.

⊓ ⊔ Corollary 2.7. Let x ∈ M 0 be a weight vector with respect to h θ ⊕ h n . Then there are two integer b and c such that c ≥ 0 and

x = ki≥0, |k|≤c λ k x(-1-k 1 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|),
where

k = (k 1 , . . . , k n-1 ) ∈ N n-1 , |k| = i k i and λ k ∈ C. If n > 2, its h n -weight is (a 2 -b-c, 0, . . . , 0, -1-a 1 -b-c) and its h θ -weight is a 1 -a 2 + 2b -(n -1). If n = 2 then its h n -weight is (-1 -a 1 + a 2 -2(b + c)) and its h θ -weight is a 1 -a 2 + 2b -1.
Proof. From lemma 2.4 and corollary 2.5 we know that x = i λ i x(b i ) and that there is an index i 0 such that b i0 = (-1, . . . , -1, a 1 + b, a 2 -b -c, 0, . . . , 0, c) for some integers b and c with c ≥ 0. Then the lemma 2.6 asserts that the others

x(b i ) occuring in x are of the form x(b i ) = x(-1 -k 1 , . . . , -1 -k n-1 , a 1 + b + (k 1 + • • • + k n-1 ), a 2 + k 1 -b -c, k 2 , . . . , k n-1 , c -(k 1 + • • • + k n-1 )
). These vectors should also be admissible. Therefore we must have

k i ∈ N, and c -(k 1 + • • • + k n-1 ) ≥ 0.
This is the corollary.

⊓ ⊔ Proposition 2.8. Let x be as in the corollary 2.7. Write

x = ki≥0, |k|≤c λ k x(-1-k 1 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|),
for some integers b and c with c ≥ 0. Then λ k = κ(k)λ 0 , where λ 0 ∈ C and

κ(k) = k 1 + k 2 k 1 • • • k 1 + • • • + k n-1 k 1 + • • • + k n-2 k1+•••+kn-1 j=1 (c + 1 -j) (k 1 + • • • + k n-1 )! k1+•••+kn-1 j=1 (a 1 + b + j) . Conversely, if x = ki≥0, |k|≤c λ k x(-1-k 1 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|) with λ k = κ(k)λ 0 , then x ∈ M 0 .
Proof. From equation ( 4) we have

X 1 • x = k λ k -k 1 x(-k 1 , -2-k 2 , -1-k 3 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|) +k 2 x(-1-k 1 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 +1, k 2 -1, k 3 , . . . , k n-1 , c-|k|) . Let k ∈ {(k i ) 1≤i≤n-1 : k i ≥ 0 and i k i ≤ c}. Suppose k 1 > 0. Let k ′ = (k ′ i ) 1≤i≤n-1 be such that k ′ 1 = k 1 -1, k ′ 2 = k 2 + 1, and k ′ i = k i otherwise. We look at the coefficient of x(-k 1 , -2-k 2 , -1-k 3 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|) in the expression of X 1 • x. We find -k 1 λ k + (k 2 + 1)λ k ′ . As x ∈ M 0 , we have X 1 •x = 0. Therefore we should have -k 1 λ k +(k 2 +1)λ k ′ = 0, i.e. λ k = k2+1 k1 λ k ′ . By induction we find that λ k = k1+k2 k1 λ k 1 where k 1 = (0, k 1 + k 2 , k 3 , . . . , k n-1
). We then look at the coefficient of

x(-1, -k 2 -k 1 , -2-k 3 , -1-k 4 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|) in X 2 • x(k 1
). This allows us to express λ k 1 from λ k 2 where k 2 = (0, 0, k 1 + k 2 + k 3 , k 4 . . . , k n-1 ). More precisely, we get λ k 1 = k1+k2+k3 k1+k2 λ k 2 . Then using successively the action of X 3 , . . . , X n-1 on x, we express λ k from λ 0 .

The converse is easy. ⊓ ⊔ From now on, we denote by x(b, c) the vector in M 0 obtained in proposition 2.8 such that λ 0 = 1. We also denote by

x k (b, c) = x(-1-k 1 , . . . , -1-k n-1 , a 1 +b+|k|, a 2 -b-c+k 1 , k 2 , . . . , k n-1 , c-|k|) for k = (k 1 , . . . , k n-1 ) such that k i ∈ N and |k| = k 1 + • • • + k n-1 ≤ c. Corollary 2.9. For 2 ≤ i ≤ n -2 we have X -i • x(b, c) = 0.
Proof. From equation (2b), we see that X -i acts trivially on x k (b, c) if and only if k i = k i+1 = 0. If the action is non trivial, we have

X -i • x k (b, c) = -(k i+1 )x k ′ (b, c) + k i x k ′′ (b, c) where k ′ j =    k j if j = i or i + 1 k i -1 if j = i k i+1 + 1 if j = i + 1
, and

k ′′ j =    k j if j = n + i or n + i + 1 k n+i -1 if j = n + i k n+i+1 + 1 if j = n + i + 1
.

We now look at the occurences of x k ′ (b, c) in X -i • x(b, c). It appears in the expression of X -i •x k (b, c) as we already mentionned and in the second summand of the expression of X -i • x l (b, c) where

l j =    k j if j = n + i or n + i + 1 k n+i + 1 if j = n + i k n+i+1 -1 if j = n + i + 1 . Therefore the coefficient of x k ′ (b, c) in X -i • x(b, c) is (-k i+1 )λ k + l i λ l .
Using the expression of λ k given by proposition 2.8, we see that this coefficient is 0. ⊓ ⊔

A Howe type correspondence for N a1,a2

Generic case

Now to state and prove a Howe-type correspondence for the module N := N a1,a2 we need to compute the action of a on M 0 . Lemma 3.1. Let b and c be two integers with c ≥ 0. Then 1. X • x(b, c) is a non zero element of M 0 which is equal to a multiple of x(b -1, c + 1).

The vector Y •x(b, c) is non zero if and only if c(a

1 -a 2 +2b+c-(n-2)) = 0.
In this case, it is equal to a multiple of x(b + 1, c -1).

Proof. As the action of a commutes with the action of b, we get that Y • x(b, c) and X • x(b, c) both are in M 0 . Let us set b ′ = b + 1 and c ′ = c -1. Then using lemma 2.3, we compute Y • x(b, c). We obtain

Y • x(b, c) = λ k (a 2 -b ′ -c ′ + k 1 )(-k 1 )x(-k 1 , -1 -k 2 , . . . , -1 -k n-1 , a 1 + b ′ + |k| -1, a 2 -b ′ -c ′ + k 1 -1, k 2 , . . . , k n-1 , c ′ -|k| + 1) + n-2 i=2 λ k (-k 2 i )x(-1-k 1 , -1-k 2 , . . . , -1-k i-1 , -k i , -1-k i+1 , . . . , -1-k n-1 , a 1 +b ′ +|k|-1, a 2 -b ′ -c ′ + k 1 , k 2 , . . . , k i-1 , k i -1, k i+1 , . . . , k n-1 , c ′ -|k| + 1) + λ k (c ′ +1-|k|)x(-1-k 1 , . . . , -1-k n-1 , a 1 +b ′ +|k|, a 2 -b ′ -c ′ +k 1 , k 2 , . . . , k n-1 , c ′ -|k|) As Y •x(b, c) ∈ M 0 , it should be a linear combination of some x(b ′′ , c ′′ ). But each x(b ′′ , c ′′ ) contains a vector of the form x 0 (b ′′ , c ′′ ) = x(-1, . . . , -1, a 1 + b ′′ , a 2 - b ′′ -c ′′ , 0, . . . , 0, c ′′ ). The only such vector in the expression of Y • x(b, c) is x 0 (b ′ , c ′ ). Therefore if Y • x(b, c) is non zero then it is a multiple of x(b ′ , c ′ ).
To see when it is zero, it is enough to compute the coefficient of x 0 (b ′ , c ′ ) in the above equation. The first sum gives a contribution equal to -(a 2 -b -c + 1)λ ǫ1 , the second sum gives n-2 i=2 -λ ǫi and the last sum gives c (recall that the coefficient λ 0 of x(b, c) was set equal to 1). Using proposition 2.8 which allows us to express the λ ǫi 's, we find the global contribution:

c a 1 + b + 1 (a 1 -a 2 + 2b + c -(n -2)). Thus Y • x(b, c) = 0 if and only if c(a 1 -a 2 + 2b + c -(n -2)) = 0.
We apply the same method for X • x(b, c). 

The coefficient of x 0 (b -1, c + 1) in the expression of X • x(b, c) is a 1 + b, which is non zero since a 1 ∈ C \ Z.
1. If n = 2, N a1,a2 = b∈Z L(-1 -a 1 + a 2 -2b) ⊗ L(a 1 -a 2 + 2b -1). 2. If n > 2, N a1,a2 = b∈Z L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ⊗ L(a 1 -a 2 + 2b -(n -1)).
Proof. We know from proposition 2.1 that the module N a1,a2 is l + θ -locally finite. Thus it is also b + -locally finite. Therefore for every vector v in N a1,a2 there is an element u of U(b + ) such that u • v is in M 0 . From corollary 3.2, we know that each weight vector in M 0 spans a simple highest weight b-module. Thus N a1,a2 = ⊕ b∈Z,c∈N U(b)x(b, c) is the decomposition of N a1,a2 into simple b-modules. The hypothesis a 1 -a 2 ∈ Z ensures that Y • x(b, c) = 0 if and only if c = 0. Then we get the following chain of b-modules :

0 ⇀ U(b)x(b, 0) ⇋ U (b)x(b -1, 1) ⇋ • • • ⇋ U (b)x(b -k, k) ⇋ • • • ,
where ⇀ stands for the action of X and ↽ for the action of Y . Thanks to lemma 3.1, we conclude that this chain is a simple a ⊕ b-module which is then by corollary 2.7 isomorphic to L(-1 -

a 1 + a 2 -2b) ⊗ L(a 1 -a 2 + 2b -1) if n = 2 and to L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ⊗ L(a 1 -a 2 + 2b -(n -1)) if n > 2.
⊓ ⊔

As a consequence of this theorem, we find the following Howe-type correspondence in the ′′ generic ′′ case a 1 -a 2 ∈ Z, namely:

L(-1 -a 1 + a 2 -2b) ↔ L(a 1 -a 2 + 2b -1), if n = 2, L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ L(a 1 -a 2 + 2b -(n -1)), if n > 2.

Non-generic case

Let us now consider the non-generic case a 1 -a 2 ∈ Z. From lemma 3.1, we find that Y • x(b, c) = 0 if and only if c = 0 or a 1 -a 2 + 2b + c = n -2 and that X • x(b, c) is always non zero. We also get that the a-module generated by x(b, 0) is a highest weight module of highest weight a 1 -a 2 + 2b -(n -1). As a vector space, this module is k∈N Cx(b -k, k). The vector x(b -k, k) for k > 0 is annihilated by Y ∈ a if and only if a 1 -a 2 + 2b -k = n -2. Therefore there is at most one k for which x(b -k, k) is a highest weight vector for a. Thus we have shown the following:

Corollary 3.4. Assume a 1 -a 2 ∈ Z. Let b ∈ Z. 1. If a 1 -a 2 + 2b -(n -2) ≤ 0 then the a-module generated by x(b, 0) is irreducible. 2. If a 1 -a 2 + 2b -(n -2) > 0, then the a-module generated by x(b, 0) has length 2: U(a)x(b, 0) ⊃ U(a)x(b-(a 1 -a 2 +2b-(n-2)), a 1 -a 2 +2b-(n-2)) ⊃ {0},
where

U(a)x(b -(a 1 -a 2 + 2b -(n -2)), a 1 -a 2 + 2b -(n -2)) is a simple highest weight a-module (of weight a 1 -a 2 + 2b -(n -1)
) and the quotient

U(a)x(b, 0)/U(a)x(b -(a 1 -a 2 + 2b -(n -2)), a 1 -a 2 + 2b -(n -2))
is a simple highest weight a-module of weight a 1 -a 2 + 2b -(n -1).

In this case the a-module U(a)x(b, 0) is isomorphic to the Verma module

V (a 1 -a 2 + 2b -(n -1)) of highest weight a 1 -a 2 + 2b -(n -1). 
We can now use the same method as in corollary 3.2 and prove the following result:

Corollary 3.5. Assume a 1 -a 2 ∈ Z. Let b ∈ Z such that a 1 -a 2 +2b-(n-2) ≥ 0. Then for all c ∈ N, the b-module generated by x(b, c) is a simple highest weight b-module of weight (a 2 -b -c, 0, • • • , 0, -1 -a 1 -b -c)
Proof. The proof of corollary 3.2 can also be applied in this case because the hypothesis on b together with corollary 3.4 ensures that Y • x(b, c) is non zero as soon as c > 0.

⊓ ⊔

In general, the same argument shows that the only vector x(b, c ′ ) that can belong to the b-module generated by x(b, c) satisfies c ′ > c and a 1 -a 2 + 2b + c + c ′ = n -2 (see the proof of corollary 3.2). Now we prove the following

Proposition 3.6. Let b ∈ Z such that a 1 -a 2 + 2b -(n -2) < 0. Let c ∈ N be such that a 1 -a 2 + 2b + c -(n -2) = 0. Then the b-module U(b)x(b, c) is contained in the b-module U(b)
x(b, 0). Moreover, the latter has length 2, with the following composition serie:

U(b)x(b, 0) ⊃ U(b)x(b, c) ⊃ {0}.
Proof. To prove the first assertion, it suffices to find u ∈ U(b) such that u • x(b, 0) = αx(b, c), with α ∈ C * . We define the following element. Let Z ′ ∈ b be the element corresponding to the matrix E n,1 + E 2n,n+1 and let

Z ′′ = n-2 i=1 (E i+1,1 + E n+i+1,n+1 ) (E n,i+1 + E 2n,n+i+1 ) ∈ U(b).
Remark that [Z ′ , Z ′′ ] = 0. For λ ∈ C, we denote by Z λ the vector Z ′ + λZ ′′ . Then [Z λ , Z λ ′ ] = 0 for all λ, λ ′ ∈ C. We list now some computations of brackets :

[X 1 , Z λ ] = (E n,2 + E 2n,n+2 ) (λ(n -2) -1 + λH 1 ) -λ n-2 i=2 (E n,i+1 + E 2n,n+i+1 ) (E i+1,2 + E n+i+1,n+2 ) , [X i , Z λ ] =0, for 2 ≤ i ≤ n -2, [X n-1 , Z λ ] = (E n-1,1 + E 2n-1,n+1 ) (1 + λH n-1 ) + λ n-3 i=1 (E i+1,1 + E n+i+1,n+1 ) (E n-1,i+1 + E 2n-1,n+i+1 ) , [E n,2 + E 2n,n+2 , Z λ ] =λZ ′ (E n,2 + E 2n,n+2 ) , [H 1 , Z λ ] = -Z λ , [E i+1,2 + E n+i+1,n+2 , Z λ ] =0, [E n-1,1 + E 2n-1,n+1 , Z λ ] = -λZ ′ (E n-1,1 + E 2n-1,n+1 ) , [H n-1 , Z λ ] = -Z λ , [E n-1,i+1 + E 2n-1,n+i+1 , Z λ ] =0. For 1 ≤ i ≤ c, set λ i = 1 a1+b+i (note that a 1 + b + i is non zero since a 1 ∈ C \ Z). Set also Z i = Z λi and Z = Z 1 • • • Z c . Now set x = Z • x(
b, 0). We show that x is a highest weight vector for b. We already know that x(b, 0) is a highest weight vector for b. Thus we have to show that ad(X i )(Z) • x(b, 0) = 0 for 1 ≤ i ≤ n -1. From the relations above, we already find that ad(X i )(Z) = 0 for 2 ≤ i ≤ n -2. Let us compute ad(X 1 )(Z) • x(b, 0). We obtain

ad(X 1 )(Z) • x(b, 0) = [X 1 , Z 1 ]Z 2 • • • Z c • x(b, 0) + • • •+ Z 1 • • • Z c-1 [X 1 , Z c ] • x(b, 0).
In the expression of [X 1 , Z i ], appear the vectors (E k+1,2 + E n+k+1,n+2 ). But we have seen that these vectors commute with all the Z j 's. Moreover from corollary 2.9, we get that (E k+1,2 + E n+k+1,n+2 ) acts trivially on x(b, 0). Therefore the only part in the expression of [X 1 , Z i ] that can give a non trivial contribution in the expression of ad(X 1 )(Z)

• x(b, 0) is (E n,2 + E 2n,n+2 ) (λ i (n -2) -1 + λ i H 1 ). Thus, ad(X 1 )(Z) • x(b, 0) = (E n,2 + E 2n,n+2 ) (λ 1 (n -2) -1 + λ 1 H 1 ) Z 2 • • • Z c • x(b, 0) + • • • + Z 1 • • • Z c-1 (E n,2 + E 2n,n+2 ) (λ c (n -2) -1 + λ c H 1 ) • x(b, 0).
From our previous computations we also get that

H 1 Z k • • • Z c = -(c + 1 -k)Z k • • • Z c + Z k • • • Z c H 1 .
Thus we have

ad(X 1 )(Z) • x(b, 0) =Z 2 • • • Z c (λ 1 (n -2) -1 + λ 1 H 1 -(c -1)λ 1 ) • x(b, 0) + • • • + Z 1 • • • Z c-1 (λ c (n -2) -1 + λ c H 1 ) • x(b, 0). Now from corollary 2.7, we get that H 1 • x(b, 0) = (a 2 -b)x(b, 0). Then using the definition of c, we conclude that (λ k (n -2) -1 + λ k H 1 -(c -k)λ k )•x(b, 0) = 0, which in turn expresses that ad(X 1 )(Z) • x(b, 0) = 0. Now since [Z λ , Z λ ′ ] = 0, we have also that Z = Z c • • • Z 1 .
Then we compute ad(X n-1 )(Z) • x(b, 0) using the same method as above and prove that ad(X n-1 )(Z) • x(b, 0) = 0. Therefore we have proved that Z • x(b, 0) is a highest weight vector for b (note that Z • x(b, 0) is a weight vector because Z is a weight vector in U(b)).

It only remains to show that Z • x(b, 0) = 0. To do so, we compute the coefficient of x 0 (b, c) in the expression of Z • x(b, 0). We have seen that Z ′ commute with Z ′′ . So Z is a homogeneous polynomial of degree c in the two variables Z ′ and Z ′′ . Remark that Z ′′ cannot increase the 2n-th component of the admissible vectors. Therefore the only monomial in the expression of Z that can give the admissible vector x 0 (b, c) when acting on x(b, 0) is Z ′c , whose coefficient in the polynomial Z is 1. After some computations we find that the coefficient of

x 0 (b, c) in Z • x(b, 0) is (a 2 -b)(a 2 -b -1) • • • (a 2 -b -(c -1)
). This is non zero since a 2 ∈ C \ Z. Therefore from proposition 2.8, we conclude that Z • x(b, 0) is a non zero multiple of x(b, c).

From our choice of c and lemma 3. ,c)), which has therefore a composition serie of finite length consisting of highest weight modules. But we have remarked that U(b)x(b, 0) cannot contain any other highest weight vector than the linear combinations of x(b, 0) and x(b, c) (see above the statement of this proposition). From this we conclude that

U(b)x(b, 0) ⊃ U(b)x(b, c) ⊃ {0}
is the composition serie of U(b)x(b, 0).

⊓ ⊔

We can now state and prove the following Howe-type correspondence in the non-generic case:

Theorem 3.7. Assume a 1 -a 2 ∈ Z and n > 2. Let b ∈ Z. Then we have the following correspondence: -If a 1 -a 2 + 2b -(n -2) = 0, then U(b)x(b, 0) is a simple b-module isomor- phic to L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) and we have L(a 2 -b, 0, . . . , 0, -1 - a 1 -b) ↔ L(-1). -If a 1 -a 2 + 2b -(n -2) > 0, then U(b)x(b, 0) is a simple b-module isomor- phic to L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) and we have L(a 2 -b, 0, . . . , 0, -1 - a 1 -b) ↔ V (a 1 -a 2 + 2b -(n -1)). -If a 1 -a 2 +2b-(n-2) < 0, then U(b)x(b, 0) is an indecomposable b-module of length 2 and we have U(b)x(b, 0) ↔ L(a 1 -a 2 + 2b -(n -1)).
Proof. This is a consequence of corollaries 3.4 and 3.5 and of proposition 3. Proof. This is a consequence of corollaries 3.4 and 3.5 and of proposition 3.6. ⊓ ⊔ Remark that in both case we have a correspondence of the infinitesimal caracteres. Let us give an interpretation of the theorem 3. Note that in this correspondence some a-modules are not simple modules. So we can consider the corresponding semisimplification N ss a1,a2 of N s a1,a2 (which we call the bi-semisimplification of N a1,a2 ). In this module, we get the following correspondence:

- L(a 1 -a 2 + 2b -(n -1)). Note that this is no more a one to one correspondence. We can also give an interpretation of theorem 3.8 in the same spirit. The final correspondence in the ′′ bi-semisimplification ′′ of N a1,a2 is in this case the following:

-If a 1 -a 2 + 2b = 0, then we have L(-1) ↔ L(-1).

-If a 1 -a 2 + 2b > 0, then we have L(a 2 -a 1 -2b -1) ↔ L(a 1 -a 2 + 2b -1) ⊕ L(-(a 1 -a 2 + 2b + 1)). -If a 1 -a 2 + 2b < 0, then we have L(a 2 -a 1 -2b -1) ↔ L(a 1 -a 2 + 2b -1).

Proof.Remark 2 . 2 .

 22 From equation (2b), we conclude that the only vectors annihilated by l + θ are exactly the admissible vectors x(b) with b = (-1, . . . , -1, a 1 + b n , a 2 + b n+1 , 0, . . . , 0) such that b n ∈ Z, b n+1 ∈ Z, and b n +b n+1 = 0. By using equation (2a) we check that for every x(b ′ ) there is an element u ∈ U(l + θ ) such that u•x(b ′ ) is a non zero multiple of some x(b) with b as above. Therefore the highest weight module U(l θ )x(b) corresponding to x(b) is in fact simple and N a1,a2 is the direct sum of the U(l θ )x(b) where b is of the form (-1, . . . , -1, a 1 + b n , a 2 -b n , 0, . . . , 0) for some integer b n . The weight of this x(b) is easily computed using equation (2c).⊓ ⊔ The modules N a1,a2 give the exact list of the simple modules in the category O ∆,θ (sl N ) of weight-sl 2n -modules M which satisfy the following:

Corollary 3 . 2 .Theorem 3 . 3 .

 3233 This gives the lemma. ⊓ ⊔ Assume a 1 -a 2 ∈ Z. Then for all integers b and c with c ≥ 0 the b-module generated by x(b, c) is a simple highest weight module. Proof. The b-module U(b)x(b, c) generated by x(b, c) is a highest weight module and is therefore indecomposable. Thus it is simple if and only if x(b, c) is the only highest weight vector in U(b)x(b, c), up to a scalar multiple. Another highest weight vector in U(b)x(b, c) would be of the form x(b ′ , c ′ ). But then the vectors x(b, c) and x(b ′ , c ′ ) would have the same h θ -weight. Using the h θ -weight given in corollary 2.7, we see that necessarily b ′ = b. Thus if x(b, c ′ ) ∈ U(b)x(b, c), then there is an element u ∈ U(b -) such that u • x(b, c) = x(b, c ′ ). This implies first that c ≤ c ′ since the vectors X -i can only increase the 2n-th component of every admissible vector. Hence if c = c ′ , we have c < c ′ . Then from the hypothesis a 1 -a 2 ∈ Z and from lemma 3.1, we get Y c+1 • x(b, c) = 0 and Y c+1 • x(b, c ′ ) = 0. As Y ∈ a commutes with u ∈ U(b), we should have uY c+1 x(b, c) = Y c+1 x(b, c ′ ). This is a contradiction. ⊓ ⊔ Let L(λ) denote the simple highest weight sl 2 -module with highest weight λ and L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) denote the simple highest weight sl n -module with highest weight (a 2 -b, 0, . . . , 0, -1 -a 1 -b). Assume a 1 -a 2 ∈ Z. Then we have the following decomposition of N a1,a2 as a b ⊕ a-module:

1 ,

 1 we show that Y • x(b, c + k) = 0 for k > 0. Then we can apply the same proof as in 3.2 to show that U(b)x(b, c) is a simple b-module. Thus the b-module U(b)x(b, 0) is a highest weight module (containing the simple b-module U(b)x(b
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 38 Assume a 1 -a 2 ∈ Z and n = 2. Let b ∈ Z. Then we have the following correspondence:-Ifa 1 -a 2 + 2b = 0, then U(b)x(b, 0) is a simple b-module isomorphic to L(-1) and we have L(-1) ↔ L(-1). -If a 1 -a 2 + 2b > 0, then U(b)x(b, 0) is a simple b-module isomorphic to L(a 2 -a 1 -2b -1) and we have L(a 2 -a 1 -2b -1) ↔ V (a 1 -a 2 + 2b -1). -If a 1 -a 2 + 2b < 0, then U(b)x(b, 0) is an indecomposable b-module of length 2 isomorphic to V (a 2 -a 1 -2b-1) and we have V (a 2 -a 1 -2b-1) ↔ L(a 1 -a 2 + 2b -1).

7 .

 7 First we have the following decomposition of N a1,a2 as a b-module:N a1,a2 = b∈Z,c∈N U(b)x(b, c).But we have seen that each U(b)x(b, c) is either simple or has length 2. Let us then consider the semisimplification N s a1,a2 of N a1,a2 obtained by changing those U(b)x(b, c) which are indecomposable by their composition factors. The space N s a1,a2 is still a b-module (but not a g-module anymore) and we have the following branching rules:N s a1,a2 = b∈Z,c∈N L(a 2 -b -c, 0, . . . , 0, -1 -a 1 -b -c).But it is clear that N s a1,a2 still caries an action of a induced by the action of a on N a1,a2 . From theorem 3.7, we find the following Howe-type correspondence for this b ⊕ a-module N s a1,a2 :-If a 1 -a 2 + 2b -(n -2) = 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ L(-1). -If a 1 -a 2 + 2b -(n -2) > 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ V (a 1 -a 2 + 2b -(n -1)). -If a 1 -a 2 + 2b -(n-2) < 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ L(a 1 -a 2 + 2b -(n -1)).

If a 1 -

 1 a 2 + 2b -(n -2) = 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ L(-1). -If a 1 -a 2 + 2b -(n -2) > 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔ L(a 1 -a 2 + 2b -(n -1)) ⊕ L(-(a 1 -a 2 + 2b -(n -3)). -If a 1 -a 2 + 2b -(n -2) < 0, then we have L(a 2 -b, 0, . . . , 0, -1 -a 1 -b) ↔