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Abstract

In Permalloy submicron triangles, configurational anisotropy - a higher-order form of shape anisotropy - yields
three equivalent easy axes, imposed by the structures’ symmetry order. Supported by micromagnetic simulations,
an experimental method was devised to evaluate the nanostructure dimensions for which a Stoner-Wohlfarth type of
reversal could be used to describe this particular magneticanisotropy. In this regime, a straightforward procedure
using an in-plane rotating field allowed us to quantify experimentally the six-fold anisotropy fields for triangles of
different thicknesses and sizes.
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1. Introduction

Much has been accomplished in previous years to
shrink the feature size of nanomagnets in view of in-
creasing the storage density of Magnetic Random Ac-
cess Memories (MRAM) and hard disk drives, but also
to develop materials exhibiting a magnetic anisotropy
strong enough to resist thermal fluctuations at small
dimensions, while remaining switchable by accessible
magnetic fields [1, 2]. In the ubiquitous soft alloy
Ni81Fe19 (Permalloy, Py), the magnetic anisotropy can,
in certain cases, be tailored by the geometry of the
nanostructure. For instance, appropriately sized Py el-
lipses have two stable states, where the magnetization
lies along the longer in-plane dimension of the element.

Another type of anisotropy exists in this material that
remains to be harnessed to technological applications:
configurational anisotropy (CA) [3]. This phenomenon
is a direct effect of the rotational symmetry order (n)
of a nanostruture on its magnetic anisotropy: triangles
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(n=3) evidence a six-fold anisotropy, squares (n=4) a
four-fold anisotropy, and pentagons (n=5) a ten-fold
anisotropy[4, 5, 6]. Note that the necessity for easy
and hard axes to present the same symmetry leads to
frequency doubling for odd orders ofn [7]. Configu-
rational anisotropy relies on the fact that at small di-
mensions, a uniform magnetization cannot be sustained
anymore in non-ellipsoidal structures, leading to a siz-
able deformation of the spin arrangement into an ener-
getically more favorable state, balancing exchange and
demagnetization energy costs. This effect could for in-
stance allow the coding of multiple ”bits” per nanos-
tructure, or be used for complex toggling or switching
mechanisms in MRAM type structures.

To be of interest however, it is necessary to have
an excellent control of this anisotropy. Different ap-
proaches have been proposed to measure higher-order
magnetic anisotropies, such as Rotating field Magneto-
Optic Kerr Effect (ROTMOKE) [8] in magnetic thin
films, or Modulated Field Magneto-Optical Anisometry
(MFMA) [9, 6] in Supermalloy (Ni81Fe14Mo5) and Fe
nanostructures presenting CA. In both methods, large
static fields are used to impose macrospin-like behav-
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ior in the structure, in order to interpret the data within
a Stoner-Wohlfarth (SW) model and extract a value for
the strength of this anisotropy. Here we present an alter-
native reliable and straight-forward experimental tech-
nique to obtain the six-fold anisotropy field of submi-
cron triangles, and we use micromagnetic simulations
to define a criterion estimating the maximum triangle
dimensions up to which this parameter can indeed be
defined.

2. Samples

Equilateral Py triangles were fabricated on Silicon by
a 20kV electron beam lithography, followed by thermal
evaporation and a lift-off process. A typical scanning
electron micrograph of these triangles was presented in
Ref. [5]. Their widths and thicknesses varied between
e=150-300 nm, andt=6-26 nm, and they were spaced
by e into large 25× 25µm2 arrays. In these nanostruc-
tures, configurational anisotropy is responsible for two
possible magnetization states: a ’buckle’ state where the
global magnetization lies parallel to the edge, and the
spins buckle from one corner to the other; or the ’Y-
state’, where~M follows a triangle bisector, the spins
splaying in (or out) from two corners toward the third
[9]. We have shown recently that for triangle dimen-
sions above 100 nm wide/10 nm thick, only the buckle
state can be stabilized [5], such that the 0◦ [modulus
60◦] directions are easy axes, and the 30◦ [60◦] direc-
tions hard axes.

3. Stoner-Wohlfarth switching astroid

While nanostructures exhibiting CA cannot, by defi-
nition, exhibit a macrospin behavior in the strict sense,
it is tempting to compare their reversal to a Stoner-
Wohlfarth (SW) model [10, 4], where the global mag-
netization is defined as~M = (Ms,Θ), and the pseudo
macrospin anisotropy is described by the simple energy
functional E6 = K6sin2(3Θ), with Θ defined with re-
spect to the base of the triangle andH6 = 2K6/Ms. Here
K6 is positive, giving the buckles to be easy axes as is
the case in our samples. To compute a SW switching
astroid, a Zeeman term was then added to this expres-
sion and the total energyE studied as a function of the
applied field~H = (H, φ), with φ once again defined with
respect to the base of the triangle. The astroid is con-
structed as follows, taking the example where the field
H is ramped along the hard axisφ = 30◦ (Fig. 1c).
Starting from theH = 0 energy functionalE(Θ), a pos-
itive field is ramped up toH1 for which a first transition

is observed (120◦ to 60◦) upon a local sign inversion of
d2E/dΘ2. The amplitude of this transition is 60◦. With
increasing field, the 180◦ to 60◦ transition occurs atH2

(amplitude of 120◦) and finally 60◦ to 0◦ occurs atH3

(once again a 60◦ transition). For a field applied exactly
along 30◦, the 0◦ and 60◦ positions are strictly speaking
degenerate and the transition field then diverges; this ac-
tually leads to a computational artifact creating a slight
asymmetry along the 30◦ [modulus 60◦] directions. The
60◦ transition shown in Fig. 1c (fieldH3) will however
be possible as soon as the field is brought away from
the bisector. Applying the field in the opposite direc-
tion (30◦ + 180◦) gives transitions of equal amplitude at
identical fields. For the field applied within 15◦ of the
easy axes 0◦ [60◦], an initial 60◦ transition is followed
at much higher field by a full 180◦ transition. Note
that there are two different types of 60◦ transitions: the
”lower-field” ones with maxima along 0◦ [60◦], and the
”higher-field ones”, with maxima along 30◦ [60◦]. For
each field directionφ, the transition fieldsHi are eval-
uated in this way, and their locus plotted on the com-
plete astroid, where transitions of different amplitudes
60, 120 or 180◦ have been labeled (Fig. 1a).

Very much like the SW astroid of an ellipse presents
maxima along its long and short axes directions, Fig.
1a presents equal maxima along the easy and hard axes.
The envelope of the full astroid is therefore a twelve-
pointed star. The sole effect of increasing the anisotropy
field is to expand the astroid, keeping all features iden-
tical, as shown in Fig. 1b where three SW astroids
were calculated for values ofK6 between 2000 and
12000J/m3 (for clarity, only the envelope of the astroid
is shown).

4. The rotating field method

4.1. Micromagnetic simulations
Following these calculations, a possibility to extract

a value ofK6 from experimental data would be to use
an experimental switching astroid. The latter has been
measured [5], but this method tends to yield fairly large
error bars on the transition fields, as it requires to iso-
late specific transitions as small kinks in the hysteresis
loops. Another solution consists offorcing 60◦ rota-
tions of the magnetization in the triangles, for instance
by using a large rotating field. By measuring the field
amplitude required to observe a magnetization flip from
one buckle to the next, the 60◦ transition fields can be
obtained and compared to the equivalent feature in the
SW model.

In order to test the validity of this approach, nu-
merical simulations (OOMMF package [11]) were first
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Figure 1: (a) Stoner-Wohlfarth switching astroid calculated for a six-
fold anisotropy termK6 = 12000 J/m3, with the transitions±60◦,
±120◦ or 180◦. (b) Evolution of the envelope of the astroid forK6
varying from 2000 to 12000J/m3. (c) Energy landscape for fields
of increasing amplitude applied along 30◦, leading to−60◦ or −120◦

transitions.

done on 310 nm wide, 10 nm thick triangles, using a
5 nm cell size,Ms = 800 kA/m, A = 13 pJ/m and
α = 0.5. A rounding of⊘ = 60 nm was moreover
included to take into account the physical rounding of
our structures [5], and the triangular mesh was titled
by 15◦ to spread pixelation effects. A counterclock-
wise field of amplitudeHrot was then applied, starting
from the positivex direction with the magnetization ini-
tialized in a 0◦ buckle. Unsurprisingly, for low ampli-
tude rotating fields (Hrot ≤ 150 Oe), no rotation of the
global magnetization~M was observed at all, whereas
for Hrot ≥ 1000 Oe,~M followed exactly the field. In the
intermediate regime, the temporal evolution of the mag-
netization and the corresponding spin configuration are
as shown in Fig. 2a,b (for clarity, the triangles were not
shown tilted by 15◦). Six abrupt 60◦ rotations of ~M are
observed during a full field cycle, with the magnetiza-
tion flipping from one buckle to the next. The amplitude
of the transitions in Fig. 2a corresponds to the projec-

Figure 2: (a) and (b) [color on-line] Numerical simulationsof the
effect of a counterclockwise rotating field of constant amplitude on
a 310nm wide triangle. The projection alongx of the magnetiza-
tion is plotted with the corresponding field direction (thick red arrow)
and global magnetization orientation (white arrow). (c) Experimental
longitudinal Kerr magnetization plotted against thex component of
a counterclockwise rotating fieldHrot= 324 Oe (sweeping direction
given by the black arrows), for an array of 300 nm wide, 9 nm thick
triangles.
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Figure 3: [color on-line] Polar plot of the rotating field amplitude
versus the angle at which occurs a 60◦ rotation of the global magneti-
zation in 300 nm wide, 9 nm thick triangles. Clockwise (resp.coun-
terclockwise) fields yield the−60◦ transitions, empty symbols (resp.
+60◦, closed symbols). The solid line is a fit to the Stoner-Wohlfarth
calculation of the 0− 60◦ transition, withK6 = 10560J/m3.

tion of the global magnetization drawn schematically by
large white arrows in Fig. 2b. The simulations therefore
seem to show that it is possible to address a particular
transition, the 60◦ rotation, by using a rotating field of
carefully chosen amplitude.

4.2. Experimental methods

The effect of a 1 Hz rotating field was then stud-
ied experimentally using Magneto-Optical Kerr Effect
(MOKE) in the longitudinal geometry (x axis in Fig.
2b). The laser was focused into a 5µm spot on each
array, and the field created by a combination of in-
plane fields (Hx,Hy) from a quadrupole electromagnet.
A typical hysteresis loop is presented in Fig. 2c, where
the longitudinal magnetizationMx is plotted against
the x component of a counterclockwise rotating field
Hrot = 324 Oe. The loop exhibits 6 very clear and
sudden changes inMx, in two sets of 3 symmetrical
transitions (longitudinal field sweeping down or up).
Comparing with the simulations, these can be identified
as successive 60◦ rotations of the magnetization occur-
ring at specific projections alongx of the rotating field:
hx1 = ±270 Oe,hx2 = ±17 Oe andhx3 = ±291 Oe. Be-
cause the amplitude of the field remains constant dur-
ing a full cycle, it is immediate to calculate the an-
gle of the field at the moment of the transition, using
φi = cos−1(hxi/Hrot), or φi = cos−1(hyi/hxi). This yields
for the loop shown:φ1 = 34◦ [180◦], φ2 = 93◦ [180◦]
andφ3 = 154◦ [180◦]. For a triangle in a 0◦ buckle, a
rotating field of 324 Oe will therefore induce a rotation
toward the 60◦ buckle just as it crosses theφ1 = 34◦ di-
rection. Faraday effects and other perturbations tend to
introduce an arbitrary slope to the loops, which we have
subtracted for clarity; the amplitude of the transitions

are therefore not directly comparable with the simula-
tions .

4.3. Results

For each array,M(H) loops were measured under in-
creasing values ofHrot, starting from the lowest one giv-
ing a 6-stepped loop. The data was then represented as
a polar plot representing the rotating field amplitude as
a function of the transition anglesφi (Fig. 3). Note that
both+60◦ and−60◦ transitions are represented. They
were obtained by applying the field counterclockwise or
clockwise. The experimentalHrot(φ) data evidences the
same characteristics as the computed higher-field 60◦

transitions either side ofφ = 30◦ [60◦] in the SW as-
troid. Mainly, if the magnetization lies along the bot-
tom edge of the triangle (0◦ buckle), it can only flip
by ±60◦ to the following buckle under the torque of a
field applied along±30◦ at the least. When this an-
gle is increased, the field required to obtain a transi-
tion strongly decreases, and ceases to be measurable at
aboutφ = ±45◦. This is naturally reminiscent of the
magnetization reversal mechanism in ellipses, where the
additional torque from anHy field perpendicular toHx

greatly reduces the switching field.
We then attempted to fit the experimentalHrot(φ) data

to the higher-field 60◦ transitions calculated in the SW
astroid (Fig. 1), the only adjustable parameter being
K6. For the plot shown in Fig. 3 for instance (300 nm
wide, 9 nm thick triangles), the best fit is thus obtained
for K6 = 10560± 300 J/m3, or expressed in term of
anisotropy field,H6 = 264± 8 Oe (Ms = 800kA/m).

5. Establishing a macrospin limit

This procedure was applied to triangles of different
widths (e =150-300 nm), and thicknesses (t =6-26 nm).
For all of these arrays, 6-steps hysteresis loops were
easily obtained under a rotating field, and aHrot(φ) po-
lar plot of 60◦ transitions readily extracted. Before re-
trieving H6 values from these data however, the validity
limits of this method needs to be questioned. Indeed,
while the 6-stepped hysteresis loops seem to warrant
a macrospin-like behavior, and therefore legitimize the
approach described above, it can be argued that the ex-
istence of a 60◦ transition is not a good criteria for a
macrospin behavior in our nanostrutures, being an easy,
small amplitude ’sliding’ of spins from one buckle to the
next. A full 180◦ reversal, or any procedure allowing the
magnetization to relax would be a more reliable control
test. The experimental switching astroid now becomes
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Figure 4: [color on-line] Micromagnetic simulation of the switching
astroids. The fieldH is saturated along−φ, and ramped back up
along+φ (large empty red arrow), with the micromagnetic configu-
ration evolving from (i) to (iii). Configuration (ii) is onlyobserved
for t=15 nm. The switching fields are plotted versusφ. (a) 300 nm
wide, 10 nm thick triangle: abrupt switching ofM for H reversed
alongφ = 0◦. (b) 200nm wide, 15nm thick triangle: a new, low-field
transition appears when increasing the thickness. (c) Spinconfigura-
tions corresponding to theφ = 0◦ reversal for (a) and (b), with the
global magnetization direction given by the white arrow, and the field
direction by the full red arrow.

a useful tool, as it is measured by applying a saturat-
ing field along a direction−φ, letting ~M relax while re-
versing the field direction, and observing the configura-
tional changes of the spins leading to a full reversal of
the magnetization along+φ.

A micromagnetic simulation of the switching astroid
was then done following the field sequence described
above, and the fields inducing abrupt changes of the
magnetization plotted versus the direction of the ap-
plied field. The dimensions (thickness, width) investi-
gated were identical to the experimental ones. For thick-
nessest ≤ 10 nm at all triangle widths, as well as the
t=15 nm,e=150 nm structure, a unique shape was ob-
tained for the astroid, an example of which is shown in
Fig. 4a (first quadrant of the simulation for thet=10 nm,
e=300 nm triangle). Having been described in detail
in Ref. [5], only the main differences and similarities
with a macrospin type of reversal (Fig. 1a) will be high-
lighted. For fields reversed along directions close to the
easy axes 0◦ [60◦], the magnetization does a complete
180◦ reversal, goingdirectly from state (i) to (iii) in Fig.

4c. For fields close to the hard axes 30◦ [60◦], it re-
verses in two steps, a 120◦ transition followed by a 60◦

transition (closed symbols in Fig. 4a). The latter is the
exact same transition observed under a rotating field, or
calculated using the SW model. Contrary to the SW as-
troid, the peaks along 0◦ [60◦] are lower than the ones at
30◦ [60◦]. This is a direct consequence of the complex
and different micromagnetic configurations in the easy
and hard axes states. In both easy and hard-axis types of
reversal, note that there is one less transition compared
to the SW model: for all field directions, the first 60◦

transition does not occur in the micromagnetic simula-
tions. Moreover, the locus of the 120◦ transition fields
has a quite different shape in both cases. On the one
hand, the macrospin model identifies local energy min-
ima, without favoring any initial or final configuration:
the first 120◦ to 60◦ transitionH1 in Fig. 1c can only
occur if the initial configuration of~M is along 120◦ for
instance. In the micromagnetic simulations on the other
hand, the triangle is first fully saturated in one direction,
thereby fixing the initial magnetic configuration, before
an opposite field is applied.

When the triangle widthe is increased above 150 nm
(e ≥200 nm) fort ≥ 15 nm, the envelope of the astroid
remains the same, a 12-pointed star, but a new transition
appears at low fields, as shown in Fig. 4b by the dashed
line. Indeed, the simulations evidence for any applied
field direction a passage by an intermediary vortex state
(ii) shown in Fig. 4c. This vortex is eventually expelled
as a 60◦ transition does occur at higher fields. Obtaining
a 6-stepped hysteresis loop under rotating field (series
of 60◦ transitions) is therefore not a good ’macrospin’
criterion. Following the simulations however, a simple
remanence loop along the 0◦ direction of the triangle
should evidence the passage by a vortex state, seen as
the presence or absence of a second step in the loop,
and determine whether it is legitimate to extract anH6

value from the data obtained under a rotating field.
Remanence loops along the 0◦ direction were mea-

sured for the different arrays. A clear cut-off dimension
appears below which the reversal is a single step 180◦

reversal (thickness 15 nm, width 300 nm), as shown
in Fig. 5, open symbols. Above this value (thick-
ness 18 nm, width 150 nm, full line in Fig. 5), a dou-
ble step transition evidences the formation of a vortex,
and therefore the boundary of applicability of our SW-
based analysis of the six-fold anisotropy field. The cut-
off dimension between macrospin and non-macrospin-
like behaviors are therefore quite similar between sim-
ulations and experiments in the explored size range:
15nm thick, 200 nm wide for the first, 18 nm thick,
150 nm for the second. It may be argued that the zero-
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Figure 5: [color on-line] Longitudinal Kerr remanence loops for the
field applied along the base of the triangles: 15 nm thick, 300nm
wide (open symbols), or 18 nm thick, 150 nm wide (full line). The
double-step in the latter evidences the passage through a vortex state,
and therefore the boundary of the macrospin behavior.

temperature nature of these computations lets the sys-
tem enter shallow energy wells, such as the vortex con-
figuration, whereas thermal fluctuations in the experi-
ment leave them unnoticed. Within the explored dimen-
sions, the volume of the nanostructure at the boundary
can however be considered identical between simula-
tions and experiment.

6. Discussion and Conclusions

Following this measurement, six-fold anisotropy
fields were extracted from the MOKE data for triangles
e=150-300 nm andt=6-15 nm, as summarized in Table
1. H6 increases with thickness, ranging from 128 Oe to
706 Oe. Where they can be compared, the values agree
well with the anisotropy fields obtained in thinner trian-
gles using MFMA [4]; the thinnest sample presented in
the present study for instance (6 nm thick, 300 nm wide)
has an anisotropy field ofH6 = 128± 10Oe, very com-
parable to the 107 Oe obtained by MFMA in 5 nm thick,
270 nm wide triangles. The method presented here how-
ever, gives an estimation of the limit of a macrospin de-
scription of configurational anisotropy. Finally, these
anisotropy fields are comparable to experimental uniax-
ial anisotropy fieldsHun obtained in Permalloy ellipses
[12], with the major difference that they are obtained in
non-elongated structures via configurational anisotropy.

In elliptical or rectangular platelets (areaa ∗ b, thick-
nesst), Hun does not depend on exchange energy in

Thickness (nm) Width (nm) H6 (Oe)

6 300 128
150 161

9 200 317
300 264
150 561

15 200 706
300 670

Table 1: Six-fold anisotropy fieldsH6 extracted from rotating field
loops, usingH6 = 2K6/Ms .

first approximation, but mainly on the demagnetizing
field Hdemag of the structure. Increasingt creates more
charges at the structure edges, and decreasing the width
(keepinga/b constant) brings these poles closer to-
gether, both leading to a largerHdemag [13, 14]. A
monotonous increase ofHun as a function oft/a is then
expected. This is in part what is observed in the tri-
angles: at fixed triangle width, the anisotropy field in-
creases witht (Table 1). At fixed triangle thickness
however,H6 first increases when the width decreases,
and peaks at around 200 nm before decreasing. Inter-
estingly, this latter trend with width is not observed for
anisotropy fields extracted from zero-temperature mi-
cromagnetic simulations (Fig. 2) following the pro-
cedure described in section 4.3: theH6 fields are in
this case found to increase monotonously with increas-
ing thickness and decreasing structure size. For the
smaller structures (e.g 9 nm thick, 150nm wide) the
anisotropy energyU = 2MS VH6/n2 deduced from
the experimental anisotropy fields amounts to about
10kBT (volume V of the triangle, symmetry ordern
of the structure [4]). Thermal fluctuations then be-
come sufficient to overcome the anisotropy barrier, and
H6 starts to decrease as the structure is brought closer
to the superparamagnetic regime. Note that configu-
rational anisotropy is weak enough to let us observe
the ferromagnetism-superparamagnetism transition at
larger dimensions than in Permalloy ellipses [15].

In conclusion, we have devised a simple exper-
imental method to extract the six-fold anisotropy
fields of Permalloy triangles presenting configurational
anisotropy. Using a large rotating field to impose a par-
ticular 60◦ transition, we created conditions to compare
our data to a Stoner-Wohlfarth model. Moreover, us-
ing micromagnetic simulations, we proposed a straight-
forward test to assess the validity of this approach for
triangles of any given dimensions. Finally, we high-
lighted the specificity of configurational anisotropy in
which the usual thickness over width dependence of the
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anisotropy field is not fully observed due to the prox-
imity of the superparamagnetic regime. Equipped with
this fundamental parameter characterizing the magnetic
anisotropy, further work will focus on assessing the
stray field interaction between these structures, in or-
der to compare them to typical values of nanomagnets
currently used in data storage technologies.
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