Canonical bases and affine Hecke algebras of type B
Michela Varagnolo, Eric Vasserot

To cite this version:
Michela Varagnolo, Eric Vasserot. Canonical bases and affine Hecke algebras of type B. 2009. hal-00435938v3

HAL Id: hal-00435938
https://hal.science/hal-00435938v3
Preprint submitted on 29 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract. We prove a series of conjectures of Enomoto and Kashiwara on canonical bases and branching rules of affine Hecke algebras of type B. The main ingredient of the proof is a new graded Ext-algebra associated with quiver with involutions that we compute explicitly.

Introduction

A new family of graded algebras, called KLR algebras, has been recently introduced in [KL], [R]. These algebras yield a categorification of \mathfrak{f}, the negative part of the quantized enveloping algebra of any type. In particular, one can obtain a new interpretation of the canonical bases, see [VV]. In type A or $A^{(1)}$ the KLR algebras are Morita equivalent to the affine Hecke algebras and their cyclotomic quotients. Hence they give a new way to understand the categorification of the simple highest weight modules and the categorification of \mathfrak{f} via some Hecke algebras of type A or $A^{(1)}$. See [BK] for instance. One of the advantages of KLR algebras is that they are graded, while the affine Hecke algebras are not. This explain why KLR algebras are better adapted than affine Hecke algebras to describe canonical bases. Indeed one could view KLR algebras as an intermediate object between the representation theory of affine Hecke algebras and its Kazhdan-Lusztig geometric counterpart in term of perverse sheaves. This is central in [VV], where KLR algebras are proved to be isomorphic to the Ext-algebras of some complex of constructible sheaves.

In the other hand, the (branching rules for) affine Hecke algebras of type B have been investigated quite recently, see [E], [EK1,2,3], [Ka], [M]. Lusztig’s description of the canonical basis of \mathfrak{f} in type $A^{(1)}$ in [L1] implies that this basis can be naturally identified with the set of isomorphism classes of simple objects of a category of modules of the affine Hecke algebras of type A. This identification was mentioned in [G], and was used in [A]. More precisely, there is a linear isomorphism between \mathfrak{f} and the Grothendieck group of finite dimensional modules of the affine Hecke algebras of type A, and it is proved in [A] that the induction/restriction functors for affine Hecke algebras are given by the action of the Chevalley generators and their transposed operators with respect to some symmetric bilinear form on \mathfrak{f}. In [E], [EK1,2,3] a similar behavior is conjectured and studied for affine Hecke algebras of type B. Here \mathfrak{f} is replaced by an explicit module $\theta V(\lambda)$ over an explicit algebra θB. First, it is conjectured that $\theta V(\lambda)$ admits a canonical basis. Next, it is conjectured that this basis is naturally identified with the set of isomorphism classes of simple objects of a category of modules of the affine Hecke algebras of type B. Further, in this identification the branching rules of the affine Hecke algebras of type B are...
given by the $^g B$-action on $^g V(\lambda)$. The first conjecture has been proved in [E] under the restrictive assumption that $\lambda = 0$. Here we prove the whole set of conjectures. Indeed, our construction is slightly more general, see the appendix.

Roughly speaking our argument is as follows. In [E] a geometric description of the canonical basis of $^g V(0)$ was given. This description is similar to Lusztig’s description of the canonical basis of \mathfrak{f} via perverse sheaves on the moduli stack of representations of some quiver. It is given in terms of perverse sheaves on the moduli stack of representations of a quiver with involution. First we give a analogue of this for $^g V(\lambda)$ for any λ. This yields the existence of a canonical basis $^g G_{\text{low}}(\lambda)$ for $^g V(\lambda)$ for arbitrary λ. Then we compute explicitly the Ext-algebras between complexes of constructible sheaves naturally attached to quivers with involutions. These complexes enter in a natural way in the definition of $^g G_{\text{low}}(\lambda)$. This computation yields a new family of graded algebras $^g R_m$ where m is a nonnegative integer. We prove that the algebras $^g R_m$ are Morita equivalent to the affine Hecke algebras of type B. Finally we describe $^g V(\lambda)$ and the basis $^g G_{\text{low}}(\lambda)$ in terms of the Grothendieck group of $^g R_m$.

The plan of the paper is the following. Section 1 contains some basic notation for Lusztig’s theory of perverse sheaves on the moduli stack of representations of quivers. Section 2 yields similar notation for the case of quivers with involutions. Our setting is more general than in [E], where only the case $\lambda = 0$ is considered. In Section 3 we introduce the convolution algebra associated with a quiver with involution. The main result of Section 4 is Theorem 4.17 where the polynomial representation of the Ext-algebra $Z_{\Lambda, V}$ associated with a quiver with involution is computed. Here Λ is a I-graded \mathbb{C}-vector space of dimension vector $\lambda \in NI$, while V is a I-graded \mathbb{C}-vector space with a non-degenerate symmetric bilinear form of dimension vector $\nu \in NI$. The polynomial representation of $Z_{\Lambda, V}$ is faithful. In Section 5 we give the main properties of the graded algebra $^g R(\Gamma)_{\lambda, \nu}$. In Section 6 we introduce the affine Hecke algebra of type B and we prove that it is Morita equivalent to $^g R_m$, a specialization of $^g R(\Gamma)_{\lambda, \nu}$. Section 7 is a reminder on KLR algebras and on the main result of [VV]. In Section 8 we categorify the module $^g V(\lambda)$ from [EK1] using the graded algebra $^g R_m$. In Section 9 we prove the isomorphism $^g R(\Gamma)_{\lambda, \nu} = Z_{\Lambda, V}$. This is essential to compare the construction from Section 8 with that in Section 10. In Section 10 we give a categorification of $^g V(\lambda)$ “à la Lusztig” in terms of perverse sheaves on the moduli stack of representations of quivers with involution. This is essentially the same construction as in [E]. However, since we need a more general setting than in loc. cit. we have briefly reproduced the main steps of the construction. One of our initial motivations was to give a completely algebraic proof of the conjectures, without any perverse sheaves at all. We still do not know how to do this. The main result of the paper is Theorem 10.19.

The same technic yields similar results for affine Hecke algebras of any classical type. The case of type D is done in [SVV], the case of type C is done in the appendix. Note that the idea to use canonical bases technics to study affine Hecke algebras in non A type is not new, see [L3], [L4]. At the moment we do not know the precise relation between loc. cit. and our approach.

Acknowledgment. We are grateful to M. Kashiwara and G. Lusztig for some remark on the material of this paper.
0. Notation
1. Reminder on quivers and extensions
2. Quivers with involutions
3. The convolution algebra
4. The polynomial representation of the graded algebra $^gZ_{A,V}$
5. The graded k-algebra $^gR(\Gamma)_{\lambda,\nu}$
6. Affine Hecke algebras of type B
7. Global bases of f and projective graded modules of KLR algebras
8. Global bases of $^gV(\lambda)$ and projective graded gR-modules
9. Presentation of the graded algebra $^gZ_{A,V}$
10. Perverse sheaves on $^gE_{A,V}$ and the global bases of $^gV(\lambda)$
A. Appendix
 - Index of notation

0.1. Combinatorics

Given a positive integer m and a tuple $m = (m_1, m_2, \ldots, m_r)$ of positive integers we write S_m for the symmetric group and S_m for the group $\prod_{l=1}^r S_{m_l}$. Set

$$|m| = \sum_{l=1}^r m_l, \quad \ell_m = \sum_{l=1}^r \ell_{m_l}, \quad \ell_m = m(m - 1)/2.$$

We use the following notation for v-numbers

$$\langle m \rangle = \sum_{l=1}^m v^{m+1-2l}, \quad \langle m \rangle! = \prod_{l=1}^m \langle l \rangle!, \quad \left\langle \frac{m+n}{n} \right\rangle = \frac{(m+n)!}{(m)! (n)!}, \quad \langle m \rangle! = \prod_{l=1}^r \langle m_l \rangle!.$$

Given two tuples $m = (m_1, m_2, \ldots, m_r), \quad m' = (m_1', m_2', \ldots, m_r')$ we define the tuple

$$mm' = (m_1, m_2, \ldots, m_r, m_1', m_2', \ldots, m_r').$$

0.2. Graded modules over graded algebras

Let k be an algebraically closed field of characteristic 0. Let $R = \bigoplus_d R_d$ be a graded k-algebra. Unless specified otherwise the word graded we’ll always mean \mathbb{Z}-graded. Let $R\text{-mod}$ be the category of finitely generated graded R-modules, $R\text{-fmod}$ be the full subcategory of finite-dimensional graded modules and $R\text{-proj}$ be the full subcategory of projective objects. Unless specified otherwise a module is always a left module. We’ll abbreviate

$$K(R) = [R\text{-proj}], \quad G(R) = [R\text{-fmod}].$$
Here $|\mathcal{C}|$ denotes the Grothendieck group of an exact category \mathcal{C}. Assume that the k-vector spaces R_d are finite dimensional for each d. Then $K(R)$ is a free Abelian group with a basis formed by the isomorphism classes of the indecomposable objects in R-proj, and $G(R)$ is a free Abelian group with a basis formed by the isomorphism classes of the simple objects in R-fmod. Given an object M of R-proj or R-fmod let $[M]$ denote its class in $K(R)$, $G(R)$ respectively. When there is no risk of confusion we abbreviate $M = [M]$. We'll write $[M : N]$ for the composition multiplicity of the R-module N in the R-module M. Consider the ring $A = \mathbb{Z}[v, v^{-1}]$. If the grading of R is bounded below then the A-modules $K(R)$, $G(R)$ are free. Here A acts on $G(R)$, $K(R)$ as follows $vM = M[1], \quad v^{-1}M = M[-1]$. For any M, N in R-mod let

$$\text{hom}_R(M, N) = \bigoplus_d \text{Hom}_R(M, N[d])$$

be the graded k-vector space of all R-module homomorphisms. If $R = k$ we'll omit the subscript R in hom’s and in tensor products. As much as possible we'll use the following convention: graded objects are denoted by minus cules and non-graded ones by majuscules. In particular R-Mod will denote the category of finitely generated (non-graded) R-modules. We'll abbreviate $\text{Hom} = \text{Hom}_k, \otimes = \otimes_k$, etc.

For a graded k-vector space $M = \bigoplus_d M_d$ we'll write

$$\text{gdim}(M) = \sum_d v^d \text{dim}(M_d),$$

where dim is the dimension over k.

0.3. Constructible sheaves. Given an action of a complex linear algebraic group G on a quasiprojective algebraic variety X over \mathbb{C} we write $\mathcal{D}_G(X)$ for the bounded derived category of complexes of G-equivariant sheaves of k-vector spaces on X. Objects of $\mathcal{D}_G(X)$ are referred to as complexes. If $G = \{e\}$, the trivial group, we abbreviate $\mathcal{D}(X) = \mathcal{D}_G(X)$. For each complexes $\mathcal{L}, \mathcal{L}'$ we'll abbreviate

$$\text{Ext}^*_G(\mathcal{L}, \mathcal{L}') = \text{Ext}^*_\mathcal{D}_G(X)(\mathcal{L}, \mathcal{L}'), \quad \text{Ext}^*(\mathcal{L}, \mathcal{L}) = \text{Ext}^*\mathcal{D}_G(X)(\mathcal{L}, \mathcal{L}),$$

if no confusion is possible. The constant sheaf on X with stalk k will be denoted k. For any object \mathcal{L} of $\mathcal{D}_G(X)$ let $H^*_G(X, \mathcal{L})$ be the space of G-equivariant cohomology with coefficients in \mathcal{L}. Let $D \in \mathcal{D}_G(X)$ be the G-equivariant dualizing complex, see [BL, def. 3.5.1]. For each \mathcal{L} let

$$\mathcal{L}' = \mathcal{Hom}(\mathcal{L}, D)$$

be its Verdier dual, where \mathcal{Hom} is the internal Hom. Recall that

$$(\mathcal{L}')^\vee = \mathcal{L}, \quad \text{Ext}^*_D(\mathcal{L}, D) = H^*_G(X, \mathcal{L}'), \quad \text{Ext}^*_G(k, \mathcal{L}) = H^*_G(X, \mathcal{L}).$$
We define the space of G-equivariant homology by
\[H^*_G(X, k) = H^*_G(X, \mathcal{D}). \]
Note that $\mathcal{D} = k[2d]$ if X is a smooth G-variety of pure dimension d. Consider the following graded k-algebra
\[S_G = H^*_G(\bullet, k). \]
The graded k-vector space $H^*_G(X, k)$ has a natural structure of a graded S_G-module. We have
\[H^*_G(\bullet, k) = S_G \]
as graded S_G-module. There is a canonical graded k-algebra isomorphism
\[S_G \simeq k[\mathfrak{g}]^G. \]
Here the symbol \mathfrak{g} denotes the Lie algebra of G and a G-invariant homogeneous polynomial over \mathfrak{g} of degree d is given the degree $2d$ in S_G.

Fix a morphism of quasi-projective algebraic G-varieties $f : X \to Y$. If f is a proper map there is a direct image homomorphism
\[f_* : H^*_G(X, k) \to H^*_G(Y, k). \]
If f is a smooth map of relative dimension d there is an inverse image homomorphism
\[f^* : H^*_i(Y, k) \to H^*_{i-2d}(X, k), \quad \forall i. \]
If X has pure dimension d there is a natural homomorphism
\[H^*_G(X, k) \to H^*_{i-2d}(X, k). \]
It is invertible if X is smooth. The image of the unit is called the fundamental class of X in $H^*_G(X, k)$. We denote it by $[X]$. If $f : X \to Y$ is the embedding of a G-stable closed subset and $X' \subset X$ is the union of the irreducible components of maximal dimension then the image of $[X']$ by the map f_* is the fundamental class of X in $H^*_G(Y, k)$. It is again denoted by $[X]$.

1. Reminder on quivers and extensions

1.1. Representations of quivers. We assume given a nonempty quiver Γ such that no arrow may join a vertex to itself. Recall that Γ is a tuple $(I, H, h \mapsto h', h \mapsto h'')$ where I is the set of vertices, H is the set of arrows, and for $h \in H$ the vertices $h', h'' \in I$ are the origin and the goal of h respectively. Note that the set I may be infinite. For $i, j \in I$ we write
\[H_{i,j} = \{ h \in H : h' = i, h'' = j \}. \]
We’ll abbreviate \(i \to j \) for \(H_{i,j} \neq \emptyset \), \(i \not\to j \) for \(H_{i,j} = \emptyset \), and \(h : i \to j \) for \(h \in H_{i,j} \).

Let \(h_{i,j} \) be the number of elements in \(H_{i,j} \) and set

\[
i \cdot j = -h_{i,j} - h_{j,i}, \quad i \cdot i = 2, \quad i \neq j.
\]

Let \(\mathcal{V} \) be the category of finite-dimensional \(I \)-graded \(\mathbb{C} \)-vector spaces \(\mathcal{V} = \bigoplus_{i \in I} \mathcal{V}_i \) with morphisms being linear maps respecting the grading. For \(\nu = \sum_i \nu_i \) in \(\mathbb{N}I \) let \(\mathcal{V}_\nu \) be the full subcategory of \(\mathcal{V} \) whose objects are those \(\mathcal{V} \) such that \(\dim(\mathcal{V}_i) = \nu_i \) for all \(i \). We call \(\nu \) the dimension vector of \(\mathcal{V} \). Given an object \(\mathcal{V} \) of \(\mathcal{V} \) let

\[
E_\mathcal{V} = \bigoplus_{h \in H} \text{Hom}(\mathcal{V}_{h'}, \mathcal{V}_{h''}).
\]

The algebraic group \(G_\mathcal{V} = \prod_i \text{GL}(\mathcal{V}_i) \) acts on \(E_\mathcal{V} \) by \((g, x) \mapsto gx = y \) where \(y_h = g_h \circ x_h g_h^{-1}, \ g = (g_i), \ x = (x_h), \) and \(y = (y_h) \).

Fix a nonzero element \(\nu \) of \(\mathbb{N}I \). Let \(Y^\nu \) be the set of all pairs \(y = (i, a) \) where \(i = (i_1, i_2, \ldots, i_k) \) is a sequence of elements of \(I \) and \(a = (a_1, a_2, \ldots, a_k) \) is a sequence of positive integers such that \(\sum_i a_i i_i = \nu \). Note that the assignment

\[
y \mapsto (a_1 i_1, a_2 i_2, \ldots, a_k i_k)
\]

identifies \(Y^\nu \) with a set of sequences

\[
(1.1) \quad \nu^1, \nu^2, \ldots, \nu^k \in \mathbb{N}I \quad \text{with} \quad \nu = \sum_{l=1}^k \nu^l.
\]

For each pair \(y = (i, a) \) as above we’ll call \(a \) the multiplicity of \(y \). Let \(I^\nu \subseteq Y^\nu \) be the set of all pairs \(y \) with multiplicity \((1, 1, \ldots, 1)\). We’ll abbreviate \(i \) for a pair \(y = (i, a) \) which lies in \(I^\nu \). Given a positive integer \(m \) we have \(\bigsqcup I^\nu = I^m \), where \(\nu \) runs over the set of elements \(\nu \) of \(\mathbb{N}I \) with \(|\nu| = m \). Here, we write \(\nu = \sum_i \nu_i i_i \) and \(|\nu| = \sum_i \nu_i \). In a similar way, we define \(Y^m = \bigsqcup I^\nu \).

1.2. Flags

Let \(\nu \in \mathbb{N}I, \ \nu \neq 0, \) and assume that \(\mathcal{V} \) lies in \(\mathcal{V}_\nu \). For each sequence \(\mathcal{V} = (\nu^1, \nu^2, \ldots, \nu^k) \) as in \((1.1), (1.2)\), a flag of type \(\mathcal{V} \) in \(\mathcal{V} \) is a sequence

\[
\phi = (\mathcal{V} = \mathcal{V}^0 \supset \mathcal{V}^1 \supset \cdots \supset \mathcal{V}^k = 0)
\]

of \(I \)-graded subspace of \(\mathcal{V} \) such that for any \(l \) the \(I \)-graded subspace \(\mathcal{V}^{l-1}/\mathcal{V}^l \) belongs to \(\mathcal{V}_{\nu^l} \). Let \(F_\mathcal{V}_{\nu^l} \) be the variety of all flags of type \(\mathcal{V} \) in \(\mathcal{V} \). The group \(G_\mathcal{V} \) acts transitively on \(F_\mathcal{V}_{\nu^l} \) in the obvious way, yielding a smooth projective \(G_\mathcal{V} \)-variety structure on \(F_\mathcal{V}_{\nu^l} \).

If \(x \in E_\mathcal{V} \) we say that the flag \(\phi \) is \(x \)-stable if \(x_h(\mathcal{V}^l_{h'}) \subset \mathcal{V}^l_{h''} \) for all \(h, l \). Let \(\tilde{F}_{\mathcal{V}_{\nu^l}} \) be the variety of all pairs \((x, \phi)\) such that \(\phi \) is \(x \)-stable. Set \(d_\nu = \dim(\tilde{F}_{\mathcal{V}_{\nu^l}}) \). The group \(G_\mathcal{V} \) acts on \(\tilde{F}_{\mathcal{V}_{\nu^l}} \) by \(g : (x, \phi) \mapsto (gx, g\phi) \). The first projection gives a \(G_\mathcal{V} \)-equivariant proper morphism

\[
\pi_\mathcal{V} : \tilde{F}_{\mathcal{V}_{\nu^l}} \to E_\mathcal{V}.
\]
1.3. Ext-algebras. Let $\nu \in \mathbb{N}I$, $\nu \neq 0$, and assume that $V \in \mathcal{V}_\nu$. We abbreviate $S_V = S_{G_V}$. For each sequence $y \in Y^\nu$ we have the following semisimple complexes in $D_{G_V}(E_V)$

$$L_y = (\pi y)! (k), \quad L_y^\vee = L_y[2dy], \quad L_y^\delta = L_y[dy].$$

For y, y' in Y^ν we consider the graded S_V-module

$$Z_{V,y,y'} = \text{Ext}^*_G(L_y, L_{y'}).$$

For y, y', y'' in Y^ν the Yoneda composition is a homogeneous S_V-bilinear map of degree zero

$$*: Z_{V,y,y'} \times Z_{V,y',y''} \to Z_{V,y,y''}.$$ The map $*$ equips the graded k-vector space

$$Z_V = \bigoplus_{i \in I^\nu} Z_{V,i,i}$$

with the structure of an associative graded S_V-algebra with 1. If there is no ambiguity we'll omit the symbol $*$. We set

$$F_{V,y} = \text{Ext}^*_G(L_y, D), \quad F_V = \bigoplus_{i \in I^\nu} F_{V,i}.$$ For y, y' in Y^ν the Yoneda product gives a graded S_V-bilinear map $Z_{V,y,y'} \times F_{V,y'} \to F_{V,y}$. This yields a left graded representation of Z_V on F_V. For each $i \in I^\nu$ let $1_{V,i} \in Z_{V,i,i}$ denote the identity of L_i. The elements $1_{V,i}$ form a complete set of orthogonal idempotents of Z_V such that

$$Z_{V,i,i} = 1_{V,i} \ast Z_V \ast 1_{V,i}, \quad F_{V,i} = 1_{V,i} \ast F_V.$$ We'll change the grading of Z_V in the following way. Put

$$Z^\delta_{V,i,i} = \text{Ext}^*_G(L_i^\delta, L_i^\delta), \quad Z^\delta_V = \bigoplus_{i \in I^\nu} Z^\delta_{V,i,i}.$$ The graded k-algebra Z^δ_V depends only on the dimension vector of V. We'll write

$$R(\Gamma)_\nu = Z^\delta_V.$$ This graded k-algebra has been computed explicitly in [VV]. The same result has also been announced by R. Rouquier. See Section 7 for more details. We set also $I^0 = \{0\}$, $L^\delta_0 = k$ (the constant sheaf over $\{0\}$)

$$R(\Gamma)_0 = Z^\delta_{i(0)} = k.$$
2. Quivers with involutions

In this section we introduce an analogue of the Ext-algebra $R(\Gamma)_\nu$. It is associated with a quiver with an involution.

2.1. Representations of quivers with involution. Fix a nonempty quiver Γ such that no arrow may join a vertex to itself. An involution θ on Γ is a pair of involutions on I and H, both denoted by θ, such that the following properties hold for $h \in H$:

- $\theta(h)' = \theta(h''')$ and $\theta(h'''') = \theta(h')$,
- $\theta(h') = h''$ iff $\theta(h) = h$.

We'll always assume that θ has no fixed points in I, i.e., there is no $i \in I$ such that $\theta(i) = i$. To simplify we'll say that θ has no fixed points.

Let θV be the category of finite-dimensional I-graded C-vector spaces V with a non-degenerate symmetric bilinear form ϖ such that $(V_i)^\perp = \bigoplus_{j \neq \theta(i)} V_j$.

To simplify we'll say that V belongs to θV if there is a bilinear form ϖ such that the pair (V, ϖ) lies in θV. The morphisms in θV are the linear maps which respect the grading and the bilinear form. Let

$$\theta N = \{ \nu = \sum_i \nu_i i \in N; \nu_{\theta(i)} = \nu_i, \forall i \}.$$

For $\nu \in \theta N$ let θV_{ν} be the full subcategory of θV consisting of the pairs (V, ϖ) such that V lies in θV_{ν}. Note that $|\nu|$ is an even integer. We'll usually write $|\nu| = 2m$ with $m \in \mathbb{N}$. Given V in θV and A in V we let

$$\theta E_V = \{ x = (x_h) \in E_V; x_{\theta(h)} = -t x_h, \forall h \in H \},$$

$$\theta G_V = \{ g \in G_V; g_{\theta(i)} = t g_i^{-1}, \forall i \in I \},$$

$$\theta E_{A,V} = \theta E_V \times L_{A,V}, \quad L_{A,V} = \text{Hom}_V(A, V).$$

The algebraic groups θG_V, G_A act on θE_V, $L_{A,V}$ in the obvious way.

2.2. Generalities on isotropic flags. Given a finite dimensional C-vector space W with a non-degenerate symmetric bilinear form ϖ, an isotropic flag in W is a sequence of subspaces

$$\phi = (W = W^{-k} \supset W^{1-k} \supset \cdots \supset W^k = 0)$$

such that $(W^l)^\perp = W^{-l}$ for any $l = -k, 1-k, \ldots, k-1, k$. Here the symbol \perp means the orthogonal relative to ϖ. In particular W^0 is a Lagrangian subspace of W. Let $F(W)$ be the variety of all complete flags in W, and $F(W, \varpi)$ be the subvariety of all complete isotropic flags, i.e., we require that $\phi = (W^l)$ is an isotropic flag such that W^l has the dimension $m-l$ and $k = m$. If W has dimension $2m$ then $F(W, \varpi)$ has dimension $2\ell_m = m(m-1)$.

2.3. Sequences. Fix a nonzero dimension vector ν in $\theta N I$. Let θY^ν be the set of all pairs $y = (i, a)$ in Y^ν such that

$$i = (i_{1-k}, \ldots, i_{k-1}, i_k), \quad a = (a_{1-k}, \ldots, a_{k-1}, a_k), \quad \theta(i) = i_{1-l}, \quad a_l = a_{1-l}.$$

As in (1.1) we can identify a pair y as above with a sequence

$$\nu^{1-k}, \ldots, \nu^{k-1}, \nu^k \in N I, \quad \theta(\nu^l) = \nu^{1-l}, \quad \sum l \nu^l = \nu.$$

Let $\theta T^\nu \subset \theta Y^\nu$ be the set of all pairs y of multiplicity $(1, 1, \ldots, 1)$. We’ll abbreviate $i = (i, a)$ for each pair in θT^ν. Note that a sequence in θT^ν contains $\lfloor m \rfloor$ terms.

Finally, we set $\theta T^m = \bigcup_{\nu} \theta T^\nu, \quad \nu \in \theta N I, \quad |\nu| = 2m,$

and we define θY^m in the same way.

2.4. Definition of the map $\theta \pi_{\Lambda, \nu}$. Fix $\nu \in \theta N I, \nu \neq 0$, and $\lambda \in N I$. Fix an object V in θV^ν and an object Λ in θV^λ. For y in θY^ν an isotropic flag of type y in V is an isotropic flagug $\phi = (V = V^{l-k} \supset V^{l-k} \supset \cdots \supset V = 0)$

such that V^{l-1}/V^l lies in θV^ν for each l. We define $\theta F_{V, y}$ to be the variety of all isotropic flags of type y in V. Next, we define $\theta F_{\Lambda, V, y}$ to be the variety of all tuples (x, y, ϕ) satisfying the following conditions :

- $x \in \theta E_{V}$ and $\phi \in \theta F_{V, y}$ is stable by x, i.e., $x(V^l) \subset V^l$ for each l,
- $y \in L_{\Lambda, V}$ and $y(\Lambda) \subset V^0$.

We set

$$d_{\lambda, y} = \dim(\theta F_{\Lambda, V, y}).$$

We have the following formulas.

2.5. Proposition. For $i \in \theta T^\nu$ we have

(a) $\dim(\theta F_{V, i}) = \ell_i/2,$

(b) $d_{\lambda, i} = \ell_i/2 + \sum_{k<l, k \neq -1} h_{i_k, i_l}/2 + \sum_{l \in I} \lambda_{i_l}.$

Proof: Fix a subset $J \subset I$ such that $I = I \cup \theta(M)$. Set $V_J = \bigoplus_{j \in J} V_j$. The assignment $(V^k) \mapsto (V^k \cap V_J)$ takes $\theta F_{V, i}$ isomorphically onto

$$\prod_{j \in J} F(V_j).$$

Thus we have

$$\dim(\theta F_{V, i}) = \sum_{j \in J} \ell_{i_j} = \sum_{i \in I} \ell_{i_l}/2.$$
Next, fix a sequence i as above and fix a flag $\phi = (V^k)$ in $\theta F_{A,V}$. Then we have
\[d_{\lambda,i} = \ell_v/2 + \dim \{ x \in \theta E_V; x(V^k) \subset V^k, \forall k \} + \dim \{ y \in L_{A,V}; y(\Lambda) \subset V^0 \}. \]
Finally we have (see the discussion in Section 4.9)
\[\dim \{ x \in \theta E_V; x(V^k) \subset V^k, \forall k \} = \sum_{k < l, k + l \neq 1} h_{k,v,l}/2, \]
\[\dim \{ y \in L_{A,V}; y(\Lambda) \subset V^0 \} = \sum_{1 \leq i \leq m} \lambda_i. \]
\[\square \]

The group θG_V acts transitively on $\theta F_{A,V}$. It acts also on $\theta F_{A,V,i}$. The first projection gives a θG_V-equivariant proper morphism
\[\theta \pi_{A,Y} : \theta F_{A,V,Y} \to \theta E_{A,V}. \]
For a future use we introduce also the obvious projection
\[p : \theta F_{A,V} \to \theta E_V, \quad \theta F_{A,V} = \bigoplus_{i \in \theta I^v} \theta F_{A,V,i}, \quad \theta E_V = \bigoplus_{i \in \theta I^v} \theta E_{V,i}. \]

2.6. Ext-algebras. Let λ, ν, Λ, V be as above. We abbreviate $\theta S_V = S_{\theta G_V}$. For $y \in \theta Y^v$ we define the following semisimple complexes in $D_{\theta G_V}(\theta E_{A,V})$
\[\theta L_y = (\theta \pi_{A,Y})(k), \quad \theta L_y = \theta L_y[2d_{\lambda,Y}], \quad \theta L_y = \theta L_y[d_{\lambda,Y}]. \]
For $i, i' \in \theta I^v$ we consider the graded θS_V-module
\[\theta Z_{A,V,i,i'} = \text{Ext}_{\theta G_V}^*(\theta L_i^v, \theta L_{i'}^v). \]
The Yoneda composition is a homogeneous θS_V-bilinear map of degree zero
\[\theta Z_{A,V,i,i'} \times \theta Z_{A,V,i,i'} \to \theta Z_{A,V,i,i'}, \quad i, i', i'' \in \theta I^v. \]
It equips the k-vector space
\[\theta Z_{A,V} = \bigoplus_{i, i' \in \theta I^v} \theta Z_{A,V,i,i'} \]
with the structure of a unital associative graded θS_V-algebra. For $i \in \theta I^v$ we have the graded θS_V-modules
\[\theta F_{A,V,i} = \text{Ext}_{\theta G_V}^*(\theta L_i^v, D), \quad \theta F_{A,V} = \bigoplus_{i \in \theta I^v} \theta F_{A,V,i}. \]
For each $i, i' \in \theta I^v$ the Yoneda product gives a graded θS_V-bilinear map $\theta Z_{A,V,i,i'} \times \theta F_{A,V,i'} \to \theta F_{A,V,i}$. This yields a left graded representation of $\theta Z_{A,V}$ on $\theta F_{A,V}$. Our first goal is to compute the graded algebra $\theta Z_{A,V}$ and the graded representation $\theta F_{A,V}$. For $i \in \theta I^v$ let $1_{A,V,i}$ be the identity of θL_i^v, regarded as an element of $\theta Z_{A,V,i,i}$. The elements $1_{A,V,i}$ form a complete set of orthogonal idempotents of $\theta Z_{A,V}$ such that
\[\theta Z_{A,V,i,i'} = 1_{A,V,i} \theta Z_{A,V} 1_{A,V,i'}, \quad \theta F_{A,V,i} = 1_{A,V,i} \theta F_{A,V}. \]
2.7. Remark. Fix a pair \(y \) in \(\theta Y^\nu \). Let \(i \) be the sequence of \(\theta I^\nu \) obtained by expanding \(y \). We have an isomorphism of complexes in the derived category

\[
\theta \mathcal{L}_i^\delta = \bigoplus_{\omega \in \mathcal{E}_b} \theta \mathcal{L}_{\nu}^\delta [f_b - 2\ell(w)].
\]

Here \(b = (b_1, \ldots, b_m) \) is a sequence such that the multiplicity of \(y \) is

\[
\theta(b)b := (b_m, \ldots, b_2, b_1, b_2, \ldots b_m).
\]

We’ll abbreviate \(\theta \mathcal{L}_i^\delta = (b)! \theta \mathcal{L}_y^\delta \).

2.8. Shift of the grading. Let \(\lambda, \nu, \Lambda, V \) be as above. We define a new grading on \(\theta Z_{A,V} \) and \(\theta F_{A,V} \) by

\[
\theta Z_{A,V,i,v} = \text{Ext}_{\theta G}(\theta \mathcal{L}_i^\delta, \theta \mathcal{L}_v^\delta) = \theta Z_{A,V,i,v}[d_{i,v} - d_{i,v}],
\]

\[
\theta Z_{A,V} = \bigoplus_{\nu \in \theta \nu} \theta Z_{A,V,i,v},
\]

\[
\theta \mathcal{L}_v = \bigoplus_{i \in \theta \nu} \theta \mathcal{L}_i, \quad \theta \mathcal{L}_v = \bigoplus_{i \in \theta \nu} \theta \mathcal{L}_i.
\]

We set also \(\theta 0 = \{0\}, \theta \mathcal{L}_0 = k \), and \(\theta Z_{A,\{0\}} = k \) as a graded \(k \)-algebra. Here \(k \) is regarded as the constant sheaf over \(\{0\} \).

3. The convolution algebra

Fix a quiver \(\Gamma \) with set of vertices \(I \) and set of arrows \(H \). Fix an involution \(\theta \) on \(\Gamma \). Assume that \(\Gamma \) has no 1-loops and that \(\theta \) has no fixed points. Fix a dimension vector \(\nu \neq 0 \) in \(\theta \mathbb{N}I \) and a dimension vector \(\lambda \) in \(\mathbb{N}I \). Fix an object \((V, \varpi) \) in \(\theta \mathcal{Y}_\nu \) and an object \(\Lambda \) in \(\mathcal{Y}_\lambda \). For each sequences \(i, i' \) in \(\theta \nu \) we set

\[
\theta Z_{A,V,i,i'} = \theta \bar{F}_{A,V,i} \times_{\theta E_{A,V}} \theta \bar{F}_{A,V,i'}, \quad \theta Z_{A,V} = \prod_{i,i' \in \theta \nu} \theta Z_{A,V,i,i'},
\]

the reduced fiber product relative to the maps \(\theta \pi_{A,B}, \theta \pi_{A,B} \). Next we set

\[
\theta Z_{A,V} = \bigoplus_{i,i' \in \theta \nu} \theta Z_{A,V,i,i'}, \quad \theta \mathcal{F}_{A,V} = \bigoplus_{i \in \theta \nu} \theta \mathcal{F}_{A,V,i},
\]

where

\[
\theta Z_{A,V,i,i'} = H^*_{\theta \mathcal{G}_V}(\theta Z_{A,V,i,i'}, k), \quad \theta \mathcal{F}_{A,V,i} = H^*_{\theta \mathcal{G}_V}(\theta \bar{F}_{A,V,i}, k).
\]

We have

\[
\theta F_{A,V,i} = \text{Ext}_{\theta \mathcal{G}_V}(k, \theta \mathcal{L}_i) = H^*_{\theta \mathcal{G}_V}(\theta \bar{E}_V, \theta \mathcal{L}_i) = H^*_{\theta \mathcal{G}_V}(\theta \bar{F}_{A,V,i}, k).
\]
We have also
\[(3.1) \quad H^*_G \left(\theta \tilde{F}_{A, V, i, \mathbf{i}} \right) = H^*_G \left(\theta \tilde{F}_{A, V, i, D} \right)[-2d_{\lambda, i}] = \theta F_{A, V, i}[-2d_{\lambda, i}].\]
This yields a graded θS-module isomorphism
\[(3.2) \quad \theta F_{A, V, i} = \theta F_{A, V, i}.\]

We equip the θS-module $\theta Z_{A, V}$ with the convolution product relative to the closed embedding of $\theta Z_{A, V}$ into $\theta \tilde{F}_{A, V} \times \theta \tilde{F}_{A, V}$. See [CG, sec. 8.6] for details. We obtain an associative graded θS-algebra $\theta Z_{A, V}$ with 1 which acts on the graded θS-module $\theta F_{A, V}$. The unit is the fundamental class of the closed subvariety $\theta Z_{A, V}$ of $\theta Z_{A, V}$. See Section 4.6 below for the notation.

3.1. Proposition. (a) The left $\theta Z_{A, V}$-module $\theta F_{A, V}$ is faithful.

(b) There is a canonical θS-algebra isomorphism $\theta Z_{A, V} = \theta Z_{A, V}$ such that (3.2) identifies the $\theta Z_{A, V}$-action on $\theta F_{A, V}$ and the $\theta Z_{A, V}$-action on $\theta F_{A, V}$.

Proof: This is standard material, see e.g., [VV]. Let us give one proof of (a). It is a consequence of the following general fact. Let G be a linear algebraic group over \mathbb{C} and let M be a smooth quasi-projective G-variety over \mathbb{C}. Let $T \subset G$ be a maximal torus. Let Q be the fraction field of $S = S_T$. Let $Z \subset M \times M$ be a closed G-stable subset (for the diagonal action on $M \times M$) such that $p_{1,3}$ restricts to a proper map
\[p_{1,2}^{-1}(Z) \cap p_{2,3}^{-1}(Z) \to Z,\]
where $p_{i, j} : M \times M \to M \times M$ is the projection along the factor not named. The convolution product equips $H_T^G(Z, k)$ with a S_G-algebra structure and $H_T^G(M, k)$ with a $H_T^G(Z, k)$-module structure, see e.g., [CG]. Assume now that the T-spaces M, Z are equivariantly formal, see e.g., [GKM, Sec. 1.2], and assume that we have the following equality of T-fixed points subsets
\[(3.3) \quad Z^T = M^T \times M^T.\]

Consider the following commutative diagram of algebra homomorphisms
\[
\begin{array}{ccc}
H_T^G(Z, k) \otimes_S \mathbb{Q} & \xrightarrow{c} & \text{End}_S(H_T^G(M, k)) \otimes_S \mathbb{Q} \\
\downarrow b & & \downarrow \text{End}_S(H_T^G(M, k)) \\
H_T^G(Z, k) & \xrightarrow{a} & \text{End}_S(H_T^G(M, k)).
\end{array}
\]
The map c is invertible by (3.3) and the localization theorem in equivariant homology. The map b is injective because Z is equivariantly formal. The map a is injective, compare Section 4.10 below. Thus the lower map is injective, i.e., the $H_T^G(Z, k)$-module $H_T^G(M, k)$ is faithful.

□
4. The polynomial representation of the graded algebra θZ_λ^V

Fix a quiver Γ with set of vertices I and set of arrows H. Fix an involution θ on Γ. Assume that Γ has no 1-loops and that θ has no fixed points. Fix a dimension vector $\nu \neq 0$ in $\theta N I$ and a dimension vector λ in $N I$. Set $|\nu| = 2m$. Fix an object (V, ϖ) in θV_ν and an object A in V_λ. The main result of this section is Theorem 4.17 which yields an explicit faithful representation of the graded k-algebra θZ_λ^V.

4.1. Notations. Let $G = O(V, \varpi)$ be the orthogonal group, and $F = F(V, \varpi)$ be the isotropic flag manifold. We can regard F as the (non connected) flag manifold of the (non connected) group G. Next, the group θG_V is canonically identified with a Lévi subgroup of G, i.e., with the subgroup of elements which preserve the decomposition $V = \bigoplus V_i$. Then θF_V is canonically identified with the closed subvariety of F consisting of all flags which are fixed under the action of the center of θG_V. Fix once for all a maximal torus T of θG_V. Let W_V and W be the Weyl groups of the pairs $(\theta G_V, T)$ and (G, T). The canonical inclusion $\theta G_V \subset G$ yields a canonical inclusion $W_V \subset W$.

4.2. The root systems. Fix once for all a T-fixed flag ϕ_V in θF_V. We fix once for all one-dimensional T-submodules $D_{1-m}, \ldots, D_{m-1}, D_m$ of V such that

$$\phi_V = (V^l), \quad V^l = D_{l+1} \oplus \cdots \oplus D_{m-1} \oplus D_m.$$

Let $\chi_l \in \ast$ be the weight of D_l. Note that $D_l \simeq V^{l-1}/V^l$ and that the bilinear form ϖ yields a non-degenerate pairing $(V^{l-1}/V^l) \times (V^{l-1}/V^l) \to \mathbb{C}$, because $(V^l)^* = V^{-l}$. Thus we have

$$\chi_{1-l} = -\chi_l.$$

Let B be the stabilizer of the flag ϕ_V in G. Let Δ be the set of roots of (G, T) and let Δ^+ be the subset of positive roots relative to the Borel subgroup B. We abbreviate $\Delta^- = -\Delta^+$. Let Π be the set of simple roots in Δ^+. We have

$$\Delta^+ = \{ \chi_k \pm \chi_l; 1 \leq l < k \leq m \},$$

$$\Pi = \{ \chi_{l+1} - \chi_l, \chi_2 + \chi_1; l = 1, 2, \ldots, m-1 \}.$$

Let ℓ denote the Bruhat order and the length function on W. Note that W is an extended Weyl group of type D_m. In particular we have

$$\ell(w) = 0 \iff w = e, e_1,$$

where e_1 is as below, and the set S of simple reflections is given by

$$S = \{ s_0, s_1, \ldots, s_{m-1} \},$$

with $s_k, k = 0, 1, \ldots, m-1$ the reflection with respect to

$$\alpha_0 = \chi_2 + \chi_1, \quad \alpha_1 = \chi_2 - \chi_1, \quad \ldots \quad \alpha_m = \chi_m - \chi_{m-1}.$$

Note that $u(\Delta^+) = \Delta^+$ if $\ell(u) = 0$. Next, let $\theta \Delta_V \subset \Delta$ be the set of roots of $(\theta G_V, T)$. Note that θG_V is a product of general linear groups (this is due to the fact that θ has no fixed points). Indeed, we can (and we will) assume that

$$\theta \Delta_V \subset \{ \chi_l - \chi_k; l \neq k, l, k = 1, 2, \ldots, m \}.$$
More precisely, given a subset $J \subset I$ such that $I = J \uplus \theta(J)$ it is enough to choose the flag ϕ_V such that $V^0 = \bigoplus_{j \in J} V_j$. Finally, let Δ_V^+ be the subset of positive roots relative to the Borel subgroup $\theta B V = B \cap \theta G V$. We have

$$\theta \Delta_V^+ = \Delta^+ \cap \theta \Delta V.$$

4.3. The wreath product. Let S_m be the symmetric group, and $\mathbb{Z}_2 = \{-1, 1\}$. Consider the wreath product $W_m = S_m \wr \mathbb{Z}_2$. For $l = 1, 2, \ldots, m$ let $\varepsilon_l \in (\mathbb{Z}_2)^m$ be -1 placed at the l-th position. We'll regard ε_l as in element of W_m in the obvious way. There is a unique action of W_m on the set $\{1 - m, \ldots, m - 1, m\}$ such that S_m permutes $1, 2, \ldots, m$ and such that ε_l fixes k if $k \neq l, 1 - l$ and switches l and $1 - l$. The group W_m acts also on $\theta I \nu$. Indeed, view a sequence i as the map $\{1 - m, \ldots, m - 1, m\} \to I, l \mapsto i_l$. Then we set $w(i) = i \circ w^{-1}$ for $w \in W_m$.

4.4. The W-action on the set of T-fixed flags. The sets F_T and $(\theta F_V)^T$ consisting of the flags which are fixed by the T-action are equal. The group W acts freely transitively on both. We'll write e for the unit in W. Put $\phi_{V,w} = w(\phi_V), \forall w \in W$.

Thus we have $F_T = \{\phi_{V,w}; w \in W\}$. There is a unique group isomorphism $W = W_m$ such that

$$\phi_{V,w} = (V_w^l), \quad V_w^l = D_{w(l+1)} \oplus \cdots \oplus D_{w(m-1)} \oplus D_{w(m)}.$$

We'll use this identification whenever it is convenient without recalling it explicitly. We set also $w(\chi_l) = \chi_{w(l)}, \forall w, l$.

Let $\theta B_{V,w}$ be the stabilizer of the flag $\phi_{V,w}$ under the $\theta G V$-action. It is the Borel subgroup of $\theta G V$ containing T associated with the set of positive roots $w(\Delta^+) \cap \theta \Delta V$.

Let $\theta N_{V,w}$ be the unipotent radical of $\theta B_{V,w}$. Finally, let i_w be the unique sequence in θI^ν such that $\phi_{V,w}$ lies in $\theta F_{V,i_w}$. Write

$$i_c = (i_{1-m}, \ldots, i_{m-1}, i_m).$$

Since ϕ_V is a flag of type i_c, we have

$$D_l \subset V_{i_l}, \quad w^{-1}(i_c) = i_w = (i_w(1-m), \ldots, i_w(m-1), i_{w(m)}).$$

Let W_{ν} be the image of the group W_V by the isomorphism $W \to W_m$. It is the parabolic subgroup given by

$$W_{\nu} = \{w \in W_m; w(i_c) = i_c\}.$$
Note that the choices made in Section 4.2 imply that

\[(4.2) \quad W_v \subset \mathcal{E}_m.\]

There is a bijection

\[W_v \setminus W_m \to \theta \pi' \cup \theta \pi, \quad W_v w \mapsto \bar{i}_w.\]

For each \(i\) in \(\theta \pi'\) we have

\[(\theta F_{V,i})^T \simeq (\theta F_{V,i})^T = \{\phi \in \mathcal{V}_w; w \in W_i\}, \quad W_i = \{w \in W; \bar{i}_w = i\}.\]

We’ll abbreviate

\[\theta F_{V,w} = \theta F_{V,1}, \quad \bar{W}_w = W_{1w}, \quad \theta \pi_{A,w} = \theta \pi_{A,1w}.\]

We’ll also omit the symbol \(w\) if \(w = e\). For instance we write \(\theta B_V = \theta B_{V,e}\) and \(\theta N_V = \theta N_{V,e}\). Note that \(W_w = W_V w\) and that we have an isomorphism of \(\theta G_V\)-varieties

\[\theta G_V / \theta B_{V,w} \to \theta F_{V,w}, \quad g \mapsto g \phi_{V,w}.\]

4.5. The stratification of \(\theta F_V \times \theta F_V\). The group \(G\) acts diagonally on \(F \times F\). The action of the subgroup \(\theta G_V\) preserves the subset \(\theta F_V \times \theta F_V\). For \(w \in W\) let \(\bar{O}_V^w\) be the set of all pairs of flags in \(\theta F_V \times \theta F_V\) which are in relative position \(w\). More precisely, we write

\[\bar{O}_V^w = (\theta F_V \times \theta F_V) \cap (G \phi_{V,x,w}), \quad \phi_{V,x,y} = (\phi_{V,x}, \phi_{V,y}), \quad \forall x, y \in W.\]

Let \(\bar{O}_V^w\) be the Zariski closure of \(\bar{O}_V^w\). For any \(w, x, y \in W\) we write also

\[\bar{O}_V^w = \theta \bar{O}_V^w \cap (\theta F_V \times \theta F_V), \quad \theta \bar{O}_V^{w,x} = \theta \bar{O}_V^w \cap (\theta F_V \times \theta F_V).\]

We define \(\bar{F}_V^{w,s}\), \(s \in S\), as the smallest parabolic subgroup of \(\theta G_V\) containing \(\theta B_{V,w}\) and \(\theta B_{V,ws}\).

4.6. Lemma. Let \(w, x, y, s, u \in W\).

(a) The set of \(T\)-fixed elements in \(\bar{O}_V^w\) is \(\{\phi_{V,w,x}; w \in W\}\).

(b) Assume that \(\ell(u) = 0\). We have \(\theta \bar{O}_V^w = \theta \bar{O}_V^w\). It is a smooth \(\theta G_V\)-variety isomorphic to \(\theta F_V\). We have \(\theta \bar{O}_V^{w,x,y} = \emptyset\) unless \(y = xu\).

(c) Assume that \(\ell(s) = 1\). Set \(s = s' u\) with \(s' \in S\) and \(\ell(u) = 0\). We have \(\theta \bar{O}_V^w = \theta \bar{O}_V^w \cup \theta \bar{O}_V^{w,x}\). It is a smooth variety. We have \(\theta \bar{O}_V^{w,x,y} = \emptyset\) if \(y \neq xs, xu\).

- If \(xs \not\in \theta F_{V,1}\) then
 \[\theta F_{V,1} \neq \theta F_{V,1}, \quad \theta B_{V,1} = \theta B_{V,1}, \quad \theta \bar{O}_{V,x,xs} = \theta \bar{O}_{V,x,xu} = \emptyset.\]

- If \(xs \in \theta F_{V,1}\) then
 \[\theta F_{V,1} = \theta F_{V,1}, \quad \theta B_{V,1} \neq \theta B_{V,1},\]

 \[\theta G_V \times \theta B_{V,1} (\theta F_{V,1} \times \theta B_{V,1}) \simeq \theta \bar{O}_V^{w,x,u} = \theta \bar{O}_V^{w,x,xs}, (g, h) \mapsto (g \phi_{V,x}, g h \phi_{V,u}).\]
Consider the graded k-algebra $S = S_T$. The weights $\chi_1, \chi_2, \ldots, \chi_m$ are algebraically independent generators of S and they are homogeneous of degree 2. The reflection representation on t yields a W-action on S. Recall that we have

$$w(\chi_l) = \chi_{w(l)}, \quad \forall l, w.$$

Now, let M be a finite dimensional representation of t and fix a linear form $\lambda \in \mathfrak{t}^*$. Let $M[\lambda] \subset M$ be the weight subspace associated with λ. The character of M is the linear form $\text{ch}(M) = \sum_\lambda \dim(M[\lambda]) \lambda$. Let $\text{eu}(M)$ be the determinant of M, viewed as an element of degree $2\dim(M)$ of S. We'll call $\text{eu}(M)$ the Euler class of M. If M is a finite dimensional representation of T let $\text{eu}(M)$ be the Euler class of the differential of M, a module over t. Now, assume that X is a quasi-projective T-variety and that $x \in X^T$ is a smooth point of X. The cotangent space $T^*_x X$ at x is equipped with a natural representation of T. We'll abbreviate $\text{eu}(X, x) = \text{eu}(T^*_x X)$. We'll be particularly interested in the following elements

$$\Lambda_w = \text{eu}(\theta \tilde{F}_{A, V}, \phi_{V, w}), \quad \Lambda_{w, w'} = \text{eu}(\theta Z^x_{A, V}, \phi_{V, w, w'})^{-1}$$

where $\ell(x) = 0, 1$. Note that Λ_w lies in S and has the degree $2d_{\lambda, w}$.

4.7. Euler classes in S.

Consider the graded k-algebra $S = S_T$. The weights $\chi_1, \chi_2, \ldots, \chi_m$ are algebraically independent generators of S and they are homogeneous of degree 2. The reflection representation on t yields a W-action on S. Recall that we have

$$w(\chi_l) = \chi_{w(l)}, \quad \forall l, w.$$

Now, let M be a finite dimensional representation of t and fix a linear form $\lambda \in \mathfrak{t}^*$. Let $M[\lambda] \subset M$ be the weight subspace associated with λ. The character of M is the linear form $\text{ch}(M) = \sum_\lambda \dim(M[\lambda]) \lambda$. Let $\text{eu}(M)$ be the determinant of M, viewed as an element of degree $2\dim(M)$ of S. We'll call $\text{eu}(M)$ the Euler class of M. If M is a finite dimensional representation of T let $\text{eu}(M)$ be the Euler class of the differential of M, a module over t. Now, assume that X is a quasi-projective T-variety and that $x \in X^T$ is a smooth point of X. The cotangent space $T^*_x X$ at x is equipped with a natural representation of T. We'll abbreviate $\text{eu}(X, x) = \text{eu}(T^*_x X)$. We'll be particularly interested in the following elements

$$\Lambda_w = \text{eu}(\theta \tilde{F}_{A, V}, \phi_{V, w}), \quad \Lambda_{w, w'} = \text{eu}(\theta Z^x_{A, V}, \phi_{V, w, w'})^{-1}$$

where $\ell(x) = 0, 1$. Note that Λ_w lies in S and has the degree $2d_{\lambda, w}$.

4.8. Description of the θG_V-varieties $\theta \tilde{F}_{A, V, w}$.

Let $\theta \mathfrak{g}_V, \theta t, \theta \mathfrak{n}_V, w \in W$, be the Lie algebras of $\theta G_V, T, \theta \mathfrak{n}_V, w$ respectively. Consider the flag

$$\phi_{V, w} = (V = V^{-m} \supset \cdots \supset V^{m-1} \supset V^m = 0).$$

The θG_V-action on $\theta E_{A, V}$ yields a representation of $\theta \mathfrak{b}_{V, w}$ on the space

$$\theta E_{A, V} = \{ (x, y) \in \theta E_{A, V}; x(V^l_{w}) \subset V^l_{w}, \ y(A) \subset V^m_{w} \}.$$

There is an isomorphism of θG_V-varieties

$$\theta G_V \times_{\theta \mathfrak{b}_{V, w}} \theta E_{A, V, w} \rightarrow \theta \tilde{F}_{A, V, w}, \ (g, x, y) \mapsto (g \phi_{V, w}, gx, gy).$$

Under this isomorphism the map $\theta \pi_{A, w}$ is identified with the map

$$\theta G_V \times_{\theta \mathfrak{b}_{V, w}} \theta \epsilon_{A, V, w} \rightarrow \theta E_{A, V}, \ (g, x, y) \mapsto (gx, gy).$$
4.9. Character formulas. In this section we gather some character formula for a later use. For \(w, w' \in W \) we write

\[
\begin{align*}
\theta_{\mathcal{A}, V, w, w'} &= \theta_{\mathcal{A}, V, w} \cap \theta_{\mathcal{A}, V, w'}, \\
\theta_{\mathcal{D}, V, w, w'} &= \theta_{\mathcal{A}, V, w} / \theta_{\mathcal{A}, V, w'}, \\
\theta_{\mathcal{N}, V, w} &= \theta_{\mathcal{V}, w} \cap \theta_{\mathcal{V}, w'}, \\
\theta_{\mathcal{M}, V, w} &= \theta_{\mathcal{V}, w} / \theta_{\mathcal{V}, w'}.
\end{align*}
\]

We have the following \(T \)-module isomorphisms

\[
\begin{align*}
\theta_{\mathcal{N}, V, w} &= \bigoplus_{\alpha} \mathfrak{g}[\alpha], \quad \alpha \in w(\Delta^+) \cap \theta_{\mathcal{D}, V}, \\
\theta_{\mathcal{A}, V, w} &= \bigoplus_{\alpha} \mathfrak{g}_{E}[\alpha], \quad \alpha \in w(\Delta^+).
\end{align*}
\]

(4.3)

Recall that \(V = \bigoplus_{l=1}^{m} D_l \) as \(I \)-graded \(T \)-modules, where \(l = 1 - m, \ldots, m - 1, m \). We'll use the notation in (4.1). Thus \(i_l, \chi_l \) are the dimension vector and the character of \(D_l \). Note that

\[
\nu_{\theta(i)} = \nu_i, \quad \nu = \sum_{i} \nu_i, \quad i = \sum_{i} (i_l + i_{l-1}).
\]

Set \(H^0 = \{ h \in H; h' = \theta(h') \}, \quad H^1 = H \setminus H^0, \quad \text{and} \quad \lambda = \sum_{i} \chi_l i. \) Note that \(H^0 = \{ h \in H; h = \theta(h) \}. \) Decomposing a tuple \(x \in \theta_{\mathcal{E}, V} \) as the sum of \((x_h)_{h \in H^1} \) and \((x_h)_{h \in H^0} \) we get the following formula

\[
\dim(\theta_{\mathcal{E}, V}) = \sum_{h \in H^1} \nu_h \nu_{h'} / 2 + \sum_{h \in H^0} \nu_h \nu_{h'} (\nu_{h'} - 1)/2.
\]

Next, the decomposition (4.3) yields the following formula

\[
\text{ch}(\theta_{\mathcal{V}, w}) = \sum_{\chi_l - \chi_k \in w(\Delta^+)} h_{i_l, i_k} (\chi_l - \chi_k).
\]

Here the sum runs over \(\alpha \in w(\Delta^+) \), and for each \(\alpha \) we choose one pair \((l, k)\) such that \(\alpha = \chi_l - \chi_k \). In a similar way we have also

\[
\text{ch}(\theta_{\mathcal{E}, V}) = \sum_{\chi_l - \chi_k \in \Delta} h_{i_l, i_k} (\chi_l - \chi_k),
\]

\[
\text{ch}(L_{\mathcal{A}, V}) = \sum_{l} \lambda_{i_l} \chi_l.
\]
Here the first sum runs over Δ. Since $V_0 = \bigoplus_{i \geq 1} D_i$ we have also
\begin{equation}
(4.4) \quad \text{ch}(\theta_{A,V,w}) = \sum_{\chi_l - \chi_k} h_{w(\chi_l), w(\chi_k)} (\chi_l - \chi_k) + \sum_l \lambda_l \chi_l,
\end{equation}
where the first sum runs over all roots in $w(\Delta^+) + \Lambda$ and the second one over all l in $\{w(1), w(2), \ldots, w(m)\}$. Note that (4.4) can be rewritten in the following way
\[\text{ch}(\theta_{A,V,w}) = \sum_{\chi_l - \chi_k \in \Delta^+} h_{w(\chi_l), w(\chi_k)} w(\chi_l - \chi_k) + \sum_{1 \leq l \leq m} \lambda_{w(l)} w(\chi_l). \]

By (4.3) the Euler class $e_u(\theta_{n,V,w})$ is the product of all roots in $\theta \Delta V \cap w(\Delta^+)$. Therefore, for $s \in S$ the following formulas hold
- either $ws \not\in W_w$ and we have $e_u(\theta_{n,V,ws}) = e_u(\theta_{n,V,w})$,
- or $ws \in W_w$ and we have $e_u(\theta_{n,V,ws}) = -e_u(\theta_{n,V,w})$,
- $e_u(\theta_{m,V,w,ws}) = w(\alpha)$, where α is the simple root associated with s.

Finally, let $s = s_l$ with $l = 0, 1, \ldots, m - 1$. Formula (4.4) yields the following.
- We have $e_u(\theta_{A,V,w,ws_1}) = w(\chi_1)^{\lambda_{w(1)}}$.
- If $l \neq 0$ we have $e_u(\theta_{A,V,w,ws_l}) = w(\alpha_l)^{h_{w(1), w(l+1)}}$.
- We have $e_u(\theta_{A,V,w,ws_0}) = w(\chi_1)^{\lambda_{w(1)}} w(\chi_2)^{\lambda_{w(2)}} w(\alpha_0)^{h_{w(0), w(2)}}$.

4.10. Reduction to the torus. The restriction of functions from $\theta G V$ to t gives an isomorphism of graded k-algebras
\[\theta S_V = k[\chi_1, \chi_2, \ldots, \chi_m]^{W_V}. \]
The group $\theta G V$ is a product of several copies of the general linear group. Hence it is connected with a simply connected derived subgroup. It is a general fact that if X is a $\theta G V$-variety then the S-module $H^T_*(X, k)$ is equipped with a S-skewlinear representation of the group W_V such that the forgetful map gives a S_V-module isomorphism
\[H^*_\theta G V (X, k) \rightarrow H^T_*(X, k)^{W_V}, \]
see e.g., [HS, thm. 2.10]. We’ll call this action on $H^T_*(X, k)$ the canonical W_V-action.
4.11. The W-action and the $^\theta S_V$-action on $^\theta F_{A,V}$. Fix a tuple i in $^\theta I^\nu$ and an integer $l = 1, 2, \ldots, m$. We define $O_{A,V,l}(l)$ to be the $^\theta G_V$-equivariant line bundle over $^\theta F_{A,V,l}$ whose fiber at the triple (x, y, ϕ) with

$$\phi = (V = V^{-m} \supset V^{1-m} \supset \cdots \supset V^m = 0)$$

is equal to V^{l-1}/\mathbb{V}^l. Assigning to a formal variable $x_i(l)$ of degree 2 the first equivariant Chern class of $O_{A,V,l}^{-1}(l)$ we get a graded k-algebra isomorphism

$$k[x_1(1), x_1(2), \ldots x_1(m)] = H^*_G(V^1)^{(\theta F_{A,V,l}, k)}.$$

So (3.1), (3.2) yield canonical isomorphisms of graded k-vector spaces

$$k[x_1(1), x_1(2), \ldots x_1(m)] = ^\theta F_{A,V,l}[-2d_i] = ^\theta F_{A,V,i}.$$

For a future use we set also

$$x_i(l) = -x_i(1 - l), \quad l = 1 - m, 2 - m, \ldots, 0.$$

For $w \in W_m$ we set

$$wf(x_i(1), \ldots, x_i(m)) = f(x_{w(i)}(1), \ldots, x_{w(i)}(m)).$$

This yields a W_m-action on $^\theta F_{A,V}$ such that $w(^\theta F_{A,V,l}) = ^\theta F_{A,V,w(l)}$.

The multiplication of polynomials equip both $^\theta F_{A,V,l}$ and $^\theta F_{A,V}$ with an obvious structure of graded k-algebras. For $w \in W_1$ the pull-back by the inclusion $\{\phi_{V,w}\} \subset ^\theta F_{A,V,l}$ yields a graded k-algebra isomorphism

$$^\theta F_{A,V,l} \to S, \quad f(-x_1(1), \ldots, -x_1(m)) \mapsto f(x_{w(1)}, \ldots, x_{w(m)}).$$

We’ll abbreviate

$$w(f) = f(x_{w(1)}, \ldots, x_{w(m)}).$$

The isomorphism (4.6) is not canonical, because it depends on the choice of w.

Now, consider the canonical $^\theta S_V$-action on $^\theta F_{A,V}$ coming from the $^\theta G_V$-equivariant cohomology. It can be regarded as a $^\theta S_V$-action on $\bigoplus_{i} k[x_i(1), x_i(2), \ldots x_i(m)]$ which is described in the following way. The composition of the obvious projection $^\theta F_{A,V} \to ^\theta F_{A,V,l}$ with the map (4.6) identifies the graded k-algebra of the W_m-invariant polynomials in the $x_i(l)$’s, with

$$^\theta S_V = S^{w_v} = k[\chi_1, \chi_2, \ldots, \chi_m]^{w_v}.$$

This isomorphism does not depend on the choice of i, w. The $^\theta S_V$-action on $^\theta F_{A,V}$ is the composition of this isomorphism and of the multiplication by W_m-invariant polynomials.
4.12. Localization and the convolution product. Let \mathcal{Q} be the fraction field of \mathcal{S}. Write

$$\theta F'_{\mathcal{A},\mathcal{V}} = H^\mathcal{T}_{\mathcal{S}}(\tilde{\theta F}_{\mathcal{A},\mathcal{V}}, k),$$

$$\theta F''_{\mathcal{A},\mathcal{V}} = \theta F'_{\mathcal{A},\mathcal{V}} \otimes S \mathcal{Q},$$

$$\theta Z'_{\mathcal{A},\mathcal{V}} = H^\mathcal{T}_{\mathcal{S}}(\tilde{\theta Z}_{\mathcal{A},\mathcal{V}}, k),$$

$$\theta Z''_{\mathcal{A},\mathcal{V}} = \theta Z'_{\mathcal{A},\mathcal{V}} \otimes S \mathcal{Q}.$$

Let ψ_w be the fundamental class of the singleton $\{\phi_{\mathcal{V},w}\} \in \theta F'_{\mathcal{A},\mathcal{V}}$, and let $\psi_{w,w'}$ be the fundamental class of $\{\phi_{\mathcal{V},w,w'}\} \in \theta Z'_{\mathcal{A},\mathcal{V}}$. Let ψ_w, $\psi_{w,w'}$ denote also the corresponding elements in the \mathcal{Q}-vector spaces $\theta F''_{\mathcal{A},\mathcal{V}}$, $\theta Z''_{\mathcal{A},\mathcal{V}}$. Now, consider the convolution products

$$\theta Z'_{\mathcal{A},\mathcal{V}} \times \theta Z'_{\mathcal{A},\mathcal{V}} \to \theta Z'_{\mathcal{A},\mathcal{V}}, \quad \theta Z''_{\mathcal{A},\mathcal{V}} \times \theta F''_{\mathcal{A},\mathcal{V}} \to \theta F''_{\mathcal{A},\mathcal{V}}$$

relative to the inclusion of $\theta Z'_{\mathcal{A},\mathcal{V}}$ in the smooth scheme $\theta F'_{\mathcal{A},\mathcal{V}} \times \theta F'_{\mathcal{A},\mathcal{V}}$. Both may be denoted by the symbol \ast. We’ll use the notation in (4.1).

4.13. Proposition. (a) The \mathcal{S}-modules $\theta F'_{\mathcal{A},\mathcal{V}}$ and $\theta Z'_{\mathcal{A},\mathcal{V}}$ are free. The canonical $W_{\mathcal{V}}$-action on the T-equivariant homology spaces $\theta F'_{\mathcal{A},\mathcal{V}}$ and $\theta Z'_{\mathcal{A},\mathcal{V}}$ is given by $w(\psi_x) = \psi_{wx}$ and $w(\psi_{x,y}) = \psi_{wx,wy}$. The inclusions $\theta Z'_{\mathcal{A},\mathcal{V}} \subset \theta Z''_{\mathcal{A},\mathcal{V}}$ and $\theta F'_{\mathcal{A},\mathcal{V}} \subset \theta F''_{\mathcal{A},\mathcal{V}}$ commute with the convolution products.

(b) The elements ψ_w, $\psi_{w,w'}$ yield \mathcal{Q}-bases of $\theta F'_{\mathcal{A},\mathcal{V}}$, $\theta Z''_{\mathcal{A},\mathcal{V}}$, respectively. For each i the map (4.5) yields an inclusion of $k[x_1(1), \ldots, x_i(m)]$ into $\theta F'_{\mathcal{A},\mathcal{V}}$. Let $f(-x_1(1), \ldots, -x_1(m)) = \sum_{w \in W_i} w(f) \Lambda_w^{-1} \psi_w$.

(c) We have $\psi_{w',w} \ast \psi_w = \Lambda_w \psi_{w'}$ and $\psi_{w',w'} \ast \psi_{w',w} = \Lambda_{w'} \psi_{w',w'}$.

(d) If $\ell(s) = 0$, then $[\theta Z'_{\mathcal{A},\mathcal{V}}] = \sum_{w \in W'} \Lambda_{w,w'} \theta Z'_{\mathcal{A},\mathcal{V}}$ in $\theta Z''_{\mathcal{A},\mathcal{V}}$.

(e) We have $\Lambda_w = \text{eu}(\theta e'_{\mathcal{A},\mathcal{V},w} \oplus \theta e_{\mathcal{V},w})$.

(f) If $\ell(u) = 0$ then $\Lambda_{u,u'} = 0$ if $w' \neq wu$, and

$$\Lambda_{w,w'} = \Lambda_{w'}^{-1}, \quad \Lambda_{u,u'} = (\chi_{w_1}(0) \Lambda_{w}^{-1} = (\chi_{w}(1)) \Lambda_{w}^{-1} \Lambda_{w_2}^{-1}.$$

(g) If $l = 0, 1, \ldots, m - 1$ then

- either $w_{i,l} \notin W_w$ and
 $$\Lambda^{s_i}_{w_{i,l},w_{i,l}} = \Lambda^{s_i}_{w_{i,l}} = \text{eu}(\theta e'_{\mathcal{A},\mathcal{V},w_{i,l},w_{i,l},w} \oplus \theta e_{\mathcal{V},w_{i,l},w}^{-1}),$$

- or $w_{i,l} \in W_w$ and
 $$\Lambda^{s_i}_{w_{i,l},w_{i,l}} = \text{eu}(\theta e'_{\mathcal{A},\mathcal{V},w_{i,l},w_{i,l},w} \oplus \theta e_{\mathcal{V},w_{i,l},w} \oplus \theta e_{\mathcal{V},w_{i,l},w}^{-1})^{-1},$$
 $$\Lambda^{s_i}_{w_{i,l},w_{i,l}} = \text{eu}(\theta e'_{\mathcal{A},\mathcal{V},w_{i,l},w_{i,l},w} \oplus \theta e_{\mathcal{V},w_{i,l},w} \oplus \theta e_{\mathcal{V},w_{i,l},w}^{-1})^{-1}.$$
Proof: Parts (a) to (d) are left to the reader. The fiber at \(\phi_{V,w} \) of the vector bundle

\[p : \theta \bar{F}_{A,V} \to \theta F_V \]

is isomorphic to \(^{\theta}c_{A,V,w} \) as a \(T \)-module. Thus the cotangent space to \(\theta \bar{F}_{A,V} \) at the point \(\phi_{V,w} \) is isomorphic to \(^{\theta}c_{A,V,w} \oplus ^{\theta}n_{V,w} \) as a \(T \)-module. This yields (e). Next, observe that the variety \(\theta Z_{A,V} \) is smooth if \(\ell(s) \leq 1 \). First, assume that \(\ell(u) = 0 \). The fiber at \(\phi_{V,w,w'} \) of the vector bundle

\[q : \theta Z_{A,V} \to \theta F_V \times \theta F_V \]

is isomorphic to \(^{\theta}c_{A,V,w,w,u} \) as a \(T \)-module if \(u' = wu \) and it is zero else. Thus we have

\[
\Lambda_{w,w,s}^u = \text{eu}(\theta \bar{c}_{A,V,w,w,u}) \text{eu}(\theta \bar{c}_{A,V,w})^{-1} \text{eu}(\theta F_V, \phi_{V,w})^{-1},
\]

\[
= \text{eu}(\theta \bar{c}_{A,V,w,w,u}) \Lambda_{w}^{-1}.
\]

Therefore, Section 4.9 yields

\[
\Lambda_{w,w,u,s} = \begin{cases}
\Lambda_{w}^{-1} & \text{if } u = e, \\
(-\chi_{w(1)})^\lambda_{w(1)} \Lambda_{w}^{-1} & \text{if } u = \varepsilon_1.
\end{cases}
\]

Note that

\[
\chi_{w(1)} = -\chi_{w(1)}, \quad \forall w, l.
\]

This yields (f). Finally, let us concentrate on part (g). The fiber at \(\phi_{V,w,w'} \) of the vector bundle

\[q : \theta Z_{A,V} \to \theta F_V \times \theta F_V \]

is isomorphic to \(^{\theta}c_{A,V,w,w,s} \) as a \(T \)-module if \(w' = w, ws_l \) and it is zero else. Therefore, we have

\[
\Lambda_{w,w,s}^{s_l} = \begin{cases}
\text{eu}(\theta \bar{c}_{A,V,w,w,s_l})^{-1} \text{eu}(\theta \bar{O}_{V}^{w}, \phi_{V,w,w'})^{-1} & \text{if } u' = w, ws_l \\
0 & \text{else}.
\end{cases}
\]

Next, by Lemma 4.6(c), if \(w, s_l \notin W_w \) the cotangent spaces to the variety \(\theta \bar{O}_{V}^w \) at the points \(\phi_{V,w,w,s_l} \) and \(\phi_{V,w,w} \) are given by

\[
T_{w,w,s_l} \theta \bar{O}_{V}^w = T_{w,w,s_l} \theta \bar{O}_{V}^w = \theta n_{V,w,w,s_l} = \theta n_{V,w},
\]

\[
T_{w,w} \theta \bar{O}_{V}^w = T_{w,w} \theta \bar{O}_{V}^w = \theta n_{V,w,w} = \theta n_{V,w}.
\]

Thus they are both isomorphic to \(\theta n_{V,w} \) as \(T \)-modules. Similarly, if \(ws_l \in W_w \) the cotangent spaces to the variety \(\theta \bar{O}_{V}^w \) at the points \(\phi_{V,w,w,s_l} \) are given by

\[
T_{w,w,s_l} \theta \bar{O}_{V}^w = \theta n_{V,w} \oplus \theta m_{V,w,w,s_l},
\]

\[
T_{w,w} \theta \bar{O}_{V}^w = \theta n_{V,w} \oplus \theta m_{V,w,w,s_l},
\]

because \(\text{Lie}(\theta F_{V,w,w,s_l})/\text{Lie}(\theta B_{V,w}) \) is dual to \(\theta m_{V,w,w,s_l} = \theta n_{V,w}/\theta n_{V,w,w,s_l} \) as a \(T \)-module.

\[\square \]
4.14. Description of the $\theta Z_{A,V}$-action on $\theta F_{A,V}$. Using the computations in the previous proposition we can now describe explicitly the representation of $\theta Z_{A,V}$ in $\theta F_{A,V}$. For $k = 0, 1, \ldots, m - 1$ let $\sigma_{A,V}(k)$ be the fundamental class of $\theta Z_{A,V}$ in $\theta Z_{A,V}^{\leq sk}$. Next, let $\pi_{A,V}(1)$ be the fundamental class of $\theta Z_{A,V}$ in $\theta Z_{A,V}^{\leq 1}$. Finally, for $l = 1, 2, \ldots, m$ the pull-back of the first equivariant Chern class of the line bundle $\bigoplus_l \mathcal{O}_{A,V;l}(-1)$ by the obvious map

$$\theta Z_{A,V} \rightarrow \theta F_{A,V}$$

belongs to $H^*_{\text{equiv}}(\theta Z_{A,V}; \mathbb{k})$. So it yields an element $\pi_{A,V}(l)$ in $\theta Z_{A,V}$. Now, recall that $\theta Z_{A,V}^{\leq w}$ embeds into $\theta Z_{A,V}$. Thus the classes $\pi_{A,V;V;1}(k)$, $\pi_{A,V;V;1}(1)$ and $\pi_{A,V;V;1}(l)$ can all be regarded as elements of $\theta Z_{A,V}$. We write

$$\pi_{A,V;V;1}(k) = 1_{A,V;1} \star \pi_{A,V}(k) \star 1_{A,V;1},$$

$$\pi_{A,V;V;1}(1) = 1_{A,V;1} \star \pi_{A,V}(1) \star 1_{A,V;1},$$

$$\pi_{A,V;V;1}(l) = 1_{A,V;1} \star \pi_{A,V}(l) \star 1_{A,V;1}.$$ For a sequence $i = (i_1, \ldots, i_{m-1}, i_m)$ and integers $l = 1 - m, \ldots, m - 1, m$ and $k = 1, \ldots, m - 1, m$, we set

$$\lambda_i(l) = \lambda_i, \quad h_i(k) = \begin{cases} -1 & \text{if } s_k i = i, \\ h_{i_k, i_{k+1}} & \text{if } s_k i \neq i, k \neq 0, \\ h_{i_0, i_2} & \text{if } s_0 i \neq i, k = 0. \end{cases}$$

Finally, recall that $\theta Z_{A,V}$ acts on $\theta F_{A,V} = \bigoplus_i \theta F_{A,V;i}$ and that we identify $\theta F_{A,V;i}$ with $k[x_1(1), x_1(2), \ldots x_1(m)] = \theta F_{A,V;1}$ via (4.5). The latter is given the obvious k-algebra structure.

4.15. Proposition. For i, i', i'' in $\theta I'$ and f in $\theta F_{A,V;1}$ the following hold:

(a) $1_{A,V;1} \star f = f$ if $i = i'$ and $1_{A,V;1} \star f = 0$ else.

(b) $\pi_{A,V;V;1}(l) \star f = 0$ unless $i'' = i'$ and $\pi_{A,V}(l) \star f = x_i(l) f$.

(c) $\pi_{A,V;V;1}(1) \star f = 0$ unless $i' = i$, $i'' = i$ and

$$\pi_{A,V}(1) \star f = x_{i,1}(0)^{x_i(0)} \varepsilon_1(f).$$

(d) $\sigma_{V;V;1}(k) \star f = 0$ unless $i' = i$ and $\pi_{A,V}(1) \star f = s_k i$ or i', and we have

- if $s_k i = i$ and $k \neq 0$ then

$$\sigma_{V}(k) \star f = (x_i(k+1) - x_i(k)) h_i(k) (s_k (f) - f),$$

- if $s_0 i = i$ then

$$\sigma_{V}(0) \star f = (x_i(2) - x_i(0)) h_i(0) x_i(1)^{x_i(1)} x_i(2)^{x_i(2)} (s_0 (f) - f),$$

$$\sigma_{V}(1) \star f = 0.$$
Further we have
\[\sigma_{c, w, w} \]

- if \(s_1 \neq 1 \) and \(k \neq 0 \) then
 \[\sigma_{V, s_1, i}(k) \ast f = (x_{s_1}(k + 1) - x_{s_1}(k))^h \ast (k) s_k(f), \]
 \[\sigma_{V, i, i}(k) \ast f = (x_1(k + 1) - x_1(k))^h \ast (k) f \]

- if \(s_1 \neq 1 \) then
 \[\sigma_{V, s_1, i}(0) \ast f = (x_{s_1}(2) - x_{s_1}(0))^h \ast (0) x_{s_1}(1)^{\lambda \ast (0)} x_{s_1}(2)^{\lambda \ast (2)} s_0(f), \]
 \[\sigma_{V, i, i}(0) \ast f = (x_1(2) - x_1(0))^h \ast (0) x_1(1)^{\lambda \ast (0)} x_1(2)^{\lambda \ast (2)} f. \]

Proof: Parts (a), (b) are left to the reader. Let \(w \in W_1 \). Recall that \(\theta F_{A, V, \delta} \subseteq \theta F_{A, V, \delta}^\prime \) and that \(\psi_w \) lies in \(\theta F_{A, V, \delta}^\prime \). Under the map (4.6) the multiplication in \(\theta F_{A, V, \delta} \) and the \(S \)-action on \(\theta F_{A, V, \delta} \) are related by the following formula
\[f(-x_1(1), \ldots, -x_1(m)) \psi_w = w(f) \psi_w. \]

Further we have \(\varepsilon_1(i_w) = i_{wz_1} \). Therefore, part (c) follows from the following computation, see Proposition 4.13(c), (d), (f),
\[[\theta Z_{w, V}^\varepsilon] \ast \psi_w = \Lambda_{wz_1} w \Lambda w_{wz_1} \psi_{wz_1} = (\chi_{wz_1(1)})^{\lambda_{wz_1(0)}} \psi_{wz_1} = (-\chi_{wz_1(0)})^{\lambda_{wz_1(0)}} \psi_{wz_1}, \]
where \(i_{wz_1(l)} \) is the \(l \)-th component of the sequence \(i_{wz_1} \). Let us concentrate on (d). The first claim is obvious because \(\theta Z_{w, w'}^s = \emptyset \) unless \(w' = w, ws_k \) by Lemma 4.6, and \(i_{ws_k} = sk_iw \). Now, given \(i' = i \) or \(sk_iw \) we must compute the linear operator
\[\theta F_{V, i} \rightarrow \theta F_{V, i'}, \ f \mapsto \sigma_{V, i', i}(k) \ast f. \]

Proposition 4.13(b) yields an embedding
\[\theta F_{V, i} \rightarrow \bigoplus_{w \in W_i} Q \psi_w, \ f(-x_1(1), \ldots, -x_1(m)) \mapsto \sum_{w \in W_i} w(f) \Lambda_w^{-1} \psi_w. \]

Under this inclusion the map (4.7) is of the following form
\[\sum_{w \in W_i} w(f) \Lambda_w^{-1} \psi_w \mapsto \sum_{w' \in W_i} g_{w'} \psi_{w'}, \ g_{w'} = \sum_{w \in W_i} w(f) \Lambda_{w, w'}^s, \]
by Proposition 4.13(c), (d). We claim that the right hand side is the image of a polynomial \(g \) in \(\theta F_{V, i'} \) that we'll compute explicitly. The polynomial \(g \) is completely determined by the following relations
\[g_{w'} = w'(g) \Lambda_w^{-1}, \ \forall w' \in W_i. \]

In the rest of the proof we'll fix \(w, w' \) in the following way
\[w \in W_i, \ w' \in W_i, \ w' = w \text{ or } ws_k. \]
In particular we have \(i = i_w, i' = i_{w'}, \) and \(i' = i \) or \(s_k i. \)

(i) First, assume that \(s_k i = i. \) Then \(i' = i, \)
\[w' s_k \in W_{w'}, \]
and we have
\[g_{w'} = w' (f) \Lambda_{w', w'}^{s_k} + w' s_k (f) \Lambda_{w', w', w'}^{s_k}. \]

Section 4.9 and Proposition 4.13 yield
\[\Lambda_{w'} = \text{eu}(\delta_{\Lambda, \nu, w'} \oplus \eta_{\nu, w'}), \]
\[\Lambda_{w', w'}^{s_k} = \text{eu}(\delta_{\Lambda, \nu, w', w'} \oplus \eta_{\nu, w'} \oplus \eta_{\nu, w', w'}^{s_k})^{-1}, \]
\[\Lambda_{w', w', w'}^{s_k} = \text{eu}(\delta_{\Lambda, \nu, w', w'} \oplus \eta_{\nu, w'} \oplus \eta_{\nu, w', w'}^{s_k})^{-1}, \]
\[\text{eu}(\eta_{\nu, w', w'}^{s_k}) = -\text{eu}(\eta_{\nu, w', w'}^{s_k}) = w'(\alpha_k). \]

So we have
\[\Lambda_{w', w'}^{s_k} = \text{eu}(\delta_{\Lambda, \nu, w', w'}^{s_k}) w'(\alpha_k)^{-1} \Lambda_{w'}^{-1} = -\Lambda_{w', w', w'}^{s_k}. \]

Therefore we obtain
\[g_{w'} = w' (f - s_k (f)) \text{eu}(\delta_{\Lambda, \nu, w', w'}^{s_k}) w'(\alpha_k)^{-1} \Lambda_{w'}^{-1}. \]

Now, assume that \(k \neq 0. \) There is no arrow joining \(i_{w'}(k) \) and \(i_{w'}(k+1), \) because \(i_{w'}(k) = i_{w'}(k+1). \) Thus Section 4.9 yields
\[\text{eu}(\delta_{\Lambda, \nu, w', w'}^{s_k}) = 1. \]

Hence
\[g_{w'} = w' (f - s_k (f)) w'(\alpha_k)^{-1} \Lambda_{w'}^{-1} = w'(g) \Lambda_{w'}^{-1}, \]
\[g = (f - s_k (f)) \alpha_k^{-1}. \]

(ii) Finally, assume that \(s_k i \neq i, \) i.e., that \(w s_k \notin W_w. \) Section 4.9 and Proposition 4.13 yield
\[\text{eu}(\eta_{\nu, w s_k}) = \text{eu}(\eta_{\nu, w}), \]
\[\Lambda_{w} = \text{eu}(\delta_{\Lambda, \nu, w} \oplus \eta_{\nu, w}), \]
\[\Lambda_{w s_k} = \text{eu}(\delta_{\Lambda, \nu, w s_k} \oplus \eta_{\nu, w}), \]
\[\Lambda_{w, w}^{s_k} = \text{eu}(\delta_{\Lambda, \nu, w, w s_k} \oplus \eta_{\nu, w})^{-1} = \Lambda_{w s_k, w}. \]
So we have
\[\Lambda^{s_k}_{w,w} \Lambda^{s_k}_{w,s_k} = \text{eu}(\delta^{t}_{\Lambda,V,w,s_k,v}), \]
\[\Lambda^{s_k}_{w,w} \Lambda^{s_k}_{w,s_k} = \text{eu}(\delta^{r}_{\Lambda,V,w,w,s_k}). \]

Next, one of the two following alternatives holds:

- either \(i' = s_k \), \(w' = w_s \) and

 \[g_{w'} = w' s_k (f) \Lambda^{s_k}_{w',w'} \]
 \[= w' s_k (f) (\Lambda^{s_k}_{w,s_k,w} \Lambda^{s_k}_{w,w}) \Lambda^{-1}_{w'} \]
 \[= w' s_k (f) \text{eu}(\delta^{s}_{\Lambda,V,w',w',s_k}) \Lambda^{-1}_{w'}. \]

- or \(i' = i \), \(w' = w \) and

 \[g_{w'} = w' (f) \Lambda^{s_k}_{w',w'} \]
 \[= w' (f) (\Lambda^{s_k}_{w,w} \Lambda^{s_k}_{w}) \Lambda^{-1}_{w'} \]
 \[= w' (f) \text{eu}(\delta^{s}_{\Lambda,V,w',w',s_k}) \Lambda^{-1}_{w'}. \]

Now we consider the cases \(k \neq 0 \) and \(k = 0 \). First, assume that \(k \neq 0 \). By Section 4.9 we have
\[\text{eu}(\delta^{s}_{\Lambda,V,w',w',s_k}) = w'(\alpha_k)^{h_{w'(k)} - w'(k+1)}. \]

Thus (4.8) holds with
\[g = s_k (f) (-\alpha_k)^{h_{w'(k)} - w'(k+1)} \]
in the first case and with
\[g = f (-\alpha_k)^{h_{w'(k)} - w'(k+1)} \]
in the second one. Next, assume that \(k = 0 \). By Section 4.9 we have
\[\text{eu}(\delta^{s}_{\Lambda,V,w',w',s_0}) = w'(\chi_1)^{h_{w'(1)} - w'(1)} w'(\chi_2)^{h_{w'(2)} - w'(2)} \]
\[\text{eu}(\delta^{r}_{\Lambda,V,w',w',s_0}) = (\alpha_0)^{h_{w'(0)} - w'(2)} \].

Thus (4.8) holds with
\[g = s_1 (f) (-\chi_1)^{h_{w'(1)} - w'(1)} (-\chi_2)^{h_{w'(2)} - w'(2)} \]
in the first case and with
\[g = f (-\chi_1)^{h_{w'(1)} - w'(1)} (-\chi_2)^{h_{w'(2)} - w'(2)} \]
in the second one.

\[\square \]
4.16. Description of the graded \mathfrak{k}-algebra $\theta Z_{A,V}$. We can use the previous computations concerning $\theta Z_{A,V}$ to get informations on $\theta Z_{A,V}$. The action of

$$1_{A,V,i}, \ \sigma_{A,V,i}(l), \ \sigma_{A,V,i}(k), \ \pi_{A,V,i}(1),$$

yields linear operators in $\text{End}(\theta F_{A,V})$. Recall that $\theta F_{A,V}$ is a faithful left $\theta Z_{A,V}$-module and that there are canonical isomorphisms

$$\theta Z_{A,V} = \theta F_{A,V}, \ \theta F_{A,V} = \theta F_{A,V}.$$

Thus the graded left $\theta Z_{A,V}$-module $\theta F_{A,V}$ is also faithful. Recall also that

$$\theta F_{A,V} = \bigoplus_{i \in \theta F^*} \theta F_{A,V,i}, \ \theta F_{A,V,i} = k[x_1(1), x_1(2), \ldots, x_1(m)].$$

We obtain the following.

4.17. Theorem. The graded \mathfrak{k}-algebra $\theta Z_{A,V}$ is isomorphic to a graded \mathfrak{k}-subalgebra of $\text{End}(\theta F_{A,V})$ which contains the linear operators

$$1_{A,V,i}, \ \sigma_{A,V,i}(l), \ \sigma_{A,V,i}(k), \ \pi_{A,V,i}(1),$$

$$i \in \theta F^*, \ k = 0, 1, \ldots, m - 1, \ l = 1, 2, \ldots, m,$

defined as follows :

(a) $1_{A,V,i}$ is the projection to $\theta F_{A,V,i}$ relatively to $\bigoplus_{i' \neq i} \theta F_{A,V,i'}$,

(b) $\sigma_{A,V,i}(l) = 0$ on $\theta F_{A,V,i'}$ if $i' \neq i$, and it acts by multiplication by $x_1(l)$ on $\theta F_{A,V,i}$,

(c) $\sigma_{A,V,i}(k) = 0$ on $\theta F_{A,V,i'}$ if $i' \neq i$, and it takes a polynomial f in $\theta F_{A,V,i}$ to

$$(x_1(k + 1) - x_1(k))^{h^i(k)}(s_k(f) - f) \quad \text{if } s_k i = i, k \neq 0,$$

$$(x_1(2) - x_1(0))^{h_i(0)}(x_1(1)^{\lambda_i(1)}x_1(2)^{\lambda_i(2)}(s_0(f) - f)) \quad \text{if } s_k i = i, k = 0,$$

$$(x_{s_k i}(k + 1) - x_{s_k i}(k))^{h_{s_k i}(k)} s_k(f) \quad \text{if } s_k i \neq i, k \neq 0,$$

$$(x_{s_k i}(2) - x_{s_k i}(0))^{h_{s_k i}(0)}(x_{s_k i}(1)^{\lambda_{s_k i}(1)}x_{s_k i}(2)^{\lambda_{s_k i}(2)}(s_0(f)) \quad \text{if } s_k i \neq i, k = 0,$$

(d) $\pi_{A,V,i}(1) = 0$ on $\theta F_{A,V,i'}$ if $i' \neq i$, and it takes a polynomial f in $\theta F_{A,V,i}$ to

$$x_{s_k i}(0)^{\lambda_{s_k i}(0)}(f).$$

The degrees of these operators are given by the following formulas

$$\deg(1_{A,V,i}) = 0,$$

$$\deg(\sigma_{A,V,i}(l)) = 2,$$

$$\deg(\pi_{A,V,i}(1)) = 2\lambda_{s_k i}(0),$$

$$\deg(\sigma_{A,V,i}(0)) = 2h_{s_k i}(0) + 2\lambda_{s_k i}(1) + 2\lambda_{s_k i}(2),$$

$$\deg(\sigma_{A,V,i}(k)) = 2h_{s_k i}(k) \quad \text{if } k \neq 0.$$
4.18. Shift of the grading. We are mostly interested by the graded k-algebra $\theta Z^\delta_{A,V}$, whose grading differs from the grading of $\theta Z^\delta_{A,V}$. Let us compute the degree of the generators of $\theta Z^\delta_{A,V}$. We have

$\theta Z^\delta_{A,V,s_k,i} = \theta Z^\delta_{A,V,s_k,i}[d_{\lambda,i} - d_{\lambda,s_k}]$.

Recall that $h_{\theta(i,j)} = h_{\theta(j,i)}$ for each i,j. Hence, an easy computation using Proposition 2.5 yields

$$d_{\lambda,i} - d_{\lambda,s_k} = \begin{cases} h_i(k) - h_{s_k,i}(k) & \text{if } k \neq 0, \\
 h_i(0) - h_{s,i}(0) + \lambda_i(2) + \lambda_i(1) - \lambda_{s_k,i}(2) - \lambda_{s_k,i}(1) & \text{if } k = 0,
\end{cases}$$

Therefore the grading of $\theta Z^\delta_{A,V}$ is given by the following rules:

$$\text{deg}(1_{A,V,i}) = 0,$$

$$\text{deg}(x_{A,V,i}(l)) = 2,$$

$$\text{deg}(x_{A,V,i}(1)) = \lambda_i(0) + \lambda_i(1),$$

$$\text{deg}(x_{A,V,i}(0)) = -i_0 \cdot i_2 + \lambda_i(-1) + \lambda_i(0) + \lambda_i(1) + \lambda_i(2),$$

$$\text{deg}(x_{A,V,i}(k)) = -i_k \cdot i_{k+1} \text{ if } k \neq 0.$$

5. The graded k-algebra $\theta R(\Gamma)_{\lambda,\nu}$

Fix a quiver Γ with set of vertices I and set of arrows H. Fix an involution θ on Γ. Assume that Γ has no 1-loops and that θ has no fixed points. Fix a dimension vector $\nu \neq 0$ in θN and a dimension vector λ in $N I$. Set $|\nu| = 2m$.

5.1. Definition of the graded k-algebra $\theta R(\Gamma)_{\lambda,\nu}$. Assume that $m > 0$. We define a graded k-algebra $\theta R(\Gamma)_{\lambda,\nu}$ with 1 generated by $1_i, x_i, \sigma_k, \pi_1$ with $i = (i_1, \ldots, 1_m)$ in θI^ν, $k = 1, \ldots, m - 1$, $l = 1, 2, \ldots, m$, modulo the following defining relations:

(a) $1_i 1_l = \delta_{i,l} 1_i$, $\sigma_k 1_i = 1_{s_k,i} \sigma_k$, $x_i 1_i = 1_i x_i$, $\pi_1 1_i = 1_{e_1,i} \pi_1$,
(b) $x_i x_i = x_i x_i$, $\pi_1 x_i = x_{e_1,i} \pi_1$,
(c) $\sigma_{k'}^2 1_i = Q_{i_k,i_{k+1}}(x_{k+1}, x_k) 1_i$, $\pi_1^2 1_i = x_0^{\lambda_{i_k} + \lambda_{i_{k+1}}} 1_i$,
(d) $\sigma_k \sigma_k' = \sigma_k \sigma_k' \text{ if } k \neq k' \pm 1$, $\pi_1 \sigma_k = \sigma_k \pi_1 \text{ if } k \neq 1$,
(e) $\sigma_1 \pi_1^2 1_i = (\pi_1 \sigma_1)^2 1_i + \delta_{i_0,i_2} (-1)^{\lambda_{i_2}} x_0^{\lambda_{i_1} + \lambda_{i_2}} 1_i$.

We thank M. Kashiwara who indicated us an error in a previous version of the relations.
(f) \((\sigma_{k+1} \sigma_k \sigma_{k+1} - \sigma_k \sigma_{k+1} \sigma_k) 1_l = \delta_{i_k, i_{k+2}} \frac{Q_{i_k, i_{k+1}}(x_{k+1}, x_k) - Q_{i_k, i_{k+1}}(x_{k+1}, x_k)}{x_k - x_{k+2}} 1_l,\)

\[(g) \ (\sigma_k x_l - x_{\sigma_k(l)} \sigma_k) 1_l = \begin{cases} -1_l & \text{if } l = k, i_k = i_{k+1}, \\ 1_l & \text{if } l = k + 1, i_k = i_{k+1}, \\ 0 & \text{else.} \end{cases} \]

Here \(\delta_{i,j}\) is the Kronecker symbol, \(x_{\alpha - l} = -x_{\alpha}\), and

\[Q_{i,j}(u, v) = \begin{cases} (-1)^{h_{i,j}(u - v)^{-i-j}} & \text{if } i \neq j, \\ 0 & \text{else.} \end{cases} \]

We'll abbreviate \(\sigma_{i,k} = \sigma_k 1_{i}, \ x_{\alpha, l} = x_{\alpha} 1_{i}\), and \(\pi_{i,1} = \pi_1 1_{i}\). The grading on \(^{\theta}R(\Gamma)_{\lambda, \nu}\) is given by the following rules:

- \(\text{deg}(1_l) = 0,\)
- \(\text{deg}(x_{\alpha, l}) = 2,\)
- \(\text{deg}(\pi_{i,1}) = \lambda_{i_0} + \lambda_{i_1},\)
- \(\text{deg}(\sigma_{i,k}) = -i_k \cdot i_{k+1}.\)

If \(\nu = 0\) we set \(^{\theta}R(\Gamma)_{\lambda, \nu} = k\) as a graded \(k\)-algebra. Let \(\omega\) be the unique anti-involution of the graded \(k\)-algebra \(^{\theta}R(\Gamma)_{\lambda, \nu}\) which fixes \(1_l, \ x_{\alpha}, \ x_{\sigma_k}, \ p_{i,1}\).

5.2. Remarks. (a) We may set \(\sigma_0 = \pi_1 \sigma_1 \pi_1.\) We have

\[\text{deg}(\sigma_0 1_l) = -i_0 \cdot i_2 + \lambda_{i_1} + \lambda_{i_0} + \lambda_{i_1} + \lambda_{i_2}.\]

(b) We may also set \(\pi_l = \pi_{l-1} \ldots \pi_2 \pi_1 \sigma_1 \pi_2 \ldots \pi_{l-1}.\) We have

\[\text{deg}(\pi_l 1_l) = -(i_1 + i_2 + \cdots + i_{l-1}) \cdot (i_1 + i_{l-1}) + \lambda_{i_0} + \lambda_{i_{l-1}}.\]

5.3. The polynomial representation and the PBW theorem. Given any objects \(V\) in \(^{\theta}P_{\nu}\) and \(A\) in \(\mathcal{V}_A\) we abbreviate

- \(^{\theta}F_{\nu} = ^{\theta}F_{A, V, \nu, \nu},\)
- \(^{\theta}F_1 = ^{\theta}F_{A, V, 1, 1},\)
- \(^{\theta}S_{\nu} = ^{\theta}S_{V, 1}.\)

5.4. Proposition. There is an unique graded \(k\)-algebra morphism \(^{\theta}R(\Gamma)_{\lambda, \nu} \to \text{End}(^{\theta}F_{\nu})\) such that, for each \(i \in ^{\theta}P_{\nu}, k = 0, 1, \ldots, m - 1, l = 1, 2, \ldots, m,\) we have

\[1_l \mapsto 1_{A, V, 1}, \quad x_{\alpha, l} \mapsto x_{A, V, 1}(l), \quad \sigma_{i,k} \mapsto \sigma_{A, V, 1}(k), \quad \pi_{i,1} \mapsto \pi_{A, V, 1}(1).\]

Proof: The defining relations of \(^{\theta}R(\Gamma)_{\lambda, \nu}\) are checked by a direct computation. Let us (only) give a few indications concerning the relation 5.1(e). We have

\[\sigma_1 1_l = (x_1 - x_2)^{b_{i_1,1}(l)}(s_1 - \delta_{i_1, i_2}) 1_l, \quad p_{1,1} 1_l = x_{\alpha_1}^l \epsilon_1 1_l.\]
This yields
\begin{align*}
\sigma_1 \pi_1 1_1 &= (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_1}} \varepsilon_1 1_1, \\
\pi_1 \sigma_1 1_1 &= \nu_0^{\lambda_{i_2}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_2}}(s_1 - \delta_{i_1,i_2}) 1_1.
\end{align*}

Therefore we have
\begin{align*}
(\sigma_1 \pi_1)^2 1_1 &= (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_1}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_2}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_1}} \varepsilon_1 1_1, \\
(\pi_1 \sigma_1)^2 1_1 &= \nu_0^{\lambda_{i_1}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_2}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_2}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) 1_1.
\end{align*}

Hence we have
\begin{align*}
(\sigma_1 \pi_1)^2 1_1 &= (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_1}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_2}}(s_1 - \delta_{i_1,i_2}) A, \\
(\pi_1 \sigma_1)^2 1_1 &= (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_2}} \varepsilon_1 (x_1 - x_2)^{\lambda_{i_1}}(s_1 - \delta_{i_1,i_2}) B,
\end{align*}

where
\begin{align*}
A &= (s_1 - \delta_{i_1,i_2}) \nu_0^{\lambda_{i_2}} \varepsilon_1 (s_1 - \delta_{i_0,i_2}) \nu_0^{\lambda_{i_1}} \varepsilon_1 1_1, \\
B &= \nu_0^{\lambda_{i_1}} \varepsilon_1 (s_1 - \delta_{i_0,i_2}) \nu_0^{\lambda_{i_2}} \varepsilon_1 (s_1 - \delta_{i_1,i_2}) 1_1.
\end{align*}

If \(i_0 \neq i_2\) it is easy to see that \(A = B\). If \(i_0 = i_2\) a direct computation yields
\begin{align*}
B - A &= \left(x_2^{\lambda_{i_1}}(-x_2)^{\lambda_{i_2}} - x_1^{\lambda_{i_2}}(-x_1)^{\lambda_{i_1}} \right) s_1.
\end{align*}

The rest of the computation is left to the reader.

\[\square\]

The \(k\)-algebra \(\mathcal{R}(\Gamma)\) is a left graded \(\mathcal{F}_\nu\)-module such that \(x_1(l)\) acts by the left multiplication with the element \(x_{1,l}\) for each \(l = 1, 2, \ldots, m\). To unburden the notation we may write \(x_{1,l} = x_1(l)\). The following convention is important.

From now on we’ll regard \(W_m\) as a Weyl group of type \(B_m\), with the set of simple reflections \(\{s_1, s_2, \ldots, s_m\}\) where \(s_m = \varepsilon_1\), rather than an extended Weyl group of type \(D_m\) as in Section 4.2.

For \(w \in W_m\) we choose a reduced decomposition \(\tilde{w}\) of \(w\). By the observation above \(\tilde{w}\) is a minimal decomposition of the following form
\begin{align*}
w = s_{k_1} s_{k_2} \cdots s_{k_r}, \quad 0 < k_1, k_2, \ldots, k_r \leq m, \quad s_m = \varepsilon_1.
\end{align*}

We define an element \(\sigma_{\tilde{w}}\) in \(\mathcal{R}(\Gamma)\) by the following formula
\begin{align}
\sigma_{\tilde{w}} &= \sum_{i} 1_i \sigma_{\tilde{w}}, \\
1_i \sigma_{\tilde{w}} &= \begin{cases} 1_i & \text{if } r = 0 \\
1_i \sigma_{k_1} s_{k_2} \cdots s_{k_r} & \text{else,}
\end{cases}
\end{align}

where we have set \(\sigma_m = \pi_1\). Observe that \(\sigma_{\tilde{w}}\) may depend on the choice of the reduced decomposition \(\tilde{w}\).
5.5. Proposition. The k-algebra $^\theta R(\Gamma)_{\lambda,\nu}$ is a free (left or right) $^\theta F_\nu$-module with basis $\{\sigma_w; w \in W_m\}$. Its rank is $2^m m!$. The operator $1_{1\sigma_w}$ is homogeneous and its degree is independent of the choice of the reduced decomposition w.

Proof: The k-space $^\theta R(\Gamma)_{\lambda,\nu}$ is filtered with 1_1, $\sigma_{1,l}$ in degree 0 and $\sigma_{1,k}$, $\pi_{1,1}$ in degree 1. This filtration is a nonnegative increasing k-algebra filtration. Each term of the filtration is a graded subspace of $^\theta R(\Gamma)_{\lambda,\nu}$. Therefore the associated graded k-algebra $\text{gr}^\theta R(\Gamma)_{\lambda,\nu}$ is bigraded and the symbol map preserves the grading.

Now, the Nil Hecke algebra of type B_m is the k-algebra $^\theta NH_m$ generated by the elements $\bar{\pi}_1, \bar{\sigma}_1, \bar{\sigma}_2, \ldots, \bar{\sigma}_{m-1}$ with the relations

$$\bar{\sigma}_k \bar{\sigma}_{k'} = \bar{\sigma}_{k'} \bar{\sigma}_k \text{ if } |k - k'| > 1,$$

$$\bar{\pi}_1 \bar{\sigma}_k = \bar{\sigma}_k \bar{\pi}_1 \text{ if } k \neq 1,$$

$$(\bar{\pi}_1 \bar{\pi}_1)^2 = (\bar{\pi}_1 \bar{\pi}_1)^2,$$

$$\bar{\sigma}_{k+1} \bar{\sigma}_k \bar{\sigma}_{k+1} = \bar{\sigma}_k \bar{\sigma}_{k+1} \bar{\sigma}_k, \quad \bar{\pi}_1^2 = \bar{\pi}_1^2 = 0.$$

We can form the semidirect product $^\theta F_\nu \times ^\theta NH_m$, which is generated by $1_1, \bar{\pi}_1, \bar{\pi}_1, \bar{\sigma}_k$ with the relations above and

$$\bar{\sigma}_k \bar{\pi}_1 = \bar{\pi}_1 \bar{\sigma}_k, \quad \bar{\pi}_1 \bar{\pi}_1 = \bar{\pi}_1 \bar{\pi}_1, \quad \bar{\pi}_1 \bar{\pi}_1 = \bar{\pi}_1 \bar{\pi}_1.$$

We have a surjective k-algebra morphism

$$(5.3) \quad ^\theta F_\nu \times ^\theta NH_m \rightarrow \text{gr}^\theta R(\Gamma)_{\lambda,\nu}, \quad 1_1 \mapsto 1_1, \quad \bar{\pi}_1 \mapsto \bar{\pi}_1, \quad \bar{\pi}_1 \mapsto \pi_1, \quad \bar{\sigma}_k \mapsto \sigma_k.$$

Thus, the elements σ_w with $w \in W_m$ generate $^\theta R(\Gamma)_{\lambda,\nu}$ as a $^\theta F_\nu$-module. We must prove that they yield indeed a basis of $^\theta R(\Gamma)_{\lambda,\nu}$. This is rather clear, since the images of these elements in $\text{End}(^\theta F_\nu)$ under the polynomial representation are independent over $^\theta F_\nu$ (by Galois theory). Therefore, the map (5.3) is invertible. The last claim is now clear, because the element σ_w has the same degree as its symbol and if \bar{w}, \bar{w} are two reduced decomposition of w then σ_w and σ_w have the same symbol.

□

Let $^\theta F'_\nu = \bigoplus_1 ^\theta F'_1$, where $^\theta F'_1$ is the localization of the ring $^\theta F_1$ with respect to the multiplicative system generated by

$$\{\bar{\pi}_{1,l} \pm \bar{\pi}_{1,l'}; 1 \leq l \neq l' \leq m\} \cup \{\bar{\pi}_{1,l}; l = 1, 2, \ldots, m\}.$$

5.6. Corollary. The polynomial representation of $^\theta R(\Gamma)_{\lambda,\nu}$ on $^\theta F_\nu$ is faithful. The inclusion of $^\theta R(\Gamma)_{\lambda,\nu}$ into $\text{End}(^\theta F_\nu)$ yields an isomorphism of $^\theta F'_\nu$-algebras from $^\theta F'_\nu \otimes_{^\theta F_\nu} ^\theta R(\Gamma)_{\lambda,\nu}$ to $^\theta F'_\nu \times W_m$, such that for each l and each $l = 1, 2, \ldots, m$, $k = 1, 2, \ldots, m - 1$ we have

$$1_1 \mapsto 1_1,$$

$$\bar{\pi}_{1,l} \mapsto \bar{\pi}_1 1_1,$$

$$\pi_{1,1} \mapsto \bar{\pi}_0^{\lambda_{i_1}} 1_1,$$

$$\sigma_{1,k} \mapsto \begin{cases} (\bar{\pi}_0 - \bar{\sigma}_{k+1})^{-1}(s_k - 1)1_1 & \text{if } i_k = i_{k+1}, \\ (\bar{\pi}_0 - \bar{\sigma}_{k+1})^{i_{k+1}} s_k 1_1 & \text{if } i_k \neq i_{k+1}. \end{cases}$$

Restricting the $^\theta F_\nu$-action on $^\theta R(\Gamma)_{\lambda,\nu}$ to the subalgebra $^\theta S_\nu$ of $^\theta F_\nu$ we get a structure of graded $^\theta S_\nu$-algebra on $^\theta R(\Gamma)_{\lambda,\nu}$.
5.7. Proposition. (a) $^\theta S_\nu$ is isomorphic to the center of $^\theta R(\Gamma)_{\lambda,\nu}$.
(b) $^\theta R(\Gamma)_{\lambda,\nu}$ is a free graded module over $^\theta S_\nu$ of rank $(2^m m!)^2$.

Proof: First we prove (a). Recall that $^\theta S_\nu = k[\chi_1, \chi_2, \ldots, \chi_m]W_\nu = \bigoplus_i k[\kappa_1, \kappa_2, \ldots, \kappa_m, l_1]W_m$.

Given a sequence i in $^\theta I_\nu$ the assignment $x \mapsto x\kappa_i$ embeds $^\theta S_\nu$ as a central subalgebra of $^\theta R(\Gamma)_{\lambda,\nu}$. We must check that this map surjects onto the center of $^\theta R(\Gamma)_{\lambda,\nu}$. This follows from Corollary 5.6. Part (b) follows from (a) and Proposition 5.5.

\blacksquare

In Section 9 we’ll prove the following theorem.

5.8. Theorem. For any $\nu \in ^\theta NI$, $\lambda \in NI$ there is an unique graded $^\theta S_V$-algebra isomorphism

$$\Psi : ^\theta R(\Gamma)_{\lambda,\nu} \rightarrow ^\theta Z_{\lambda,V}$$

which intertwines the representations of $^\theta R(\Gamma)_{\lambda,\nu}$ and $^\theta Z_{\lambda,V}$ on $^\theta F_\nu$.

5.9. Examples. (a) If $m = 0$ then $^\theta R(\Gamma)_{\lambda,\nu} = k$ by definition.

(b) Assume that $m = 1$. Fix a vertex i in I and set $\nu = i + \theta(i)$. We have $^\theta I_\nu = \{i, \theta(i)\}$ with $i = i\theta(i)$ and $\theta(i) = \theta(i)i$. We have $^\theta R(\Gamma)_{\lambda,\nu} = (k[\kappa_1] \oplus \pi_1 k[\kappa_1])\l_1 \oplus (k[\kappa_1] \oplus \pi_1 k[\kappa_1])\theta(i)$,

$$\pi_1 \kappa_1 \l_1 = -\kappa_1 \pi_1 \l_1, \quad \pi_1 \kappa_1 \theta(i) = -\kappa_1 \pi_1 \theta(i),$$

$$\pi_1^2 \theta(i) = (-1)^{\lambda_{\theta(i)}} \kappa_i^{\lambda_{\theta(i)}} \l_1, \quad \pi_1^2 \l_1 = (-1)^{\lambda_i} \kappa_i^{\lambda_i} \l_1.$$

The inclusion $^\theta S_\nu \subset ^\theta R(\Gamma)_{\lambda,\nu}$ is given by $k[\chi] \rightarrow ^\theta R(\Gamma)_{\lambda,\nu}$, $\chi \mapsto (\kappa_1 \l_1, 0, -\kappa_1 \theta(i), 0)$.

6. AFFINE HECKE ALGEBRAS OF TYPE B

6.1. Affine Hecke algebras of type B. Given a connected reductive group G we call affine Hecke algebra of G the Hecke algebra of the extended affine Weyl group $W \times P$ where W is the Weyl group of (G,T), P is the group of characters of T, and T is a maximal torus of G. Fix p,q in k^\times. For any integer $m \geq 0$ we define the affine Hecke algebra H_m of type B_m to be the affine Hecke algebra of $SO(2m + 1)$. It admits the following presentation, see e.g., [Mc]. If $m > 0$ then H_m is the k-algebra generated by

$$T_k, \quad X_l^{\pm 1}, \quad k = 0, 1, \ldots, m - 1, \quad l = 1, 2, \ldots, m$$
satisfying the following defining relations:
(a) $X_lX_l' = X_l'X_l$,
(b) $(T_0T_1)^2 = (T_1T_0)^2$, $T_kT_{k-1}T_k = T_{k-1}T_kT_k$ if $k \neq 0, 1$, and $T_kT_{k'} = T_{k'}T_k$ if $|k - k'| \neq 1$,
(c) $T_0X_i^{-1}T_0 = X_i$, $T_kX_kT_k = X_{k+1}$ if $k \neq 0$, and $T_kX_l = X_lT_k$ if $l \neq k, k + 1$,
(d) $(T_k - p)(T_k + p^{-1}) = 0$ if $k \neq 0$, and $(T_0 - q)(T_0 + q^{-1}) = 0$.

If $m = 0$ then $H_0 = k$, the trivial k-algebra. Note that H_1 is the k-algebra generated by T_0, $X_i^{\pm 1}$ with the defining relations

$$T_0X_i^{-1}T_0 = X_i, \quad (T_0 - q)(T_0 + q^{-1}) = 0.$$

6.2. Intertwiners and blocks of H_m.

We define

$$A = k[X_1^{\pm 1}, X_2^{\pm 1}, \ldots, X_m^{\pm 1}], \quad A' = A[\Sigma^{-1}], \quad H'_m = A' \otimes_A H_m,$$

where Σ is the multiplicative set generated by

$$1 - X_iX_i^{\pm 1}, \quad 1 - p^2X_iX_i^{\pm 1}, \quad 1 - X_i^2, \quad 1 - q^2X_i^2, \quad l \neq l'.$$

For $k = 0, \ldots, m - 1$ the intertwiner φ_k in H'_m is given by the following formulas

$$\varphi_k - 1 = \frac{X_k - X_{k+1}}{pX_k - p^{-1}X_{k+1}}(T_k - p) \quad \text{if} \quad k \neq 0,$$

$$\varphi_0 - 1 = \frac{X_1^{-2} - 1}{qX_1^{-2} - q^{-1}}(T_0 - q).$$

The group W_m acts on A' as follows

$$(s_k a)(X_1, \ldots, X_m) = a(X_1, \ldots, X_{k+1}, X_k, \ldots, X_m), \quad (\varepsilon_1 a)(X_1, \ldots, X_m) = a(X_1^{-1}, X_2, \ldots, X_m).$$

There is an isomorphism of A'-algebras

$$A' \rtimes W_m \to H'_m, \quad s_k \mapsto \varphi_k, \quad \varepsilon_1 \mapsto \varphi_0, \quad k \neq 0.$$
6.3. Remark. We may assume that either I is a \mathbb{Z}-orbit or I contains at least one of $\pm q$, see the discussion in [EK1]. Thus, we can assume that one of the following two cases holds:

(a) I is a \mathbb{Z}-orbit which does not contain 1, -1, q, $-q$. So either $I = \{p^n; n \in \mathbb{Z}_{\text{odd}}\}$ or $I = \{-p^n; n \in \mathbb{Z}_{\text{odd}}\}$. Then Γ is of type A_∞ if p has infinite order and Γ is of type $A^{(1)}_r$ if p^2 is a primitive r-th root of unity.

(b) $q \in I$ (the case $-q \in I$ is similar) and $-1, 1 \notin I$. Then we have $I = \{qp^{2n}; n \in \mathbb{Z}\} \cup \{q^{-1}p^{2n}; n \in \mathbb{Z}\}$ with $q^2 \neq p^{2n}$ for all $n \in \mathbb{Z}$. Thus Γ is of type A_∞, $A_\infty \times A_\infty$, $A^{(1)}_r$, or $A^{(1)}_r \times A^{(1)}_r$.

6.4. H$_m$-modules versus θR$_m$-modules. Given an element λ of NI we define the graded k-algebra

$$\theta R_{I,\lambda,m} = \bigoplus \theta R_{I,\lambda,\nu}, \quad \theta R_{I,\lambda,\nu} = \theta R(\Gamma)_{\lambda,\nu}, \quad \theta I^m = \prod \theta I^\nu,$$

where ν runs over the set of all dimension vectors in θNI such that $|\nu| = 2m$. When there is no risk of confusion we abbreviate $\theta R_m = \theta R_{I,\lambda,m}$ and $\theta R_\nu = \theta R_{I,\lambda,\nu}$. Note that the k-algebra θR_m may not have 1, because the set I may be infinite, and that $\theta R_0 = k$ as a graded k-algebra. From now on, unless specified otherwise we’ll set

$$\lambda = \sum_i i, \quad i \in I \cap \{q, -q\}. \quad (6.2)$$

Given sequences

$$i = (i_{-m}, \ldots, i_{m}, i_m), \quad i' = (i'_{-m}, \ldots, i'_{m}, i'_m),$$

we define a sequence $\theta(i')i'$ as follows

$$\theta(i')i' = (\theta(i'_{-m}), \ldots, \theta(i'_{1}), i_{-m}, \ldots, i_m, i'_1, \ldots, i'_m).$$

Let ν, ν' be dimension vectors in θNI and NI respectively such that $|\nu| = 2m$, $|\nu'| = m'$, and $m + m' = m''$. We define an idempotent in $\theta R_{m''}$ by

$$1_{\nu,\nu'} = \sum_{i' \nu'} 1_{\theta(i')i'} \cdot \quad i' \in I^\nu', \quad i' \in I^\nu'. \quad (6.3)$$

For $\nu'_1, \nu'_2, \ldots, \nu'_{r'}$ in NI we define $1_{\nu,\nu'_1,\ldots,\nu'_r}$ in the same way. Finally, for any graded $\theta R_{m''}$-module M we set

$$1_{m,m'} M = \bigoplus_{i' \nu'} 1_{\theta(i')i'} M, \quad i' \in I^\nu', \quad i' \in I^\nu'. \quad (6.3)$$

If M is a right graded $\theta R_{m''}$-module we define $M1_{m,m'}$ in the same way.

Next, let θR$_m$-Mod_0 be the category of all finitely generated (non-graded) θR$_m$-modules such that the elements x_1, x_2, \ldots, x_m act locally nilpotently. Let

$$\theta R_m$-$\text{Mod}_0 \subset \theta R_m$-$\text{Mod}_0, \quad H_m$-$\text{fMod}_I \subset H_m$-$\text{Mod}_I$$

be the full subcategories of finite dimensional modules.

Fix a formal series $f(x)$ in $k[[x]]$ such that $f(x) = 1 + x$ modulo (x^2).

6.5. Theorem. We have an equivalence of categories
\[\mathcal{O}_m \text{-Mod}_0 \to \mathcal{H}_m \text{-Mod}_I, \quad M \mapsto M \]
which is given by
(a) \(X_l \) acts on \(1_l M \) by \(i_l^{-1}f(\sigma) \) for \(l = 1, 2, \ldots, m \),
(b) \(T_k \) acts on \(1_l M \) as follows for \(k = 1, 2, \ldots, m - 1, \)
\[
\frac{(pf(x_k) - p^{-1}f(x_{k+1}))(x_k - x_{k+1})}{f(x_k) - f(x_{k+1})}\sigma_k + p \quad \text{if } i_{k+1} = i_k,
\]
\[
\frac{(pf(x_k) - p^{-1}f(x_{k+1}))(x_k - x_{k+1})}{f(x_k) - f(x_{k+1})}\sigma_k + \frac{(p^{-2} - 1)f(x_{k+1})}{pf(x_k) - p^{-1}f(x_{k+1})} \quad \text{if } i_{k+1} = p^2 i_k,
\]
\[
\frac{pi_kf(x_k) - p^{-1}i_{k+1}f(x_{k+1})}{i_kf(x_k) - i_{k+1}f(x_{k+1})}\sigma_k + \frac{(p^{-1} - p)i_kf(x_{k+1})}{i_{k+1}f(x_k) - i_kf(x_{k+1})} \quad \text{if } i_{k+1} \neq i_k, p^2 i_k,
\]
(c) \(T_0 \) acts on \(1_1 M \) as follows
\[
\frac{f(x_1)^2 - 1}{(q^{-1} - qf(x_1)^2)x_1} \pi_1 + \frac{(q^{-2} - 1)f(x_1)^2}{q - q^{-1}f(x_1)^2} \quad \text{if } i_1 = \pm q,
\]
\[
\frac{q - q^{-1}i_1^2 f(x_1)^2}{1 - i_1^2 f(x_1)^2} \pi_1 + \frac{q - q^{-1}}{1 - i_1^2 f(x_1)^2} \quad \text{if } i_1 \neq \pm q.
\]

6.6. Remark. The first case in (c) does not occur if \(q = q^{-1} \) because \(\theta \) has no fixed points in \(I \). In the second case we have \(i_1^2 \neq 1 \) for the same reason. Note also that \((f(x) - 1)/x_1 \) is a formal series in \(k[[x]] \), and that \((f(x_1) - f(x_2))/(x_1 - x_2) \) is an invertible formal series in \(k[[x_1 - x_2]] \). Finally, recall that \(p^2 \neq 1 \).

Proof: First, recall that \(\pm 1 \notin I \) and that \(p \neq \pm 1 \). Observe also that (6.2) yields
\[
i_1 = \pm q \iff \lambda_i = 1,
\]
\[
i_1 \neq \pm q \iff \lambda_i = 0.
\]
The functor above is well defined by formulas (5.4) and (6.1). Let \(g \) be the inverse of \(f \), i.e., \(g(X) \) is the unique formal series in \(k[[X - 1]] \) such that \(gf(x) = x \). For instance, we may choose
\[
f(x) = 1 + x, \quad g(X) = X - 1.
\]
A quasi-inverse functor \(\mathcal{H}_m \text{-Mod}_I \to \mathcal{O}_m \text{-Mod}_0 \) such that \(M \mapsto M \) is given by the following rules
(a) \(1_l M = \{ m \in M; i_l X_l - 1^r m = 0, r \gg 0 \} \),
(b) \(x_1 \) acts on \(1_l M \) by \(g(i_l X_l) \) for \(l = 1, 2, \ldots, m \),
(c) \(\sigma_k \) acts on \(1_l M \) as follows for \(k = 1, 2, \ldots, m - 1, \)
\[
\frac{X_k - X_{k+1}}{(pX_k - p^{-1}X_{k+1})(g(i_k X_k) - g(i_{k+1} X_{k+1}))}(T_k - p) \quad \text{if } i_{k+1} = i_k,
\]
\[
\frac{g(i_{k+1} X_k) - g(i_k X_{k+1})}{pX_k - p^{-1}X_{k+1}}((X_k - X_{k+1})T_k + (p - p^{-1})X_{k+1}) \quad \text{if } i_{k+1} = p^2 i_k,
\]
\[
\frac{T_k X_k - X_{k+1}}{p^{-1}X_k - pX_{k+1}} + (p - p^{-1})\frac{X_{k+1}}{pX_k - p^{-1}X_k} \quad \text{if } i_{k+1} \neq i_k, p^2 i_k,
\]
(d) \(\pi_1 \) acts on \(1_i M \) as follows

\[
\frac{g(i_0 X_1)}{q^{-1} - q X_1^2} \left((X_1^{-2} - 1)T_0 + q - q^{-1} \right) \quad \text{if } i_1 = \pm q,
\]

\[
T_0 \frac{X_1^{-2} - 1}{q^{-1} X_1^2 - q} + \frac{q - q^{-1}}{q^{-1} X_1^2 - q} \quad \text{if } i_1 \neq \pm q.
\]

Note that \(g(X)/(X - 1) \) is a formal series in \(k[[X - 1]] \), and that \((X_1 - X_2)/(g(X_1) - g(X_2)) \) is an invertible formal series in \(k[[X_1 - X_2]] \).

\[\square\]

6.7. Corollary. There is an equivalence of categories

\[\Psi : \mathcal{R}_m \mathbf{- fMod}_0 \to \mathcal{H}_m \mathbf{- fMod}_I, \quad M \mapsto M.\]

6.8. Example. Let \(m = 1 \). Using Example 5.9(b) it is easy to check that the 1-dimensional \(\mathcal{R}_m \)-modules are labelled by \(\{ i \in I ; \lambda_i + \lambda_{q(i)} \neq 0 \} \), and that the irreducible 2-dimensional \(\mathcal{R}_m \)-modules are labelled by \(\{ i \in I ; \lambda_i + \lambda_{q(i)} = 0 \}/\theta \). Further we have \(\lambda_i + \lambda_{q(i)} \neq 0 \) iff \(i = \pm q^{-1} \) or \(\pm q \). On the other hand the 1-dimensional objects in \(\mathcal{H}_m \mathbf{- Mod}_I \) are given by

(a) \(X_1 = i^{-1}, \ T_0 = q, \ i \in I \cap \{ \pm q^{-1} \} \),

(b) \(X_1 = i^{-1}, \ T_0 = -q^{-1}, \ i \in I \cap \{ \pm q \} \),

and the irreducible 2-dimensional objects in \(\mathcal{H}_m \mathbf{- Mod}_I \) are given by

(c) \(X_1 = \begin{pmatrix} i & 0 \\ 0 & i^{-1} \end{pmatrix}, \ T_0 = \begin{pmatrix} -i^2 a/b & a^2 - b^2/i^2 \\ -i^2 b^2 & a/b \end{pmatrix} \) with \(a = q - q^{-1}, \ b = 1 - i^2 \), and \(i \neq \pm q^{-1}, \pm q \).

Therefore Theorem 6.5 is obvious in this case.

6.9. Induction and restriction of \(\mathcal{H}_m \)-modules. For \(i \in I \) we define functors

\[E_i : \mathcal{H}_m \mathbf{- fMod}_I \to \mathcal{H}_{m-1} \mathbf{- fMod}_I,\]

\[F_i : \mathcal{H}_m \mathbf{- fMod}_I \to \mathcal{H}_{m+1} \mathbf{- fMod}_I,\]

where \(E_i M \subset M \) is the generalized \(i^{-1} \)-eigenspace of the \(X_m \)-action, and where

\[F_i M = \text{Ind}_{\mathcal{H}_{m+1}}^{\mathcal{H}_m} \otimes_{k[X_i^{\pm 1}]} (M \otimes k_i).\]

Here \(k_i \) is the 1-dimensional representation of \(k[X_i^{\pm 1}] \) defined by \(X_{m+1} \mapsto i^{-1} \).

6.10. Remark. The results in Section 6 hold true if \(k \) is any field of characteristic \(\neq 2 \). Indeed, set \(f(\varepsilon) = 1 + \varepsilon \) and \(g(X) = X - 1 \). Then we must check that the formulas for \(T_k, T_0 \) and that the formulas for \(\sigma_k, \pi_1 \) still make sense. This is straightforward for all cases, except for the first formula for \(\pi_1 \). Here one needs that \(i_1 X_1 + 1 \) is invertible, which holds true if the characteristic is not 2.
7. Global bases of \(\mathfrak{f} \) and projective graded modules of KLR algebras

This section is a reminder on KLR algebras. Most of the results here are due to \([KL]\). Although we are essentially concerned by KLR algebras of type A, everything here holds true in any type.

7.1. Definition of the graded \(k \)-algebra \(R_m \). Fix a \(\mathbb{Z} \times \mathbb{Z}_2 \)-invariant subset \(I \subset k^\times \) as in Section 6.2. Let \(\Gamma \) be the corresponding quiver. For each integer \(m \geq 0 \) we put

\[
R(I)_m = \bigoplus_{\nu} R(I)_\nu, \quad R(I)_\nu = R(\Gamma)_\nu,
\]

where \(\nu \) runs over the set of all dimension vectors in \(NI \) such that \(|\nu| = m \). Here \(R(\Gamma)_\nu \) is the graded \(k \)-algebra introduced in Section 1.3. When there is no risk of confusion we’ll abbreviate \(R_m = R(I)_m \). Let \(Q_i,j(u,v) \) be as in (5.1). If \(m > 0 \) the graded \(k \)-algebra \(R_m \) is generated by elements \(1_i, \kappa_1, \sigma_{i,k} \) with \(i \in I^m, l = 1, 2, \ldots, m \) and \(k = 1, 2, \ldots, m-1 \) satisfying the following defining relations

\[
\begin{align*}
(a) \quad & 1_i 1_l = \delta_{i,l} 1_i, \quad \sigma_{i,k} 1 = 1_s i \sigma_{i,k} 1_i, \quad \kappa_{i,l} = 1_i \kappa_{i,l} 1_i, \\
(b) \quad & \kappa_i \kappa_j = \kappa_j \kappa_i, \\
(c) \quad & \sigma_k^2 1_i = Q_{i_k,i_{k+1}}(\kappa_{k+1}, \kappa_k) 1_i, \\
(d) \quad & \sigma_k \sigma_{k'} = \sigma_{k'} \sigma_k \text{ if } |k - k'| > 1, \\
(e) \quad & (\sigma_{k+1} \sigma_k)_{k+1} - (\sigma_k \sigma_{k+1})_k 1_i = \\
& \quad \left\{ \begin{array}{ll}
Q_{i_k,i_{k+1}}(\kappa_{k+1}, \kappa_k) - Q_{i_k,i_{k+1}}(\kappa_{k+1}, \kappa_k+2) & \text{if } i_k = i_{k+2}, \\
0 & \text{else},
\end{array} \right.
\end{align*}
\]

\[
(f) \quad (\sigma_k \kappa_{k'} - \kappa_{s_{(k')}} \sigma_k) 1_i = \left\{ \begin{array}{ll}
-1_i & \text{if } k' = k, \ i_k = i_{k+1}, \\
1_i & \text{if } k' = k+1, \ i_k = i_{k+1}, \\
0 & \text{else}.
\end{array} \right.
\]

The grading on \(R_m \) is given by the following rules: \(1_i \) has the degree 0, \(\kappa_{i,l} \) has the degree 2, and \(\sigma_{i,k} \) has the degree \(-i_k \cdot i_{k+1} \). Given any element \(a \) in \(1 R_m 1 \) we write \(\sigma_a = \sigma_{i,k} a, a \kappa_a = a \kappa_{i,l}, \) etc. Note that the \(k \)-algebra \(R_m \) may not have 1, because the set \(I \) may be infinite. If \(m = 0 \) we have \(R_m = k \) as a graded \(k \)-algebra.

Let \(\omega \) be the unique anti-involution of the graded \(k \)-algebra \(R_m \) given by

\[
\omega: \quad 1_i, \kappa_i, \sigma_k \mapsto 1_i, \kappa_i, \sigma_k.
\]

Note that \(Q_{i,j}(u,v) = Q_{j,i}(v,u) \). Hence there is an unique involution \(\tau \) of the graded \(k \)-algebra \(R_m \) such that

\[
\tau: \quad 1_i, \kappa_i, \sigma_k \mapsto 1_{w_{m}(i)}, \kappa_{m+1-i}, -\sigma_{m-k},
\]

where \(w_m \) is the longest element in \(S_m \). Finally, we have \(Q_{i,j}(u,v) = Q_{i,j}(u, -v) \).

Hence there is an unique involution

\[
\kappa = \iota \circ \tau = \tau \circ \iota.
\]

We define

\[
(7.1) \quad \kappa = \iota \circ \tau = \tau \circ \iota.
\]
7.2. The Grothendieck groups of R_m. The graded k-algebra R_m is finite dimensional over its center, a commutative graded k-subalgebra. Therefore any simple object of R_m-mod is finite-dimensional and there is a finite number of simple modules in R_m-mod. The Abelian group $G(R_m)$ is free with a basis formed by the classes of the simple objects of R_m-mod, see Section 0.2 for the notation. The Abelian group $K(R_m)$ is also free, with a basis formed by the classes of the indecomposable projective objects. Both Abelian groups are free A-modules where v shifts the grading by 1. We define

$$K_I = \bigoplus_{m \geq 0} K_{I,m}, \quad K_{I,m} = K(R_m),$$

$$G_I = \bigoplus_{m \geq 0} G_{I,m}, \quad G_{I,m} = G(R_m).$$

Now, fix integers $m, m', m'' \geq 0$ with $m'' = m + m'$. Given sequences $i \in I^m$ and $i' \in I^{m'}$ we write $i'' = ii'$. We'll abbreviate $R_{m,m'} = R_m \otimes R_{m'}$.

There is a unique inclusion of graded k-algebras

$$\phi : R_{m,m'} \to R_{m''},$$

$$1_i \otimes 1_{i'} \mapsto 1_{i''},$$

$$\kappa_{i,l} \otimes 1_{i'} \mapsto \kappa_{i''},$$

$$1_i \otimes \kappa_{i',l} \mapsto \kappa_{i''}, m + l,$$

$$1_i \otimes \kappa_{i',k} \mapsto \kappa_{i''}, m + k.$$ \hfill (7.2)

This yields a triple of adjoint functors (ϕ, ϕ^*, ϕ_*) where

$$\phi^*: R_{m''} \text{-mod} \to R_m \text{-mod} \times R_{m'} \text{-mod}$$

is the restriction and ϕ, ϕ^* are given by

$$\phi : \left\{ \begin{array}{l} R_m \text{-mod} \times R_{m'} \text{-mod} \to R_{m''} \text{-mod}, \\
(M, M') \mapsto R_{m''} \otimes R_{m, m'} (M \otimes M'), \end{array} \right.$$

$$\phi^* : \left\{ \begin{array}{l} R_{m''} \text{-mod} \times R_{m'} \text{-mod} \to R_m \text{-mod}, \\
(M, M') \mapsto \hom_{R_{m, m'}}(R_{m''}, M \otimes M'). \end{array} \right.$$

First, note that the functors ϕ, ϕ^*, ϕ_* commute with the shift of the grading. Next, the functor ϕ^* is exact and it takes finite dimensional graded modules to finite dimensional ones. By [KL, prop. 2.16] the right graded $R_{m,m'}$-module $R_{m''}$ is free of finite rank. Thus ϕ is exact and it takes finite dimensional graded modules to finite dimensional ones. For the same reason the left graded $R_{m,m'}$-module $R_{m''}$ is free of
finite rank. Thus ϕ_* is exact and it takes finite dimensional graded modules to finite dimensional ones. Further $\phi_!$ and ϕ^* take projective graded modules to projective ones, because they are left adjoint to the exact functors ϕ^*, ϕ_* respectively. To summarize, the functors $\phi_!, \phi^*$ are exact and take finite dimensional graded modules to finite dimensional ones, and the functors $\phi_!, \phi^*$ take projective graded modules to projective ones. Taking the sum over all m, m' we get an A-bilinear map

$$\phi_! : K_I \times K_I \to K_I.$$

In the same way we define also an A-linear map

$$\phi^* : K_I \to K_I \otimes_A K_I.$$

From now on, to unburden the notation we may abbreviate $R = R_m$, hoping it will not create any confusion. Recall the anti-automorphism ω from the previous section. Consider the duality $R\text{-proj} \to R\text{-proj}, \ P \mapsto P^\sharp = \text{hom}_R(P, R),$ with the action and the grading given by

$$(xf)(p) = f(p)\omega(x), \quad (P^\sharp)_d = \text{Hom}_R(P[-d], R).$$

We’ll say that P is \sharp-selfdual if $P^\sharp = P$. The duality on $R\text{-proj}$ yields an A-antilinear map

$$K_I \to K_I, \quad P \mapsto P^\sharp.$$

Set $B = \mathbb{Z}(\langle v \rangle)$. The A-module K_I is equipped with a symmetric A-bilinear form

$$K_I \times K_I \to B, \quad (P : Q) = \text{gdim}(P^\omega \otimes_R Q).$$

Here P^ω is the right graded R-module associated with P and the anti-automorphism ω. Finally, we equip $K_I \otimes_A K_I$ with the algebra structure such that

$$(P \otimes Q, P' \otimes Q') \mapsto v^{-\mu - \nu'} \phi(P, P') \otimes \phi(Q, Q'),$$

and with the A-antilinear map such that

$$P \otimes Q \mapsto (P \otimes Q)^\sharp = P^\sharp \otimes Q^\sharp.$$

The following is proved in [KL].

7.3. Proposition. The map $\phi_!$ turns K_I into an associative A-algebra with 1, and it commutes with the duality \sharp. The map ϕ^* is an algebra homomorphism which turns K_I into a coassociative A-coalgebra.

The Cartan pairing is the perfect A-bilinear form

$$K_I \times G_I \to A, \quad (P : M) = \text{gdim} \text{hom}_R(P, M).$$

Consider the duality

$$R\text{-fmod} \to R\text{-fmod}, \quad M \mapsto M^b = \text{hom}(M, k),$$
where k is considered as a graded k-space homogeneous of degree 0. The action and the grading are given by

$$(xf)(m) = f(\omega(x)m), \quad (M^g)_d = \text{Hom}(M_{-d}, k).$$

We’ll say that M is ν-selfdual if $M^\nu = M$.

Finally, let BI^m be the free B-module with basis I^m. The character of a finitely generated graded R_m-module M is given by

$$\text{ch}(M) = \sum_i \text{gdim}(1_i M) i \in BI^m.$$

7.4. The projective graded R_m-module R_y. Fix $\nu \in M$ with $|\nu| = m$. For $y = (i, a)$ in Y^ν we define an object R_y in R_m-proj as follows.

- If $i = i^m$, $i \in I$, and $a = m$ then we set $R_y = F_\nu[\ell_m]$. As a left graded R_y-modules we have a canonical isomorphism $R_y = \bigoplus_{w \in \Theta_m} R_y[2\ell(w) - \ell_m]$. We choose once for all an idempotent 1_y in R_m such that $R_y = (R_m 1_y)[\ell_m]$.

- If $i = (i_1, \ldots, i_k)$ and $a = (a_1, \ldots, a_k)$ we define the idempotent 1_y as the image of the element $\bigotimes_{l=1}^k 1_{(i_l)_{-1}i_l a_l}$ by the inclusion of graded k-algebras $\bigotimes_{l=1}^k R_{a_l i_l} \subset R_y$ in (7.2). Then we set $R_y = (R_m 1_y)[\ell_a]$.

The graded module R_y satisfies the following properties.

- Let $y \in I^\nu$ be the sequence obtained by expanding the pair $y = (i, a)$. We have the following formula in R_m-proj

$$R_y = R_1 y = \bigoplus_{w \in \Theta_a} R_y[2\ell(w) - \ell_a] =: (a)!R_y.$$

As a consequence, since the graded module R_y is ν-selfdual we get

$$R_y[y^d] = R_y[-d], \quad \forall d \in \mathbb{Z}.$$

- Given $y = (i, a) \in Y^\nu$ and $y' = (i', a') \in Y'^{\nu'}$ we set $yy' = (ii', aa')$. We have an isomorphism of graded $R_{\nu} \otimes R_{\nu'}$-modules $\phi(R_y \otimes R_y') = R_{yy'}$.

7.5. Examples. For $i \in I^\nu$, $|\nu| = m$ and $y \in Y^\nu$, define $L_i = \text{top}(R_i)$ and $L_y = \text{top}(R_y)$. Observe that L_i is not a simple graded R_m-module in general.

(a) The graded k-algebra R_1 is generated by elements 1_i, x_i, $i \in I$, satisfying the defining relations $1_i 1_j = 0$, $1_i x_i = x_i 1_i$, and $x_i 1_j = 1_{i_j} x_i$. Note that $R_1 = 1R_1 = R_1$ is a graded subalgebra of R_1, and that $L_i = R_i/(x_i) = k$. Further, we have $\text{ch}(R_1) = (1 - v^2)^{-\frac{1}{2}}$ and $\text{ch}(L_i) = i$, where the symbol $(1 - v^2)^{-\frac{1}{2}}$ denotes the infinite sum $\sum_{r \geq 0} v^{2r}$.

(b) Set $\nu = mi$ and $y = (i, m)$. We’ll abbreviate $L_{mi} = L_{i,m} = L_y$. It is a simple graded R_m-module. We have

$$\text{ch}(R_{mi}) \in v^{-\ell_m} \mathbb{Z}[v^2][v^m], \quad \text{ch}(L_{mi}) = (m)! v^m. $$

The graded $R_{m-1} \otimes R_1$-module L_{mi} has a filtration by graded submodules whose associated graded is isomorphic to $[m] L_{(m-1)i} \otimes L_i$. The socle of the graded $R_m \otimes R_i$-module L_{mi} is equal to $L_{(m-n)i} \otimes L_{mi}$ for each $m \geq n \geq 0$. See [KL, ex. 2.2, prop. 3.11] for details.
7.6. Categorification of the global bases of \(f \). Set \(\mathcal{K} = \mathbb{Q}(v) \). Let \(f \) be the \(\mathcal{K} \)-algebra generated by elements \(\theta_i, i \in I \), with the defining relations

\[
\sum_{a + b = 1 - i - j} (-1)^a \theta_i^{(a)} \theta_j^{(b)} = 0, \quad i \neq j, \quad \theta_i^{(a)} = \theta_i^{(a)} / \langle a \rangle!, \quad a \geq 0.
\]

We have a weight decomposition \(f = \bigoplus_{\nu \in \mathbb{N}} f_{\nu} \). Let \(A_f \) be the \(A \)-submodule of \(f \) generated by all products of the elements \(\theta_i^{(a)} \) with \(a \in \mathbb{Z}_{\geq 0} \) and \(i \in I \). We set

\[
A_f^\nu = A_f \cap f_{\nu}.
\]

The element \(\theta_i \) lies in \(A_f^i \) for each \(i \in I \). For each pair \(y = (i, a) \) in \(Y^\nu \) with \(i = (i_1, \ldots, i_k), a = (a_1, \ldots, a_k) \) we write

\[
\theta_y = \theta_{i_1}^{(a_1)} \theta_{i_2}^{(a_2)} \cdots \theta_{i_k}^{(a_k)}.
\]

We equip \(A_f \) with the unique \(A \)-antilinear involution such that \(\bar{\theta}_i = \theta_i \) for each \(i \in I \). We equip the tensor square of \(f \) with the \(\mathcal{K} \)-algebra structure such that

\[
(x \otimes y)(x' \otimes y') = v^{-\mu \cdot \nu} xx' \otimes yy', \quad x \in f_{\nu}, \, x' \in f_{\nu'}, \, y \in f_{\mu}, \, y' \in f_{\mu'}.
\]

Consider the \(\mathcal{K} \)-algebra homomorphism such that

\[
r : f \to f \otimes f, \quad \theta_i \mapsto \theta_i \otimes 1 + 1 \otimes \theta_i.
\]

The \(\mathcal{K} \)-algebra \(f \) comes equipped with a bilinear form \((\cdot : \cdot)\) which is uniquely determined by the following conditions

- \((1 : 1) = 1,\)
- \((\theta_i : \theta_j) = \delta_{i,j}(1 - v^2)^{-1} \) for all \(i, j \in I,\)
- \((x : yy') = (r(x) : y \otimes y') \) for all \(x, y, y',\)
- \((xx' : y) = (x \otimes x' : r(y)) \) for all \(x, x', y.\)

This bilinear form is symmetric and non-degenerate. Let \(\theta^i \in A_f^i \) be the element dual to \(\theta_i \). We may regard

\[
A_f^* = \bigoplus_{\nu} A_f^\nu, \quad A_f^\nu = \text{Hom}_A(A_f^\nu, A),
\]

as an \(A \)-submodule of \(f \) via the bilinear form \((\cdot : \cdot)\). Let \(G_{\text{low}} \) be the canonical basis (=the lower global basis) of \(f \). It is indeed a \(A \)-basis of \(A_f \). The upper global basis of \(f \) is the \(\mathcal{K} \)-basis \(G_{\text{up}} \) which is dual to \(G_{\text{low}} \) with respect to the inner product \((\cdot : \cdot)\). We may regard \(G_{\text{up}} \) as a \(\mathcal{K} \)-basis of \(f^* \). Let \(\mathcal{B}(\infty) \) be the set of isomorphism classes of irreducible (non graded) \(\mathbb{R} \)-modules such that the elements \(\mathcal{K}_1, \mathcal{K}_2, \ldots, \mathcal{K}_m \) act nilpotently.
7.7. Theorem. (a) There is an unique \mathcal{A}-algebra isomorphism $\gamma : \mathcal{A}f \rightarrow K_I$ which intertwines \ast and ϕ^\ast, and such that $\gamma(\theta_y) = R_y$ for each y.

(b) We have $G^\text{low} = \{G^\text{low}(b); b \in B(\infty)\}$, where $\gamma(G^\text{low}(b))$ is the unique \sharp-selfdual indecomposable projective graded module whose top is isomorphic to b. The map γ takes the bilinear form $(\ast : \ast)$ and the involution \bullet^\sharp on A to the bilinear form $(\ast : \ast)$ and the involution \bullet^\sharp on K_I.

(c) The transpose map $G_I \rightarrow \mathcal{A}f^\ast$ takes the \mathcal{A}-basis of G_I of the \flat-selfdual simple objects to G^up. We have $\langle t^\gamma (L_i) : \theta_i \rangle = \delta_{b,b^\prime}$ for all $i \in I$, and $G^\text{up} = \{G^\text{up}(b); b \in B(\infty)\}$ with $G^\text{up}(b) = t^\gamma \text{top} \gamma G^\text{low}(b)$.

Proof: Claim (a), and the second part of (b) are due to [KL, prop. 3.4]. The first part of (b) is due to [VV] (the same result has also been announced by R. Rouquier). Part (c) follows form (b). For instance, the last claim in (c) is as proved as follows. Let $(\ast : \ast)$ denote both the Cartan pairing and the canonical pairing $A_f \times A_f^\ast \rightarrow A$.

Then we have

$$\langle b' : t^\gamma \text{top} \gamma (b) \rangle = \langle (\gamma(b')) : \text{top} \gamma (b) \rangle = \delta_{b,b^\prime}. \quad \square$$

8. Global bases of $^\theta V(\lambda)$ and projective graded $^\theta R$-modules

Given an integer $m \geq 0$ we consider the graded k-algebra $^\theta R_m$ introduced in Sections 5.1, 6.4.

8.1. The Grothendieck groups of $^\theta R_m$. The graded k-algebra $^\theta R_m$ is free of finite type over its center by Proposition 5.7(b). Therefore any simple object of $^\theta R_m$-mod is finite-dimensional and there is a finite number of isomorphism classes of simple modules in $^\theta R_m$-mod. Further, the Abelian group $G(^\theta R_m)$ is free with a basis formed by the classes of the simple objects of $^\theta R_m$-mod. For each ν the graded k-algebra $^\theta R_\nu$ has a graded dimension which lies in $v^d[N][[v]]$ for some integer d. Therefore the Abelian group $K(^\theta R_m)$ is free with a basis formed by the classes of the indecomposable projective objects. Both $G(^\theta R)$ and $K(^\theta R)$ are free \mathcal{A}-modules where v shifts the grading by 1. We consider the following \mathcal{A}-modules

$$^\theta K_I = \bigoplus_{m \geq 0} ^\theta K_{I,m}, \quad ^\theta K_{I,m} = K(^\theta R_m),$$

$$^\theta G_I = \bigoplus_{m \geq 0} ^\theta G_{I,m}, \quad ^\theta G_{I,m} = G(^\theta R_m).$$

From now on, to unburden the notation we may abbreviate $^\theta R = ^\theta R_m$, hoping it will not create any confusion. For any M, N in $^\theta R$-mod we set

\begin{align}
(8.1) \quad (M : N) &= \text{gdim}(M^{\omega} \otimes_R N), \\ (M : N) &= \text{gdim hom}_R(M, N).
\end{align}
Here M^ω is the right graded $^\theta R$-module associated with M and the anti-automorphism ω introduced in Section 5.1. The Cartan pairing is the perfect A-bilinear form

$^\theta K_I \times ^\theta G_I \to A, \ (P, M) \mapsto (P : M)$,

see (8.1). First, we concentrate on the A-module $^\theta G_I$. Consider the duality

$^\theta R\text{-fmod} \to ^\theta R\text{-fmod}, \ M \mapsto M^\flat = \text{hom}(M, k)$,

with the action and the grading given by

$((xf)(m) = f(\omega(x)m), \ (M^\flat)_d = \text{Hom}(M_{-d}, k)$.

We’ll say that M is \flat-selfdual if $M^\flat = M$. The functor \flat yields an A-antilinear map

$^\theta G_I \to ^\theta G_I, \ M \mapsto M^\flat$.

We can now define the upper global basis of $^\theta G_I$ as follows. The proof is given in Section 8.26.

8.2. Proposition/Definition. Let $^\theta B(\lambda)$ be the set of isomorphism classes of simple objects in $^\theta R\text{-fMod}_0$. For each b in $^\theta B(\lambda)$ there is a unique \flat-selfdual irreducible graded $^\theta R$-module $^\theta G^{\text{up}}(b)$ which is isomorphic to b as a (non graded) $^\theta R$-module. We define a A-basis $^\theta G^{\text{up}}(\lambda)$ of $^\theta G_I$ by setting

$^\theta G^{\text{up}}(\lambda) = \{^\theta G^{\text{up}}(b); b \in ^\theta B(\lambda)\}, \ ^\theta G^{\text{up}}(0) = 0$.

Now, we concentrate on the A-module $^\theta K_I$. We equip $^\theta K_I$ with the symmetric A-bilinear form

(8.2) $^\theta K_I \times ^\theta K_I \to B, \ (P, Q) \mapsto (P : Q)$,

see (8.1). Consider the duality

$^\theta R\text{-proj} \to ^\theta R\text{-proj}, \ P \mapsto P^\sharp = \text{hom}_R(P, ^\theta R)$,

with the action and the grading given by

$((xf)(p) = f(p)\omega(x), \ (P^\sharp)_d = \text{Hom}_R(P[-d], ^\theta R)$.

This duality functor yields an A-antilinear map

$^\theta K_I \to ^\theta K_I, \ P \mapsto P^\sharp$.

Let $\mathcal{K} \to \mathcal{K}, \ f \mapsto \bar{f}$ be the unique involution such that $\bar{v} = v^{-1}$.

8.3. Definition. For each b in $^\theta B(\lambda)$ let $^\theta G^{\text{low}}(b)$ be the unique indecomposable graded module in $^\theta R\text{-proj}$ whose top is isomorphic to $^\theta G^{\text{up}}(b)$. We set $^\theta G^{\text{low}}(0) = 0$ and $^\theta G^{\text{low}}(\lambda) = \{^\theta G^{\text{low}}(b); b \in ^\theta B(\lambda)\}, a A$-basis of $^\theta K_I$.
8.4. Proposition. (a) We have \(\theta G^\text{low}(b) : \theta G^\text{up}(b') = \delta_{b,b'} \) for each \(b, b' \) in \(\theta B(\lambda) \).
(b) We have \(\langle P^\nu : M \rangle = (P : M^\nu) \) for each \(P, M \).
(c) The graded \(\theta R \)-module \(\theta G^\text{low}(b) \) is \(\sharp \)-selfdual for each \(b \) in \(\theta B(\lambda) \).

Proof: Part (a) is obvious because we have
\[
\langle \theta G^\text{low}(b) : \theta G^\text{up}(b') \rangle = \text{gdim} \text{hom}_R(\theta G^\text{low}(b), \text{top} \theta G^\text{low}(b')) = \delta_{b,b'}.
\]

Part (c) is a consequence of (b). Finally, (b) is proved as follows
\[
\langle P^\nu : M \rangle = \text{gdim} \text{hom}_R(\text{hom}_R(P, \theta R), M),
\]
\[
= \text{gdim} (P^\nu \otimes_R M),
\]
\[
= \text{gdim} (P^\nu \otimes_R M, k),
\]
\[
= \text{gdim} \text{hom}_R(P, M^\nu),
\]
\[
= \langle P : M^\nu \rangle.
\]

Here, the second equality holds because \(P \) is a projective graded module and the fourth one is adjointness of \(\otimes \) and \(\text{Hom} \), see e.g., [CuR,(2.19)].

8.5. Example. Set \(\nu = i + \theta(i) \) and \(i = i \theta(i) \). Set \(\theta R_1 = \theta R_{\theta(i)} \) and \(\theta L_1 = \text{top}(\theta R_{\theta(i)}) \).

Recall the description of \(\theta R_1 \) given in Example 5.9. Recall also that \(\theta R_0 = k \). The global bases are given by the following. First, the weight zero parts are given by
\[
\theta G^\text{low} \lambda = \theta G^\text{up} \lambda = \{ k \}. \quad \text{Next, let us consider the weight } \nu \text{ parts.}
\]

- If \(\lambda_i + \lambda_{\theta(i)} \neq 0 \) then \(\theta G^\text{low} \lambda = \{ \theta R_1, \theta R_{\theta(i)} \} \) and \(\theta G^\text{up} \lambda = \{ \theta L_1, \theta L_{\theta(i)} \} \).
- If \(\lambda_i + \lambda_{\theta(i)} = 0 \) then \(\theta G^\text{low} \lambda = \{ \theta R_1 \}, \theta G^\text{up} \lambda = \{ \theta L_1 \}, \theta R_1 = \theta R_{\theta(i)}, \) and \(\theta L_1 = \theta L_{\theta(i)} \).

8.6. Definition of the operators \(e_i \) and \(f_i \). First, let us introduce the following notation for a future use. Given integers \(m, m', n, n' \geq 0 \) such that
\[
m + m' = n + n' = m'' ,
\]
let \(D_{m,m'} \) be the set of minimal representative in \(W_{m''} \) of the cosets in
\[
W_{m,m'} \setminus W_{m''}, \quad W_{m,m'} = W_{m} \times S_{m'}.
\]
Recall that \(W_{m''} \) is regarded as a Weyl group of type \(B_{m''} \), see Section 5.4. Write
\[
D_{m,m';n,n'} = D_{m,m'} \cap (D_{n,n'})^{-1}.
\]
For each element \(w \) of \(D_{m,m';n,n'} \) we set
\[
W(w) = W_{m,m'} \cap w(W_{n,n'}) w^{-1}.
\]
We abbreviate
\[\theta R_{m, m'} = \theta R_m \otimes R_{m'}. \]

For any integers \(m'_1, m'_2, \ldots, m'_r \geq 0 \) we define the graded \(k \)-algebra
\[\theta R_{m, m'_1, m'_2, \ldots, m'_r} \]
in the same way. There is an unique inclusion of graded \(k \)-algebras
\[\psi : \theta R_{m, m'} \rightarrow \theta R_{m''}, \]
\[\begin{align*}
1_i \otimes 1_{i'} & \mapsto 1_{i''}, \\
1_i \otimes \chi_{i, l} & \mapsto \chi_{i', m+l}, \\
\sigma_{i, k} \otimes 1_{i'} & \mapsto \sigma_{i', k+l}, \\
\pi_{i, 1} \otimes 1_{i'} & \mapsto \pi_{i', 1}, \\
\sigma_{1, k} \otimes 1_{i'} & \mapsto \sigma_{i', k},
\end{align*} \]
(8.3)
where \(i \in \theta I^m, i' \in I^{m'}, \) and \(i'' = \theta(I)I' \) is a sequence in \(\theta I^{m''}. \)

8.7. Lemma. The graded \(\theta R_{m, m'} \)-module \(\theta R_{m''} \) is free of rank \(2^{m'} (m'') \).

Proof: Set \(\nu'' = \theta(\nu') + \nu + \nu' \), where \(\nu, \nu' \) are vector dimensions in \(\theta NI, NI \) respectively, such that \(|\nu| = 2m \) and \(|\nu'| = m' \). For each \(w \) in \(D_{m, m'} \) we have the element \(\sigma_w \) in \(\theta R_{m''} \) defined in (5.2). Using filtered/graded arguments it is easy to see that
\[\theta R_{m''} = \bigoplus_{w \in D_{m, m'}} \theta R_{m, m'} \sigma_w. \]

Now, we consider the triple of adjoint functors \((\psi_!, \psi^*, \psi_*) \) where
\[\psi^* : \theta R_{m''} \text{-mod} \rightarrow \theta R_{m} \text{-mod} \times R_{m'} \text{-mod} \]
is the restriction and \(\psi_!, \psi_* \) are given by
\[\psi_! : \begin{cases} \theta R_{m} \text{-mod} \times R_{m'} \text{-mod} \rightarrow \theta R_{m''} \text{-mod}, \\
(M, M') \mapsto \theta R_{m''} \otimes_{R_{m, m'}} (M \otimes M'), \end{cases} \]
\[\psi_* : \begin{cases} \theta R_{m} \text{-mod} \times R_{m'} \text{-mod} \rightarrow \theta R_{m''} \text{-mod}, \\
(M, M') \mapsto \text{home}_{R_{m, m'}}(\theta R_{m''}, M \otimes M'). \end{cases} \]
The same discussion as for the triple \((\phi_!, \phi^*, \phi_*) \) implies that \(\psi_!, \psi^*, \psi_* \) are exact, they commute with the shift of the grading, and they take finite dimensional modules to finite dimensional ones, while the functors \(\psi_!, \psi^* \) take projective modules to projective ones. Thus the functor \(\psi_! \) yields \(A \)-bilinear maps
\[K^0_I \times K_I \rightarrow \theta K_I, \quad \theta G_I \times G_I \rightarrow \theta G_I, \]
while \(\psi^* \) yields maps in the inverse way. For a graded \(\theta R_m \)-module \(M \) we write

\[
\begin{align*}
 f_i(M) &= \theta R_{m+1} \otimes_{\theta R_m} M, \\
 e_i(M) &= \theta R_{m-1} \otimes_{\theta R_{m-1},1} 1_{m-1,i} M.
\end{align*}
\]

(8.4)

Let us explain these formulas. The symbols \(1_{m,i} \) and \(1_{m-1,i} \) are as in (6.3). Note that \(f_i(M) \) is a graded \(\theta R_{m+1} \)-module, while \(e_i(M) \) is a graded \(\theta R_{m-1} \)-module. The tensor product in the definition of \(e_i(M) \) is relative to the graded \(k \)-algebra homomorphism

\[
\theta R_{m-1,1} = \theta R_{m-1} \otimes R_1 \rightarrow \theta R_{m-1} \otimes R_{\gamma} \rightarrow \theta R_{m-1} \otimes (R_1/(\gamma)) = \theta R_{m-1}.
\]

In other words, let \(e'_i(M) \) is the graded \(\theta R_{m-1} \)-module obtained by taking the direct summand \(1_{m-1,i} M \) and restricting it to \(\theta R_{m-1} \). Observe that if \(M \) is finitely generated then \(e'_i(M) \) may not lie in \(\theta R_{m-1} \text{-mod} \). To remedy this, since \(e'_i(M) \) affords a \(\theta R_{m-1} \otimes R_0 \)-action we consider the graded \(\theta R_{m-1} \)-module

\[
e_i(M) = e'_i(M)/\gamma e'_i(M).
\]

8.8. Definition. The functors \(e_i, f_i \) preserve the category \(\theta R \text{-proj} \), yielding \(\theta K \)-linear operators on \(\theta K \). Let \(e_i, f_i \) denote also the \(\theta K \)-linear operators on \(\theta G \) which are the transpose of \(f_i, e_i \) with respect to the Cartan pairing.

Note that the symbols \(e_i(M), f_i(M) \) have different meaning if \(M \) is viewed as an element of \(\theta K \) or if \(M \) is viewed as an element of \(\theta G \). In the first case they are given by (8.4), in the second one by the formulas in Lemma 8.9(a) below. We hope this will not create any confusion.

8.9. Lemma. (a) The operators \(e_i, f_i \) on \(\theta G \) are given by

\[
e_i(M) = 1_{m-1,i}M, \quad f_i(M) = \text{hom}_{\theta R_{m,1}}(\theta R_{m+1}, M \otimes L_i), \quad M \in \theta R_m \text{-mod}.
\]

(b) For \(M, M' \in \theta R \text{-mod} \) and \(M' \in R \text{-mod} \) we have

\[
(\psi_i(M, M') : M'') = (M \otimes M' : \psi^*(M''')).
\]

The bilinear form \((\ast : \ast)\) on \(\theta K \) is such that

\[
(e_i(P) : P') = (1 - \nu^2)(P : f_i(P')), \quad P, P' \in \theta R \text{-proj}.
\]

(c) We have \(f_i(P)^2 = f_i(P^2) \) for each \(P \in \theta R \text{-proj} \).

(d) We have \(e_i(M)^2 = e_i(M^2) \) for each \(M \in \theta R \text{-mod} \).

(e) The operators \(e_i, f_i \) on \(\theta K, \theta G \) satisfy the relation (7.3).

Proof: Let \(M \in \theta R \text{-mod} \) and \(P \in \theta R \text{-proj} \). We have \(f_i(P) = \psi_i(P, R_i) \). Thus

\[
\text{hom}_R(f_i(P), M) = \text{hom}_R(\psi_i(P, R_i), M)
\]

\[
= \text{hom}_R(\psi_i(P \otimes R_i, \psi^*(M))
\]

\[
= \text{hom}_R(P, 1_{m-1,i}M).
\]
Next, we must prove that $f_i(M) = \psi_i(M, L_i)$. We have
\[
\text{hom}_R(e_i(P), M) = \text{hom}_R(\psi^*(P), M \otimes (L_i \otimes R_i)) \\
= \text{hom}_R(P, \psi_i(M, L_i)).
\]
This proves part (a). The first claim of (b) follows from the following identity
\[
(\psi(M, M') : M') = \text{gdim} \left((M' \otimes M'^\omega) \otimes_{R_{m,m}} \psi^*(M')\right),
\]
\[
= (M \otimes M' : \psi^*(M')).
\]
The second one is proved as follows
\[
(1 - v^2)(f_i(P) : P') = (1 - v^2)(\psi_i(P, R_i) : P') \\
= (P \otimes L_i : 1_{m-1,i}P') \\
= (P : e_i(P')).
\]
Part (c) follows from the following identities
\[
f_i(P)^t = \text{hom}_R(\theta R_m \otimes \theta R_{m-1,1}, (P \otimes R_i), \theta R_m),
\]
\[
= \text{hom}_R(\theta R_{m-1,1}, (P \otimes R_i), \theta R_m),
\]
\[
= \theta R_m \otimes \theta R_{m-1,1} \text{hom}_R(\theta R_{m-1,1}, (P \otimes R_i), \theta R_m),
\]
\[
= \theta R_m \otimes \theta R_{m-1,1} (\text{hom}_R(\theta R_{m-1,1}, (P \otimes \theta R_{m-1}) \otimes R_i),
\]
\[
= f_i(P^t).
\]
Here the second equality is Frobenius reciprocity and the third one follows from Lemma 8.7, see e.g., [CuR, (2.29)]. Part (d) follows from (c) and Proposition 8.4(b). To prove (e) it is enough to check that the operators e_i, f_i on $\theta \mathbb{K} I$ satisfy the relation (7.3). For f_i it is enough to observe that
\[
f_i(P) = \psi_i(P, R_i), \quad \forall P \in \theta R-\text{proj}.
\]
Then the claim follows from Theorem 7.7 and the associativity of induction. For e_i it is enough to observe that the transposed operator is given by
\[
f_i(M) = \psi_i(M, L_i), \quad M \in \theta R-\text{fmod}
\]
and to use the associativity of coinduction. \qed
8.10. Shuffles, projectives, and characters. For each sequence \(i \) in \(^\theta I^m \) we define a projective graded module in \(^\theta R_m-\text{proj} \) by setting \(^\theta R_1 = ^\theta R_{m1} \). More generally, for \(y \in \theta Y^m \) we define an object \(^\theta R_y \) of \(^\theta R_m-\text{proj} \) as follows. Write

\[
y = (\theta(j), \theta(b)b), \quad j \in I^m, \quad b \in \mathbb{Z}^m.
\]

We may abbreviate \(y = \theta(z)z \) where \(z = (j, b) \). Define the idempotent \(1_y \) as the image of the idempotent \(1_z \) by the inclusion \(\psi : R_m \to ^\theta R_m \) given by setting \(m, m', m'' \) equal to 0, \(m, m \) in (8.3). Then set

\[
^\theta R_y = (^\theta R_{m1})[f_b].
\]

The graded module \(^\theta R_y \) satisfies the same properties as the projective graded \(R_m \)-module \(R_z \) introduced in Section 7.4. In particular \(^\theta R_y \) is \(z \)-selfdual, and if the sequence \(i \) in \(^\theta I^m \) is the expansion of the pair \(y \) then we have

\[
(8.5)\quad ^\theta R_i = (b)!^\theta R_y.
\]

For \(y = (i, a) \) in \(^\theta Y^m \) and \(y' = (i', a') \) in \(Y^{m'} \) we have

\[
\psi(\theta R_y, R_{y'}) = \theta R_{y''}, \quad y'' = \psi(y')yy' = (\theta(i')ii', \theta(a')aa').
\]

Write \(i' = (i'_1, \ldots, i'_{k}) \), \(a' = (a'_1, \ldots, a'_k) \),

\[
f_{y'} = f_{i'_1}^{(a'_{i'_1})} f_{i'_2}^{(a'_{i'_2})} \cdots f_{i'_{k}}^{(a'_{i'_{k}})}.
\]

Lemma 8.9(a) yields

\[
f_{y'}(P) = \psi(P, R_{y'}), \quad P \in ^\theta R_m-\text{proj}.
\]

In particular, we have

\[
f_{y'}(k) = ^\theta R_{\theta(y')y'}.
\]

8.11. Definition. A shuffle of a pair of sequences \((i, i') \) in \(^\theta I^m \times I^{m'} \) is a sequence \(i'' \) in \(^\theta I^{m''} \) together with a subsequence of \(i'' \) isomorphic to \(i \) and such that the complementary subsequence is equal to \(\theta(i)ii' \) modulo \(\theta \).

Let \(Sh(i, i') \) be the set of shuffles of \(i, i' \). The assignment \(w \mapsto w^{-1}(\theta(i')ii') \) gives a bijection from \(D_{m, m'} \) to \(Sh(i, i') \). To a shuffle \(i'' \) in \(Sh(i, i') \) associated with an element \(w \) of \(D_{m, m'} \) we assign the following degree

\[
\deg(i, i'; i'') = \deg(\sigma_w 1_{i''}).
\]

This degree does not depend of the choice of the reduced decomposition \(\hat{w} \) of \(w \).

Let \(^\theta B^m \) be the free \(B \)-module with basis \(^\theta I^m \). For any \(f \) in \(^\theta B^m \) we write

\[
f = \sum_i f(i)i.
\]
8.12. Definitions. (a) For any finitely generated graded gR_m-module M we define the character of M as the element of $^gB^m$ given by

$$
\text{ch}(M) = \sum_i \text{gdim}(1_i M) i.
$$

(b) For any elements $f \in ^gB^m$, $g \in B^m'$ we define their product $f \otimes g \in ^gB^{m'}$ by

$$
(f \otimes g)(i'') = \sum_{i,i'} \nu^{\text{deg}(i,i';i'')} f(i) g(i').
$$

Here the sum is over all ways to represent i'' as a shuffle of i and i'.

8.13. Proposition. For any $M \in ^gR_m$-mod and any $M' \in R_{m'}$-mod we have

$$
\text{ch}(\psi_!(M,M')) = \text{ch}(M) \otimes \text{ch}(M').
$$

Proof: We have $\text{ch}(M) = \sum_i (\theta R_i : M) i$. Thus Lemma 8.9(b) yields

$$
\text{ch}(\psi_!(M,M')) = \sum_{i''} (\psi^* (\theta R_{i''}) : M \otimes M') i''.
$$

Next, we have the following formula

$$
\psi^* (\theta R_{i''}) = \bigoplus_{i,i'} \theta R_i \otimes R_{i'} [\text{deg}(i,i';i'')],
$$

where the sum runs over all sequences i, i' such that i'' lies in $Sh(i,i')$. This formula is a consequence of the Mackey’s induction-restriction theorem. The details are left to the reader. See e.g., the proof of Theorem 8.31 below. Therefore we get

$$
\text{ch}(\psi_!(M,M')) = \sum_{i,i'} \sum_{i'' \in Sh(i,i')} (\theta R_i : M) (R_{i'} : M') \nu^{\text{deg}(i,i';i'')} i''
$$

$$
= \text{ch}(M) \otimes \text{ch}(M').
$$

8.14. Proposition. We have

$$
f_i (\theta R_i) = \theta R_{\theta(i) i}, \quad e_i (\theta R_i) = \bigoplus_{i'} \theta R_{i'} [\text{deg}(i',i;i)].
$$

Here the sum runs over all sequences in $^gI^{m-1}$ such that i lies in $\text{Sh}(i',i)$.

Proof: Left to the reader.

\qed
Recall that Ψ identifies κ the involution for any graded R from the following lemma. The third isomorphism follows from (8.6) and Lemma 8.9(a), (6.4), (8.6), because θ on the last isomorphism. Lemma 8.9(a) yields $\Psi : \theta R_i = \theta R_i \otimes R_i \pi_1$. Thus we get

Next, observe that $\theta R_{0,1} = R_1$ and that the inclusion in (8.3) yields following formula $\theta R_1 = R_1 \otimes R_1 \pi_1$. Thus we get

$$\psi_*(k_i, R_i) = \text{hom}_{R_i}(\theta R_1, R_i) = \theta R_i[\lambda_i + \lambda \theta(i)],$$

and $\psi*(k_i, R_i) = \theta R_i \otimes R_i, R_i = \theta R_{\theta(i)}$.

In particular, we have the following.

- If $\lambda_i + \lambda \theta(i) \neq 0$ then $e_j(\theta R_{\theta(i)}) = k$ if $j = i$ and 0 else, and $f_i(k) = v^{\lambda_i + \lambda \theta(i)} \theta L_i + \theta L_{\theta(i)}$. Further $\text{ch}(\theta L_{\theta(i)}) = \theta(i)$ and $\text{ch}(\theta L_i) = i$.
- If $\lambda_i + \lambda \theta(i) = 0$ then $e_j(\theta R_{\theta(i)}) = k$ if $j = i, \theta(i)$ and 0 else, and $f_i(k) = \theta L_i$. Further $\text{ch}(\theta L_i) = i + \theta(i)$.

8.16. Induction of H_m-modules versus induction of θR_m-modules. Recall the functors E_i, F_i on $H\text{-mod}$ defined in (6.4). We have also the functors

$$\Psi : \theta R_m \text{-mod}_{\Omega} \to H_m \text{-mod}_{\xi}, \quad \text{for} : \theta R_m \text{-mod} \to \theta R_m \text{-mod}_{\Omega},$$

where for is the forgetting of the grading. Finally we define functors

$$E_i : \theta R_m \text{-mod}_{\Omega} \to \theta R_{m-1} \text{-mod}_{\Omega}, \quad E_i M = 1 \otimes \pi_1 M,$$

$$F_i : \theta R_m \text{-mod} \to \theta R_{m+1} \text{-mod}, \quad F_i M = \psi(M, L_i).$$

8.17. Proposition. There are canonical isomorphisms of functors

$$E_i \circ \Psi = \Psi \circ E_i, \quad F_i \circ \Psi = \Psi \circ F_i, \quad E_i \circ \text{for} = \text{for} \circ e_i, \quad F_i \circ \text{for} = \text{for} \circ f_{\theta(i)}.$$

Proof: Recall that k_i is the 1-dimensional $k[X_{m+1}]$-module such that $X_{m+1} \mapsto i^{-1}$, that L_i is the 1-dimensional R_i-module such that $1_i \mapsto 1$ and $x_i \mapsto 0$, and that Ψ identifies X_{m+1} and the element $1 \otimes i^{-1} f(x_{m+1})$ in $\theta R_{m,1}$, where the function f is as in Theorem 6.5. The first two isomorphisms are obvious consequences of (6.4), (8.6), because $E_i M$ is the generalized i^{-1}-eigenspace of M with respect to the action of X_{m+1}, and $F_i M$ is induced from the $H_m \otimes k[X_{m+1}]$-module $M \otimes k_i$. The third isomorphism follows from (8.6) and Lemma 8.9(a). Now, we concentrate on the last isomorphism. Lemma 8.9(a) yields

$$f_{\theta(i)}(M) = \psi_*(M, L_{\theta(i)}), \quad M \in \theta \text{-mod}.$$

For any graded R-module N let N^κ be equal to N, with the R-action twisted by the involution κ in (7.1). Note that $L_i^\kappa = L_{\theta(i)}$. Therefore the proposition follows from the following lemma.
8.18. Lemma. For each \(M \in \mathcal{Θ}_m\text{-fmod} \) and \(N \in \mathcal{R}_{m'}\text{-fmod} \) there is an isomorphism of (non-graded) \(\mathcal{Θ}_m\text{-modules} \) \(\psi(M, N) = \psi_\ast(M, N^\kappa) \).

Proof: Recall that \(\mathcal{Θ}_m\text{-fmod} = \mathcal{Θ}_m \otimes \mathcal{R}_{m'} \). The involution \(\kappa : \mathcal{R}_{m'} \to \mathcal{R}_{m'} \) in (7.1) yields an involution of \(\mathcal{Θ}_m\text{-fmod} \). Let us denote it by \(\kappa \) again. Let \(\mathcal{Θ}_m\text{-fmod} \) be the \((\mathcal{Θ}_m, \mathcal{R}_{m'}\text{-fmod}) \)-bimodule which is equal to \(\mathcal{Θ}_m\text{-fmod} \) as a right \(\mathcal{Θ}_m\text{-fmod} \)-module, and such that the left \(\mathcal{Θ}_m\text{-fmod} \)-action is twisted by \(\kappa \). It is enough to prove that there is an isomorphism of (non-graded) \((\mathcal{Θ}_m, \mathcal{R}_{m'}\text{-fmod}) \)-bimodules

\[
\mathcal{Θ}_m \to \text{hom}_{\mathcal{Θ}_m\text{-fmod}}(\mathcal{Θ}_m, \mathcal{Θ}_m\kappa).
\]

The bimodule structure on the right hand side is given by

\[
(xfy)(z) = f(zx), \quad x, z \in \mathcal{Θ}_m, \quad y \in \mathcal{Θ}_m.
\]

Lemma 8.7 yields an isomorphism \(\mathcal{Θ}_m = \bigoplus_{\delta \in D_{m,m'}} \mathcal{Θ}_m\sigma_w \) of graded \(\mathcal{Θ}_m\text{-fmod} \)-modules. The longest double coset representative in \(D_{m,m'} \) is the coset of the involution \(u \in W_{m'} \) given by

\[
u = w_{m'} \varepsilon_{m+1} \ldots \varepsilon_{m},
\]

with \(w_{m'} \) the longest element of \(\mathcal{S}_{m'} \). There is an unique morphism of \((\mathcal{Θ}_m, \mathcal{Θ}_m\text{-fmod}) \)-bimodules

\[
h : \mathcal{Θ}_m,\mathcal{Θ}_m\text{-fmod} \to \text{hom}_{\mathcal{Θ}_m\text{-fmod}}(\mathcal{Θ}_m, \mathcal{Θ}_m\kappa),
\]

taking 1 to the map

\[
y \sigma_w \mapsto \kappa(y) \delta_{w,u}, \quad y \in \mathcal{Θ}_m, \quad w \in D_{m,m'}.
\]

Since the right hand side is a left \(\mathcal{Θ}_m\text{-fmod} \)-module, by Frobenius reciprocity \(h \) yields a morphism of \((\mathcal{Θ}_m, \mathcal{Θ}_m\kappa) \)-bimodules

\[
\mathcal{Θ}_m \to \text{hom}_{\mathcal{Θ}_m\text{-fmod}}(\mathcal{Θ}_m, \mathcal{Θ}_m\kappa).
\]

This map is invertible. The proof is the same as in [M, sec. 3], [LV, thm. 2.2].

8.19. Proposition. (a) The functor \(\Psi \) yields an isomorphism of Abelian groups

\[
\bigoplus_{m \geq 0} [\mathcal{Θ}_m\text{-fmod}] = \bigoplus_{m \geq 0} [\mathcal{H}_m\text{-fMod}].
\]

The functors \(E_i, F_i \) yield endomorphisms of both sides which are intertwined by \(\Psi \).

(b) The forgetful functor for factors to a group isomorphism

\[
\mathcal{G}_l/(v - 1) = \bigoplus_{m \geq 0} [\mathcal{Θ}_m\text{-fmod}].
\]

Proof: Claim (a) follows from Corollary 6.7 and Proposition 8.17. Claim (b) follows from Proposition 8.2.
8.20. The crystal operators on $^\theta G_I$ and $^\theta B(\lambda)$. Fix a vertex i in I. For each irreducible graded module $M \in {}^\theta R\text{-}fmod$ we define

$$
\bar{e}_i(M) = \text{soc}(e_i(M)), \quad \bar{f}_i(M) = \text{top } \psi(M, L_i),
$$

$$
\varepsilon_i(M) = \max\{n \geq 0; e_i^n(M) \neq 0\}, \quad \varepsilon_i(M) \in \mathbb{N} \cup \{\infty\}.
$$

For each positive integers $m \geq n$ we consider the functor

$$
\Delta_{ni} : {}^\theta R_m\text{-}fmod \to {}^\theta R_{m-n}\text{-}fmod \times R_m\text{-}fmod, \quad M \mapsto 1_{m-n,ni}M.
$$

Given an irreducible graded module $M \in {}^\theta R_m\text{-}fmod$ we have, see Lemma 8.9(a),

$$
\varepsilon_i(M) = \max\{n \geq 0; \Delta_{ni}(M) \neq 0\}, \quad \varepsilon_i(M) = \Delta_i(M).
$$

8.21. Proposition. Let M be an irreducible graded $^\theta R_m$-module and n be an integer ≥ 0. Set $\varepsilon = \varepsilon_i(M)$, $M^+ = \psi(M, L_{ni})$ and $M^- = \Delta_{ni}(M)$.

(a) If $\varepsilon = 0$ then $\Delta_{ni}(M^+)$ is irreducible. In particular $\varepsilon_i(M)$ is irreducible if $\varepsilon = 0$ and 0 else. Finally we have $\text{soc}(M^-) = \varepsilon_i^0(M) \otimes L_{ni}$.

(b) If $\varepsilon \geq n$ then any irreducible submodule of M^- is of the form $N \otimes L_{ni}$ with $\varepsilon_i(N) = \varepsilon - n$. If $\varepsilon = n$ then M^- is irreducible. If $\varepsilon \geq n$ then $\text{soc}(M^-)$ is irreducible. In particular $\varepsilon_i(M)$ is irreducible if $\varepsilon \neq 0$ and 0 else. Finally we have $\text{soc}(M^-) = \varepsilon_i^0(M) \otimes L_{ni}$.

(c) $\text{top}(M^+)$ is irreducible, $\varepsilon_i(\text{top}(M^+)) = \varepsilon + n$, and all other composition factors L of M^+ have $\varepsilon_i(L) < \varepsilon + n$. In particular $\bar{f}_i(M)$ is irreducible. Finally we have $\text{top}(M^+) = \bar{f}_i^n(M)$.

Proof: Part (a) is the analogue of [K, lem. 5.1.3], [KL, lem. 3.7]. More precisely, note first that we have

$$
\text{ch}(\Delta_{ni}(M^+)) = \sum_{i} g\dim(1_{\theta(i^n)M^+}) \theta(i^n)M^+.
$$

Hence, since $\varepsilon = 0$ Proposition 8.13 implies that

$$
\text{dim}(\Delta_{ni}(M^+)) = \text{dim}(M \otimes L_{ni}).
$$

Since $\Delta_{ni}(M^+)$ contains a copy of $M \otimes L_{ni}$, we get the first claim of (a). By Frobenius reciprocity, a copy of $M \otimes L_{ni}$, possibly with a grading shift, appears as a submodule of $\Delta_{ni}(M')$ for any nonzero quotient $M^+ \to M'$. Since

$$
\Delta_{ni}(M^+) = M \otimes L_{ni},
$$

this implies that $\text{top}(M^+)$ is irreducible with $\varepsilon_i(\text{top}(M^+)) \geq n$, that

$$
\Delta_{ni}(M^+) = \Delta_{ni}(\text{top}(M^+)),
$$

and that $\Delta_{ni}(L) = 0$ for all other composition factors L of M^+. Finally we have $\varepsilon_i(\text{top}(M^+)) = n$, because $\varepsilon = 0$.

Now we prove (b). The first claim is the analogue of [K, lem. 5.1.2]. Indeed, any irreducible submodule of M^- is of the form $N \otimes L_{ni}$ with N irreducible. We have
\(\varepsilon_i(N) \leq \varepsilon - n \) by definition of \(\varepsilon_i \). For the reverse inequality, Frobenius reciprocity and the irreducibility of \(M \) imply that \(M \) is a quotient of \(\psi_i(N, L_{ni}) \). So applying the exact functor \(\Delta_{\varepsilon_i} \) we see that \(\Delta_{\varepsilon_i}(M) \) is a quotient of \(\Delta_{\varepsilon_i}\psi_i(N, L_{ni}) \). In particular

\[\Delta_{\varepsilon_i}\psi_i(N, L_{ni}) \neq 0. \]

By Proposition 8.13 and (8.7) we have also \(\Delta_{(\varepsilon - n)}(N) \neq 0 \). Thus \(\varepsilon_i(N) = \varepsilon - n \). The second claim of (b) is the analogue of [K, lem. 5.1.4]. Indeed, if \(\varepsilon = n \) then any irreducible submodule of \(M^- \) is of the form \(N \otimes L_{ni} \) with \(\varepsilon_i(N) = 0 \). Once again Frobenius reciprocity and the irreducibility of \(M \) imply that \(M \) is a quotient of \(\psi_i(N, L_{ni}) \). Hence \(M^- \) is a quotient of \(\Delta_{\varepsilon_i}\psi_i(N, L_{ni}) \). But the later is isomorphic to \(N \otimes L_{ni} \) by (a). Next, the third claim of (b) is the analogue of [K, lem. 5.1.6], [KL, prop. 3.10]. Indeed, suppose that \(N \otimes L_{ni} \subset \text{soc}(M^-) \). Then \(\varepsilon_i(N) = \varepsilon - n \) by the first part of (b). Thus \(N \) contributes a non-trivial submodule to \(\Delta_{\varepsilon_i}(M) \).

But \(\Delta_{\varepsilon_i}(M) \) is an irreducible graded \(\partial \text{R}_{m-e,n} \text{-module} \) by the second part of (b).

Thus the socle of \(\Delta_{\varepsilon_i}(M) \) as a graded \(\partial \text{R}_{m-e,n} \text{-module} \) is \(N \otimes L_{(\varepsilon-n)i} \otimes L_{ni} \) by Example 7.5. Hence \(\text{soc}(M^-) \) must equal \(N \otimes L_{ni} \). Finally, the last claim of (b) is the analogue of [K, lem. 5.2.1(ii)], [KL, lem. 3.13]. Indeed, note first that if \(n > \varepsilon \) then

\[\text{soc}(M^-) = \bar{\varepsilon}_i^n(M) = 0. \]

Assume now that \(\varepsilon \geq n \). Observe that

\[\bar{\varepsilon}_i(M) = \text{soc}(\Delta_{\varepsilon_i}(M)) \]

is irreducible or zero by the third part of (b). Hence \(\bar{\varepsilon}_i(M) \otimes L_i \) is a submodule of \(\Delta_{\varepsilon_i}(M) \). Applying this \(n \) times we deduce that \(\bar{\varepsilon}_i^n(M) \otimes (L_i)^{\otimes n} \) is a submodule of \(\Delta_{\varepsilon_i}(M) \) as a graded \(\partial \text{R}_{m-e,n} \text{-module} \). Hence \(\bar{\varepsilon}_i^n(M) \otimes L_{ni} \) is a submodule of \(\Delta_{\varepsilon_i}(M) \) by Frobenius reciprocity.

Finally, we prove (c). It is the analogue of [K, lem. 5.2.1(ii)], [KL, lem. 3.13]. Indeed, by (b) the graded module \(\Delta_{\varepsilon_i}(M) \) is of the form \(N \otimes L_{ni} \) with \(N \) irreducible such that \(\varepsilon_i(N) = 0 \). Thus, by Frobenius reciprocity \(M \) is a quotient of \(\psi_i(N, L_{ei}) \).

So the transitivity of induction implies that \(M^+ \) is a quotient of \(\psi_i(N, L_{(\varepsilon+n)i}) \).

Hence all claims except the last one follow from (a). Finally, by exactness of the induction \(\bar{f}_i^n(M) \) is a quotient of \(M^+ \), hence they are equal by simplicity of the top.

\[\square \]

For each irreducible module \(b \) in \(\partial B(\lambda) \) we define

\[\tilde{E}_i(b) = \text{soc}(E_i b), \quad \tilde{F}_i(b) = \text{top}(F_i b), \quad \varepsilon_i(b) = \max\{n \geq 0; E_i^n b \neq 0\}. \]

Hence, we have

\[\text{for } \circ \varepsilon_i = \tilde{E}_i \circ \text{for}, \quad \text{for } \circ \tilde{F}_i = \tilde{F}_i \circ \text{for}, \quad \varepsilon_i = \varepsilon_i \circ \text{for}. \]

8.22. Proposition. For each \(b, b' \) in \(\partial B(\lambda) \) we have

(a) \(\tilde{F}_i(b) \in \partial B(\lambda) \),
(b) \(\tilde{E}_i(b) \in \partial B(\lambda) \cup \{0\} \).
(c) \(F_i(b) = b' \iff \tilde{E}_i(b') = b\),

(d) \(\varepsilon_i(b) = \max\{n \geq 0; \tilde{E}_n(b) \neq 0\}\),

(e) \(\varepsilon_i(\tilde{F}_i(b)) = \varepsilon_i(b) + 1\),

(f) if \(\tilde{E}_i(b) = 0\) for all \(i\) then \(b = k\).

Proof: Parts (a), (b), (d), (e) and (f) are immediate consequences of Proposition 8.21. Part (c) is proved as in [K, lem. 5.2.3]. More precisely, let \(M, N\) be irreducible graded modules. By Proposition 8.21(c) we have

\[
\tilde{f}(M) = N \iff \text{Hom}_{\mathcal{R}}(\psi(M, L_n), N) \neq 0 \\
\iff \text{Hom}_{\mathcal{R}}(M \otimes L_i, c_i(N)) \neq 0 \\
\iff \text{Hom}_{\mathcal{R}}(M \otimes L_i, \text{soc}(c_i N)) \neq 0 \\
\iff M = \tilde{c}_i(N).
\]

Note that the proposition can also be deduced from [M, Section 4] and Proposition 8.17.

8.23. Proposition. The following identity holds in \(\theta \mathcal{K}_f\)

\[
f_i \theta G_{\text{low}}(b) = (\varepsilon_i(b) + 1) \theta G_{\text{low}}(\tilde{F}_i b) + \sum_{b'} f_{b,b'} \theta G_{\text{low}}(b'), \quad \forall b \in \theta \mathcal{B}(\lambda),
\]

where \(b'\) runs over the elements of \(\theta \mathcal{B}(\lambda)\) such that \(\varepsilon_i(b') > \varepsilon_i(b) + 1\), and \(f_{b,b'} \in \mathcal{A}\).

Proof: We claim that there are elements \(f_{b,b'} \in \mathcal{A}\) such that

\[
(8.9) \quad \varepsilon_i \theta G_{\text{up}}(b) = (\varepsilon_i(b)) \theta G_{\text{up}}(\tilde{E}_i b) + \sum_{b'} f_{b,b'} \theta G_{\text{up}}(b'),
\]

where \(b'\) runs over the elements of \(\theta \mathcal{B}(\lambda)\) with \(\varepsilon_i(b') < \varepsilon_i(b) - 1\). Taking the transpose with respect to the Cartan pairing, Proposition 8.4(a), Definition 8.8, and Proposition 8.22 yield

\[
f_i \theta G_{\text{low}}(b) = (\varepsilon_i(\tilde{F}_i b)) \theta G_{\text{low}}(\tilde{F}_i b) + \sum_{b'} f_{b,b'} \theta G_{\text{low}}(b'),
\]

\[
= (\varepsilon_i(b) + 1) \theta G_{\text{low}}(\tilde{F}_i b) + \sum_{b'} f_{b,b'} \theta G_{\text{low}}(b'),
\]

where \(b' \in \theta \mathcal{B}(\lambda)\) with \(\varepsilon_i(b) + 1 < \varepsilon_i(b')\). Now, let us prove (8.9). This is the analogue of [K, lem. 5.5.1(i)]. Fix an irreducible \(\theta \mathcal{R}_m\)-module \(b\). Set

\[
\varepsilon = \varepsilon_i(b), \quad M = \theta G_{\text{up}}(b), \quad N = \theta G_{\text{up}}(\tilde{E}_i b).
\]

We can assume that \(\varepsilon > 0\), because else (8.9) is obvious. Note that \(\varepsilon_i(N) = 0\) by Proposition 8.22. By Frobenius reciprocity and Proposition 8.21(b) there is a short exact sequence of graded modules

\[
0 \to R \to \psi(N, L_{\varepsilon_i}) \to M \to 0.
\]
Applying the functor e_i we obtain the following exact sequence of graded modules

$$0 \to e_i R \to e_i \psi_!(N, L_{e\xi}) \to e_i M \to 0.$$

Note that

$$e_i \psi_!(N, L_{e\xi}) = 1_{m-1,i} \theta^\mu \! R_{m-\varepsilon,\varepsilon} 1_{m-\varepsilon,\varepsilon} \otimes \! R_{m-\varepsilon,\varepsilon} (N \otimes L_{e\xi}).$$

Note also that

$$D_{m-1,1; m-\varepsilon,\varepsilon} = \{e, x, y\},$$

$$x = s_{m-1} \ldots s_{m-\varepsilon+1}s_{m-\varepsilon}, \quad y = s_{m-1} \ldots s_{m-\varepsilon+1}s_{m-\varepsilon+1},$$

$$W'(e) = W_{m-\varepsilon-1,1}, \quad W(x) = W_{m-\varepsilon-1,1}, \quad W(y) = W_{m-\varepsilon-1,1}.$$

By Proposition 5.5 we can filter the graded $(\theta R_{m-1,1}, \theta R_{m-\varepsilon,\varepsilon})$-bimodule

$$1_{m-1,i} \theta^\mu \! R_{m-\varepsilon,\varepsilon} 1_{m-\varepsilon,\varepsilon}.$$

This filtration is the same as in the Mackey induction-restriction theorem. Compare Lemma 8.32 below and the references there. The associated graded is a direct sum of graded $(\theta R_{m-1,1}, \theta R_{m-\varepsilon,\varepsilon})$-bimodules labelled by elements of $\{e, x, y\}$

$$\text{gr}(1_{m-1,i} \theta^\mu \! R_{m-\varepsilon,\varepsilon} 1_{m-\varepsilon,\varepsilon}) = P_e \oplus P_x \oplus P_y.$$

We have

$$P_x 1_{m-\varepsilon-1,\varepsilon+i} = P_x.$$

Thus, since $e_i(N) = 1_{m-\varepsilon-1,i}N = 0$, we have also

$$P_x \otimes \! R_{m-\varepsilon,\varepsilon} (N \otimes L_{e\xi}) = 0.$$

Next, we have

$$P_y 1_{m-\varepsilon,\theta(i),\varepsilon-i} = P_y.$$

Since $1_y L_{e\xi} = 0$ if $\nu \neq \varepsilon i$ we have also

$$P_y \otimes \! R_{m-\varepsilon,\varepsilon} (N \otimes L_{e\xi}) = 0.$$

Finally, we have

$$P_e = 1_{m-1,1} \theta^\mu \! R_{m-1,1} \otimes \! R' \theta^\mu \! R_{m-\varepsilon,\varepsilon} 1_{m-\varepsilon,\varepsilon}, \quad R' = \theta \! R_{m-\varepsilon,\varepsilon-1,1}.$$

Therefore, we obtain

$$e_i \psi_!(N, L_{e\xi}) = \theta^\mu \! R_{m-1,1} \otimes \! R' (N \otimes L_{e\xi}).$$

By Example 7.5 the graded $R_{e-1,1}$-module $L_{e\xi}$ has a filtration by graded submodules whose associated graded is isomorphic to

$$\langle \varepsilon \rangle L_{(e-1)i} \otimes L_i.$$
Therefore, up to some filtration, we have
\[e_i \rho_l(N, L_{\varepsilon i}) = \langle \varepsilon \rangle \rho_l(N, L_{(\varepsilon - 1)i}) \otimes L_i. \]

Now, by Proposition 8.21(a), (c) we have
\[\text{top } \rho_l(N, L_{(\varepsilon - 1)i}) = \tilde{f}_{i}^{\varepsilon - 1}(N) = \tilde{e}_i(M) \]
and all other composition factors \(L \) of \(\rho_l(N, L_{(\varepsilon - 1)i}) \) have \(\varepsilon_i(L) < \varepsilon - 1 \). Moreover, by Proposition 8.21(a) all composition factors \(L \) of \(R \) have \(\varepsilon_i(L) < \varepsilon \). Thus, by Proposition 8.21(b) all composition factors of \(e_i(R) \) are of the form \(L \otimes L_i \) with \(\varepsilon_i(L) < \varepsilon - 1 \). Therefore, we obtain
\[e_i(M) = \langle \varepsilon \rangle \tilde{e}_i(M) + \sum f_r N_r, \quad f_r \in \mathcal{A}, \]
where \(N_r \) is an irreducible graded module with \(\varepsilon_i(N_r) < \varepsilon - 1 \).

\[\square \]

8.24. Example. Set \(\nu = i + \theta(i) \) and \(i = \theta(i) \). Let us compute \(\tilde{e}_j \) and \(\varepsilon_j \).

- If \(\lambda_i = \lambda_{\theta(i)} \neq 0 \) then \(\tilde{e}_j(\theta L_i) = k \) if \(j = \theta(i) \) and 0 else. We have \(\varepsilon_j(\theta L_i) = 1 \) if \(j = \theta(i) \) and 0 else.

- If \(\lambda_i = \lambda_{\theta(i)} = 0 \) then \(\tilde{e}_j(\theta L_i) = k \) if \(j = i, \theta(i) \) and 0 else. We have \(\varepsilon_j(\theta L_i) = 1 \) if \(j = i, \theta(i) \) and 0 else.

8.25. Remark. If \(M \) is an irreducible graded \(\theta R_m \)-module such that \(\varepsilon_i(M) = m \) then Proposition 8.21(b) implies that \(\tilde{e}^m_i(M) = k \) and \(\Delta_{mi}(M) = k \otimes L_{mi} \). Further, by Proposition 8.22(a) there is a unique \(M \) as above, up to isomorphism, such that \(\tilde{e}^m_i(M) = k \). We claim that \(M \simeq \theta L_{mi} \), the top of \(\theta R_m \). By Proposition 8.21(a) we have \(M = \text{top}(\psi_k(k, L_{mi})) \). First, recall that \(\theta R_{mi} = \psi_k(k, R_{mi}) \). Thus, since \(\psi \) is exact, there is a surjective map \(\theta L_{mi} \to M \). So it is enough to check that \(\theta L_{mi} \) is irreducible (left to the reader). We’ll not need this.

8.26. Proof of Proposition 8.2. First, we prove the following.

8.27. Proposition. The character map \(\text{ch} : \theta G_{I, m} \to \theta BI^m \) is injective.

Proof: The proof is similar to that of [K, thm. 5.3.1]. We must prove that the characters of the irreducible graded modules in \(\theta R_m \text{-fmod} \) are linearly independent. We proceed by induction on \(m \), the case \(m = 0 \) being trivial. Suppose \(m > 0 \) and there is a non-trivial \(\mathcal{A} \)-linear dependence
\[(8.10) \quad \sum_M c_M \text{ch}(M) = 0. \]

We’ll show by downward induction on \(\varepsilon_i(M) \) that \(c_M = 0 \) for each graded \(\theta R_m \)-module \(M \) which enter in (8.10). Fix \(M \) as above. We have \(\varepsilon_i(M) \leq m \). First, assume that \(\varepsilon_i(M) = m \). Note that \(M \) is the unique irreducible graded \(\theta R_m \)-module such that \(\Delta_{mi}(M) = 0 \). Indeed we have \(M = \theta L_{mi} \), see Remark 8.25. Applying \(\Delta_{mi} \) to the \(\theta R_m \)-modules which enter in (8.10) and using the formula
\[\text{ch}(\Delta_{mi}(M)) = \sum_i \text{gdim}(1_{\theta(i,m)}i_{\theta(i,m)} M) \theta(i^m)i^m, \]
we deduce that the coefficient c_M is zero. Now, assume that $\varepsilon_i(M) = k < m$ and that we have shown that $c_N = 0$ for all N with $\varepsilon_i(N) > k$. Applying Δ_{k_i} to the $\mathfrak{g}R_m$-modules which enter in (8.10) we get

$$\sum_N c_N \text{ch}(\Delta_{k_i} N) = 0,$$

where N runs over all irreducible graded $\mathfrak{g}R_m$-modules with $\varepsilon_i(N) = k$. For such a graded module N we have $\Delta_{k_i}(N) = \mathfrak{v}^k(N) \otimes \mathfrak{L}_{k_i}$ by Proposition 8.21(b). Further $\mathfrak{v}^k(N) \neq \mathfrak{v}^k(N')$ if $N \neq N'$ by Proposition 8.22(c). So we conclude by the induction hypothesis.

\square

Now, we can prove Proposition 8.2. Forgetting the grading takes irreducible graded $\mathfrak{g}R$-modules to irreducible modules, and any irreducible module in $\mathfrak{g}R$-fMod comes from an irreducible graded module in $\mathfrak{g}R$-fmod which is unique up to isomorphism and up to grading shift, see e.g. [NV, thm. 4.4.4(v), thm. 9.6.8]. Thus it is enough to prove that for any irreducible graded module M there is an integer d such that $M[d]$ is \mathfrak{b}-selfdual. This is proved as in [KL, p. 342]. More precisely, by definition of the duality functor \mathfrak{b}, for any graded module M in $\mathfrak{g}R$-fmod we have

$$\text{ch}(M^\mathfrak{b}) = \text{ch}(M) \mod (v - 1), \quad \text{gdim}(1_i M^\mathfrak{b}) = \text{gdim}(1_i M).$$

Thus if M is irreducible then we have $M^\mathfrak{b} = M[d]$ for some integer d. We must prove that d is even. It is enough to prove the following.

8.28. Lemma. If $M \in \mathfrak{g}R$-fmod is irreducible then for each i we have

$$\text{gdim}(1_i M) \in v\mathbb{Z}[v^2, v^{-2}] \cup \mathbb{Z}[v^2, v^{-2}].$$

Proof : Indeed, we’ll prove that this identity holds for the projective module $M = \mathfrak{g}R_j$ where j is any sequence in \mathfrak{H}^m. This implies our claim. Set $j = (j_{1-m}, \ldots, j_{m-1}, j_m)$. Proposition 8.13 yields

$$\text{ch}(\mathfrak{g}R_j) = \text{ch}(\mathfrak{g}R_{j_{1-j_1}}) \oplus \text{ch}(R_{j_2}) \oplus \cdots \oplus \text{ch}(R_{j_m}).$$

Examples 5.9(b), 7.5(a) yield

$$\text{ch}(\mathfrak{g}R_{j_{1-j_1}}) = (1 - v^2)^{-1} (j_{1-j_1} + v^{\lambda_{j_0} + \lambda_1} j_0 j_0), \quad \text{ch}(R_{j_k}) = (1 - v^2)^{-1} j_k.$$

So, by Definition 8.12(b), it is enough to check that for each reflection w of W_m which fixes the sequence j the degree of $\sigma_{w} j_1$ is even. This reduces to the following computation (left to the reader). Fix $k \neq l$ such that $j_k = j_l$. If one of the following holds

$$1 \leq k < l, \quad \hat{w} = s_k \ldots s_{l-2} s_{l-1} s_k,$$

$$1 \leq 1 - k < l, \quad \hat{w} = s_{-k} \ldots s_1 s_1 \ldots s_{j-1} s_1 \ldots s_{-k},$$

then $\text{deg}(\sigma_{\hat{w}} j_1)$ is even.

\square
8.29. The algebra θB and its representation in $\theta V(\lambda)$. Following [EK1,2,3] we define a K-algebra θB as follows.

8.30. Definition. Let θB be the K-algebra generated by e_i, f_i and invertible elements $t_i, i \in I$, satisfying the following defining relations

(a) $t_it_j = t_jt_i$ and $t_{\theta(i)} = t_i$ for all i, j,
(b) $t_ie_if_i^{-1} = v^{i+j+\theta(i)}e_j$ and $t_if_jt_i^{-1} = v^{-i-j-\theta(i)}f_j$ for all i, j,
(c) $e_if_j = v^{-i-j}f_ie_i + \delta_{i,j} + \delta_{\theta(i),j}t_i$ for all i, j,
(d) formula (7.3) holds with $\lambda = e_i$, or with $\lambda = f_i$.

We define a representation of θB as follows. The K-vector space

$$\theta V(\lambda) = K \otimes_A \theta K_I$$

is equipped with K-linear operators e_i, f_i, s_i and with a K-bilinear form in the obvious way. Let ϕ_λ be the class of k in θK_I, where k is regarded as the trivial module over the k-algebra θR_0. Let λ be as in (6.2). We can now prove the following theorem, which is the main result of Section 8.

8.31. Theorem. (a) The operators e_i, f_i define a representation of θB on $\theta V(\lambda)$. The θB-module $\theta V(\lambda)$ is irreducible and for $i \in I$ we have

$$e_i\phi_\lambda = 0, \quad t_i\phi_\lambda = v^{\lambda_i+\lambda_{\theta(i)}}\phi_\lambda, \quad \{x \in \theta V(\lambda); e_jx = 0, \forall j\} = K\phi_\lambda.$$

(b) There is a unique symmetric K-bilinear form $(\bullet : \bullet)$ on $\theta V(\lambda)$ such that $(\phi_\lambda : \phi_\lambda) = 1$ and $(e_i x : y) = (x : f_i y)$ for all $i \in I, x, y \in \theta V(\lambda)$, and it is non-degenerate.

(c) There is a unique K-antilinear map $\theta V(\lambda) \to \theta V(\lambda)$ such that $P \mapsto P^\theta$ for all graded projective module P. It is the unique K-antilinear map such that $\phi_\lambda^\theta = \phi_\lambda$ and $(f_i x)^\theta = f_i(x^\theta)$ for all $x \in \theta V(\lambda)$.

Proof: For each i in I we define the A-linear operator t_i on θK_I by setting

$$t_i P = v^{\lambda_i+\lambda_{\theta(i)}-\nu((i+\theta(i)))} P, \quad \forall P \in \theta R_{\nu,\pi} \text{-proj}.$$

We must prove that the operators e_i, f_i, t_i satisfy the relations in Definition 8.30. Relation (c) is the only non-trivial one, see Lemma 8.9(e). To check it we need a version of the Mackey’s induction-restriction theorem. Note that we have

$$D_{m,1,m} = \{e, s_m, \varepsilon_{m+1}\}, \quad W(e) = W_{m,1}, \quad W(s_m) = W_{m-1,1}, \quad W(\varepsilon_{m+1}) = W_{m,1}.$$

8.32. Lemma. Fix i, j in I. Let μ, ν in θN_i be such that $\nu + i + \theta(i) = \mu + j + \theta(j)$. Put $m = |\nu|/2 = |\mu|/2$. The graded $(\theta R_{m,1}, \theta R_{m,1})$-bimodule $1_{\nu,\mu} \theta R_{m+1,1_{\nu,\mu}}$ has a filtration by graded bimodules whose associated graded is isomorphic to:

(a) $\theta R_{\nu} \otimes R_i \oplus \left((\theta R_{m,1} \otimes R_i) \otimes R_{\nu,\mu} \theta R_{\nu} \otimes R_i\right)[d] if j = i$,

(b) $(\theta R_{\nu} \otimes R_{\theta(i)})[d'] \oplus \left((\theta R_{m,1} \otimes \theta R_{\nu,\mu} \otimes R_i) \otimes R_{\nu} \theta R_{\nu} \otimes R_i\right)[d] if j = \theta(i)$,
Therefore we have the following identities
\[(\sigma^R_m,_{1\nu',j} \otimes R_i) \otimes R_{1\nu',i} \otimes R_{1\nu',j})[d] \] if \(j \neq i, \theta(i) \).

Here we have set \(\nu' = \nu - j - \theta(j) \), \(R' = \sigma^R_m,_{1\nu',1,1} \), \(d = \deg(\sigma^R_m,_{1\nu',i,j}) \), and \(d' = \deg(\sigma^R_{m+1},_{1\nu',\theta(i)}) \).

The proof is similar to the proof of [M, thm. 1], [KL, prop. 2.18]. It is left to the reader. Note that we have the following formulas, see Remark 5.2,
\[
\deg(\sigma^R_{m+1},_{1\nu',\theta(i)}) = \lambda_i + \lambda_{\theta(i)} - \nu \cdot (i + \theta(i))/2, \quad \deg(\sigma^R_m,_{1\nu',i,j}) = -i \cdot j.
\]

Now, recall that \(P \) lie in \(\sigma^n,\text{proj} \) and that
\[
f_j(P) = \sigma^R_{m+1,1\nu',1} \otimes \sigma^R_{m,1} (R \otimes R_i), \quad e_i'(P) = 1_{m-1,i}P,
\]
where \(1_{m-1,i}P \) is regarded as a \(\sigma^R_{m-1} \)-module. Therefore we have
\[
e_i'f_j(P) = 1_{m,1\nu',1} \otimes \sigma^R_{m,1} (R \otimes R_i), \quad f_j e_i'(P) = \sigma^R_{m,1\nu',1,1} \otimes \sigma^R_{m-1,1} (1_{m-1,i}P \otimes R_i).
\]

Therefore we have the following identities
\[
\bullet \quad e_i'f_i(P) = P \otimes R_i + f_i e_i'(P)[-2], \\
\bullet \quad e_i'f_i(P) = P \otimes R_i[\lambda_i + \lambda_{\theta(i)} - \nu \cdot (i + \theta(i))/2] + f_i e_i'(P)[-i \cdot \theta(i)], \\
\bullet \quad e_i'f_j(P) = f_j e_i'(P)[-i \cdot j] \text{ if } i \neq j, \theta(j).
\]

Note that Lemma 8.32 implies these relations up to some filtration. Hence, since the associated graded is projective, they hold in full generality. This proves the first claim of part (a) of the theorem. Next, recall the following fact, see [EK1, prop. 2.5], [EK3, prop. 2.11].

8.33. Claim. There is a \(\sigma^n,\text{proj} \)-module generated by a non-zero vector \(\phi_\lambda \) such that
\[
e_i\phi_\lambda = 0, \quad t_i\phi_\lambda = v^{\lambda_i}\phi_\lambda, \quad \{x; e_jx = 0, \forall j\} = K\phi_\lambda, \quad i \in I.
\]

This \(\sigma^n,\text{proj} \)-module is irreducible and it is unique up to an isomorphism.

So we must check that the \(\sigma^n,\text{proj} \)-module \(\sigma^n(V)(\lambda) \) satisfies the axioms above. It is generated by \(\phi_\lambda \) by Lemma 8.34 below. The other axioms are obvious.

Part (b) of the theorem follows from [EK2, prop. 4.2(ii)] and Lemma 8.9(b). The bilinear form \(\langle \bullet; \bullet \rangle \) is the same as the bilinear form obtained from (8.2) by base change from \(B \) to \(K \).

Finally, for part (c) of the theorem it is enough to check that \((f_iP)^\sharp = f_i(P^\sharp) \) for any graded module \(P \) in \(\sigma^n,\text{proj} \). By Lemma 8.34 below we may assume that \(P = \sigma^n,_{1\nu'} \) for some \(\nu \). By (8.5) we can also assume that \(\nu = \lambda^i \) with \(i \in \nu^\sharp \). Then the claim follows from the formulas in Proposition 8.14, because \(\sigma^n,_{1\nu'} \) is \(\sharp \)-selfdual for any \(i \), see Section 8.10. \[\square\]
8.34. Lemma. Any object of θR_m-proj is of the form $\thetaR_m \otimes_{R_m} P$ for some P in R_m-proj. The A-module $\thetaK_{f,m}$ is spanned by the θR_y’s with y in θY_m.

Proof: Let b be a simple object in θR_0-fMod with $|\nu| = m$. We’ll view it as an element of $\thetaB(\lambda)$. An easy induction using Proposition 8.23 implies that for each integer $a \geq 1$ we have

$$f_i^{(a)}G_{low}(b) = \left(\varepsilon_i(b) + a \right) \thetaG_{low}(\tilde{E}_i^a b) + \sum_{b'} f_{b,b'} \thetaG_{low}(b'),$$

where b' runs over the set of elements of $\thetaB(\lambda)$ such that $\varepsilon_i(b') > \varepsilon_i(b) + a$ and $f_{b,b'}$ lies in A. Therefore, for any i such that $\varepsilon_i(b) \geq 1$, we have

$$f_i^{(\varepsilon_i(b))}G_{low}(\tilde{E}_i^{\varepsilon_i(b)} b) = \thetaG_{low}(b) + \sum_{b'} f_{b,b'} \thetaG_{low}(b')$$

by Proposition 8.22(c), (e). Here b' runs over the set of elements of $\thetaB(\lambda)$ such that $\varepsilon_i(b') > \varepsilon_i(b)$. Thus a simultaneous induction on ν and descending induction on $\varepsilon_i(b)$ implies that $\thetaG_{low}(b)$ lies in the A-span of the elements $f_Y(k)$ with $y \in Y^m$.

We are done, because $f_Y(k) = \thetaR_{\theta(y)y}$, see Section 8.10.

8.35. Remark. The θB-module $\thetaV(\lambda)$ is the same as the θB-module $V_0(\lambda + \theta(\lambda))$ in [EK1, prop. 2.5]. Let $(\bullet : \bullet)_{K E}$ be the bilinear form on $\thetaV(\lambda)$ considered in loc. cit. We have

$$(P : Q) = (1 - v^2)^{-m}(P : Q)_{K E}, \quad \forall P, Q \in \thetaR_m$ -proj.

Note that $(\bullet : \bullet)_{K E}$ is a symmetric A-bilinear form $\thetaK_I \times \thetaK_I \rightarrow A$, and that Theorem 8.31(b) yields

$$(\varepsilon_i x : y)_{K E} = (x : f_i y)_{K E}, \quad i \in I, x, y \in \thetaV(\lambda).$$

8.36. Results over an arbitrary field k. Recall that $p, q \in k^\times$ and that I is a $\mathbb{Z} \times \mathbb{Z}$-invariant subset of k^\times. We associate to I a quiver with an involution (Γ, θ) as in Section 6.2. Fix $\lambda \in NI$ as in (6.2), i.e., we set

$$\lambda = \sum_i i, \quad i \in I \cap \{q, -q\}.$$

The graded k-algebra θR_m, defined in Sections 5.1, 6.4, and the operators ε_i, f_i, on θK_I, defined in (8.4), make sense over any field k (not necessarily algebraically closed nor of characteristic zero). For any k there is again a θB-module isomorphism

$$\thetaV(\lambda) = \mathcal{K} \otimes_A \thetaK_I,$$

where $\thetaV(\lambda)$ is the Enomoto-Kashiwara’s θB-module. To prove this it is enough to check the axioms in Claim 8.33. The proof is the same as in characteristic zero. Note that the k-algebra θB and the θB-module $\thetaV(\lambda)$ depend only on (Γ, θ) (i.e., on I and p), and on λ (i.e., on q). Therefore, for each m, the number of
simple graded \({}^\theta \mathcal{R}_m \)-modules is the same for any field \(k \) as long as \(\Gamma, \theta, \lambda \) remain unchanged. In particular all simple graded \({}^\theta \mathcal{R}_m \)-modules are absolutely irreducible. Recall that the simple graded \({}^\theta \mathcal{R}_m \)-modules are finite dimensional, because \({}^\theta \mathcal{R}_m \) is finitely generated over its center. Therefore all simple graded \({}^\theta \mathcal{R}_m \)-modules are \textit{split simple}, i.e., with a one dimensional endomorphism \(k \)-algebra, see e.g. [L, thm. 7.5]. Note that, for \(k \) is algebraically closed, we already use this when claiming that the Cartan pairing is perfect.

The discussion above, Theorem 6.5, and Remark 6.10 imply that the number of simple graded \(\mathcal{H}_m \)-modules in \(\text{Mod}_\lambda \) is the same for any field \(k \) of characteristic \(\neq 2 \) as long as \(\Gamma, \theta, \lambda \) remain unchanged.

9. Presentation of the graded \(k \)-algebra \({}^\theta \mathcal{Z}_{A,V} \)

Fix a quiver \(\Gamma \) with set of vertices \(I \) and set of arrows \(H \). Fix an involution \(\theta \) on \(\Gamma \). Assume that \(\Gamma \) has no 1-loops and that \(\theta \) has no fixed points. Fix a dimension vector \(\nu \) in \({}^\theta \mathcal{N} \) and a dimension vector \(\lambda \) in \(\mathcal{N} \). Set \(|\nu| = 2m \). Fix an object \((V, \pi)\) in \({}^\theta \mathcal{P}_\nu \) and an object \(A \) in \(\mathcal{V}_\lambda \). In this section we give a proof of Theorem 5.8. By Theorem 4.17 and Corollary 5.6 there is a unique injective graded \(k \)-algebra homomorphism

\[
\Phi : {}^\theta \mathcal{R}(\Gamma)_{\lambda, \nu} \rightarrow {}^\theta \mathcal{Z}_{A,V},
\]

\[
i_l \mapsto i_{A,V,1}, \quad \kappa_{i,l} \mapsto \kappa_{A,V,1}(l), \quad \sigma_{i,k} \mapsto \sigma_{A,V,1}(k), \quad \pi_{l,1} \mapsto \pi_{A,V,1}(1), \quad i \in {}^\theta \mathcal{P}_{\nu}, \quad k = 1, \ldots, m - 1, \quad l = 1, 2, \ldots, m.
\]

We must prove that \(\Phi \) is a surjective map. Note that both algebras have 1, because the set \({}^\theta \mathcal{P}_{\nu} \) is finite. Since the grading does not matter, we can replace \({}^\theta \mathcal{Z}_{A,V} \) by \({}^\theta \mathcal{Z}_{A, V} \). To unburden the notation we abbreviate

\[
{}^\theta \mathcal{R}_\nu = {}^\theta \mathcal{R}(\Gamma)_{\lambda, \nu}, \quad {}^\theta \mathcal{F}_\nu = {}^\theta \mathcal{F}_{A, V}, \quad {}^\theta \mathcal{Z}_\nu = {}^\theta \mathcal{Z}_{A, V},
\]

\[
{}^\theta \mathcal{Z}_\nu = {}^\theta \mathcal{Z}_{A, V}, \quad {}^\theta \mathcal{Z}_\nu = {}^\theta \mathcal{Z}_{A, V}, \quad {\kappa}_{i,l} \mapsto {\kappa}_{A,V,1}(l), \quad {\sigma}_{i,k} \mapsto {\sigma}_{A,V,1}(k), \quad {\pi}_{l,1} \mapsto {\pi}_{A,V,1}(1), \quad i \in {}^\theta \mathcal{P}_{\nu}, \quad k = 1, \ldots, m - 1, \quad l = 1, 2, \ldots, m.
\]

9.1. The filtration of \({}^\theta \mathcal{Z}_\nu \). Recall that \(W_m \) is regarded as a Coxeter group of type \(B_m \) with the set of simple reflections \(\{s_1, s_2, \ldots, s_m\} \). From now on let \(\leq \) and \(\ell \) be the corresponding Bruhat order and length function. For a future use we set also

\[
\Delta^+ = \Delta^+ \cup \Delta^+_s, \quad \Delta^+_s = \{\chi_k, \pm \chi_l; 1 \leq l < k \leq m\}, \quad \Delta^+_\ell = \{\chi_1, \chi_2, \ldots, \chi_m\}.
\]

Note that \(\leq, \ell, \) and \(\Delta^+ \) differ from the order, the length function, and the set of positive roots introduced in Section 4.2. We hope this will not create any confusion.

We can now introduce a filtration of \({}^\theta \mathcal{Z}_\nu \) by closed subsets. We define

\[
\theta \mathcal{O}_\nu^{w \leq x} = \bigcup_{w \leq x} \theta \mathcal{O}_\nu^w, \quad \theta \mathcal{Z}_\nu^{\leq x} = q^{-1}(\theta \mathcal{O}_\nu^{x}), \quad \theta \mathcal{Z}_\nu^{\leq x} = H^G_\nu(\theta \mathcal{Z}_\nu^{\leq x}, k).
\]
9.2. Lemma. (a) The set $\theta^x Z^{<x}_\nu$ is closed. The variety $\theta^x Z^{<x}_\nu$ is smooth if $\ell(x) = 1$.

(b) The direct image by the inclusion $\theta^x Z^{<x}_\nu \subset \theta Z^{<x}_\nu$ is an injection $\theta^x Z^{<x}_\nu \subset \theta Z^x_v$.

(c) The convolution product maps $\theta^x Z^{<x}_\nu \times \theta^y Z^{<y}_v$ into $\theta^{x+y} Z^x_v$ for each x, y such that $\ell(xy) = \ell(x) + \ell(y)$.

(d) The unit of $\theta^x Z^x_v$ lies in $\theta^x Z^x_v$.

Proof: To avoid confusions, let \leq_D and ℓ_D be the Bruhat order and length function introduced in Section 4.2. The claims in the lemma are well-known if we replace \leq_D by \leq, ℓ by \leq_D, ℓ_D respectively. Therefore, it is enough to prove the following: assume that $\theta^{\nu,x,y}$ and $\theta^{\nu,x,y}$ are non-empty. Then $\theta^{\nu,x,y} \subset \theta^{\nu,x,y}$ iff $v \leq w$. Up to the action of a well-chosen diagonal element we may assume that $x = e$. We can also assume that y is minimal in the coset $W_v y$. Since $\theta^{\nu,e,y}$ and $\theta^{\nu,e,y}$ are non-empty, we have $v, w \in W_v y$. Finally, on the coset $W_v y$ the orders \leq_D are the same because $W_v \subset S_m$, see (4.2) and the last remark in Section 4.2.

Let $\theta^x Z^{<x}_\nu$ be the image of $\theta^x Z^{<x}_\nu$ by the isomorphism $\theta^x Z^x_v = \theta Z^x_v$ in Proposition 3.1(b).

9.3. PBW theorem for θZ^x_v. Recall that

$$\theta F^x_v = \bigoplus_{i \in \theta F^x_v} k[x_1(1), x_1(2), \ldots, x_1(m)],$$

see Section 4.11. The graded k-algebra θZ^x_v has a natural structure of graded θF^x_v-module such that $x_1(l)$ acts as $s_{\nu,l}(l)$ under the inclusion $\theta Z^x_v \subset \text{End}(\theta F^x_v)$ in Theorem 4.17. Recall that $\theta Z^x_v = \theta Z^x_v$. The following is immediate, see e.g., [CG, sec. 5.5].

9.4. Lemma. We have $\theta^x Z^{<x}_\nu = \bigoplus_{w \leq x} \theta F^x_v \{ \theta^w Z^x_v \}$ for each x. In particular $\theta^x Z^x_v$ is a free graded θF^x_v-module of rank $2^m m!$.

The map Φ is a graded θF^x_v-module homomorphism. For each x we set

$$\theta R^{<x}_\nu = \sum_{w \leq x} \theta F^x_v 1_{\nu, \sigma_w},$$

where σ_w is defined as in (5.2). It is a graded θF^x_v-submodule of θR^x_v. We abbreviate $\theta R^x_v = \theta R^{<x}_\nu$. The proof of the surjectivity of Φ consists of two steps. First we prove that $\Phi(\theta R^{<x}_\nu) \subset \theta Z^{<x}_\nu$. Then we prove that this inclusion is an equality.

9.5. Step 1. Since Φ is a θF^x_v-module homomorphism it is enough to prove that the element $\Phi(\sigma_w)$ lies in $\theta^x Z^{<x}_\nu$. By an easy induction on the length of x it is enough to observe that we have

$$\Phi(1) \subset \theta^x Z^x_v, \quad \Phi(\sigma_k) \subset \theta^x Z^{<x}_\nu, \quad k = 1, 2, \ldots, m.$$

This follows from the definition of the elements $\sigma_v(k), \pi_v(1)$ of $\theta^x Z^x_v$ in Section 4.14. Recall that $s_m = \xi_1$ and $s_m = \pi_1$, see (5.2) for details.
9.6. Step 2. Note that \({}^\theta Z^e_\nu \) is the free \({}^\theta F_\nu \)-module of rank one generated by \([{}^\theta Z^e_\nu] \). Therefore we have
\[
\Phi([{^\theta Z^e_\nu}]) = \Phi([{^\theta F_\nu}] = \Phi([{^\theta Z^e_\nu}]).
\]
To complete the proof of Step 2 we are reduced to prove the following.

9.7. Lemma. If \(\ell(s_kw) = \ell(w) + 1 \) and \(k = 1, 2, \ldots, m \), then we have the following formula in \(\theta Z^{s_kw} / \theta Z^{s_kw}_\nu \):
\[
[{^\theta Z^s_\nu}] \ast [{^\theta Z^w_\nu}] = [{^\theta Z^{s_kw}_\nu}].
\]

Proof: By Lemmas 9.2(c) and 9.4 there is an unique element \(c \) in \(\theta F_\nu \) such that
\[
[{^\theta Z^s_\nu}] \ast [{^\theta Z^w_\nu}] = c \ast [{^\theta Z^{s_kw}_\nu}] \text{ in } \theta Z^{s_kw} / \theta Z^{s_kw}_\nu.
\]
Let us prove that \(c = 1 \). For each \(x, y, z \) there is a unique element \(\Lambda^x_{y,z} \) in \(Q \) such that
\[
[{^\theta Z^x_\nu}] = \sum_{y,z} \Lambda^x_{y,z} \psi_{y,z},
\]
see Section 4.12. Since \(\phi_{\nu,y,yx} \) is a smooth point of \(\theta Z^x_\nu \) we have also
\[
\Lambda^x_{y,yx} = \text{eu}(\theta Z^s_\nu, \phi_{\nu,x,yx}^{-1}).
\]
Hence, in the expansion of the element \([{^\theta Z^{s_kw}_\nu}] \) in the \(Q \)-basis \((\psi_{y,z}) \) the coordinate along the vector \(\psi_{x,xs_kw} \) is equal to
\[
\Lambda^{s_kw}_{x,xs_kw} = \text{eu}(\theta Z^{s_kw}_\nu, \phi_{\nu,x,xs_kw})^{-1}.
\]
On the other hand, since \(\Lambda^{w}_{x,xs_kw} = 0 \) and
\[
[{^\theta Z^w_\nu}] = \sum_x (\Lambda^w_{x,xs_kw} \psi_{x,xs_kw} + \Lambda_{x,xs_kw}^\nu \psi_{x,xs_kw}),
\]
the coordinate of \([{^\theta Z^{s_kw}_\nu}] \ast [{^\theta Z^w_\nu}] \) along \(\psi_{x,xs_kw} \) is equal to
\[
\Lambda^{s_kw}_{x,xs_kw} \Lambda^w_{x,xs_kw} \Lambda_{x,xs_kw} = \text{eu}(\theta Z^{s_kw}_\nu, \phi_{\nu,x,xs_kw})^{-1} \text{eu}(\theta Z^w_\nu, \phi_{\nu,xs_kw,xs_kw})^{-1} \Lambda_{x,xs_kw}.
\]
Thus we must check that
\[
\text{eu}(\theta Z^{s_kw}_\nu, \phi_{\nu,x,xs_kw}) \text{eu}(\theta Z^w_\nu, \phi_{\nu,xs_kw,xs_kw}) = \text{eu}(\theta Z^{s_kw}_\nu, \phi_{\nu,x,xs_kw}) \Lambda_{x,xs_kw}.
\]
This follows from the lemma below.

9.8. Lemma. \(a \) For \(x, y \in W \) we have
\[
\text{eu}(\theta O^y_\nu, \phi_{\nu,x,xy}) = (h_{\nu,x} \oplus (\theta m_{\nu,yx}), \text{eu}(\theta Z^w_\nu, \phi_{\nu,x,xy}) = (\theta O^y_\nu, \phi_{\nu,x,xy}) \text{eu}(\theta e^*_{\nu,x,xy}), \Lambda_x = \text{eu}(\theta Z^e_\nu, \phi_{\nu,x}) = \text{eu}(\theta F_\nu, \phi_{\nu,x}) \text{eu}(\theta e^*_{\nu,x}).
(b) For \(w, x, y \in W \) such that \(\ell(xy) = \ell(x) + \ell(y) \) we have
\[
eu(\theta_{O^y, \phi_{v,w,xy}}) \cdot neu(\theta_{F, \phi_{v,w,x}}) = neu(\theta_{O^y, \phi_{v,w,wx}}) \cdot neu(\theta_{e^*, \phi_{v,w,wx,xy}}),
\]
\[
eu(\theta_{e^*, w,xy} \oplus \theta_{e^*, \phi_{v,w}}) = neu(\theta_{e^*, w,wx} \oplus \theta_{e^*, \phi_{v,w,wx,xy}}).
\]

Proof: Part (a) is left to the reader. Compare Proposition 4.13 where similar formulas are given. Let us prove (b). Clearly we can assume \(w = e \). Set
\[
\Delta(y)^- = y(\Delta^+) \cap \Delta^-, \quad \Delta(y)^+ = y(\Delta^-) \cap \Delta^+.
\]
Let the symbol \(\sqcup \) denote a disjoint union. Recall that (9.1)
\[
\ell(xy) = \ell(x) + \ell(y) \Rightarrow \begin{cases}
\Delta(xy)^- = \Delta(x)^- \sqcup x(\Delta(y)^-), \\
\Delta(xy)^+ = \Delta(x)^+ \sqcup x(\Delta(y)^+).
\end{cases}
\]
For \(x, y \in W \) the \(T \)-module \(\theta_{m, \nu, xy,x} \) is the sum of the root subspaces whose weight belong to the set \(x(\Delta(y)^-) \cap \Delta^- \), and the \(T \)-module \(\theta_{e, \nu, x} \) is the sum of the root subspaces whose weight belong to the set \(x(\Delta^+) \cap \Delta^- \), see Sections 4.8, 4.9 for details. Thus, by (a), the first claim follows from the following equality
\[
\Delta^+ \sqcup \Delta(xy)^- \sqcup x(\Delta^+) = \Delta^+ \sqcup \Delta(x)^- \sqcup x(\Delta^+) \sqcup x(\Delta(y)^-).
\]
This equality is a consequence of the first identity in (9.1). Now, let us concentrate on the second claim. Set
\[
S_{x,xy} = x(\Delta^+ \cap y(\Delta^+_x)), \quad L_{x,xy} = x(\Delta^+_1 \cap y(\Delta^+_{xy})).
\]
There are integers \(h_\alpha \geq 0 \) such that the character of the \(T \)-modules \(\theta_{E, \nu, x} \), \(\theta_{e, \nu, x} \), \(\theta_{e^*, \nu, x,xy} \) are of the following form
\[
ch(\theta_{E, \nu, x}) = \sum h_\alpha \alpha, \quad \alpha \in \Delta,
\]
\[
ch(\theta_{e, \nu, x}) = \sum h_\alpha \alpha + \sum \lambda_i \chi_l, \quad \alpha \in x(\Delta^+), \quad \chi_l \in x(\Delta^+),
\]
\[
ch(\theta_{e^*, \nu, x,xy}) = \sum h_\alpha \alpha + \sum \lambda_i \chi_l, \quad \alpha \in S_{x,xy}, \quad \chi_l \in L_{x,xy}.
\]
See Section 4.9 for details. Let
\[
S = S_{x,xy} \sqcup x(\Delta^+), \quad S' = S_{x,xy} \sqcup S_{x,xy},
\]
\[
L = L_{x,xy} \sqcup x(\Delta^+_1), \quad L' = L_{x,xy} \sqcup L_{x,xy}.
\]
We obtain
\[
ch(\theta_{e, \nu, x} \oplus \theta_{e, \nu, x}) = \sum h_\alpha \alpha + \sum \lambda_i \chi_l, \quad \alpha \in S, \quad \chi_l \in L,
\]
\[
ch(\theta_{e^*, \nu, x,xy} \oplus \theta_{e^*, \nu, x}) = \sum h_\alpha \alpha + \sum \lambda_i \chi_l, \quad \alpha \in S', \quad \chi_l \in L'.
\]
Thus the claim follows from (9.1).

To unburden the notation we’ll abbreviate vector \(\nu \theta \Gamma\). Assume that \(\Gamma\) has no 1-loops and that each \(I\) we abbreviate

Now, a short computation yields

\[
S = S' \iff \Delta^+_t \cap \Delta(xy)^+ = \Delta^+_t \cap (\Delta(x)^+ \sqcup x(\Delta(y)^+)),
\]

\[
L = L' \iff \Delta^+_t \cap \Delta(xy)^+ = \Delta^+_t \cap (\Delta(x)^+ \sqcup x(\Delta(y)^+)).
\]

Thus the claim follows from (9.1).

10. Perverse sheaves on \(^\theta \mathbf{E}_{\mathbf{A}, \mathbf{V}} \) and the global bases of \(^\theta \mathbf{V}(\lambda) \)

Fix a quiver \(\Gamma \) with set of vertices \(I \) and set of arrows \(H \). Fix an involution \(\theta \) on \(\Gamma \). Assume that \(\Gamma \) has no 1-loops and that \(\theta \) has no fixed points. Fix a dimension vector \(\nu \) in \(^\theta \mathbb{N}\) and a dimension vector \(\lambda \) in \(\mathbb{N}\). Set \(|\nu| = 2m \). Fix an object \((\mathbf{V}, \varpi) \) in \(^\theta \mathbf{V}_\nu \) and an object \(\mathbf{A} \) in \(\mathbf{V}_\lambda \). To unburden the notation we’ll abbreviate

\[
^\theta \mathbf{G}_\nu = ^\theta \mathbf{G}_\nu, \quad ^\theta \mathbf{R}_\nu = ^\theta \mathbf{R}(\Gamma)_{\lambda, \nu}.
\]

10.1. Perverse sheaves on \(^\theta \mathbf{E}_\nu \). First, we generalize the setting in Section 2. We define an orientation \(\Omega \) of \(I \) to be a partition \(I = \Omega \sqcup \overline{\Omega} \). Fix an orientation \(\Omega \). For each \(I\)-graded \(\mathbb{C}\)-vector space \(\mathbf{W} \) we write \(\mathbf{W}_\Omega = \bigoplus_{i \in \Omega} \mathbf{W}_i \). Now, we define

\[
L_{\mathbf{A}, \mathbf{V}, \Omega} = \text{Hom}_\mathbf{V}(\mathbf{A}_\Omega, \mathbf{V}_\Omega) \oplus \text{Hom}_\mathbf{V}((\mathbf{V}_\Omega, \mathbf{A}_\Omega), \quad ^\theta \mathbf{E}_{\mathbf{A}, \mathbf{V}, \Omega} = ^\theta \mathbf{E}_\mathbf{V} \times L_{\mathbf{A}, \mathbf{V}, \Omega}.
\]

An element of \(^\theta \mathbf{E}_{\mathbf{A}, \mathbf{V}, \Omega} \) is a triplet \((x, y, z) \) with

\[
x \in ^\theta \mathbf{E}_\mathbf{V}, \quad y \in \text{Hom}_\mathbf{V}(\mathbf{A}_\Omega, \mathbf{V}_\Omega), \quad z \in \text{Hom}_\mathbf{V}((\mathbf{V}_\Omega, \mathbf{A}_\Omega).
\]

For each \(\mathbf{y} \) in \(^\theta \mathbf{Y}_\nu \) we define also

\[
^\theta \mathbf{F}_{\mathbf{A}, \mathbf{V}, \mathbf{y}, \Omega} = \{ (x, y, z, \phi) \in ^\theta \mathbf{E}_{\mathbf{A}, \mathbf{V}, \Omega} \times ^\theta \mathbf{F}_\mathbf{V}, \phi = (\mathbf{V}^i), x(\mathbf{V}^i) \subset \mathbf{V}^i,
\]

\[
y(\mathbf{A}) \subset \mathbf{V}^0, z(\mathbf{V}^0) = 0 \}\}
\]

To unburden the notation we’ll abbreviate

\[
^\theta \mathbf{E}_{\nu, \Omega} = ^\theta \mathbf{E}_{\mathbf{A}, \mathbf{V}, \Omega}, \quad ^\theta \mathbf{F}_\mathbf{y} = ^\theta \mathbf{F}_\mathbf{V}, \quad ^\theta \mathbf{F}_{\mathbf{y}, \Omega} = ^\theta \mathbf{F}_{\mathbf{A}, \mathbf{V}, \mathbf{y}, \Omega}.
\]

We define the semisimple complex \(^\theta \mathcal{L}_{\mathbf{y}, \Omega} \) over \(^\theta \mathbf{E}_{\nu, \Omega} \) as the direct image of the constant sheaf \(^\theta \mathcal{L}_{\mathbf{y}, \Omega} \) by the obvious projection. We define \(^\theta \mathbf{P}_{\nu, \Omega} \) as the set of isomorphism classes of simple perverse sheaves over \(^\theta \mathbf{E}_{\nu, \Omega} \) which appear as a direct factor of \(^\theta \mathcal{L}_{\mathbf{y}, \Omega} \) for some \(\mathbf{y} \in ^\theta \mathbf{Y}_\nu \) and \(d \in \mathbb{Z} \). Next, we define \(^\theta \mathcal{Q}_{\nu, \Omega} \) as the full subcategory of \(^\theta \mathbf{D}_{\mathbf{G}_\nu}(^\theta \mathbf{E}_{\nu, \Omega}) \) consisting of the objects which are isomorphic to finite direct sums of \(^\theta \mathcal{L}_d \) with \(\mathcal{L} \in ^\theta \mathbf{P}_{\nu, \Omega} \) and \(d \in \mathbb{Z} \). When there is no risk of confusion we abbreviate

\[
^\theta \mathcal{P} = ^\theta \mathbf{P}_{\nu, \Omega}, \quad ^\theta \mathcal{Q} = ^\theta \mathbf{Q}_{\nu, \Omega}, \quad ^\theta \mathcal{L}_{\mathbf{y}} = ^\theta \mathcal{L}_{\mathbf{y}, \Omega}.
\]
10.2. Example. Let Γ, θ, and λ be as in Sections 6.2, 6.4. Set $\check{\Omega} = 0$, and $\nu = \bar{\iota} + \theta(i)$ for some $i \in I$. We have $\psi E_{\nu, \Omega} = L_i \times L_{\theta(i)}$ with $L_j = \text{Hom}(A_j, V_j)$, $\theta = \{i, \theta(i)\}$ with $i = \hat{\iota}(i)$, and $\psi_{F_{E, \Omega}} = \{(V \supset V_{\theta(i)} \supset 0)\} \times L_{\theta(i)}$. Therefore the following holds

- if $\lambda_i + \lambda_{\theta(i)} \neq 0$ then $\psi_{P_{\nu, \Omega}} = \{k_{L_i}[\lambda_i], k_{L_{\theta(i)}}[\lambda_{\theta(i)}]\}$, $\psi_{E_{\nu, \Omega}} = k_{L_i}[\lambda_i]$, and $\psi_{L_{\iota}^i} = k_{L_{\theta(i)}}[\lambda_{\theta(i)}]$.
- if $\lambda_i + \lambda_{\theta(i)} = 0$ then $\psi_{P_{\nu, \Omega}} = \{k_{(0)}\}$ and $\psi_{L_{\iota}^i} = \psi_{L_{\theta(i)}^i} = k_{(0)}$.

10.3. Multiplication of complexes. Set $\nu'' = \nu + \nu' + \theta(\nu')$ with $\nu' \in NL$. Fix $V' \in V_{\nu'}$ and $V'' \in V_{\nu''}$. Let T be the set of triples (V, γ, γ') where

- V is an I-graded subspace of V'' such that $V''/V \in V_{\nu'}$ and $V^\perp \subset V$,
- $\gamma : V \rightarrow V/V^\perp$ is an isomorphism in $V_{\nu'}$,
- $\gamma' : V' \rightarrow V''/V$ is an isomorphism in $V_{\nu'}$.

We consider the following diagram

$$
\begin{array}{ccc}
\psi E_{\nu, \Omega} \times E_{\nu'} & \xrightarrow{p_1} & \psi E_{1, \Omega} \times E_{\nu'} \\
\downarrow{\psi E_{1, \Omega}} & & \downarrow{\psi E_{1, \Omega}} \\
\psi E_{\nu, \Omega} & \xrightarrow{p_2} & \psi E_{\nu', \Omega} \\
\end{array}
$$

Here $\psi E_{2, \Omega}$ is the variety of tuples (x, y, z, V) where

- V is an I-graded subspace of V'' such that $V''/V \in V_{\nu'}$ and $V^\perp \subset V$,
- $(x, y, z) \in \psi E_{\nu, \Omega}$, $y(A) \subset V$, $x(V) \subset V$, and $z(V^\perp) = 0$.

and $\psi E_{1, \Omega}$ is the variety of tuples $(x, y, z, V, \gamma, \gamma')$ where

- $(V, \gamma, \gamma') \in T$,
- $(x, y, z, V) \in \psi E_{2, \Omega}$.

Finally the maps are given by

- $p_1(x, y, z, V, \gamma, \gamma') = (x, y, z, x, x')$,
- $p_2(x, y, z, V, \gamma, \gamma') = (x, y, z, V)$,
- $p_3(x, y, z, V) = (x, y, z)$,

where

- x, y, z, x', x'' are as in $\psi E_{1, \Omega}$,
- x, y, z, x', x'' are as in $\psi E_{2, \Omega}$,

The group $\psi G_{\nu'}$ acts on $\psi E_{2, \Omega}$ and the maps p_2, p_3 are $\psi G_{\nu'}$-equivariant. Note that p_1 is a smooth map with connected fibers, that p_2 is a principal bundle, and that p_3 is proper. Therefore, for any complexes $E \in D_{\psi G_{\nu'}}(\psi E_{\nu, \Omega})$ and $E' \in D_{\psi G_{\nu'}}(\psi E_{\nu'})$ there is a unique complex $E_2 \in D_{\psi G_{\nu'}}(\psi E_{2, \Omega})$ such that

$$p_1^*(E \boxtimes E') = p_2^*(E_2).$$

Then, we define a complex $E'' = \phi(E, E')$ in $D_{\psi G_{\nu'}}(\psi E_{\nu, \Omega})$ by

$$E'' = (p_3)_*(E_2).$$

Now, let $\nu' = i$. Hence $E_{\nu'} = 0$. Let $L_{\iota} = k_{E_{\nu'}}$, the trivial complex over $E_{\nu'}$.
10.4. Definition. Set \(\nu' = i \). For \(E \in \mathcal{D}_{\mathcal{G}_\nu}(\theta E_{\nu}, \Omega) \) we define the complex

\[
f_i(E) = \varphi_i(E, L_i)[b_{\nu,i}], \quad b_{\nu,i} = \nu_i + \sum_j \nu_j h_{i,j} + \lambda_{\Omega,\theta(i)} + \lambda_{\Omega,i}.
\]

10.5. Proposition. (a) \(f_i \) yields a functor \(\theta Q \to \theta Q \).

(b) \(f_i(\theta L_{\nu'}\iota) = \theta L_{\nu'}\iota \) for each \(i \) in \(\theta I' \).

Proof: A standard computation yields

\[
\varphi_i(\theta L_{\nu'}\iota) = \theta L_{\nu'}\iota \theta(i), \quad y \in \theta Y'.
\]

See [E, prop. 4.11], [L2, sec. 9.2.6-7]. This implies (a). The same computation as in Proposition 2.5 yields

\[
(10.1) \quad d_i = \ell_{\nu'}/2 + \sum_{k < l, k + l \neq 1} h_{i,k}/2 + \sum_{1 \leq l} (\lambda_{\Omega,i} + \lambda_{\Omega,i}),
\]

where \(\lambda_{\Omega,i} = \lambda_i \) if \(i \in \Omega \) and 0 else. Thus we have

\[
d_{\lambda,i} - d_{\lambda,i} = b_{\nu,i}.
\]

Part (b) follows from this equality. \(\square \)

10.6. Restriction of complexes. Set \(\nu'' = \nu + \nu' + \theta(\nu') \) with \(\nu' \in \mathbb{N}I \). Fix \(V' \in \mathcal{V}_{\nu'}, \mathcal{V}'' \in \mathcal{V}_{\nu''}, \) and fix a triple \((V, \gamma, \gamma') \in T \). Consider the diagram

\[
\begin{array}{ccc}
\theta E_{\nu}, \Omega \times E_{\nu'} & \xrightarrow{\kappa} & \theta E_{\nu'}, \Omega \\
\downarrow \varphi & & \downarrow \iota \\
\theta E_{\nu'}, \Omega \\
\end{array}
\]

Here we have set

- \(\theta E_{\nu', \Omega} = \{(x, y, z) \in \theta E_{\nu', \Omega} : x(V) \subseteq V, y(A) \subseteq V, z(V^1) = 0\}, \)
- \(\kappa(x, y, z) = (x_\gamma, y_\gamma, z_\gamma, x_{\gamma'}) \),
- \(\iota(x, y, z) = (x, y, z) \).

For any \(\mathcal{E}'' \) in \(\mathcal{D}_{\mathcal{G}_{\nu'}, \theta E_{\nu'}, \Omega} \) we define a complex in \(\mathcal{D}_{\mathcal{G}_{\nu'}, \mathcal{G}_{\nu'}}(\theta E_{\nu}, \Omega \times E_{\nu'}) \) by

\[
\varphi^*(\mathcal{E}'') = \kappa_1^*(\mathcal{E}'').
\]

10.7. Definition. Set \(\nu' = i \). For any \(\mathcal{E}'' \) in \(\mathcal{D}_{\mathcal{G}_{\nu'}, \theta E_{\nu'}, \Omega} \) we define

\[
e_i(\mathcal{E}'') = \varphi^*(\mathcal{E}'')[a_{\nu,i}], \quad a_{\nu,i} = -\nu_i + \sum_j \nu_j h_{i,j} + \lambda_{\Omega,\theta(i)} + \lambda_{\Omega,i}.
\]
10.8. Proposition. (a) e_i yields a functor from \mathcal{Q} to \mathcal{Q}.

(b) $e_i(\mathcal{L}_Y) = \bigoplus_k \mathcal{L}_{Y_k}[-2d_k]$ for some integer d_k. The sum runs over all k such that $i_k = i$, and

$$y_k = (i, a^{(k)}), \quad a^{(k)} = (a_l^{(k)}), \quad a_l^{(k)} = a_l - \delta_{l,k} - \delta_{l,1-k}.$$

\(\phi\) (which itself is an analogue of [L2, sec. 9.2.6]), where the case \(\lambda = 0\) is considered.

(c) $e_i(\mathcal{Q}) = \bigoplus_i \mathcal{L}_Y^{\ast}[\deg(y, i; \phi)]$, where ϕ runs over all sequences such that i lies in $\text{Sh}(Y, \theta(i))$.

Proof: Part (a) follows from (b). Parts (b) and (c) are analogues of [E, prop. 4.11(ii)] (which itself is an analogue of [L2, sec. 9.2.6]), where the case $\lambda = 0$ is considered. Our proof is similar. Assume that $\nu' = i$. Hence we have $E_{\nu'} = \emptyset$. We define

$$\mathcal{E}_{\nu', \Omega} = \{(x, y, z, \phi) \in \mathcal{E}_{\nu, \Omega}^3; (x, y, z) \in \mathcal{E}_{\nu, \Omega}^3\},$$

$$\mathcal{F}_{3}^{(k)} = \{\phi = (V^l) \in \mathcal{F}_{3}^3; V^k \subset V, V^{k-1} \not\subset V\},$$

$$\mathcal{F}_{3, \Omega}^{(k)} = \{x, y, z, \phi \in \mathcal{F}_{3, \Omega}; \phi \in \mathcal{F}_{3}^{(k)}\}.$$

Note that $\mathcal{E}_{\nu', \Omega} = \bigcup_k \mathcal{F}_{3}^{(k)}$ is a partition into locally closed subsets. Let y_k be as above. Consider the map

$$f_k : \mathcal{F}_{3, \Omega}^{(k)} \to \mathcal{F}_{3, \Omega}, \quad (x, y, z, \phi) \mapsto (x_y, y_z, z_x, \phi_x),$$

where ϕ_x is the flag whose l-th term is equal to

$$\gamma^{-1}(V \cap V^l + V^l) / V^l.$$

We get the following diagram, whose right square is Cartesian

$$\mathcal{E}_{\nu, \Omega}^3 \xrightarrow{f_k} \mathcal{F}_{3, \Omega}^{(k)} \to \mathcal{F}_{3, \Omega} \xrightarrow{\mathcal{E}_{\nu, \Omega}^3} \xrightarrow{i} \mathcal{E}_{\nu', \Omega}^3.$$

It is easy to prove that f_k is an affine bundle. Let $d_k = d_{f_k}$ be its relative dimension. A standard argument using the diagram above yields

$$\varphi^*(\mathcal{L}_Y) = \kappa \iota^* \mathcal{L}_Y = \bigoplus_{i_k = i} \mathcal{L}_{Y_k}[-2d_k].$$

This proves (b). Now, we concentrate on (c). Assume that $y = i$ lies in $\mathcal{F}^{\nu'\ast}$. Therefore we have

$$i = (i_{-m}, i_{-1-m}, \ldots, i_{m+1}), \quad k = -m, 1 - m, \ldots, m + 1.$$

First, we compute explicitly the integer d_k. The map $\mathcal{F}_{3}^{(k)} \to \mathcal{F}_{y_k}, \phi \mapsto \phi_x$ is an affine bundle of relative dimension

$$\kappa\{l; -m \leq l < k, i_l = i\}.$$
Further, for each tuple \((x, y, z, \phi)\) in \(\mathfrak{p}^*_{\mathfrak{a}, \Omega}\) and for each \(\phi' \in \mathfrak{p}^*_{\mathfrak{a}, m}^{(k)}\) such that \(\phi'_y = \phi\), the space of tuples \((x', y', z')\) in \(\mathfrak{p}^*_{\mathfrak{a}, m}\) such that \((x', y', z', \phi')\) lies in \(\mathfrak{p}^*_{\mathfrak{a}, \Omega}\) and \(\kappa(x', y', z') = (x, y, z)\) has the dimension
\[
\sum_{k < l \leq m+1} h_{i, i_1} + \delta_{k \leq 0} (\lambda_{\Omega, \theta(i)} + \lambda_{\Omega, i} - h_{i, \theta(i)}).
\]

See [E, prop. 4.11(ii)] for details. Therefore we have
\[
d_k = \sum_{k < l \leq m+1} h_{i, i_1} + \delta_{k \leq 0} (\lambda_{\Omega, \theta(i)} + \lambda_{\Omega, i} - h_{i, \theta(i)}) + \epsilon[l; -m \leq l < k, i_l = i].
\]

Next, (10.1) yields
\[
d_{\lambda, i} - d_{\lambda, \nu} = \nu_i + \sum_{-m \leq l < k} h_{i, i_1} + \sum_{k < l \leq m+1} h_{i, i_1} + \delta_{k \geq 1} (\lambda_{\Omega, \theta(i)} + \lambda_{\Omega, i} - h_{\theta(i), i}) + \delta_{k \leq 0} (\lambda_{\Omega, i} + \lambda_{\Omega, \theta(i)} - h_{i, \theta(i)}).
\]

Finally we have
\[
a_{\nu, i} = -\nu_i + \sum_{-m \leq l < k} h_{i, i_1} - h_{i, \theta(i)} + \lambda_{\Omega, \theta(i)} + \lambda_{\Omega, i}.
\]

Therefore we get
\[
a_{\nu, i} + d_{\lambda, i} - d_{\lambda, \nu} = 2d_k = - \sum_{-m \leq l < k} \epsilon[l; -m \leq l < k, i_l = i].
\]

On the other hand \(\deg(i_k, \theta(i); \i)\) is the degree of the homogeneous element \(\sigma_{\i} 1\), where \(\i\) is a reduced decomposition of an element \(w\) of \(W_{m+1}\) such that \(w(\i) = i_k \theta(i)\). If \(k \leq 0\) then we can choose \(\i = s_m s_{m-1} \ldots s_{1-k}\) and we get
\[
\deg(i_k, \theta(i); \i) = - \sum_{-m \leq l < k} i \cdot i_l.
\]

If \(k \geq 1\) then we can choose \(\i = s_m s_{m-1} \ldots s_1 s_1 \ldots s_{k-1}\) and we get
\[
\deg(i_k, \theta(i); \i) = - \sum_{-m \leq l < 0} i \cdot i_l + i \cdot \theta(i) + \lambda_i + \lambda_{\theta(i)} - \sum_{1 \leq l < k} i \cdot i_l,
\]
\[
= - \sum_{-m \leq l < k} i \cdot i_l + i \cdot \theta(i) + \lambda_i + \lambda_{\theta(i)}.
\]

The proposition is proved.

\[\Box\]

10.9. Example. Let \(\Gamma, \theta, \lambda, \nu, \) and \(\Omega\) be as in Example 10.2. Let \(k\) denote the unique element of \(\mathfrak{p}^*_{\mathfrak{a}, \Omega}\). We have
\[
\{0\} \xrightarrow{\kappa} L_{\theta(i)} \xrightarrow{\i} L_i \times L_{\theta(i)}.
\]

We obtain
\[
a_{\nu, i} = \lambda_{\theta(i)}, \quad e_i(k_L[\lambda_i]) = k[\lambda_i + \lambda_{\theta(i)}], \quad e_i(k_{L_{\theta(i)}[\lambda_{\theta(i)}]} = k,
\]
\[
b_{\nu, i} = \lambda_{\theta(i)}, \quad f_i(k) = k_{L_{\theta(i)}[\lambda_{\theta(i)}]}.
\]
10.10. A key estimate. First, let us introduce the following notation. For any complex of constructible sheaves L and any integer d we’ll write $v^d L$ for the shifted complex $L[d]$.

10.11. Proposition. For each $i \in I$ there are maps

$$e_i : \mathcal{P} \cup \{0\} \to \mathbb{Z}_{\geq 0}, \quad \tilde{e}_i : \mathcal{P} \to \mathcal{P} \cup \{0\}, \quad \tilde{E}_i : \mathcal{P} \to \mathcal{P}$$

such that $e_i(0) = 0$, and for each L in \mathcal{P} the following hold

(a) we have $e_i(\tilde{E}_i(L)) = e_i(L) - 1$ and

$$e_i(L) = v^1 L \tilde{e}_i(L) + \sum_{L'} e_{L,L'} L',$$

$b' \in \mathcal{P}, \quad \varepsilon_b(L) > e_i(L) + 1, \quad f_{L,L'} e_i(L) \in v^{2 - L(L')} \mathbb{Z}[v],$

(b) we have $e_i(\tilde{F}_i(L)) = e_i(L) + 1$ and

$$f_i(L) = (e_i(L) + 1) \tilde{F}_i(L) + \sum_{L'} f_{L,L'} L',$$

$c' \in \mathcal{P}, \quad \varepsilon_c(L') > e_i(L) + 1, \quad f_{L,L'} e_i(L) \in v^{2 - L(L')} \mathbb{Z}[v],$

(c) we have

$$e_i(0) = 0, \quad \tilde{E}_i(L) \neq 0 \text{ if } e_i(L) > 0,$$

$$\tilde{E}_i(L) = L, \quad \tilde{E}_i(L) = L \text{ if } \tilde{E}_i(L) \neq 0,$$

(d) if $L \in \mathcal{P}_0$ is such that $e_i(L) = 0$ for all i, then $L \in \mathcal{P}_0 \Omega$,

(e) the elements of \mathcal{P} are selfdual.

Proof: We’ll prove the proposition for any quiver $\Gamma = (I, H)$ with an involution θ such that Γ has no 1-loops and θ has no fixed points. The estimates in (a), (b) are analogue of [E, thm. 5.3], where they are proved under the assumption $\lambda = 0$. Our proof is essentially the same. Fix a vertex i. First, we can assume that

- i is a sink of Γ,
- $i \in \Omega$,
- $\theta(i) \in \Omega$.

More precisely we have the following lemma. Its proof is left to the reader. It is proved as in [E, thm. 4.19], [L2], using Fourier transforms.

10.12. Lemma. Let $(\Gamma^{(1)}, \theta^{(1)}), (\Gamma^{(2)}, \theta^{(2)})$ be two quivers with involutions without fixed points. Assume that $\Gamma^{(1)}, \Gamma^{(2)}$ have the set of vertices I and that they have the same set of unoriented arrows. Let $\Omega^{(1)}, \Omega^{(2)}$ be two orientations of I. There is an equivalence of categories $\mathcal{Q}_{\nu, \Omega^{(1)}} \to \mathcal{Q}_{\nu, \Omega^{(2)}}$ which commutes with the functors f_i, e_i and with the Verdier duality. The categories $\mathcal{Q}_{\nu, \Omega^{(1)}}$ and $\mathcal{Q}_{\nu, \Omega^{(2)}}$ are relative to the quivers $\Gamma^{(1)}, \Gamma^{(2)}$ respectively. This equivalence yields a bijection $\mathcal{P}_{\nu, \Omega^{(1)}} \to \mathcal{P}_{\nu, \Omega^{(2)}}$.
Then, for each integer \(r \geq 0 \) let \(\partial E_{\nu, \Omega, \geq r} \) be the closed subset of \(\partial E_{\nu, \Omega} \) consisting of the triples \((x, y, z)\) such that there is a \(I \)-graded subspace \(W \subset V \) of codimension vector \(ri \) such that
\[
x(W) \subset W; \quad y(A) \subset W; \quad z(W^\perp) = 0.
\]
Then, we set
\[
\partial E_{\nu, \Omega, r} = \partial E_{\nu, \Omega, \geq r} \setminus \partial E_{\nu, \Omega, \geq r + 1}.
\]
Finally we set \(E_i(0) = 0 \) and for \(\mathcal{L} \in \partial \mathcal{P} \) we define
\[
E_i(\mathcal{L}) = \max\{r; \; \text{sup}(\mathcal{L}) \subset \partial E_{\nu, \Omega, \geq r}\}.
\]
Set \(\nu' = i \) and consider the diagram
\[
\partial E_{\nu, \Omega} \xrightarrow{p_1} \partial E_{\nu, \Omega} \xrightarrow{p_2} \partial E_{\nu, \Omega} \xrightarrow{p_3} \partial E_{\nu, \Omega}.
\]
Under restriction it yields the diagram
\[
\partial E_{\nu, \Omega, r} \xrightarrow{p_1} \partial E_{\nu, \Omega, r} \xrightarrow{p_2} \partial E_{\nu, \Omega, r+1} \xrightarrow{p_3} \partial E_{\nu, \Omega, r+1},
\]
where
\[
\partial E_{\nu, \Omega, r} = p_1^{-1}(\partial E_{\nu, \Omega, r}), \quad \partial E_{\nu, \Omega, r+1} = p_3^{-1}(\partial E_{\nu, \Omega, r+1}).
\]
Note that we have \(\partial E_{1, r} = \frac{3}{2}(\partial E_{2, r+1}) \) and that the map \(\partial E_{2, r+1} \rightarrow \partial E_{\nu, \Omega, r+1} \) is a \(\mathbb{P}^r \)-bundle. Finally, we set \(p = p_3p_2 \) and we define \(\partial E_{\nu, \Omega, \leq r} \) and \(\partial E_{\nu, \Omega, \leq r} \) in the obvious way.

Now, we concentrate on (b). Fix a simple perverse sheaf \(\mathcal{L} \in \mathcal{P}_{\nu, \Omega} \). Set \(\varepsilon = E_i(\mathcal{L}) \). The maps \(p_1, p_2 \) are smooth with connected fibers of dimension \(d_{p_1}, d_{p_2} \) such that
\[
b_{\nu, i} = d_{p_1} - d_{p_2}.
\]
Thus, there is a unique simple \(\partial E_{\nu, \Omega} \)-equivariant perverse sheaf \(\mathcal{L}_2 \) on \(\partial E_{\nu, \Omega} \) with
\[
p_1^*(\mathcal{L})[b_{\nu, i}] = p_2^*(\mathcal{L}_2).
\]
We have
\[
\mathcal{L}_2|_{\partial E_{\nu, \Omega, \leq \varepsilon + 1}} = p_3^*(\mathcal{L}'')[\varepsilon]
\]
for some simple perverse sheaf \(\mathcal{L}'' \) on \(\partial E_{\nu, \Omega, \leq \varepsilon + 1} \). Let \(\mathcal{L}_0 \) be the minimal perverse extension of \(\mathcal{L}'' \) to \(\partial E_{\nu, \Omega} \). Since \(\mathfrak{f}_i(\mathcal{L}) \) is semi-simple, we get
\[
\mathfrak{f}_i(\mathcal{L}) = (\varepsilon + 1)\mathcal{L}_0 + \sum_{\mathcal{L}'} f_{\mathcal{L}, \mathcal{L}', \mathcal{L}'},
\]
where \(\mathcal{L}_0, \mathcal{L}' \in \mathcal{P}_{\nu, \Omega} \), \(E_i(\mathcal{L}_0) = \varepsilon + 1 \), \(E_i(\mathcal{L}') > \varepsilon + 1 \).
Let us that $f_{L',L}$ lies in $v^2-L'(L')Z[v]$. Write

$$f_{L}(L) = \bigoplus_{L'} L' \otimes M_{L'}$$

where $M_{L'}$ is a complex of k-vector spaces. Set $\varepsilon = \varepsilon(L')$. We have

$$R\text{Hom}(L',L')|_{E_{\nu',\leq \varepsilon'}} \otimes M_{L'_{\varepsilon'}} \subset R\text{Hom}((p_3)((L_2),L')|_{E_{\nu',\leq \varepsilon'}}.$$

On the other hand, since p_3 restricts to a $P_{\varepsilon-1}$-bundle $\theta E_{2,\Omega,\varepsilon'} \rightarrow \theta E_{1,\Omega}$, we have

$$R\text{Hom}((p_3)((L_2),L')|_{E_{\nu',\varepsilon',\leq \varepsilon'}},L'|_{E_{\nu',\leq \varepsilon'}}|_{E_{\nu',\leq \varepsilon'}}.$$

Since $L'|_{E_{\nu'}-1}|_{E_{\nu',\leq \varepsilon'}}$ is a perverse sheaf the complex

$$R\text{Hom}(L_2,L'|_{E_{\nu',\leq \varepsilon'}}|_{E_{\nu',\leq \varepsilon'}})$$

is concentrated in degrees ≥ 0. Its 0-th cohomology group is zero because L_2 and $L'|_{E_{\nu'}-1}$ are simple and non isomorphic. Thus the complex

$$R\text{Hom}((p_3)((L_2),L')|_{E_{\nu',\leq \varepsilon'}}|_{E_{\nu',\leq \varepsilon'}})$$

is concentrated in degrees $> 1 - \varepsilon'$. This implies the estimate we want.

Next, we prove (a). Fix a triple (V,γ,γ') in T. Observe that the hypothesis on Γ, Ω, i implies that for each (x,y,z,W,ρ,ρ') in $bE_{1,\Omega}$ we have $x(W^\perp) = z(W^\perp) = 0$, $x(V), y(A) \subset W$, z is completely determined by its restriction to W, and y is completely determined by its composition with the projection $V \rightarrow V/W^\perp$. Hence x, y, z are completely determined by x_ρ, y_ρ, z_ρ. Therefore κ is an isomorphism. Consider the diagram

$$\begin{array}{ccc}
\theta E_{\nu',\Omega} & \overset{\kappa}{\longrightarrow} & \theta E_{\nu',\Omega} \\
\downarrow s & & \downarrow p \\
\theta E_{1,\Omega} & \overset{p_1}{\longrightarrow} & \theta E_{\nu',\Omega}
\end{array}$$

where

$$\kappa(x,y,z) = (x_\gamma,y_\gamma,z_\gamma), \quad s(x,y,z) = (x,y,z,V,\gamma,\gamma'),$$

$$p_1(x,y,z,W,\rho,\rho') = (x_\rho,y_\rho,z_\rho), \quad p(x,y,z,W,\rho,\rho') = (x,y,z).$$

The left square is Cartesian. Fix a simple perverse sheaf L in $\theta \mathcal{P}_{\nu',\Omega}$. Set $\varepsilon = \varepsilon(L)$. We’ll assume that $\varepsilon > 0$ (the case $\varepsilon = 0$ is left to the reader). We have

$$e_{L}(L) = \kappa s^*p^*(L)[\nu,i].$$
The restriction $L|_{E_{\nu, \Omega, \varepsilon}}$ is a simple $G_{\nu, \varepsilon}$-equivariant perverse sheaf supported on $E_{\nu, \Omega, \varepsilon}$. Let d_p, d_s be the relative dimension of the maps p, s. Since p restricts to a smooth map $E_{1, \Omega, \varepsilon-1} \to E_{\nu, \Omega, \varepsilon}$, the complex
\[L_1 = p^*(L)[d_p]|_{E_{1, \Omega, \varepsilon-1}} \]
is again a simple $G_{\nu, \varepsilon}$-equivariant perverse sheaf. It is constant along the fibers of p_1 by $G_{\nu, \varepsilon}$-equivariance. Thus
\[L'' = e_i(L)[d_p + d_s]|_{E_{\nu, \Omega, \varepsilon-1}} \]
is a simple perverse sheaf over $E_{\nu, \Omega, \varepsilon-1}$. Using (10.2) we get
\[d_p + d_s = d_p + \varepsilon - 1 - d_{p_1}, \quad d_{p_1} - d_p = b_{\nu, i}, \quad b_{\nu, i} = \nu_i, \quad a_{\nu, i} = -\nu_i. \]
Therefore, we have
\[d_p + d_s - a_{\nu, i} = \varepsilon - 1. \]
Let L_0 be the minimal perverse extension of L'' to $E_{\nu, \Omega}$. Since $e_i(L)$ is semi-simple we get
\[e_i(L) = v^{1-\varepsilon} L_0 + \sum L' \quad \text{with} \quad L_0, L' \in P_{\nu, \Omega}, \quad \varepsilon(L_0) = \varepsilon - 1, \quad \varepsilon(L') \geq \varepsilon. \]

Now, one proves that $e_{L', L''}$ lies in $v^{1-\varepsilon} L^{(L)} Z[v]$ as in [E, thm. 5.3]. More precisely, since $p^*(e_{L})$ and $p^*(L)[a_{\nu, i}]$ are constant along the fibers of p_1 and since
\[e_{L}(L) = \kappa s^* p^*(L)[a_{\nu, i}], \]
we have
\[p^*(e_{L}) = p^*(L)[-b_{\nu, i}]. \]

On the other hand, we have
\[p^*_i e_{L}(L) = \bigoplus_{L''} p^*_i (L'') \otimes M_{L''}, \]
where the graded k-vector space $M_{L''}$ is the multiplicity space of the simple perverse sheaf $L'' \in P_{\nu, \Omega}$ in $e_{L}(L)$. Let L''_2 be the perverse sheaf over $E_{\nu, \Omega}$ such that
\[p^*_i (L'')[b_{\nu, i}] = p^*_2 (L''_2). \]
We obtain
\[\bigoplus_{L''} L''_2 \otimes M_{L''} = p^*_3 (L). \]
Now, let \(\mathcal{L}' \) be as in (10.4). Set \(\varepsilon' = \underline{\varepsilon}_i(\mathcal{L}') \). We have
\[
\bigoplus_{\mathcal{L}''} \text{RHom}(\mathcal{L}'',|_{\mathcal{E}_{2,\Omega,\varepsilon+1}},\mathcal{L}') \otimes M^{\varepsilon'} =
\]
\[
\text{RHom}(p_1^*(\mathcal{L})|_{\mathcal{E}_{2,\Omega,\varepsilon+1}},\mathcal{L}_2') \otimes M^{\varepsilon'} =
\]
\[
\text{RHom}(p_1^*(\mathcal{L})|_{\mathcal{E}_{2,\Omega,\varepsilon+1}}, \mathcal{L}_2') =
\]
\[
\text{RHom}(\mathcal{L}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}, (p_1)_!(\mathcal{L}_2')|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}})
\]
\[
\text{RHom}(\mathcal{L}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}, f^!(\mathcal{L}'))|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}
\]
\[
(\varepsilon' + 1) \text{RHom}(\mathcal{L}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}, \mathcal{F}(\mathcal{L}')|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}),
\]
where the last equality follows from part (b). The complex
\[
\text{RHom}(\mathcal{L}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}, \mathcal{F}(\mathcal{L}')|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}),
\]
is concentrated in degrees \(\geq 1 \), because the perverse sheaves \(\mathcal{L}' \) and \(\mathcal{F}(\mathcal{L}') \) are simple and distincts. Thus the complex
\[
\text{RHom}(\mathcal{L}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}, \mathcal{F}(\mathcal{L}')|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}})
\]
is concentrated in degrees \(\geq 1 - \varepsilon' \). Choosing \(\mathcal{L}' = \mathcal{L}'' \) we get that \(M^{\varepsilon'} \) is also concentrated in degrees \(\geq 1 - \varepsilon' \). Therefore
\[
equiv'(\mathcal{L}) = \bigoplus_{\mathcal{L}''} M^{\varepsilon'} \otimes M^{\varepsilon''} = \bigoplus_{\mathcal{L}''} \bigoplus_{d \in \mathbb{Z}} v^{-d} \mathcal{L}'' \otimes M^{\varepsilon''},
\]
with \(M^{\varepsilon''} = 0 \) unless \(d \geq 1 - \varepsilon' \). We are done.

Now, we concentrate on (c). The second claim in (c) is obvious. Now, we prove that \(\mathcal{F}_s \mathcal{F}_r(\mathcal{L}) = \mathcal{L} \) for \(\mathcal{L} \) in \(^s \mathcal{P}_{\nu,\Omega} \). Recall the diagram (10.3). Set \(\varepsilon = \underline{\varepsilon}_i(\mathcal{L}) \) and take a simple perverse sheaf \(\mathcal{L}_2 \) on \(^s \mathcal{E}_{\nu,\Omega} \) such that
\[
p_1^*(\mathcal{L})|_{b_{\nu,1}} = p_2^*(\mathcal{L}_2), \quad (p_1)_!(\mathcal{L}_2) = f^!(\mathcal{L}).
\]
We have
\[
(p_1)_!(\mathcal{L}_2)|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}} = (\varepsilon + 1) \mathcal{F}_s \mathcal{F}_r(\mathcal{L})|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}.
\]
On the other hand, since
\[
\mathcal{L}_2|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}} = p_3^*(\mathcal{F}_s \mathcal{F}_r(\mathcal{L})|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}),
\]
we have
\[
p^*(\mathcal{F}_s \mathcal{F}_r(\mathcal{L})|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}} = p_3^*(\mathcal{L}_2)|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}} = p_1^*(\mathcal{L})|_{b_{\nu,1} - \varepsilon}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}.
\]
Therefore we have also
\[
equiv_1(\mathcal{F}_s \mathcal{F}_r(\mathcal{L})|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}} = \kappa_s \kappa^* p^*(\mathcal{F}_s \mathcal{F}_r(\mathcal{L})|_{b_{\nu,1}})|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}
\]
\[
= \mathcal{L}|_{\varepsilon'}|_{\mathcal{E}_{\varepsilon',\Omega,\varepsilon+1}}.
\]
Therefore \(\widetilde{E}_i \widetilde{F}_i(\mathcal{L}) = \mathcal{L} \). Finally, fix \(\mathcal{L} \in \mathcal{P}^{\nu,\Omega} \) such that \(\varepsilon_i(\mathcal{L}) > 0 \) and let us prove that \(\widetilde{E}_i \widetilde{F}_i(\mathcal{L}) = \mathcal{L} \). Write \(\varepsilon = \varepsilon_i(\mathcal{L}) \). By (10.5) we have

\[
p_i^*(\mathcal{L}) = p^*(\mathcal{L})[a_{\nu,i}].
\]

Hence we have also

\[
p_i^*(\mathcal{L})[-a_{\nu,i}]|_{\varepsilon_i=1} = p^*(\mathcal{L})[\varepsilon - 1]|_{\varepsilon_i=1}.
\]

Since \(p_i^*(\mathcal{L})[\varepsilon - 1]|_{\varepsilon_i=1} \) is a simple perverse sheaf, we have

\[
f_i(\mathcal{L})|_{\varepsilon_i=1} = (p_\lambda)p_i^*(\mathcal{L})[\varepsilon - 1]|_{\varepsilon_i=1} = \langle \varepsilon \rangle \mathcal{L}|_{\varepsilon_i=1}.
\]

This implies that \(\widetilde{E}_i \widetilde{F}_i(\mathcal{L}) = \mathcal{L} \).

Next, (d) is obvious. If \(\nu \neq 0 \) we choose \(y, d \) such that \(\mathcal{L}[d] \) is a direct summand of \(\mathcal{L} \). We may assume that \(y = (1,a) \) with \(a_1 > 0 \). Then \(\varepsilon_i(\mathcal{L}) > 0 \) by (b) and Proposition 10.5(b).

Finally, we prove (c) by descending induction on \(\nu \). Any element in \(\mathcal{P}^{\nu,\Omega} \) is selfdual. Assume that \(\nu > 0 \). By part (d) there is \(i \) such that \(\varepsilon_i(\mathcal{L}) > 0 \). Set \(\varepsilon = \varepsilon_i(\mathcal{L}) \). We prove that \(\mathcal{L} \) is selfdual by descending induction on \(\varepsilon \). By parts (b), (c) we have

\[
f_i(\mathcal{L}) = \langle \varepsilon \rangle \mathcal{L} + \sum_{\mathcal{L}'} f_i(\mathcal{L},\mathcal{L}') \varepsilon(\mathcal{L}') > \varepsilon.
\]

The perverse sheaf \(\mathcal{L} \) is selfdual by the induction hypothesis on \(\nu \). It is easy to see that \(f_i \) commutes with the Verdier duality. Hence the left hand side is also selfdual. We have

\[
f_i(\mathcal{L})|_{\varepsilon_i=1} = \langle \varepsilon \rangle \mathcal{L}|_{\varepsilon_i=1}.
\]

Since \(\mathcal{L} \) is the minimal extension of its restriction to \(\mathcal{F}^{\nu,\Omega} \), it is selfdual.

\[\square\]

Let \(K(\mathcal{Q}^{\nu,\Omega}) \) be the Abelian group with one generator \([\mathcal{L}] \) for each isomorphism class of objects of \(\mathcal{F}^{\nu,\Omega} \) and with relations \([\mathcal{L}] + [\mathcal{L}'] = [\mathcal{L}''] \) whenever \(\mathcal{L}' \) is isomorphic to \(\mathcal{L} \). To unburden the notation we’ll abbreviate

\[
K(\mathcal{Q}^{\nu,\Omega}) = \bigoplus_{\nu} K(\mathcal{Q}^{\nu,\Omega}), \quad \mathcal{L} = [\mathcal{L}].
\]

Note that \(K(\mathcal{Q}) \) is a free \(\mathcal{A} \)-module such that \(v\mathcal{L} = \mathcal{L}[1] \) and \(v^{-1}\mathcal{L} = \mathcal{L}[-1] \). Further the Verdier duality yields an \(\mathcal{A} \)-antilinear map \(K(\mathcal{Q}) \to K(\mathcal{Q}) \).

10.13. Corollary. The \(\mathcal{A} \)-module \(K(\mathcal{Q}^{\nu,\Omega}) \) is spanned by \(\{\mathcal{L}_{\mathcal{Y}}^{\nu}; \mathcal{Y} \in \mathcal{P}^{\nu,\Omega}\} \).

Proof: The corollary is proved as in Lemma 8.34, using Proposition 10.11 instead of Propositions 8.22, 8.23.
10.14. Example. Let $\Gamma, \theta, \lambda, \nu$ be as in Example 10.2, and set $\Omega = \{i\}$. We have $\theta \mathcal{E}_{\nu, \Omega} = L_i \times L_{\theta(i)}$, $\theta \mathcal{E}_{\nu, \Omega, 0} = \theta \mathcal{E}_{\nu, \Omega} \setminus \{0\}$, and $\theta \mathcal{E}_{\nu, \Omega, 1} = \{0\}$. We have also

- if $\lambda_i + \lambda_{\theta(i)} \neq 0$ then $\theta \mathcal{P}_{\nu, \Omega} = \{k_{\theta \mathcal{E}_{\nu, \Omega}[\lambda_i + \lambda_{\theta(i)}], k_{\{0\}}\}$, and

\[\varepsilon_{\nu}(k_{\theta \mathcal{E}_{\nu, \Omega}[\lambda_i + \lambda_{\theta(i)}], k_{\{0\}}) = 0, \quad \varepsilon_{\nu}(k_{\{0\}}) = 1, \quad \varepsilon_{\nu}(k_{\{0\}}) \]

- if $\lambda_i + \lambda_{\theta(i)} = 0$ then $\theta \mathcal{P}_{\nu, \Omega} = \{k_{\{0\}}\}$, and

\[\varepsilon_{\nu}(k_{\{0\}}) = 1, \quad \varepsilon_{\nu}(k_{\{0\}}) \]

10.15. Comparison of the crystals. We choose Γ, θ and λ as in Sections 6.2, 6.4, and we set $\Omega = I$. We define a functor

\[\mathbf{Y} : \theta \mathcal{Q}_{\nu, \Omega} \to \theta \mathcal{R}_{\nu, \mathbf{mod}}, \quad \mathbf{Y}(\mathcal{L}) = \bigoplus_{i \in \eta^\nu} \text{Ext}^\ast_{\mathcal{G}_{\nu}}(\theta \mathcal{L}_i^\nu, \mathcal{L}). \]

The functor \mathbf{Y} is additive and it commutes with the shift (the shift of complexes in the left hand side and the shift of the grading in the right hand side).

10.16. Proposition. (a) \mathbf{Y} takes $\theta \mathcal{Q}$ to $\theta \mathcal{R}_{\nu, \mathbf{proj}}$, and $\theta \mathcal{L}_i^\nu$ to $\theta \mathcal{R}_y$. It maps $\theta \mathcal{P}$ bijectively to the set of \sharp:selfdual indecomposable projective graded modules.

(b) \mathbf{Y} yields an \mathcal{A}-module isomorphism $K(\theta \mathcal{Q}) \to \theta \mathcal{K}$ which maps $\theta \mathcal{P}$ bijectively onto $\theta \mathcal{G}_{\text{low}}(\lambda)$. It commutes with the duality. We have

\[e_i \circ \mathbf{Y} = \mathbf{Y} \circ e_{\theta(i)}, \quad f_i \circ \mathbf{Y} = \mathbf{Y} \circ f_{\theta(i)}. \]

Proof: Theorem 5.8, proved in Section 9, yields a graded k-algebra isomorphism

\[\theta \mathcal{R}_\nu = \theta \mathbb{Z}_\nu. \]

Recall that the right hand side is the graded k-algebra

\[\theta \mathbb{Z}_\nu = \bigoplus_{i, \mathcal{P} \in \eta^\nu} \text{Ext}^\ast_{\mathcal{G}_{\nu}}(\theta \mathcal{L}_i^\nu, \theta \mathcal{L}_i^\nu), \]

equipped with the Yoneda composition, see Sections 2.6, 2.8. Therefore the first claim of (a) is obvious. If the sequence i of $\theta \mathcal{R}$ is the expansion of the pair y in $\theta \mathcal{Y}$ then we have

\[\theta \mathcal{R}_i = \langle y \rangle ! \theta \mathcal{R}_y, \quad \theta \mathcal{L}_i^\nu = \langle y \rangle ! \theta \mathcal{L}_y^\nu, \]

where y is a sequence such that the multiplicity of y is $\theta(y)$, and b is a sequence such that $\theta(b) = \mathbf{Y}(\theta(b))$. See Remark 2.7 and (8.5). Therefore to prove the second claim of (a) it is enough to observe that

- if $\mathbf{Y}(\theta \mathcal{L}_i^\nu) = \theta \mathcal{R}_i^\nu$, Next, the same proof as in [VV, sec. 4.7] implies that \mathbf{Y} takes the elements of $\theta \mathcal{P}$ to an indecomposable projective graded module. Indeed, since $\mathbf{Y}(\theta \mathcal{L}_y^\nu) = \theta \mathcal{R}_y^\nu$ and both sides are selfdual, the functor \mathbf{Y} takes the elements of $\theta \mathcal{P}$ to \sharp:selfdual indecomposable projective graded modules, see Sections 2.6 and 8.10. Further, any \sharp:selfdual indecomposable projective graded module is a direct summand of $\mathbf{Y}(\theta \mathcal{L}_y^\nu) = \theta \mathcal{R}_y^\nu$ for some y, hence is the image by \mathbf{Y} of an element
of $\theta \mathcal{P}$. Part (a) is proved. Next, the first claim of (b) follows from Definition 8.3, Proposition 8.4(c) and Corollary 10.13. Finally the last claim of (b) follows from Propositions 10.5(b), 10.8(c) and Proposition 8.14.

Recall the set $\theta \mathcal{G}^{\text{low}}(\lambda)$ introduced in Definition 8.3. For $b \in \theta \mathcal{B}(\lambda)$ let $\theta \mathcal{L}(b)$ denote the unique element in $\theta \mathcal{P}$ such that

$$\theta \mathcal{Y}(\theta \mathcal{L}(b)) = \theta \mathcal{G}^{\text{low}}(b).\quad(10.6)$$

Hence we have $\theta \mathcal{P} = \{\theta \mathcal{L}(b); b \in \theta \mathcal{B}(\lambda)\}$. We’ll set also $\theta \mathcal{L}(0) = 0$. Combining Propositions 8.23 and 10.11 we can now compare the crystal $(\theta \mathcal{B}(\lambda), \tilde{E}_i, \tilde{F}_i, \varepsilon_i)$ from Proposition 8.22 with the crystal $(\theta \mathcal{P}, \tilde{E}_i, \tilde{F}_i, \varepsilon_i)$ from Proposition 10.11.

10.17. Proposition. For $i \in I$ and $b \in \theta \mathcal{B}(\lambda)$ we have

$$\tilde{E}_i(\theta \mathcal{L}(b)) = \theta \mathcal{L}(\tilde{E}_{\theta(i)}(b)), \quad \tilde{F}_i(\theta \mathcal{L}(b)) = \theta \mathcal{L}(\tilde{F}_{\theta(i)}(b)), \quad \varepsilon_i(\theta \mathcal{L}(b)) = \varepsilon_{\theta(i)}(b).$$

Proof: We can regard ε_i, \tilde{E}_i, and \tilde{F}_i as maps

$$\varepsilon_i : \theta \mathcal{B}(\lambda) \cup \{0\} \rightarrow \mathbb{Z}_{\geq 0}, \quad \tilde{E}_i : \theta \mathcal{B}(\lambda) \rightarrow \theta \mathcal{B}(\lambda) \cup \{0\}, \quad \tilde{F}_i : \theta \mathcal{B}(\lambda) \rightarrow \theta \mathcal{B}(\lambda).$$

Propositions 10.11(b), 10.16(b) yield

$$f_{\theta(i)} \theta \mathcal{G}^{\text{low}}(b) = (\varepsilon_i(b) + 1) \theta \mathcal{G}^{\text{low}}(\tilde{E}_i(b)) + \sum_{b'} f_{b,b'} \theta \mathcal{G}^{\text{low}}(b'), \quad \varepsilon_i(b') > \varepsilon_i(b) + 1.$$

Taking the transpose, Definition 8.8 and Proposition 8.4(a) yield

$$e_{\theta(i)} \theta \mathcal{G}^{\text{up}}(b) = (\varepsilon_i(b) + 1) \theta \mathcal{G}^{\text{up}}(\tilde{F}_i(b)) + \sum_{b'} f_{b',b} \theta \mathcal{G}^{\text{up}}(b'), \quad \varepsilon_i(b') < \varepsilon_i(b) - 1.$$

Now, recall that

$$\varepsilon_{\theta(i)}(b) = \max\{n \geq 0; e_{\theta(i)}^n \theta \mathcal{G}^{\text{up}}(b) \neq 0\}, \quad \varepsilon_i(\tilde{E}_i(b)) = \varepsilon_i(b) + 1.$$

Thus, using Proposition 8.17 and (8.8) we get $\varepsilon_i = \varepsilon_{\theta(i)}$. Then, comparing the formulas above with Proposition 8.23 we get $\tilde{E}_i = \tilde{F}_{\theta(i)}$. Finally, Proposition 8.22(c) and 10.11(c) yield $\tilde{E}_i = \tilde{E}_{\theta(i)}$.

10.18. The global bases of $\theta \mathcal{V}(\lambda)$. Since the operators e_i, f_i on $\theta \mathcal{V}(\lambda)$ satisfy the relations $e_i f_i = v^{-2} f_i e_i + 1$, we can define the modified root operators \tilde{e}_i, \tilde{f}_i on the $\theta \mathcal{B}$-module $\theta \mathcal{V}(\lambda)$ as follows. For $u \in \theta \mathcal{V}(\lambda)$ we write

$$u = \sum_{n \geq 0} f_i^{(n)} u_n \text{ with } e_i u_n = 0,$$

$$e_i(u) = \sum_{n \geq 1} f_i^{(n-1)} u_n, \quad \tilde{f}_i(u) = \sum_{n \geq 0} f_i^{(n+1)} u_n.$$

Let $\mathcal{R} \subset \mathcal{K}$ be the set of functions which are regular at $v = 0$. Let $\theta \mathcal{L}(\lambda)$ be the \mathcal{R}-submodule of $\theta \mathcal{V}(\lambda)$ spanned by the elements $\tilde{f}_i \ldots \tilde{f}_i(\phi_\lambda)$ with $l \geq 0, i_1, \ldots, i_l \in I$. We can now apply the results in [EK3]. Together with Propositions 10.16 and 10.17 this yields the following, which is the main result of the paper.
10.19. Theorem. (a) We have
\[\mathcal{L}(\lambda) = \bigoplus_{b \in \mathcal{B}(\lambda)} \mathcal{R} \cdot \mathcal{G}^{\text{low}}(b), \quad \mathcal{E}_i(\mathcal{L}(\lambda)) \subset \mathcal{L}(\lambda), \quad \mathcal{F}_i(\mathcal{L}(\lambda)) \subset \mathcal{L}(\lambda), \]
\[\mathcal{E}_i \mathcal{G}^{\text{low}}(b) = \mathcal{G}^{\text{low}}(\mathcal{E}_i b) \mod \mathcal{L}(\lambda), \quad \mathcal{F}_i \mathcal{G}^{\text{low}}(b) = \mathcal{G}^{\text{low}}(\mathcal{F}_i b) \mod \mathcal{L}(\lambda). \]

(b) The assignment \(b \mapsto \mathcal{G}^{\text{low}}(b) \mod \mathcal{L}(\lambda) \) yields a bijection from \(\mathcal{B}(\lambda) \) to the subset of \(\mathcal{L}(\lambda)/\mathcal{L}(\lambda) \) consisting of the \(\mathcal{E}_i \)s. Further \(\mathcal{G}^{\text{low}}(b) \) is the unique element \(x \) satisfying the following conditions
\[x^2 = x, \quad x = \mathcal{G}^{\text{low}}(b) \mod \mathcal{L}(\lambda). \]

(c) For \(b, b' \in \mathcal{B}(\lambda) \) let \(E_{i,b,b'}, F_{i,b,b'} \in \mathcal{A} \) be the coefficients of \(\mathcal{G}^{\text{low}}(b') \) in \(e_{\theta(i)} \mathcal{G}^{\text{low}}(b), f_{\theta(i)} \mathcal{G}^{\text{low}}(b) \) respectively. Then we have
\[E_{i,b,b'}|_{\mathcal{V}(\lambda)} = [E_i \Psi \text{for}(\mathcal{G}^{\text{up}}(b')) : \Psi \text{for}(\mathcal{G}^{\text{up}}(b))], \]
\[F_{i,b,b'}|_{\mathcal{V}(\lambda)} = [F_i \Psi \text{for}(\mathcal{G}^{\text{up}}(b')) : \Psi \text{for}(\mathcal{G}^{\text{up}}(b))]. \]

Proof: Proposition 10.17 implies that \(\mathcal{Y} \) intertwines the crystal operators \(\tilde{E}_{\theta(i)} \) on \(\mathcal{B}(\lambda) \) and the crystal operators \(\tilde{E}_i, \tilde{F}_i \) on \(\mathcal{P} \). Proposition 10.16 implies that \(\mathcal{Y} \) intertwines the operators \(e_{\theta(i)}, f_{\theta(i)} \) and \(\tilde{E}_i, \tilde{F}_i \). Therefore, formula (10.6) and Proposition 10.11 yield estimate for the action of \(e_i, f_i \) on \(\mathcal{G}^{\text{low}}(\lambda) \) which were not available in Proposition 8.23. Using these estimates, part (a) follows from [EK3, thm. 4.1, cor. 4.4], [E, Section 2.3]. The first claim in (b) follows from (a) and Proposition 8.22. The second one is obvious. Part (c) follows from Proposition 8.17. More precisely, by Cartan duality we can regard the elements \(E_{i,b,b'}, F_{i,b,b'} \) of \(\mathcal{A} \) as the coefficients of \(\mathcal{G}^{\text{up}}(b) \) in the expansion of \(f_{\theta(i)} \mathcal{G}^{\text{up}}(b'), e_i \mathcal{G}^{\text{up}}(b') \) with respect to the basis \(\mathcal{G}^{\text{up}}(\lambda) \). Therefore, by Proposition 8.17 we can regard the integers \(E_{i,b,b'}|_{\mathcal{V}(\lambda)}, F_{i,b,b'}|_{\mathcal{V}(\lambda)} \) as the coefficients of \(\Psi \text{for}(\mathcal{G}^{\text{up}}(b')) \) in \(F_i \Psi \text{for}(\mathcal{G}^{\text{up}}(b')), E_i \Psi \text{for}(\mathcal{G}^{\text{up}}(b')) \) respectively.

\[\square \]

A. Appendix

The statements above generalize to affine Hecke algebras of type C.

A.1. Affine Hecke algebras of type C. Fix \(p, q_0, q_1 \) in \(\mathbb{k}^\times \). For any integer \(m \geq 0 \) we define the affine Hecke algebra \(H_m \) of type \(C_m \) to be the affine Hecke algebra of \(Sp(2m) \). It admits the following presentation. If \(m > 0 \) then \(H_m \) is the \(\mathbb{k} \)-algebra generated by
\[T_k, \quad X_k^{\pm 1}, \quad k = 0, 1, \ldots, m - 1, \quad l = 1, 2, \ldots, m \]
satisfying the following defining relations:
(a) $X_i X_{i'} = X_{i'} X_i$

(b) $(T_0 T_1)^2 = (T_1 T_0)^2$, $T_k T_{k-1} T_k = T_{k-1} T_k T_k$ if $k \neq 0, 1$, and $T_k T_{k'} = T_{k'} T_k$ if $|k - k'| \neq 1$.

(c) $T_0 X_{i-1} - X_i T_0 = (q_{1}^{-1} - q_0) X_i + (q_0 q_{1}^{-1} - 1)$, $T_k X_i T_k = X_{i+k}$ if $k \neq 0$, and $T_k X_i = X_i T_k$ if $l \neq k, k + 1$.

(d) $(T_k - p)(T_k + p^{-1}) = 0$ if $k \neq 0$, and $(T_0 - q_0)(T_0 + q_0^{-1}) = 0$.

If $m = 0$ then $H_0 = k$, the trivial k-algebra.

A.2. Remark. The affine Hecke algebra of type B_m is equal to $H_m/(q_0 - q, q_1 - q)$.

A.3. Intertwiners and blocks of H_m. We define

$$A' = A[\Sigma^{-1}], \quad H'_m = A' \otimes_A H_m,$$

where Σ is the multiplicative system generated by

$$X_p \pm 1 - X_l, \quad X_p \pm 1 - p^2 X_l, \quad 1 - X_l^2, \quad 1 + q_0 X_l^\pm 1, \quad 1 - q_1 X_l^\pm 1, \quad l \neq l'.$$

For $k = 0, \ldots, m - 1$ the intertwiner φ_k in H'_m is given by the following formulas

$$\varphi_k - 1 = \frac{X_k - X_k + 1}{p X_k - p^{-1} X_k + 1} (T_k - p) \quad \text{if } k \neq 0,$$

$$\varphi_0 - 1 = q_1 \frac{X_1^2 - 1}{(X_1 + q_0)(X_1 - q_1)} (T_0 - q_0).$$

There is an isomorphism of A'-algebras

$$A' \cong I_m \rightarrow H'_m, \quad s_k \mapsto \varphi_k, \quad \varepsilon_1 \mapsto \varphi_0, \quad k \neq 0.$$

The semi-direct product group $\mathbb{Z} \times \mathbb{Z}_2$ acts on k^\times as in Section 6.2. Given a $\mathbb{Z} \times \mathbb{Z}_2$-invariant subset I of k^\times we denote by $H_m \text{-Mod}_I$ the category of all H_m-modules such that the action of X_1, X_2, \ldots, X_m is locally finite and all the eigenvalues belong to I. We associate to the set I a quiver Γ with an involution θ as in loc. cit. Finally, we assume that

$$1, -1 \notin I, \quad p, q_0, q_1 \neq 1, -1.$$

Next, we define the element λ of $\mathbb{N}I$ as

$$\lambda = \left\{ \begin{array}{ll} \sum_i i, & i \in I \cap \{ -q_0, q_1 \}, \quad \text{if } -q_0 \neq q_1, \\
2 \sum_i i, & i \in I \cap \{ q_1 \}, \quad \text{if } -q_0 = q_1. \end{array} \right.$$
A.4. Theorem. There is an equivalence of categories

\[\theta R_m \text{-} \text{Mod}_0 \rightarrow H_m \text{-} \text{Mod}, \quad M \mapsto M \]

which is given by

(a) \(X_l \) acts on \(1_k M \) by \(i_l^{-1} f(\pi_l) \) for \(l = 1, 2, \ldots, m \),

(b) \(T_k \) acts on \(1_k M \) as follows for \(k = 1, 2, \ldots, m-1 \),

\[
\frac{(pf(\pi_k) - p^{-1}f(\pi_{k+1}))(\pi_k - \pi_{k+1})}{f(\pi_k) - f(\pi_{k+1})} \sigma_k + p \quad \text{if } i_{k+1} = i_k,
\]

\[
\frac{(p^{-1}f(\pi_k) - pf(\pi_{k+1}))(\pi_k - \pi_{k+1})}{pf(\pi_k) - p^{-1}f(\pi_{k+1})} \sigma_k + \frac{(p^{-2} - 1)f(\pi_{k+1})}{pf(\pi_k) - p^{-1}f(\pi_{k+1})} \quad \text{if } i_{k+1} = p^2 i_k,
\]

\[
\frac{p i_k f(\pi_k) - p^{-1} i_{k+1} f(\pi_{k+1})}{i_k f(\pi_k) - i_{k+1} f(\pi_{k+1})} \sigma_k + \frac{(p^{-1} - p) i_k f(\pi_{k+1})}{i_{k+1} f(\pi_k) - i_k f(\pi_{k+1})} \quad \text{if } i_{k+1} \neq i_k, p^2 i_k.
\]

(c) \(T_0 \) acts on \(1_k M \) as follows

\[
\frac{(f(\pi_1) - 1)^2}{(q_1 f(\pi_1)^2 - q_1 i_1 i_1) \pi_1^2 + \frac{(q_1^{-1} - 1) f(\pi_1)^2 + 2 f(\pi_1)}{q_1^{-1} f(\pi_1)^2 - q_1}} \quad \text{if } i_1 = -q_0 = q_1,
\]

\[
\frac{(q_1 f(\pi_1) + q_0)(f(\pi_1) - 1)}{(1 - q_1^{-1} f(\pi_1)^2) \pi_1 + \frac{(q_0 - q_1^{-1}) f(\pi_1)^2 + (q_1 - q_0) f(\pi_1)}{f(\pi_1)^2 - q_1^2}} \quad \text{if } i_1 \neq -q_0 = q_1,
\]

\[
\frac{(q_0 f(\pi_1) + q_0)(1 - f(\pi_1))}{q_1(q_0 f(\pi_1)^2 - q_0^{-1} f(\pi_1)^2) \pi_1 + \frac{(q_1 - q_0^{-1}) f(\pi_1)^2 - (q_1 - q_0) f(\pi_1)}{q_1(q_0^{-1} f(\pi_1)^2 - q_0)}} \quad \text{if } i_1 = -q_0 \neq q_1,
\]

\[
\frac{(i_1 f(\pi_1) + q_0)(i_1 f(\pi_1) - q_1)}{q_1(i_1^2 f(\pi_1)^2 - 1) \pi_1 + \frac{(q_1 q_0 - 1) f(\pi_1)^2 + (q_1 - q_0) i_1 f(\pi_1)}{q_1(f(\pi_1)^2 - i_1^2)}} \quad \text{if } i_1 \neq -q_0, q_1.
\]

Proof: Formula (A.2) yields

\[
\begin{cases}
\lambda_i = 2 & \text{if } i_1 = -q_0 = q_1, \\
\lambda_i = 0 & \text{if } i_1 \neq -q_0, q_1, \\
\lambda_i = 1 & \text{else}.
\end{cases}
\]

The proof is the same as the proof Theorem 6.5, using (5.4) and (A.1).

Now, all the statements in Section 8 generalizes. The proof is straightforward and is left to the reader. In particular, if \(\theta K_l \) denotes the Grothendieck group of the category \(\theta R \text{-proj} \), then we have a canonical isomorphism

\[\theta V(\lambda) = K \otimes A \theta K_l, \]

where \(\theta V(\lambda) \) the same \(\theta B \text{-module} \) as in Theorem 8.31, with \(\lambda \) given by (A.2) instead of (6.2). Theorem 10.19 generalizes as well.
Index of notation

0.1 : m, G_m, S_m, \ell_m, \langle m \rangle,

0.2 : K(R), G(R), hom_R, Hom_R, A, \text{gdim}, k,

0.3 : S_G,

1.1 : \Gamma, H_{i,j}, h_{i,j}, i \to j, i \not\sim j, E_V, G_V, Y^\nu, \Pi^\nu, Y^m,

1.2 : F_{\nu,\gamma}, F_{\nu,\gamma}, \pi_{\gamma}, d_{\gamma},

1.3 : S_V, L_{\nu,\gamma}, L_{\gamma,\delta}, Z_V, Z_{\nu,\gamma}, F_V, R(\Gamma)_\nu,

2.1 : \theta, \varpi, \theta_{\mu,\nu}, \tilde{\theta}_{\mu,\nu}, L_{A,\nu}, \tilde{L}_{A,\nu}, \tilde{G}_V, \tilde{\nu},

2.2 : \theta(F(W), F(W, \varpi),

2.3 : \theta_{\nu,\gamma}, \theta_{\gamma,\nu}, \theta_{\gamma,\nu}^m,

2.4 : \theta F_{\nu,\gamma}, \theta P_{A,\nu,\gamma}, \theta \pi_{A,\nu}, d_{\nu,\gamma},

2.5 : \theta L_{\nu,\gamma}, \theta L_{\gamma,\delta}, \theta S_V, \theta Z_{A,\nu}, \theta F_{A,\nu}, 1_{A,\nu,\delta},

2.7 : \theta(b),

2.8 : \theta Z_{A,\nu}^\delta,

3 : \theta F_{A,\nu}, \theta Z_{A,\nu},

4.1 : G = O(V, \varpi), F = F(V, \varpi), T, W, W_V,

4.2 : \phi_V, D_{\nu}, \Delta, \Delta^+, \Pi, \theta B_{V}, \theta \Delta_{V},

4.3 : \tilde{S}_m, W_m, w(i),

4.4 : \phi_{V,\nu}, 1_{\nu}, W_{\nu}, \theta B_{V,\nu}, \theta N_{V,\nu},

4.5 : \theta O_{\nu}, \theta O_{V,\nu,\gamma}, \theta P_{\nu,\nu,\gamma}, \theta Z_{A,\nu}^\delta,

4.7 : S, \chi, M[\lambda], \text{eul}(M), \Lambda_{\nu}, \Lambda_{\nu,\gamma}^\delta,

4.8 : \theta t_{A,\nu,\gamma}, \theta n_{A,\nu,\gamma},

4.9 : \theta t_{A,\nu,\nu}, \theta t_{A,\nu,\gamma}, \theta n_{A,\nu,\nu}, \theta n_{A,\nu,\gamma}, \theta n_{A,\nu,\nu,\gamma},

4.11 : x_{i}(l),

4.12 : Q, \psi_{w,\nu}, \psi_{w,\mu},

4.14 : \lambda_{i}(l), h_{i}(k), \sigma_{A,\nu}(k), \varphi_{A,\nu}(l), \pi_{A,\nu}(1), \sigma_{A,\nu,1}(k), \varphi_{A,\nu,1}(l), \pi_{A,\nu,1}(1),

4.16 : \sigma_{A,\nu,1}(l), \varphi_{A,\nu,1}(l), \pi_{A,\nu,1}(1),

5.1 : \theta R(\Gamma)_{\nu,\gamma}, 1_{\nu}, \sigma_{\nu}, \pi_{1}, \lambda_{i,j}(u, v), \nu,

5.3 : \tilde{w}, \sigma_{\tilde{w}},

6.1 : H_m, T_{\nu}, X_{i},

6.2 : \varphi_{\nu}, H_m-\text{Mod}_l,

6.4 : \theta R_m, \theta R_{\nu}, 1_{\nu,\mu}, 1_{\nu,\mu}, \theta R_m-\text{Mod}_0, \theta R_m-\text{Mod}_0, H_m-\text{Mod}_l, \Psi,
6.9 : E_i, F_i, k_i,
7.1 : $R_m, \omega, \tau, \iota, \kappa, w_m$,
7.2 : $R_{m,m'}, \phi_i, \phi^*, \phi_\ast, P^\sharp, P^\surd, B, (\ast : \ast), K_f, G_f, (\ast : \ast), M^\flat, BI^m, \text{ch}(M)$,
7.4 : R_y,
7.5 : L_i, L_y, L_{mi},
7.6 : $K, \theta_i, \theta_i^{(a)}, \theta_y, r, f, A_f, L_f, G^\up, G^\low, B(\infty), (\ast : \ast),$
8.1 : $\theta K_f, \theta G_f, P^\sharp, M^\flat, f, \theta G^\low(\lambda), \theta G^\up(\lambda), \theta B(\lambda), (\ast : \ast), (\ast : \ast)$,
8.5 : θL_i,
8.6 : $D_{m,m'}, W_{m,m'}, D_{m,m';n,n'}, W(w), \theta R_{m,m'}, \psi_i, \psi^*, e_i, e_i', f_i,$
8.10 : $\theta R_i, \theta R_y, \theta BI^m, \text{ch}(M), \text{deg}(i, i'; i''), \text{Sh}(i, i'),$
8.16 : $N^i, \text{for}, E_i, F_i,$
8.20 : $\tilde{e}_i, \tilde{f}_i, \tilde{e}_i, \tilde{E}_i, \tilde{E}_i,$
8.29 : $\theta B, \theta V(\lambda),$
9.1 : $\Delta^+_y, \Delta^+_t, \Delta^+_t,$
9.3 : $\theta R^{ex},$
10.1 : $\Omega, L_{\Lambda, V, \Omega}, \theta E_{\Lambda, V, \Omega}, \theta E_{\varphi, \Omega}, \theta F_Y, \theta F_Y, \theta P, \theta Q, \theta L_Y,$
10.3 : $\theta E_1, \Omega, \theta E_2, \Omega, p_1, p_2, p_3, \tilde{f}_i,$
10.6 : $\theta E_3, \Omega, \kappa, \iota, e_i,$
10.10 : $\tilde{E}_i, \tilde{F}_i, \tilde{E}_i,$
10.15 : $Y,$
10.18 : $\tilde{e}_i, \tilde{f}_i, \theta L(\lambda), R,$

References

Université de Cergy-Pontoise, UMR CNRS 8088, F-95000 Cergy-Pontoise, E-mail address: michela.varagnolo@math.u-cergy.fr

Département de Mathématiques, Université Paris 7, 175 rue du Chevaleret, F-75013 Paris, E-mail address: vasserot@math.jussieu.fr