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ABSTRACT 

This paper presents a new statistical method for separating 
more than two sound sources from a two-channel record
ing. It is based on a probabilistic model of the Interchannel 
Level/Phase Difference presented in [1] and the model para
meters are estimated using the maximum likelihood criterion 
and an Expectation-Maximization algorithm. The source 
separation task is achieved by soft time-frequency masking 
of the observation. These masks are derived from the es
timated source position model. Algorithm performance is 
evaluated on the real and synthetic convolutive mixtures 
data of the first audio source evaluation campaign [2] as well 
as the Signal Separation Evaluation campaign (SiSEC) [10]. 
Promising results are obtained when comparing to the other 
methods presented in these two campaigns. 

1. INTRODUCTION 

Blind Source Separation (BSS) is a widely used technique 
that aims at recovering a set of N original sources based only
on their M observed mixtures. This task is more difficult
when the mixing model is not instantaneous but convolutive 
and gets even harder in the underdetermined case (N > 
M). Indeed, when N is larger than M, no algebraic linear
solution can be found to separate the sources, even if the 
mixing matrix is identified. Still, with the source sparseness 
assumption, researchers have found a way to build non linear 
masks for the separation task. 

Most of the BSS methods that consider the sparseness as
sumption deal with the two-channel case from which cues or 
features like Interchannel Level/Phase Difference (ILD /IPD) 
are used. In [3] a KMeans algorithm classifies these features 
in clusters and binary separating masks are estimated. In [4], 
rather than clustering the observed (ILD /IPD), the authors 
propose to model these features as Gaussian variables with 
the assumption of a dominant path. Then, after estimat
ing the model parameters, soft separating masks have been 
derived. Nevertheless, in real-world situations, the underly
ing linear phase assumption deriving from the dominant path 
hypothesis reveals not applicable due to early reflections and 
reverberation. Also, the proposed Gaussian model, even if 
it facilitates the equation computation, does not have any 
theoretical background. 

In this paper a Model Based Underdetermined (blind) 
Source Separation (MBUSS) is considered. In our previous 
work [1] a theoretical distribution for the (log(ILD) /IPD) 
features is presented, but no separation algorithm based on 
this distribution was explicitly provided. This paper, pro
poses an estimation procedure for this theoretical distrib
ution parameters, based on an Expectation-Maximization 
(EM) algorithm where the Maximization step is speeded
up by a Quasi-Newton algorithm. Unlike [3], probabilistic 
soft masks are computed instead of binary ones, thus less 

distortion and artifact are audible in the extracted sources. 
Unlike [4], separation is performed independently in each fre
quency band, therefore no linear phase assumption is made 
and wide band sources can be extracted even with the pres
ence of frequency aliasing. Of course separating indepen
dently in each frequency band has the traditional permu
tation problem drawback. This permutation alignment is 
corrected using the ratio envelope of the extracted sources 
as in [5]. 

2. MODEL BASED SOURCE SEPARATION 

We describe here briefly the (log(ILD) /IPD) probabilistic 
model that will be used in the separation task. For more 
detailed analysis, please refer to [1]. Consider the convolutive 
two-channel mixture model: 

N N 
Xj (t) = L xji) (t) = L L aji (k) Si (t - k) (1) 

i=l i=1 k 

where xji>Ct) is the contribution of the ith source to the jth
sensor. si(t), i = 1, .. ,N are the sources and aji(k) is the
impulse response of the acoustic channel separating source i 
from microphone j with j = 1, 2. The time-domain observed
signals Xj(t) are converted into frequency-domain time-series
signals using the Short-Time Fourier Transform (STFT): 

£-1 N 
Xj(t,w) = L w(k)Xj(t + k)e-jwk = LX;i)(t,W) (2) 

k=O i=l 

where w(k) is a window (e.g. Hanning) and X?)(t,w) is the

STFT of xji)(t). Sparseness of the sources in the Time Fre
quency (TF) domain is the key assumption in solving the 
underdetermined separation problem. It means that each 
given source is non negligible on only a few number of TF 
slots. It generally implies that the sources have nearly dis
joint supports in the TF domain in the sense that for each TF 
slot there can be at most one dominant source, and it is this 
last assumption that will be actually assumed [3]. If q is the 
index of this dominant source at (t, w), then the jth 

observa

tion in eq. (2) can be approximated to Xj (t,w) :::::; x;q) (t,w)
and the ratio between the two observations at (t, w) will then
be: 

The approximation X?)(t,w) :::::; Aji(w)Si(t,W), with Aji(W) 
as the Fourier transform of aji(k), can be found in most of

1



the TF source separation methods. With it, the last term in 
(3) can be reduced to a constant in each frequency band w 
and thus: 

R(t,w) = X1(t,w) � xiq)(t,w) � A1q(w) . (4) X2(t,w) x�q>Ct,w) A2q(W) 

The above ratio, being (approximately) time independent 
but frequency and source dependent, has been widely used 
as dominant source indicator in the TF binary masks ap
proach. In [3], the modulus and argument of R(t,w), which
are no more than the well-known Interchannel Level Differ
ence (ILD) and Interchannel Phase Difference (IPD), have 
been clustered by a KMeans algorithm. The cluster members 
define the binary separating mask and the cluster centers 
give an estimation of Alq(W)/A2q(W). But does the above
approximation (4) hold when dealing with a long tap im
pulse response, i.e with a reverberating environment? 

2. 1 One source Ratio STFT distribution model 

To simplify the notations in this section, we will omit the w 
parameter. From now, we implicitly work in given frequency 
band w. It has been demonstrated in [1] that, even if one
source is observed, R(t) is not constant in time. Fig.1 plots
the real and imaginary part of R(t) for a 10-second speech
source placed in a moderate reverberant conditions (T60 = 
250ms). This one source observed ratio should be considered 
as a (complex) random variable, the distribution of which has 
been derived in [1]. More precisely this paper provides the
theoretical joint density of the real part and imaginary parts 

x and y of 10gR(q)(t) = 10g[Xiq)(t,w)/X�q)(t,w)] :

x = 10gIR(q)(t)1 = 10g ILDq, y = argR(q)(t) = IPDq

where ILDq/IPDq are the ILD/IPD of Sq. Note that we 
did not considered the traditional feature R(q)(t) because it 
admits an infinite variance (see [1]). To estimate the joint
density of (x, y), we assume that L is large enough so that,

by the Central Limit Theorem, the pair xiq)(t) and x�q)(t)
can be considered as Gaussian (complex circular) [1] with
variance O"i,q(t) and O"�,q(t) and complex cross-correlation
f3q. It has been demonstrated in [1] that the variance ratio
0"1,q/0"2,q and f3q does not vary in time and may be considered
as specific features for each source Sq, hence of the variable
log R(q) (t). Based on the complex gaussian circular assump
tion, the couple of variables (x, y) admits the following joint
density [1]: 

p (x, ylrq, pq) = Ppq (x -log Irql, y - argrq) (5) 
where rq = (0"1,q/0"2,q)eiarg(3Q, pq = lf3ql and

1 1 _ p2 
pp(x,y) = 

47r (cosh x -pcosx)2

The parameters r q and pq are specific to the source Sq posi
tion in space. Note that it is the source position in space 
which is modeled and not the source itself. Thus, this 
"'space'" position model can be applied independently from 
the source model (gaussian, laplacian, ... ). More in details,
r q corresponds to the mean of log R( q) (t) and thus depends
only on the source position in space where Irql is equal to the
ILDq and arg ( r q) is equal to the IPDq. As for Pq, it will stand
for the reverberation degree of the acoustic path separating 
Sq from the set of microphones. This can be viewed from its
definition as the modulus of the cross-correlation between 
the two observations where high reverberation causes low 
cross-correlation between microphones and vice-versa. For 
example, in free field conditions, i.e anechoic environment, 
the cross-correlation is maximum and pq = 1.
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Figure 1: Ideal and observed (IPD,log(ILD)) for a single 
source mixture at the 100Hz center frequency 

2.2 Mixture ratio STFT distribution model 

Having the one source log ratio distribution model (5) and
under the disjoint assumption, we are led to assume the fol
lowing distribution model for the real and imaginary parts 
of the observed log ratio 10g[R(t,w)]: 

N 
p(x,ylp,r,J.l) = LJ-liPPi {x -log Iril ,y -argrd. (6) 

i=l 

This model is given at the frequency w for the set of consid
ered time points t E T with p = [Pl, .. ,PN], r = [rl, .. ,rN] 
and J.l = [J-ll,", J-lN] where J-li is an added parameter that
denotes the a priori probability of the ith source in the con
sidered frequency band. This parameter reveals necessary 
since all sources are not equiprobable in a given frequency 
band, depending for instance on the mean pitch of a per
son. Simulations with equiprobable hypothesis showed that 
the estimation of the model parameters p and r is biased,
hence producing degraded performance in terms of source 
separation. 

2.3 Soft mask separation 

The set of parameters p, r and J.l, which depend on the
frequency band w, are the parameters of the mixture model
and need to be estimated in order to separate the sources. 
Once the parameters of the probabilistic model given in (6) 
are estimated, the a posteriori probability that ith source is
dominant at the TF point (t, w) can be obtained directly as
follows: 

(7) 

where Ri(t) = R(t)/ri. Then, source separation can be eas
ily performed in each frequency band w by applying these
above probabilities to the observations. Note that sources 
are independently separated in each frequency band, thus 
permutation ambiguity remains and needs to be solved. In 
this paper, the correlation between the ratio envelope is used 
as in [5]. Note that other methods, based on linear phase as
sumption [6], can not be used due to reverberation. Fig. 2
shows the flow chart of the Model Based Source Separation 
approach where Mi (t, w) refer to the masks that extract the
ith source. Mi(t,W) is constructed from the a posteriori 
probabilities (7) after correcting the permutation ambigui
ties. Thus, Mi(t,w) = 7rrrw(i) with IIw = [IIw(1), . . .  , IIw(N)] 
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Figure 2: Basic scheme of Model Based Source Separation Approach 

the permutation alignment vector estimated by [5] in the 
frequency band w. 

As said before, to build the soft separating mask, the 
Mi, ri, and Pi parameters need to be estimated for each 
source at each frequency band w. To do so, we propose 
to use as criterion the maximum of the log-likelihood of the 
data {log IR(t) I, arg R(t)} , t E T. Under the independence 
assumption between the time set of observations, it is given 
by: 

L(p,r,ll) = � log {�'71WpJlOg IRi(t)1 ,arg Ri(t)]} . (8) 

The above log-likelihood is hard to maximize. However, it 
may be recasted as the log-likelihood for a model with miss
ing observations or hidden variables. These variables are the 
indexes that indicate which source is dominant at each (t, w) 
point (here w is fixed and hence not displayed). In this con
text the log-likelihood can be maximized by the well known 
Expectation Maximization (EM) algorithm [7], 

3. THE EM ALGORITHM 

This algorithm operates in two steps as described below. 

3. 1 The E-step 

This step computes the conditional expectation of the full 
log-likelihood given the data {log IR(t)l,arg R(t)},t E T. 
The expected log-likelihood will be computed at generic new 
parameters M�, r� and p� and the conditional expectation is 
computed relatively to the model specified by the current 
parameters Mi, ri and Pi. The result can be shown to be: 

"'� {' [I R (t) 1 R (t) ]} L L 7r i (t) log MiP p; log ----:;:;- ,arg----:;:;-tET t=l 'l. 'l. 
(9) 

where 7ri(t) is the a posteriori probability given in (7) and 
computed at the current parameter Mi, ri and Pi. 

3.2 The M-step 

This step maximizes the above conditional expectation of the 
full log-likelihood with respect to the generic parameters M�, 
r� and p�. The maximum point is then taken as the new pa
rameter. It is easily seen that the maximization of (9) with 
respect to M� (under the constraint �:l M� = 1) and with re
spect to the set (r�, p�) can be performed independently. The 
first maximization yields the new Mi: Mi = �tET [7ri(t)l/ITI

where ITI denotes the number of points in T. The second 
one is reduced to the maximization of: 

I I '" [I R(t) 1 R(t) ]C(ri' Pi) = L 7ri (t) logpp; log ---:;;- ,arg---:;;-tET " 
for each i = 1, '" N with respect to r� and p�.

3.3 Relaxing the M-step 

(10) 

Maximizing the above expression (10) is not easy and can 
not be done without using an iterative algorithm. In [8], 
we overcome this problem by replacing the theoretical den
sity (5) in (10) with another similar and easier one to handle. 
Thus, we were able to maximize it analytically. In this work, 
as the theoretical density shall be used, we propose not to 
maximize the expected full log-likelihood (10) but to just 
make it increase. In fact, from the EM algorithm theory, in
creasing the expected likelihood (10) would be sufficient to 
increase, also, the marginal likelihood (8). Therefore, given 
the current parameters ri and Pi, we limit ourselves to find
ing the new parameters r; and P; that increase the objective 
function (10). Such new parameters can indeed be found 
analytically as described in the following basic step: 

3.3.1 Basic step 
Using Jensen's inequality, it can be easily proved that
C(r�, p�) - C(ri' Pi) has the following lower bound: 

-2( log L Wi(t) {cosh[�i(t) - Ai] - P; cos [<Mt) - (;lil} (11)
t ((1 - p?)1/2/(1 - pDl/2

where 

Wi(t) 7ri (t) 
cosh[log IRi (t) I] - P cos [arg Ri(t)] 

2IRi(t)l7ri(t) 
IRi(t)12 + 1 - 2pR[Ri(t)]

and ( = �u 7ri(U) , �i(t) = log IR(t)l, Ai = log Ir;jril,
<Mt) = arg Ri(t), (;li = arg(r;jri) and R(z) is the real part 
of the complex number z. The maximum of the above equa
tion (11), with respect to (r�, p�), is strictly larger than zero 
(because it is equal to zero when (r�,p�) = (ri,Pi)).  Thus, 
the new couple (r;, pD that maximizes (11) will increase, at 
the same time, the objective function (10). Therefore, by a 
simple variable substitution, the problem of increasing the 
likelihood is now reduced to maximize (11) with respect to 
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4 Men Speedl 4 Women Speedl 3 Music, No drums 3 Music, with drums 

S1 52 53 54 Mean S1 52 53 54 Mean S1 52 53 MeEIl S1 52 53 MeEIl OVAP 
SOR 3,91 2,68 3,71 4,17 3,61 4,46 3,40 4,37 5,27 4,37 2,42 5,80 4,81 4,34 1,65 3,49 0,35 1,83 3,61 

neN ISR 6,17 5,99 6,52 6,87 6,39 6,58 7,28 7,07 7,52 7,11 4,27 8,61 8,61 7,16 1,76 6,38 0,40 2,85 6,00 
MBUSS SIR 5,75 2,62 5,37 6,89 5,16 6,75 3,45 6,77 10,13 6,78 4,07 8,80 6,57 6,48 13,38 6,15 11,88 10,47 7,04 

SA.R 6,21 5,52 6,19 6,08 6,00 7,78 7,44 6,82 7,72 7,44 5,50 11,24 8,96 8,56 15,90 9,73 7,56 11,06 8,05 
old 

SOR 3,25 1,97 3,69 4,11 3,25 4,43 3,84 4,44 5,50 4,55 1,69 5,87 5,19 4,25 1,64 3,02 0,34 1,67 3,50 
MBUSS 

ISR 6,14 4,17 6,87 7,21 6,10 6,34 8,03 7,89 8,65 7,73 4,31 8,30 10,50 7,70 1,80 7,16 0,42 3,12 6,27 
[81 SIR 3,73 2,21 5,20 6,27 4,35 8,45 5,35 7,24 9,53 7,64 3,15 9,78 7,15 6,69 14,85 6,94 11,94 11,24 7,27 

SA.R 5,99 5,04 6,25 6,17 5,86 6,78 6,95 6,68 7,29 6,93 5,60 11,26 9,00 8,62 11,59 6,09 6,01 7,89 7,19 
SOR 3,50 2,24 3,16 3,57 3,12 4,03 3,10 3,77 5,22 4,03 1,82 5,58 5,15 4,19 1,72 4,62 0,36 2,23 3,42 

KmeEIls ISR 7,64 5,90 7,38 8,65 7,39 6,16 10,55 9,20 10,06 8,99 5,29 8,00 10,28 7,86 1,82 8,75 0,42 3,66 7,15 
[31 SIR 7,01 4,62 6,36 7,08 6,27 12,51 5,52 8,04 9,81 8,97 4,13 8,49 7,05 6,55 14,73 7,77 13,68 12,06 8,34 

SA.R 4,58 2,40 4,24 4,54 3,94 4,69 5,65 5,53 6,31 5,54 7,34 11,27 9,68 9,43 16,26 10,92 7,75 11,64 7,22 

Table 1: Results for synthetic recording with a 5 cm microphone spacing and two different types of sources: speech and 
music. the overall performance OVAP of the source separation is presented in the last column. All figures are given in dBs 

ai, Ai, p;. By developing the numerator terms cosh[�i(t) - Ai]
and COS[¢i(t) - ai], the maximum is obtained when

'2Pi 

-1 I:t Wi(t) sinh �i(t) 
tanh 

I:t Wi(t) cosh �i(t) 

arg L wi(t)sign {Ri(t)} 

[I:t Wi(t) COS¢i (tW + [I:twi(t) sin¢i (tW 
[I:t Wi (t) cosh �i (t) J2 - [I:t Wi (t) sinh �i (t) J2 

where sign {z} = z/Izl = eiargz. Finally, to increase (10),
we are led to assume the following one iteration basic step: 

where ai = I:t xi(t)IRi(tW , bi = I:t Xi(t), and Ci
I:t Xi(t)Ri(t) with Xi(t) = �wi(t)/IRi(t)l· 

3.3.2 Combining with the Quasi Newton step 
The basic step could lead to a slower convergence of the algo
rithm as the obtained increase of the expected log-likelihood 
(10) can be much less than the maximum achievable. To 
overcome this problem we will consider a Quasi-Newton (Q
N) algorithm. In fact, when the old parameter ri and Pi are 
close to the maximum solution of (10), the Quasi-Newton
algorithm would have a quadratic convergence to the point 
maximizing (10). Therefore, the algorithm should converge 
within one single Q-N iteration. However, in contrast to the 
basic step, the Q-N step does not guarantee the increase of 
the expected log-likelihood. It does not even guarantee the 
new P; to be in the interval (0,1). Thus, the following strat
egy is adopted in the M-step: 

• Compute the new parameter P; and r; based on the basic
step as in section 3.3.1

• Compute the other new estimation of p; of the Q-N step
and test if it belongs to the interval (0,1) 

• If not, adopt the new parameter P; and r; of the basic
step, otherwise compute the other new parameter f; of
the Q-N step and test if it and p; of the Q-N step lead 
to a larger increase of the expected log-likelihood than 
the basic step; if so, adopt these parameter f; and p;
otherwise adopt those of the basic step P; and r;. 

Computations (not detailed here) show that the Q-N step is 
given by: 

Pi -
I:t x2(t){[IRi(t)12 + IF - 4R[Ri(t)J2}/11"i(t)

ri exp[(3/2) (ai + bi)/(ai - bi)]sign[3ci - R(Ci)]

Note that these formula involve the already computed quan
tities ai, bi, Ci. 

3.4 EM Initialization and Stop Criteria 

A simple way to initialize our algorithm is to choose ran
domly N times points tl, .. , tN and initialize ri by ri = R(ti), 
i = LN. The a posteriori probability 11"i(t) can be initial
ized by formula (7) using the density (5) with Pi set to one, 
leading to: 

11"i(t) = :[R(t),ri] 

I:i=l d[R(t),ri] 

where d [R (t) ,ri] = cosh log [R (t) /ri] - cos arg [R (t) /ri]'
Since the log-likelihood increases monotonically at each EM 
iteration, the EM iteration process is stopped when the in
crease of log-likelihood becomes insignificant(e.g 10-6).

4. EXPERIMENTS AND RESULTS 

In order to evaluate our algorithm, we simulated speech and 
music mixtures in a reverberant noise-free environment by 
convolving speech and music samples with filter impulse re
sponses coming from the first audio source separation cam
paign [2]. Also, it was recently tested in the Signal Separa
tion Evaluation Campaign (SiSEC) [10] where results showed 
that our algorithm compares favorably with the others pre
sented in this campaign in most of the real and synthetic 
convolutive situation. As these results can be accessed at 
[10], only the results for the first audio source separation 
campaign will be presented. Signals are 16 kHz-sampled and 
have a lOs duration. Four types of mixtures were generated: 
4 female speakers, 4 male speakers, 3 musics with one of 
them is drums and 3 other musics (no drums). Two different 
sets of source positions are used, one for speech and another 
for music mixtures. Angles and distances of these positions 
are given in Table 2. Our algorithm uses Hanning windowed 
2048 sample frames, and reconstruction is achieved using the 
overlap and add method with 75% overlap. 

Speech Sources Music Sources 
Sl S2 S3 S4 M1 M2 M3 

Distance (m) 1,2 1,1 1 0,8 1,1 0,9 1 
Angle (deg) 50 -15 -45 15 45 -30 5 

Table 2: Source positions from the set of microphone 

4. 1 Comparison Algorithm and performance mea
surement 

The proposed algorithm (referred to as new MBUS) is com
pared with two other algorithms: the first one (referred to 
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as old MBUS) is our previous method based on the same 
model-based EM approach, but with a simplifying probabil
ity distribution of the couple of variable (IPD ,log(ILD)) [8]. 
The second one (referred to as Kmeans) is the KMeans un
derdetermined source separation presented in [3], in which 
the ILD /IPD observations are grouped into N clusters using
a KMeans algorithm: each cluster center gives an estimation 
of the mixing matrix and the cluster point sets give the bi
nary TF separating masks. The separation performance was 
evaluated for each estimated source i by the same criteria 
used in SiSEC: Signal to Interference Ratio (SIRi), Image to 
Signal Ratio (ISRi), Signal to Distortion Ratio (SDRi) and 
Signal to Artifact Ratio (SA�). For a detail description of 
these criteria and of their computation, the reader may refer 
to [10]. 

4.2 Results 

Detailed performance are given in Table 1 whereas the mean 
of each case and the overall performance OVAP (mean per
formance on all mixture types) are plotted in Figure 3. When 
looking at the SDR which computes the global separation 
performance, OVAP column, the proposed MBUSS gives the 
best results as compared to the others. It shows a slight ad
vantage for the new MBUSS 3.61dB compared to the old one 
3.5dB and a more efficient as compared to KMeans 3.42dB. 
Furthermore, the intermediate errors show that the compro
mise operated by the algorithms is different. 

Comparing the new MBUSS to the old one, results show 
that the proposed algorithm gives better results in terms 
of SAR (SAR=8.05 and 7.19 respectively) and, almost, the 
same in terms of SIR (SIR=7.04 and 7.27 respectively), 
which justifies the use of the theoretical distribution and 
not the approximated one as in [8]. Comparing the new 
MBUSS with the KMeans, Fig. 3 (a),(b) and (c) show that 
the MBUSS method performs better for speech mixture, 
whereas KMeans performs better on music ones. One ex
planation could lie in the nature of the signal themselves: 
music sources are very resonant, hence the energy is highly 
concentrated on some (usually harmonic) frequencies, which 
ensures a quasi-disjoint spectro-temporal supports between 
instruments. Thus, hard masking would be more suitable fil
ter for this type of mixtures than a soft filter. The OVAP on 
Fig. 3 (d) also shows that the KMeans algorithm favors weak 
interferences (SIR=8.34) to the cost of more degraded sep
arated speech (SAR=7.22), in contrast to our method that 
presents stronger interference (SIR=7.04) but with a clearer 
separated speech signal (SAR=8.05). 

These results are confirmed by informal listening tests: 
less audible artifact are noticed in the proposed MBUSS, at 
the expense of more interference, which reveals nicer to lis
ten to since our auditory system is very sensitive to artifact 
(gurgling noise) and less to interference. One explanation 
(partially) lies in the nature of the mask: as compared to 
the binary mask used in the KMeans method, the soft mask 
slightly smooths the output, limiting the isolated errors (the 
artifact like musical noise), but favoring the presence of inter
ference.Note that the mask is used " as is": we are inclined 
to think that some "wise" smoothing (linear or nonlinear) 
could give better objective and subjective results, reducing 
even more the artifact. 

5. CONCLUSION 

In this paper, a new method to solve the underdetermined 
blind separation of audio mixtures problem has been pre
sented. It is based on the sparseness assumption and on a 
theoretical model for the interchannel cues (log (ILD) ,IPD) 
given in [1]. By an EM algorithm, we were able to estimate 
the parameters of this model and then build the time fre
quency separating masks. The algorithm demonstrated its 
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Figure 3: (a), (b),(c) presents respectively the SDR, SAR and 
SIR performance for each type of mixture; (d) presents the 
OVAP 

ability to separate undetermined reverberant mixtures where 
in terms of objective criteria it gives the best results in terms 
of artifact and distortion. Nevertheless, more studies need 
to be done, especially on the robustness of the model over 
the source positions and room reverberation. 
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