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Möbius inversion formula for monoids with zero

Laurent Poinsota,∗, Gérard H. E. Duchampa, Christophe Tollua

aLIPN - UMR 7030, CNRS - Université Paris 13, 93430 Villetaneuse, France

Abstract

The Möbius inversion formula, introduced during the 19th century in number
theory, was generalized to a wide class of monoids called locally finite such as
the free partially commutative, plactic and hypoplactic monoids for instance.
In this contribution are developed and used some topological and algebraic
notions for monoids with zero, similar to ordinary objects such as the (total)
algebra of a monoid, the augmentation ideal or the star operation on proper
series. The main concern is to extend the study of the Möbius function to
some monoids with zero, i.e., with an absorbing element, in particular the
so-called Rees quotients of locally finite monoids. Some relations between
the Möbius functions of a monoid and its Rees quotient are also provided.

Keywords: Möbius function, monoid with zero, locally finite monoid, Rees
quotient, contracted algebra

1. Introduction

The classic Möbius inversion formula from number theory, introduced
during the 19th century, states that, for any complex or real-valued functions
f, g defined on the positive integers N \ {0}, the following assertions are
equivalent:

• For all n, g(n) =
∑

d|n

f(d).

• For all n, f(n) =
∑

d|n

µ(n/d)f(d).
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In both formulae the sums are extended over all positive divisors d of n, and
µ is the classical Möbius function. This result actually uses the fact that
µ and ζ are inverse one from the other with respect to the usual Dirichlet
convolution, where ζ is the characteristic function of positive integers (see
for instance [1]).

This classic version of the Möbius inversion formula was generalized in
different ways by different authors. P. Doubilet, G.-C. Rota, and R. P. Stan-
ley proposed a systematic treatment of this problem for locally finite posets
in [13, 29], while P. Cartier and D. Foata in [8] proved such a formula holds
in a wide class of monoids called locally finite [16], and the Möbius function
was even explicitly computed for some of them. This paper is a contribution
to the study of the Möbius inversion formula, still in the context of locally
finite monoids but for the particular case of monoids with zero. For instance,
let M be the set {0, 1, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba}. It
becomes a monoid with zero when equipped with concatenation of words
without common letters, also called standard words ; the other products give
0. Let ζ0 be the characteristic function of M0 = M \ {0}. Then, ζ0 is in-
vertible – with respect to convolution – in the algebra Z0[M ] of all functions
that annihilate the zero 0 of M , which is, in a first approximation, the Z-
algebra of polynomials in the noncommutative variables {a, b, c} with only
standard words as monomials. Indeed, ζ0 = 1 + ζ+0 , where 1 is the char-
acteristic function of the singleton {1} and since ζ+0 has no constant term,
as a noncommutative polynomial (that is ζ+0 (1) = 0), ζ0 is invertible, with
inverse µ0 =

∑

n≥0(−ζ+0 )
n. Due to the particular multiplication in M , the

“ proper part ” ζ+0 of ζ0 is actually nilpotent, and the previous summation
stops after four steps. Therefore µ0 can be computed by hand, and we obtain
µ0 = 1− a− b− c.

Rather surprisingly, µ0 – interpreted as the Möbius function of the monoid
with zero M – is the same as the Möbius function of the free noncommu-
tative monoid {a, b, c}∗. Moreover such a phenomenon also appears for less
tractable monoids with zero: for instance, let us consider a monoid similar
to M but on an infinite alphabet X : it is the set of all words on X without
multiple occurrences of any letter, and with product ω×ω′ equal to the usual
concatenation ωω′ when each letter appears at most one time in the result-
ing word, and 0 otherwise. Contrary to M , this monoid is found infinite.
Nevertheless we can prove its characteristic function to be invertible, and its
inverse is still equal to the usual Möbius function of the free monoid X∗. In

2



this case, it is not as easy to compute because the corresponding “ proper
part ” is no more nilpotent, and the sum of a series needs to be evaluated in
some relevant topology.

The explanation of this general phenomenon is given in the present paper
whose main concern is the development of an algebraic and topological tool-
box for a systematic and rigorous treatment of the Möbius inversion formula
for locally finite monoids with zero.

2. Monoids with zero

A monoid with zero is an ordinary monoid with a two-sided absorbing
element, called the zero. Such structures obviously occur in ring theory (the
multiplicative monoid of an associative ring with unit is a monoid with zero),
but they are also used to solve some (co)homological problems [25, 26], and
mainly in the study of ideal extensions of semigroups [2, 9, 10].

These structures are defined as follows: let M be an ordinary monoid
(with 1M as its identity element) such that |M | ≥ 2. Then, M is called a
monoid with zero if, and only if, there is a two-sided absorbing element 0M ,
i.e., x0M = 0M = 0Mx for every x ∈ M , with 0M 6= 1M . The distinguished
element 0M is called the zero of M (uniqueness is obvious). If in addition M
is commutative, then M is called a commutative monoid with zero. In the
sequel, for any monoid M with zero 0M , M0 stands for M \ {0M}.

Example 1. 1. The set of all natural numbers N with the ordinary mul-
tiplication is a commutative monoid with zero;

2. The multiplicative monoid of any (associative) ring R with a unit 1R
is a monoid with zero 0R;

3. If M is any usual monoid (with or without zero), then for every 0 6∈ M ,
M0 = M ∪{0} is a monoid with zero 0: x0 = 0 = 0x for every x ∈ M0

extending the operation of M . It is commutative if, and only if, the
same holds for M . The transformation of M into M0 is called an
adjunction of a zero, and M0 is a monoid with a (two-sided) adjoined
zero. Note that M0 is obviously isomorphic with M z for every z 6∈ M ,
where z plays the same role as 0;

4. The set ℵ0∪{ℵ0} of all cardinal numbers less or equal to ℵ0 (that is, the
closed initial segment [0,ℵ0]), with the usual cardinal addition (recall
that ℵ0 = [0,ℵ0[= N and n + ℵ0 = ℵ0 = ℵ0 + n for every n ≤ ℵ0) is a
commutative monoid with ℵ0 as zero;
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5. Let C be a small category [22]. Then its set of arrows A(C), together
with adjoined zero 0 and identity 1, is a monoid with zero when arrows
composition is extended using f ◦ g = 0 whenever dom(f) 6= codom(g)
for every f ∈ A(C), and f ◦ 1 = f = 1 ◦ f , f ◦ 0 = 0 = 0 ◦ f for every
f ∈ A(C) ∪ {0, 1}. Now suppose that P is a poset, and Int(P ) is the
set of its intervals [x, y] = {z ∈ P : x ≤ z ≤ y} for all x ≤ y in P
(see [13, 29]). An interval [x, y] may be seen as an arrow from x to y,
and a composition may be defined: [x, z]◦[z, y] = [x, y]. It follows that P
turns to be a small category, and Int(P )∪{0, 1}, where 0, 1 6∈ Int(P ) and
0 6= 1, becomes a monoid with zero. Another specialization is possible:
let n ∈ N \ {0} be fixed, and consider the set I of all pairs (i, j) of
integers such that 1 ≤ i, j ≤ n. Any usual n-by-n matrix unit E(i,j)

may be seen as an arrow from i to j, and such arrows are composed by
E(i,k) ◦ E(k,j) = E(i,j). Then I becomes a small category, and the set of
all matrix units, with adjoined 0 and 1, may be interpreted as a monoid
with zero which is also quite similar to A. Connes’s groupoids [12].

A major class of monoids with zero, that deserves a short paragraph on
its own, is given by the so-called Rees quotients (see [2, 10, 19]). Let M be
a monoid and I be a two-sided ideal of M , that is IM ⊆ I ⊇ MI, which is
proper (I is proper if, and only if, I 6= M , or, in other terms, 1M 6∈ I). A
congruence θI on M is defined as follows: (x, y) ∈ θI if, and only if, x, y ∈ I

or x = y. The equivalence class of x ∈ M modulo θI is

{
{x} if x 6∈ I;
I if x ∈ I.

Therefore I plays the role of a zero in the quotient monoid M/θI , in such a
way that it is isomorphic with the monoid with zero (M \ I) ∪ {0}, where
0 6∈ M \ I, and with operation

x× y =

{
xy for xy 6∈ I
0 for xy ∈ I

(1)

for every x, y ∈ M \ I, and x × 0 = 0 = 0 × x for every x ∈ (M \ I) ∪ {0}.
This monoid, unique up to isomorphism (the choice of the adjoined zero), is
called the Rees quotient of M by I, and denoted M/I. In what follows, we
identify the carrier sets of both isomorphic monoids M/θI and (M \ I)∪{0},
and we use juxtaposition for products in M/I and in M .

Remark 2. The fact that I is proper guarantees that 1M ∈ M \ I, and
therefore 1M 6= 0.
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Example 3. Let X = {a, b, c} and I = {ω ∈ X∗ : ∃x ∈ X, such that |ω|x ≥
2}, where |ω|x denotes the number of occurrences of the letter x in the word
ω. Then X∗/I is the monoid with zero M described in the Introduction (see
Section 1).

3. Contracted monoid algebra

Convention: In the present paper, a ring is assumed to be associative,
commutative and with a unit 1R; the zero of a ring is denoted by 0R. An
R-algebra A is assumed to be associative (but non necessarily commutative)
and has a unit 1. Its zero is denoted by 0.

The main objective of this section is to recall the relevant version of
the monoid algebra of a monoid with zero over some given ring: in brief,
the zeros of the monoid and the ring are identified. Let R be a ring, and
X be any set. The support of f ∈ RX is the set {x ∈ X : f(x) 6= 0R}.
Now let M be a monoid with zero 0M . Let us consider the usual monoid
algebra R[M ] of M over R, which is, as an R-module, the set R(M) of all
maps from M to R with finite support, endowed with the usual Cauchy
product [4]. By contracted monoid algebra of M over R (see [10, 27]), we
mean the factor algebra R0[M ] = R[M ]/R0M , where R0M is the two-sided
ideal R[(0M)] = {α0M : α ∈ R}. Thus, R0[M ] may be identified with the
set of all finite sums

∑

x∈M0
αxx, subject to the multiplication table given by

the rule

x× y =

{
xy if xy 6= 0M ,
0 if xy = 0M

(2)

defined on basis M0 (formula (2) gives the constants of structure, see [4],
of the algebra R0[M ]). In what follows we use juxtaposition rather than “
× ” for the products. From the definition, it follows directly that for any
ordinary monoid M , R0[M

0] ∼= R[M0]/R0 ∼= R[M ]. This fact is extended to
the Rees quotients as follows.

Lemma 4. [10, 27] Let M be a monoid and I be a proper two-sided ideal of
M . Then R0[M/I] ∼= R[M ]/R[I]. (Note that R[I] is the semigroup algebra
of the ideal I.)

Example 5. Let X be any non empty set and n ∈ N \ {0, 1}. Let I be the
proper ideal of X∗ of all words ω of length |ω| ≥ n. Then R0[X

∗/I] consists
in noncommutative polynomials truncated at length n.
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The notion of contracted monoid algebra is sufficient to treat the problem
of the Möbius formula for finite and locally finite (see Section 5) monoids with
zero. Nevertheless infinite monoids with zero also occur, and formal series
must be considered in those cases.

4. Total contracted algebra of a finite decomposition monoid with

zero

Let R be a ring, and M be a usual monoid. The set of all functions RM

has a natural structure of R-module. By abuse of notation1, any function
f ∈ RM may be denoted by

∑

x∈M〈f, x〉x, where2 〈f, x〉 = f(x) = πx(f)
(πx is the projection onto Rx). The carrier structure of the algebra R[M ]
of the monoid M is then seen as a submodule of RM . Now taking M to be
a monoid with zero, we can also construct R[M ], however we would like to
identify 0M with 0 of RM in the same way as R0[M ]. Let us consider the set
R0M = {f ∈ RM : ∀x 6= 0M , 〈f, x〉 = 0R}, i.e., R0M is the cyclic submodule
generated by 0M . Then the quotient module RM/R0M may be identified with
the R-module RM0 of all “ infinite ” sums3

∑

x∈M0
〈f, x〉x, or more likely the

space of all functions from M0 to R, i.e., RM0 = {f ∈ RM : f(0M) = 0R}.

This quotient module is the completion R̂0[M ] of the topological module
R0[M ] equipped with the product topology (R is given the discrete topology),
also called “ topology of simple convergence ” or “ finite topology ”. It should
be noticed that the quotient topology of RM0 induced by RM is equivalent
to its product topology.

Recall that an ordinary semigroup (resp. monoid) M is said to be a finite
decomposition semigroup (resp. finite decomposition monoid), or to have
the finite decomposition property, if, and only if, it satisfies the following
condition

∀x ∈ M, |{(y, z) ∈ M ×M : yz = x}| < +∞ . (3)

This condition is called the (D) condition in [4]. If (3) holds, then RM can
be equipped with the usual Cauchy or convolution product: therefore the

1When RM is endowed with the topology of simple convergence, R being discrete, the
family (f(x)x)x∈M is summable, and f =

∑

x∈M
f(x)x.

2The notation “ 〈f, x〉 ” is commonly referred to as a “ Dirac bracket ”. It was suc-
cessfully used by Schützenberger to develop his theory of automata [3].

3As in the previous note 1, it can be easily proved that such sums are actually the sums
of summable series in the product topology on RM/R0M , with R discrete.

6



R-algebra R[[M ]] of all formal power series over M with coefficients in R
is obtained, which is also called the total algebra of the semigroup (resp.
monoid) M over R. This notion is now adapted to the case of monoids with
zero.

Definition 6. A monoid M with zero 0M is said to be a finite decomposition
monoid with zero if, and only if, it satisfies the following condition

∀x ∈ M0 = M \ {0M}, |{(y, z) ∈ M ×M : yz = x}| < +∞ . (4)

Example 7. Let P be a locally finite poset ([13, 29]), i.e., such that every in-
terval [x, y] ∈ Int(P ) is finite. Then the monoid Int(P )∪{0, 1} of example 1.5
is a finite decomposition monoid with zero.

Some obvious results are given below without proofs.

Lemma 8. 1. Let M be a monoid with zero which has the finite decom-
position property as an ordinary monoid. Then M is finite.

2. Suppose that M is a finite decomposition monoid. Then M0 is a finite
decomposition monoid with zero.

3. Suppose that M is a finite decomposition monoid and I is a two-sided
proper ideal of M . Then the Rees quotient monoid M/I is a finite
decomposition monoid with zero.

Let us suppose that M is a finite decomposition monoid with zero. Let
f, g ∈ RM/R0M . Then we can define the corresponding Cauchy product:

fg =
∑

x∈M0

(
∑

yz=x

〈f, y〉〈g, z〉

)

x . (5)

The algebra RM/R0M is then denoted R0[[M ]] and called the total contracted
algebra of the monoid M over R. The R-module R0[[M ]] is the completion
of R0[M ] and because the Cauchy product of “ formal series ” in R0[[M ]] is
the continuous extension of its polynomial version in R0[M ] (this product is
separately continuous and continuous at zero [5]), the following lemma holds.

Lemma 9. Let M be a finite decomposition monoid with zero. Then R0[[M ]]
is the completion of the contracted algebra R0[M ], and, in particular, R0[[M ]]
is a topological algebra.
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Let M be an ordinary monoid and I be a two-sided proper ideal of M .
Then the R-module RM/I/R0 is isomorphic to the set of all formal infinite
R-linear combinations

∑

x 6∈I〈f, x〉x, where f ∈ RM . Now suppose that M
is a finite decomposition monoid. According to Lemma 8, M/I is a finite
decomposition monoid with zero. We can define both total algebras R[[M ]]
and R0[[M/I]], with respectively RM and RM/I/R0 as carrier sets. The
product on RM/I/R0 is therefore given by

(
∑

x 6∈I

〈f, x〉x

)(
∑

x 6∈I

〈g, x〉x

)

=
∑

x 6∈I

(
∑

yz=x

〈f, y〉〈g, z〉

)

x . (6)

Let define
Φ : R[[M ]] → R0[[M/I]]

∑

x∈M

〈f, x〉x 7→
∑

x 6∈I

〈f, x〉x . (7)

Then Φ is an R-algebra homomorphism, which is onto and obviously contin-
uous (for the topologies of simple convergence). Moreover ker(Φ) = R[[I]],
then R0[[M/I]] ∼= R[[M ]]/R[[I]]. According to lemma 9, R0[[M/I]] is com-
plete (as an R-algebra) for the product topology. In summary we obtain:

Proposition 10. Let M be a finite decomposition monoid and I be a proper
two-sided ideal of M . Then,

R0[[M/I]] ∼= ̂R0[M/I]
∼= R[[M ]]/R[[I]] .

(8)

5. Locally finite monoids with zero

In order to study the Möbius inversion formula for monoids with zero, we
need to characterize invertible series in the total contracted algebra. This
can be done by exploiting a star operation on series without constant terms
(i.e., for which 〈f, 1M〉 = 0). This star operation is easily defined when a
topology on the algebra of series is given by some filtration which generalizes
the ordinary valuation. A particular class of monoids with zero satisfies this
requirement. First we recall some classic results, and then we mimic them
in the context of monoids with zero.

A locally finite monoid M [8, 16] is a monoid such that

∀x ∈ M, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (9)
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For instance, any free partially commutative monoid [8, 14] is locally finite.
A locally finite monoid is obviously a finite decomposition monoid, but the
converse is false since every non trivial finite group has the finite decompo-
sition property, but is not locally finite because it has torsion. Furthermore,
in a locally finite monoid, xy = 1M ⇒ x = y = 1M , or in other terms,
M \{1M} is a semigroup (and actually a locally finite semigroup in a natural
sense), or, equivalently, the only invertible element of M is the identity (such
monoids are sometimes called conical [11]).

Remark 11. In [7, 28] the authors – L.N. Shevrin and T.C. Brown –
used another notion: they called locally finite any semigroup in which ev-
ery finitely-generated sub-semigroup is finite. This concept is really different
and not comparable from the one used in this paper which follows [16].

When M is locally finite, the R-algebra R[[M ]] may be equipped with a
star operation defined for every proper series f (i.e. such that 〈f, 1M〉 = 0R)
by f ∗ =

∑

x∈M

(∑

n≥0

∑

x1···xn=x〈f, x1〉 · · · 〈f, xn〉
)
x (i.e. by f ∗ =

∑

n∈N f
n).

It follows that the augmentation ideal M = {f ∈ R[[M ]] : f is proper},
kernel of the usual augmentation map ǫ(f) = 〈f, 1M〉 for every f ∈ R[[M ]],
has the property that 1 + M is a group (under multiplication; the inverse
of 1 − f ∈ 1 + M, when f is proper, is precisely f ∗), called the Magnus
group (see [14] for instance). For this kind of monoids, we can define a
natural notion of order function. Let x ∈ M , then ωM(x) = max{n ∈ N :
∃x1, · · · , xn ∈ M \ {1M}, x = x1 · · ·xn}. For instance if M is a free partially
commutative monoid M(X,C), then ωM(w) is the length |w′| of w′ ∈ X∗ of
any element w′ in the class w.

Let us adapt this situation to the case of monoids with zero. In what
follows, if M is any monoid (ordinary or with zero), then M+ = M \ {1M}.
A locally finite monoid with zero (see [17] for a similar notion) is a monoid
with zero M such that

∀x ∈ M0, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (10)

A locally finite monoid with zero obviously is also a finite decomposition
monoid with zero. As in the case of usual monoids, the converse is false.
Besides, if M is a locally finite monoid, and I is a two-sided proper ideal of
M , then the Rees quotient M/I is a locally finite monoid with zero.

Example 12. Let M = X∗/I. Then ωM/I(w) = |w| for every w ∈ X∗ \ I.
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Counter-example 13. The monoid with zero Int(P ) ∪ {0, 1} of a non void
locally finite poset is not a locally finite monoid with zero, since for every
x ∈ P , 1 6= [x, x] = [x, x] · [x, x] holds.

As in the classical case, we can define a natural notion of order function
in a locally finite monoid with zero: let x ∈ M0, then ωM(x) = max{n ∈
N : ∃x1, · · · , xn ∈ M+, x = x1 · · ·xn} (we use the notation “ ω(x) ” when
no confusion arises). Therefore ω(x) = 0 if, and only if, x = 1M . Moreover
for every x ∈ M0, if x = yz, then ω(x) ≥ ω(y) + ω(z). If M is a locally
finite monoid and I is a two-sided proper ideal of M , then we already know
that M/I is a locally finite monoid with zero, and more precisely for every
x ∈ M \ I, ωM/I(x) = ωM(x).

Now let, f ∈ R0[[M ]] (the total contracted algebra exists because M is
a finite decomposition monoid with zero since it is a locally finite monoid
with zero). We define an order function or pseudo-valuation (that extends
the order function ωM of M): ω(f) = inf{ωM(x) : x ∈ M0, 〈f, x〉 6= 0R},
where the infimum is taken in N ∪ {+∞}. In particular, ω(f) = +∞ if, and
only if, f = 0. The following holds:

1. ω(1) = 0;
2. ω(f + g) ≥ min{ω(f), ω(g)};
3. ω(fg) ≥ ω(f) + ω(g).

Let us introduce M = {f ∈ R0[[M ]] : 〈f, 1M〉 = 0R} = {f ∈ R0[[M ]] :
ω(f) ≥ 1}. This set obviously is a two-sided ideal of R0[[M ]], called –
as in the ordinary case – the augmentation ideal4. For each n ∈ N, let
M≥n = {f ∈ R0[[M ]] : ω(f) ≥ n}, in such a way that M≥0 = R0[[M ]], and
M≥1 = M. The following lemma holds trivially.

Lemma 14. For every n, M≥n is a two-sided ideal of R0[[M ]], and the se-
quence (M≥n)n is an exhaustive and separated decreasing filtration on R0[[M ]],

i.e., M≥n+1 ⊆ M≥n,
⋃

n≥0

M≥n = R0[[M ]], and
⋂

n≥0

M≥n = (0).

According to Lemma 14, R0[[M ]] with the topology F defined by the fil-
tration (M≥n)n is an Hausdorff topological ring (note also that this topology
is metrizable [6]), and even an Hausdorff topological R-algebra when R is
discrete.

4It is the kernel of the character ǫ : R0[[M ]] → R given by ǫ(f) = 〈f, 1M 〉 = π1M (f),
for f ∈ R0[[M ]].
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Remark 15. It can be proved that if for every n ∈ N, M(n) = {x ∈ M0 :
ωM(x) = n} is finite, then the topology of simple convergence and the topology
F on R0[[M ]] are equivalent. In all cases, the topology defined by the filtration
is always finer than the product topology (in particular, each projection πx :
R0[[M ]] → R is continuous for the filtration), and it can be even strictly finer
as it is shown in the following example.

Example 16. Let us consider a countable set X = {xi}i∈N (that is xi 6= xj

for every i 6= j). We consider M as the monoid X∗ with some zero 0 ad-
joined. It is obviously a locally finite monoid with zero but the number of
elements of a given order is not finite (for instance the number of elements
of order 1 is ℵ0). We denote by |ω| the usual length of a word in X∗. Now
let us consider the sequence of series fn =

∑n
k=0 xk ∈ R0[M ] ⊂ R0[[M ]]

which converges to the sum f =
∑∞

k=0 xk in R0[[M ]] endowed with the prod-
uct topology (f is the characteristic function of the alphabet X). But this
series does not converge in R0[[M ]] with the topology defined by the filtration,
because ω(f − fn) = 1 for all n. Nevertheless f belongs to R0[[M ]] since it is
the completion of R0[M ] in the product topology.

Without technical difficulties the lemma below is obtained.

Lemma 17. The algebra R0[[M ]] with the topology F is complete.

Remark 18. Suppose that M is a locally finite monoid (with or without
zero) which is also finite, then there exists N ∈ N such that for every n ≥ N ,
M≥n = (0). In this case, the topology defined by the filtration coincides
with the discrete topology on R[[M ]] = R[M ] (or R0[[M ]] = R0[M ]). So no
topology is needed in this case as explained in Introduction (Section 1).

6. Star operation and the Möbius inversion formula

In this section, M is assumed to be a locally finite monoid with zero.

Lemma 19. For every f ∈ M, (1−f) is invertible and (1−f)−1 =
∑

n≥0 f
n.

Proof. First of all,
∑+∞

n=0 f
n is convergent in R0[[M ]] (in the topology defined

by the filtration), and is even summable, because ω(fn) → ∞ when n → +∞
(see [6]). Now for every N ∈ N, (1−f)

∑N
n=0 = 1−fN+1 → 1 when N → +∞.

Since
∑

n≥0 f
n is summable, and R0[[M ]] is a topological algebra, we obtain

asymptotically (1− f)
∑

n≥0 f
n = 1.

11



According to Lemma 19, for every element f ∈ M, we can define, as in
the ordinary case, the star operation f ∗ =

∑

n≥0 f
n.

Remark 20. Suppose that M is a locally finite monoid with zero which is also
finite. Then for every f ∈ M, f is nilpotent (since (fn)n∈N is summable in
the discrete topology). So in this particular case, there is no need of topology
to compute f ∗, as the example given in the Introduction.

Lemma 21. The set 1 +M is a group under multiplication.

Proof. It is sufficient to prove that 〈f ∗, 1M〉 = 1R for every f ∈ M. For every
n > 0, 〈fn, 1M〉 = 0. Since the projection π1M is continuous, we have

〈f ∗, 1M〉 = 〈1 +
∑

n≥1

fn, 1M〉 = 〈1, 1M〉+
∑

n≥0

〈fn, 1M〉 = 1R . (11)

If M is an ordinary locally finite monoid, the characteristic series of M
is define as the series ζ =

∑

x∈X x ∈ R[[M ]]. If X ⊆ M , then X =
∑

x∈X x
is the characteristic series of X . More generally, if M is a locally finite
monoid with zero, then we also define the characteristic series of M by
ζ0 =

∑

x∈M0
x ∈ R0[[M ]], and if X ⊆ M , then its characteristic series is

X0 =
∑

x∈X0
x where X0 = X \ {0M}. We are now in a position to state the

Möbius inversion formula in the setting of (locally finite) monoids with zero.

Proposition 22 (Möbius inversion formula). The characteristic series ζ0 is
invertible.

Proof. It is sufficient to prove that ζ0 ∈ 1 +M, which is obviously the case
since ζ0 = 1 + ζ+0 , where ζ+0 = M+

0 =
∑

x∈M0\{1M} x ∈ M.

We now apply several of the previous results on Rees quotients. So let M
be a locally finite monoid and I be a two-sided proper ideal ofM in such a way
thatM/I is a locally finite monoid with zero. Let us denote byMI (resp. M)
the augmentation ideal of M/I (resp. M). Let Φ : R[[M ]] → R0[[M/I]] be
the R-algebra epimorphism defined in eq. (7). We know that it is continuous
when both R[[M ]] and R0[[M/I]] have their topology of simple convergence.
It is also continuous for the topologies defined by the filtrations (M≥n)n and
((MI)≥n)n. Indeed, let n ∈ N, then for every f ∈ M≥n, Φ(f) ∈ (MI)≥n. It
admits a section s from R0[[M/I]] into R[[M ]] (so Φ(s(f)) = f for every f ∈

12



R0[[M/I]]) defined by 〈s(f), x〉 =

{
〈f, x〉 if x 6∈ I ,
0R otherwise .

This map is easily

seen as an R-module morphism but in general not a ring homomorphism.

Lemma 23. Let f ∈ 1 +MI , then s(f) ∈ 1 +M, and f−1 = Φ(s(f))−1.

Proof. Since 〈f, 1M/I〉 = 1R, then 〈s(f), 1M〉 = 1R (because 1M/I = 1M).
Therefore s(f) ∈ 1 +M. Thus s(f)−1 ∈ 1 +M, and Φ(s(f)−1) = Φ(s(f))−1

(because Φ is a ring homomorphism). Finally, we obtain fΦ(s(f))−1 =
Φ(s(f))Φ(s(f))−1 = 1 and Φ(s(f))−1 is a right inverse of f . The same holds
for the left-side.

In the ordinary case, i.e., when M is a (locally finite) monoid, the inverse
(−ζ+)∗ of the characteristic series ζ = 1+ ζ+ is called the Möbius series, and
denoted by µ(M). By analogy, we define the Möbius series of a locally finite
monoid with zero M as the series µ0(M) = (−ζ+0 )

∗, inverse of ζ0 = 1+ ζ+0 in
R0[[M ]]. Therefore it satisfies µ0(M)ζ0 = ζ0µ0(M) = 1.

Lemma 24. Let M be a locally finite monoid and I be a two-sided proper
ideal of M . Then, µ0(M/I) = Φ(µ(M)). Moreover if 〈µ(M), x〉 = 0R for
every x ∈ I, then µ0(M/I) = µ(M).

Proof. The Rees quotient M/I is a locally finite monoid with zero, and so
its Möbius series exists. Moreover ζ0 = M/I

0
∈ 1 + MI , and according to

Lemma 23, s(ζ0) ∈ 1 +M, and (ζ0)
−1 = Φ(s(ζ0))

−1. We have

s(ζ0) =
∑

x 6∈I

x

= M \ I

= M − I
= ζ − I .

(12)

The series ζ+ − I ∈ R[[M ]] belongs to the augmentation ideal M of R[[M ]]
(as we already know), so the series ζ − I = 1+ ζ+ − I is invertible in R[[M ]]
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with inverse (I − ζ+)∗. Therefore, according to Lemma 23,

µ0(M/I) = Φ(s(ζ0))
−1

= Φ(s(M/I
0
))−1

= Φ(s(M/I
0
)−1)

= Φ((I −M+)∗)
= Φ((I − ζ+)∗)
= (Φ(I − ζ+))∗

(because Φ is a continuous, for filtrations, algebra homomorphism)

= (Φ(I)
︸︷︷︸

=0

−Φ(ζ+))∗

= Φ((−ζ+)∗)
= Φ((1 + ζ+)−1)
= Φ(ζ−1)
= Φ(µ(M)) .

(13)
Now, if 〈µ(M), x〉 = 0R for every x ∈ I, then µ0(M) = Φ(µ(M)) = µ(M).

Corollary 25. Let X be any nonempty set. Let I be a proper two-sided ideal
of X∗. Then,

µ0(X
∗/I) =

{
µ(X∗) if X ∩ I = ∅ ,
µ((X \ I)∗) if X ∩ I 6= ∅ .

(14)

Proof. We can apply Lemma 24 to obtain µ0(X
∗/I) = Φ(µ(X∗)). According

to [8], µ(X∗) = 1 −
∑

x∈X x. If X ∩ I = ∅, then µ0(X
∗/I) = Φ(µ(X∗)) =

µ(X∗), and if X ∩ I 6= ∅, then let Y = X \ I. We have Φ(µ(X∗)) =
1−

∑

y∈Y y = µ(Y ∗).

Example 26. 1. Let X be any nonempty set. Let I = {ω ∈ X∗ : ∃x ∈
X, |ω|x ≥ 2}. The set X∗/I consists of all standard words, i.e.,
word without repetition of any letter. Then according to Corollary 25,
µ0(X

∗/I) = µ(X∗) = 1−X as announced in Section 1 Introduction.

2. Let X be any set. A congruence ≡ on X∗ is said to be multihomo-
geneous [14, 15] if, and only if, ω ≡ ω′ implies |ω|x = |ω′|x for every
x ∈ X. A quotient monoid X∗/ ≡ of X∗ by a multihomogeneous con-
gruence is called a multihomogeneous monoid. For instance, any free
partially commutative monoid, the plactic [23], hypoplactic [21, 24],
Chinese [15] and sylvester [20] monoids are multihomogeneous. Such
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a monoid M = X/ ≡ is locally finite and therefore admits a Möbius
function µ with µ(1M) = 1 and µ(x) = −1 for every x ∈ X. An
epimorphism Ev from M onto the free commutative monoid X⊕, the
commutative image, is given by Ev(ω) =

∑

x∈X |ω|xδx, where δx is the
indicator function of x. Any proper ideal I of X⊕ gives rise to a proper
two-sided ideal Ev−1(I) of M . Let I = {f ∈ X⊕ :

∑

x∈X f(x) ≥ 2}.
Then, as sets, M/Ev−1(I) = {0, 1M}∪X and µ0(M/Ev−1(I)) = 1−X.

7. Some remarks about Hilbert series

Now, let X be a finite set, and I be a proper two-sided ideal of X∗. For
any S ⊆ X∗ or S ⊆ X∗/I, we define S(n) = {w ∈ S : |w| = n} for any
n ∈ N. (Note that the notation M(n) is consistent with the given one in
remark 15 for M = X∗/I.) Let K be a field. Let define An = KX∗(n) (the
K-vector space spanned by X∗(n)), and Bn = K(X∗/I)(n) for every n ∈ N,
in such a way that K[X∗] =

⊕

n≥0An and K0[X
∗/I] =

⊕

n≥0Bn. (Note
that for every w,w′ ∈ X∗/I, we have |ww′| = |w|+ |w′| if ww′ 6= 0, in such
a way that BmBn ⊆ Bm+n since 0 ∈ Bi for every i.) Since X is finite, for
every integer n, X∗(n) and (X∗/I)(n) are finite, and therefore An and Bn are
finite-dimensional K-vector spaces. Moreover dim(Bn) = dim(An) − |I(n)|
because (X∗/I)(n) = X∗(n)\I(n). So in particular respective Hilbert series5

are related by

H ilbK0[X∗/I](t) = H ilbK[X](t)−
∑

n≥0

|I(n)|tn =
1

1− |X|t
−
∑

n≥0

|I(n)|tn . (15)

Note that since I is a proper ideal, I(0) = ∅, and
∑

n≥1 |I(n)|t
n may be inter-

preted rather naturally as the Hilbert series of the ideal K[I] =
⊕

n≥1KI(n)
(it also follows that H ilbK[I](t) is not invertible in Z[[t]]). We have

H ilbK0[X∗/I](t) = H ilbK[X](t)− H ilbK[I](t) . (16)

This equation may be recovered from equation (12), namely s(ζ0) = ζ − I,
using an evaluation map. Suppose now that K is a field of characteristic
zero, and t is a variable. Let e : X∗ → {ti}i∈N be the unique morphism of

5Let A =
⊕

n≥0
An be a graded algebra, where for every n, An is finite dimensional.

The Hilbert series of A (in the variable t) is defined by HilbA(t) =
∑

n≥0
dim(An)t

n.
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monoids such that e(x) = t for every x ∈ X . We extend it to a Z-linear

map from Z[X∗] to Z[t] by e(
∑

w∈X∗ nww) =
∑

n∈N

(
∑

w∈X∗, |w|=n nw

)

tn

from . Moreover since X is finite, for every n ∈ N, X(n) is also finite (of
cardinality |X|n), and therefore for every series f =

∑

w∈X∗ nww ∈ Z[[X∗]],
by summability, we have f =

∑

n∈N fn, where fn =
∑

w∈X∗(n) nww ∈ Z[X∗]

for every n ∈ N, and we extend e (by continuity) as a linear map from Z[[X∗]]

to Z[[t]] by e(f) =
∑

n∈N e(fn) =
∑

n∈N

(
∑

w∈X∗(n) nw

)

tn. Now, applying e

on both side of equation (12), we obtain (note that s(ζ0), ζ and I belong to
Z[[X∗]])

e(s(ζ0)) = e(ζ)− e(I)

⇔ e
(
∑

w 6∈I w
)

= e
(∑

w∈X∗ w
)
− e

(∑

w∈I w
)

⇔ e
(
∑

n∈N X(n) \ I(n)
)

= e
(
∑

n∈NX(n)
)

− e
(
∑

n∈N I(n)
)

⇔
∑

n∈N(|X(n)| − |I(n)|)tn =
∑

n∈N |X(n)|tn −
∑

n∈N |I(n)|t
n

⇔ H ilbK0[X∗/I](t) = H ilbK[X](t)− H ilbK[I](t) .
(17)

Last equality is nothing else than the obvious relation between the ordinary
generating functions of the combinatorial class X∗ \ I, X∗ and I, where the
notion of size is nothing else than the length of words (see [18], theorem I.5
“ implicit specifications ”).

Example 27. 1. Suppose that I = {ω ∈ X∗ : ∃x ∈ X, |ω|x ≥ 2}. It
is clear that for every n > |X|, I(n) = X(n). For every n ≤ |X|,
|(X∗/I)(n)| =

∏n−1
i=0 (|X| − i) = |X|n (in particular, |(X∗/I)(0)| =

|{ǫ}| = 1, and |(X∗/I)(1)| = |X|). If follows that H ilbK0[X∗/I](t) =
∑|X|

n=0 |X|ntn, and therefore H ilbK[I](t) =
∑

n≥2(|X|n − |X|n)tn.

2. Let n0 ∈ N such that n0 ≥ 1. Let I = {w ∈ X∗ : |w| > n0}. Then
H ilbK0[X∗/I](t) =

∑n0

n=0 |X|ntn, H ilbK[I](t) =
∑

n≥n0+1 |X|ntn.
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