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Möbius inversion formula for monoids with
zero

Laurent Poinsot1†and Ǵerard H. E. Duchamp1 and Christophe Tollu1

1LIPN - UMR 7030, CNRS - Université Paris 13, 93430 Villetaneuse, France

Abstract. The Möbius inversion formula, introduced during the 19th century in number theory, was generalized to a
wide class of monoids called locally finite such as the free partially commutative, plactic and hypoplactic monoids for
instance. In this contribution are developed and used some topological and algebraic notions for monoids with zero,
similar to ordinary objects such as the (total) algebra of a monoid, the augmentation ideal or the star operation on
proper series. The main concern is to extend the study of the Möbius function to some monoids with zero,i.e., with
an absorbing element, in particular the so-called Rees quotients of locally finite monoids. Some relations between the
Möbius functions of a monoid and its Rees quotient are also provided.

Résuḿe.La formule d’inversion de Möbius, connue depuis le XIXèmesiècle en théorie des nombres, fut généralisée à
la classe des monoı̈des localement finis, comprenant des objets tels que les monoı̈des partiellement commutatifs libres
ainsi que les monoı̈des plaxiques et hypoplaxiques par exemple. Dans ce papier nous étendons son étude à certains
monoı̈des à zéro,i.e., munis d’un élément absorbant, notamment les quotients de Rees de monoı̈des localement finis,
en développant et en employant des outils, algébriques ettopologiques, analogues aux objets usuels tels que l’algèbre
(large) d’un monoı̈de, l’idéal d’augmentation ou encore l’étoile d’une série sans terme constant. Nous établissons
également des relations entre les fonctions de Möbius d’un monoı̈de et de son quotient de Rees.

Keywords: Möbius function, monoid with zero, locally finite monoid, Rees quotient, contracted algebra

1 Introduction
The classic Möbius inversion formula from number theory, introduced during the 19th century, states
that, for any complex or real-valued functionsf, g defined on the positive integersN \ {0}, the following
assertions are equivalent:

• For alln, g(n) =
∑

d|n

f(d).

• For alln, f(n) =
∑

d|n

µ(n/d)f(d).
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In both formulae the sums are extended over all positive divisorsd of n, andµ is the classical Möbius
function. This result actually uses the fact thatµ andζ are inverse one from the other with respect to the
usual Dirichlet convolution, whereζ is the characteristic function of positive integers (see for instance [1]).

This classic version of the Möbius inversion formula was generalized in different ways by different
authors. P. Doubilet, G.-C. Rota, and R. P. Stanley proposeda systematic treatment of this problem for
locally finite posets in [13, 27], while P. Cartier and D. Foata in [8] proved such a formula holds in a
wide class of monoids calledlocally finite [16], and the Möbius function was even explicitly computed
for some of them. This paper is a contribution to the study of the Möbius inversion formula, still in the
context of locally finite monoids but for the particular caseof monoids with zero. For instance, letM
be the set{0, 1, a, b, c, ab, ac, ba, bc, ca, cb, abc, acb, bac, bca, cab, cba}. It becomes a monoid with zero
when equipped with concatenation of words without common letters, also calledstandard words; the
other products give0. Let ζ0 be the characteristic function ofM0 = M \ {0}. Then,ζ0 is invertible –
with respect to convolution – in the algebraZ0[M ] of all functions that annihilate the zero0 of M , which
is, in a first approximation, theZ-algebra of polynomials in the noncommutative variables{a, b, c} with
only standard words as monomials. Indeed,ζ0 = 1 + ζ+

0 , where1 is the characteristic function of the
singleton{1} and sinceζ+

0 has no constant term, as a noncommutative polynomial (that is ζ+
0 (1) = 0),

ζ0 is invertible, with inverseµ0 =
∑

n≥0(−ζ+
0 )n. Due to the particular multiplication inM , the “ proper

part ” ζ+
0 of ζ0 is actually nilpotent, and the previous summation stops after four steps. Thereforeµ0 can

be computed by hand, and we obtainµ0 = 1 − a − b − c.
Rather surprisingly,µ0 – interpreted as the Möbius function of the monoid with zeroM – is the same

as the Möbius function of the free noncommutative monoid{a, b, c}∗. Moreover such a phenomenon also
appears for less tractable monoids with zero: for instance,let us consider a monoid similar toM but on
an infinite alphabetX : it is the set of all words onX without multiple occurrences of any letter, and with
productω × ω′ equal to the usual concatenationωω′ when each letter appears at most one time in the
resulting word, and0 otherwise. Contrary toM , this monoid is found infinite. Nevertheless we can prove
its characteristic function to be invertible, and its inverse is still equal to the usual Möbius function of the
free monoidX∗. In this case, it is not as easy to compute because the corresponding “ proper part ” is no
more nilpotent, and the sum of a series needs to be evaluated in some relevant topology.

The explanation of this general phenomenon is given in the present paper whose main concern is the
development of an algebraic and topological toolbox for a systematic and rigorous treatment of the Möbius
inversion formula for locally finite monoids with zero.

2 Monoids with zero
A monoid with zero is an ordinary monoid with a two-sided absorbing element, called thezero. Such
structures obviously occur in ring theory (the multiplicative monoid of an associative ring with unit is a
monoid with zero), but they are also used to solve some (co)homological problems [23, 24], and mainly
in the study of ideal extensions of semigroups [2, 9, 10].

These structures are defined as follows: letM be an ordinary monoid (with1M as its identity element)
such that|M | ≥ 2. Then,M is called amonoid with zeroif, and only if, there is a two-sided absorbing
element0M , i.e., x0M = 0M = 0Mx for everyx ∈ M , with 0M 6= 1M . The distinguished element
0M is called thezeroof M (uniqueness is obvious). If in additionM is commutative, thenM is called a
commutative monoid with zero. In the sequel, for any monoidM with zero0M , M0 stands forM \{0M}.
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Example 1 1. The set of all natural numbersN with the ordinary multiplication is a commutative
monoid with zero;

2. The multiplicative monoid of any (associative) ringR with a unit1R is a monoid with zero0R;

3. If M is any usual monoid (with or without zero), then for every0 6∈ M , M0 = M ∪{0} is a monoid
with zero0: x0 = 0 = 0x for everyx ∈ M0 extending the operation ofM . It is commutative if,
and only if, the same holds forM . The transformation ofM into M0 is called anadjunction of a
zero, andM0 is a monoid with a(two-sided) adjoined zero. Note thatM0 is obviously isomorphic
with M z for everyz 6∈ M , wherez plays the same role as0;

4. The setℵ0 ∪ {ℵ0} of all cardinal numbers less or equal toℵ0 (that is, the closed initial segment
[0,ℵ0]), with the usual cardinal addition (recall thatℵ0 = [0,ℵ0[= N andn + ℵ0 = ℵ0 = ℵ0 + n
for everyn ≤ ℵ0) is a commutative monoid withℵ0 as zero;

5. LetC be a small category [20]. Then its set of arrowsA(C), together with adjoined zero0 and
identity1, is a monoid with zero when arrows composition is extended using f ◦ g = 0 whenever
dom(f) 6= codom(g) for everyf ∈ A(C), and f ◦ 1 = f = 1 ◦ f , f ◦ 0 = 0 = 0 ◦ f for
everyf ∈ A(C) ∪ {0, 1}. Now suppose thatP is a poset, andInt(P ) is the set of its intervals
[x, y] = {z ∈ P : x ≤ z ≤ y} for all x ≤ y in P (see [13, 27]). An interval[x, y] may be seen
as an arrow fromx to y, and a composition may be defined:[x, z] ◦ [z, y] = [x, y]. It follows that
P turns to be a small category, andInt(P ) ∪ {0, 1}, where0, 1 6∈ Int(P ) and0 6= 1, becomes a
monoid with zero.. Another specialization is possible: letn ∈ N \ {0} be fixed, and consider the
setI of all pairs (i, j) of integers such that1 ≤ i, j ≤ n. Any usualn-by-n matrix unitE(i,j) may
be seen as an arrow fromi to j, and such arrows are composed byE(i,k) ◦ E(k,j) = E(i,j). ThenI
becomes a small category, and the set of all matrix units, with adjoined0 and1, may be interpreted
as a monoid with zero which is also quite similar to A. Connes’s groupoids [12].

A major class of monoids with zero, that deserves a short paragraph on its own, is given by the so-
called Rees quotients (see [2, 10, 17]). LetM be a monoid andI be a two-sided ideal ofM , that is
IM ⊆ M ⊇ MI, which is proper (I is proper if, and only if,I 6= M , or, in other terms,1M 6∈ I). A
congruenceθI onM is defined as follows:(x, y) ∈ θI if, and only if,x, y ∈ I or x = y. The equivalence

class ofx ∈ M moduloθI is

{
{x} if x 6∈ I;
I if x ∈ I.

ThereforeI plays the role of a zero in the quotient

monoidM/θI , in such a way that it is isomorphic with the monoid with zero(M \ I) ∪ {0}, where
0 6∈ M \ I, and with operation

x × y =

{
xy for xy 6∈ I
0 for xy ∈ I

(1)

for everyx, y ∈ M \ I, andx × 0 = 0 = 0 × x for everyx ∈ (M \ I) ∪ {0}. This monoid, unique up to
isomorphism (the choice of the adjoined zero), is called theRees quotient ofM by I, and denotedM/I.
In what follows, we identify the carrier sets of both isomorphic monoidsM/θI and(M \ I) ∪ {0}, and
we use juxtaposition for products inM/I and inM .

Remark 2 The fact thatI is proper guarantees that1M ∈ M \ I, and therefore1M 6= 0.
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Example 3 LetX = {a, b, c} andI = {ω ∈ X∗ : ∃x ∈ X, such that|ω|x ≥ 2}, where|ω|x denotes the
number of occurrences of the letterx in the wordω. ThenX∗/I is the monoid with zeroM described in
the Introduction (see Section 1).

3 Contracted monoid algebra
Convention: In the present paper, a ring is assumed to be associative, commutative and with a unit1R;
the zero of a ring is denoted by0R. An R-algebraA is assumed to be associative (but non necessarily
commutative) and has a unit1. Its zero is denoted by0.

The main objective of this section is to recall the relevant version of the monoid algebra of a monoid
with zero over some given ring: in brief, the zeros of the monoid and the ring are identified. LetR be
a ring, andX be any set. Thesupportof f ∈ RX is the set{x ∈ X : f(x) 6= 0R}. Now let M be
a monoid with zero0M . Let us consider the usual monoid algebraR[M ] of M overR, which is, as an
R-module, the setR(M) of all maps fromM to R with finite support, endowed with the usual Cauchy
product [4]. Bycontracted monoid algebraof M over R (see [10, 25]), we mean the factor algebra
R0[M ] = R[M ]/R0M , whereR0M is the two-sided idealR[(0M )] = {α0M : α ∈ R}. Thus,R0[M ]
may be identified with the set of all finite sums

∑

x∈M0
αxx, subject to the multiplication table given by

the rule

x × y =

{
xy if xy 6= 0M ,
0 if xy = 0M

(2)

defined on basisM0 (formula (2) gives the constants of structure, see [4], of the algebraR0[M ]). In what
follows we use juxtaposition rather than “× ” for the products. From the definition, it follows directly that
for any ordinary monoidM , R0[M

0] ∼= R[M0]/R0 ∼= R[M ]. This fact is extended to the Rees quotients
as follows.

Lemma 4 [10, 25] Let M be a monoid andI be a proper two-sided ideal ofM . ThenR0[M/I] ∼=
R[M ]/R[I]. (Note thatR[I] is the semigroup algebra of the idealI.)

Example 5 LetX be any non empty set andn ∈ N \ {0, 1}. LetI be the proper ideal ofX∗ of all words
ω of length|ω| ≥ n. ThenR0[X

∗/I] consists in noncommutative polynomials truncated at length n.

The notion of contracted monoid algebra is sufficient to treat the problem of the Möbius formula for finite
and locally finite (see Section 5) monoids with zero. Nevertheless infinite monoids with zero also occur,
and formal series must be considered in those cases..

4 Total contracted algebra of a finite decomposition monoid with
zero

Let R be a ring, andM be a usual monoid. The set of all functionsRM has a natural structure ofR-
module. By abuse of notation(i), any functionf ∈ RM may be denoted by

∑

x∈M 〈f, x〉x, where(ii)

〈f, x〉 = f(x) = πx(f) (πx is the projection ontoRx). The carrier structure of the algebraR[M ] of the

(i) WhenRM is endowed with the topology of simple convergence,R being discrete, the family(f(x)x)x∈M is summable, and
f =

P

x∈M
f(x)x.

(ii) The notation “〈f, x〉 ” is commonly referred to as a “ Dirac bracket ”. It was successfully used by Schützenberger to develop his
theory of automata [3].
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monoidM is then seen as a submodule ofRM . Now takingM to be a monoid with zero, we can also
constructR[M ], however we would like to identify0M with 0 of RM in the same way asR0[M ]. Let
us consider the setR0M = {f ∈ RM : ∀x 6= 0M , 〈f, x〉 = 0R}, i.e., R0M is the cyclic submodule
generated by0M . Then the quotient moduleRM/R0M may be identified with theR-moduleRM0 of
all “ infinite ” sums(iii) ∑

x∈M0
〈f, x〉x, or more likely the space of all functions fromM0 to R, i.e.,

RM0 = {f ∈ RM : f(0M ) = 0R}. This quotient module is the completion̂R0[M ] of the topological
moduleR0[M ] equipped with the product topology (R is given the discrete topology), also called “
topology of simple convergence ” or “ finite topology ”. It should be noticed that the quotient topology of
RM0 induced byRM is equivalent to its product topology.

Recall that an ordinary semigroup (resp. monoid)M is said to be afinite decomposition semigroup
(resp.finite decomposition monoid), or to have thefinite decomposition property, if, and only if, it satisfies
the following condition

∀x ∈ M, |{(y, z) ∈ M × M : yz = x}| < +∞ . (3)

This condition is called the(D) conditionin [4]. If (3) holds, thenRM can be equipped with the usual
Cauchy or convolution product: therefore theR-algebraR[[M ]] of all formal power series overM with
coefficients inR is obtained, which is also called thetotal algebra of the semigroup(resp. monoid) M
overR. This notion is now adapted to the case of monoids with zero.

Definition 6 A monoidM with zero0M is said to be afinite decomposition monoid with zeroif, and only
if, it satisfies the following condition

∀x ∈ M0 = M \ {0M}, |{(y, z) ∈ M × M : yz = x}| < +∞ . (4)

Example 7 LetP be a locally finite poset ([13, 27]), i.e., such that every interval [x, y] ∈ Int(P ) is finite.
Then the monoidInt(P ) ∪ {0, 1} of example 1.5 is a finite decomposition monoid with zero.

Some obvious results are given below without proofs.

Lemma 8 1. LetM be a monoid with zero which has the finite decomposition property as an ordinary
monoid. ThenM is finite.

2. Suppose thatM is a finite decomposition monoid. ThenM0 is a finite decomposition monoid with
zero.

3. Suppose thatM is a finite decomposition monoid andI is a two-sided proper ideal ofM . Then the
Rees quotient monoidM/I is a finite decomposition monoid with zero.

Let us suppose thatM is a finite decomposition monoid with zero. Letf, g ∈ RM/R0M . Then we can
define the corresponding Cauchy product:

fg =
∑

x∈M0

(
∑

yz=x

〈f, y〉〈g, z〉

)

x . (5)

(iii) As in the previous note (i), it can be easily proved that such sums are actually the sums of summable series in the product
topology onRM /R0M , with R discrete.
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The algebraRM/R0M is then denotedR0[[M ]] and called thetotal contracted algebra of the monoid
M over R. TheR-moduleR0[[M ]] is the completion ofR0[M ] and because the Cauchy product of “
formal series ” inR0[[M ]] is the continuous extension of its polynomial version inR0[M ] (this product is
separately continuous and continuous at zero [5]), the following lemma holds.

Lemma 9 Let M be a finite decomposition monoid with zero. ThenR0[[M ]] is the completion of the
contracted algebraR0[M ], and, in particular,R0[[M ]] is a topological algebra.

Let M be an ordinary monoid andI be a two-sided proper ideal ofM . Then theR-moduleRM/I/R0
is isomorphic to the set of all formal infiniteR-linear combinations

∑

x 6∈I〈f, x〉x, wheref ∈ RM . Now
suppose thatM is a finite decomposition monoid. According to Lemma 8,M/I is a finite decomposition
monoid with zero.. We can define both total algebrasR[[M ]] andR0[[M/I]], with respectivelyRM and
RM/I/R0 as carrier sets. The product onRM/I/R0 is therefore given by




∑

x 6∈I

〈f, x〉x








∑

x 6∈I

〈g, x〉x



 =
∑

x 6∈I

(
∑

yz=x

〈f, y〉〈g, z〉

)

x . (6)

Let define
Φ : R[[M ]] → R0[[M/I]]

∑

x∈M

〈f, x〉x 7→
∑

x 6∈I

〈f, x〉x . (7)

Then Φ is an R-algebra homomorphism, which is onto and obviously continuous (for the topologies
of simple convergence). Moreoverker(Φ) = R[[I]], thenR0[[M/I]] ∼= R[[M ]]/R[[I]]. According to
lemma 9,R0[[M/I]] is complete (as anR-algebra) for the product topology. In summary we obtain:

Proposition 10 LetM be a finite decomposition monoid andI be a proper two-sided ideal ofM . Then,

R0[[M/I]] ∼= ̂R0[M/I]
∼= R[[M ]]/R[[I]] .

(8)

5 Locally finite monoids with zero
In order to study the Möbius inversion formula for monoids with zero, we need to characterize invertible
series in the total contracted algebra. This can be done by exploiting a star operation on series without
constant terms (i.e., for which〈f, 1M 〉 = 0). This star operation is easily defined when a topology on the
algebra of series is given by some filtration which generalizes the ordinary valuation. A particular class
of monoids with zero satisfies this requirement. First we recall some classic results, and then we mimic
them in the context of monoids with zero.

A locally finite monoidM [8, 16] is a monoid such that

∀x ∈ M, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (9)

For instance, any free partially commutative monoid [8, 14]is locally finite. A locally finite monoid is
obviously a finite decomposition monoid, but the converse isfalse since every non trivial finite group has
the finite decomposition property, but is not locally finite because it has torsion. Furthermore, in a locally
finite monoid,xy = 1M ⇒ x = y = 1M , or in other terms,M \ {1M} is a semigroup (and actually
a locally finite semigroup in a natural sense), or, equivalently, the only invertible element ofM is the
identity (such monoids are sometimes calledconical[11]).
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Remark 11 In [7, 26] the authors – L.N. Shevrin and T.C. Brown – used another notion: they called
locally finite any semigroup in which every finitely-generated sub-semigroup is finite. This concept is
really different and not comparable from the one used in thispaper which follows [16].

When M is locally finite, theR-algebraR[[M ]] may be equipped with astar operationdefined for every

proper seriesf (i.e. such that〈f, 1M 〉 = 0R) by f∗ =
∑

x∈M

(
∑

n≥0

∑

x1···xn=x〈f, x1〉 · · · 〈f, xn〉
)

x

(i.e. by f∗ =
∑

n∈N
fn). It follows that theaugmentation idealM = {f ∈ R[[M ]] : f is proper}, kernel

of the usual augmentation mapǫ(f) = 〈f, 1M 〉 for everyf ∈ R[[M ]], has the property that1 + M is
a group (under multiplication; the inverse of1 − f ∈ 1 + M, whenf is proper, is preciselyf∗), called
the Magnus group(see [14] for instance). For this kind of monoids, we can define a natural notion of
order function. Let x ∈ M , thenωM (x) = max{n ∈ N : ∃x1, · · · , xn ∈ M \ {1M}, x = x1 · · ·xn}.
For instance ifM is a free partially commutative monoidM(X, C), thenωM (w) is the length|w′| of
w′ ∈ X∗ of any elementw′ in the classw.

Let us adapt this situation to the case of monoids with zero. In what follows, if M is any monoid
(ordinary or with zero), thenM+ = M \ {1M}. A locally finite monoid with zerois a monoid with zero
M such that

∀x ∈ M0, |{(n, x1, · · · , xn) : x = x1 · · ·xn, xi 6= 1M}| < +∞ . (10)

A locally finite monoid with zero obviously is also a finite decomposition monoid with zero. As in the
case of usual monoids, the converse is false. Besides, ifM is a locally finite monoid, andI is a two-sided
proper ideal ofM , then the Rees quotientM/I is a locally finite monoid with zero.

Example 12 LetM = X∗/I. ThenωM/I(w) = |w| for everyw ∈ X∗ \ I.

Counter-example 13 The monoid with zeroInt(P ) ∪ {0, 1} of a non void locally finite poset is not a
locally finite monoid with zero, since for everyx ∈ P , 1 6= [x, x] = [x, x] · [x, x] holds.

As in the classical case, we can define a natural notion oforder functionin a locally finite monoid with
zero: letx ∈ M0, thenωM (x) = max{n ∈ N : ∃x1, · · · , xn ∈ M+, x = x1 · · ·xn} (we use the notation
“ ω(x) ” when no confusion arises). Thereforeω(x) = 0 if, and only if, x = 1M . Moreover for every
x ∈ M0, if x = yz, thenω(x) ≥ ω(y)+ ω(z). If M is a locally finite monoid andI is a two-sided proper
ideal ofM , then we already know thatM/I is a locally finite monoid with zero, and more precisely for
everyx ∈ M \ I, ωM/I(x) = ωM (x).

Now let,f ∈ R0[[M ]] (the total contracted algebra exists becauseM is a finite decomposition monoid
with zero since it is a locally finite monoid with zero). We define anorder functionor pseudo-valuation
(that extends the order functionωM of M ): ω(f) = inf{ωM (x) : x ∈ M0, 〈f, x〉 6= 0R}, where the
infimum is taken inN ∪ {+∞}. In particular,ω(f) = +∞ if, and only if,f = 0. The following holds:

1. ω(1) = 0;

2. ω(f + g) ≥ min{ω(f), ω(g)};

3. ω(fg) ≥ ω(f) + ω(g).

Let us introduceM = {f ∈ R0[[M ]] : 〈f, 1M 〉 = 0R} = {f ∈ R0[[M ]] : ω(f) ≥ 1}. This set obviously
is a two-sided ideal ofR0[[M ]], called – as in the ordinary case – theaugmentation ideal(iv). For each

(iv) It is the kernel of the characterǫ : R0[[M ]] → R given byǫ(f) = 〈f, 1M 〉 = π1M
(f), for f ∈ R0[[M ]].
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n ∈ N, let M≥n = {f ∈ R0[[M ]] : ω(f) ≥ n}, in such a way thatM≥0 = R0[[M ]], andM≥1 = M.
The following lemma holds trivially..

Lemma 14 For everyn, M≥n is a two-sided ideal ofR0[[M ]], and the sequence(M≥n)n is an exhaus-

tive and separated decreasing filtration onR0[[M ]], i.e., M≥n+1 ⊆ M≥n,
⋃

n≥0

M≥n = R0[[M ]], and

⋂

n≥0

M≥n = (0).

According to Lemma 14,R0[[M ]] with the topologyF defined by the filtration(M≥n)n is an Hausdorff
topological ring (note also that this topology is metrizable [6]), and even an Hausdorff topologicalR-
algebra whenR is discrete.

Remark 15 It can be proved that if for everyn ∈ N, M(n) = {x ∈ M0 : ωM (x) = n} is finite,
then the topology of simple convergence and the topologyF onR0[[M ]] are equivalent. In all cases, the
topology defined by the filtration is always finer than the product topology (in particular, each projection
πx : R0[[M ]] → R is continuous for the filtration), and it can be even strictlyfiner as it is shown in the
following example.

Example 16 Let us consider a countable setX = {xi}i∈N (that is xi 6= xj for every i 6= j). We
considerM as the monoidX∗ with some zero0 adjoined. It is obviously a locally finite monoid with
zero but the number of elements of a given order is not finite (for instance the number of elements of
order 1 is ℵ0). We denote by|ω| the usual length of a word inX∗. Now let us consider the sequence
of seriesfn =

∑n
k=0 xk ∈ R0[M ] ⊂ R0[[M ]] which converges to the sumf =

∑∞
k=0 xk in R0[[M ]]

endowed with the product topology (f is the characteristic function of the alphabetX). But this series
does not converge inR0[[M ]] with the topology defined by the filtration, becauseω(f − fn) = 1 for all
n. Neverthelessf belongs toR0[[M ]] since it is the completion ofR0[M ] in the product topology.

Without technical difficulties the lemma below is obtained.

Lemma 17 The algebraR0[[M ]] with the topologyF is complete.

Remark 18 Suppose thatM is a locally finite monoid (with or without zero) which is alsofinite, then
there existsN ∈ N such that for everyn ≥ N , M≥n = (0). In this case, the topology defined by the
filtration coincides with the discrete topology onR[[M ]] = R[M ] (or R0[[M ]] = R0[M ]). So no topology
is needed in this case as explained in Introduction (Section1).

6 Star operation and the Möbius inversion formula
In this section,M is assumed to be a locally finite monoid with zero.

Lemma 19 For everyf ∈ M, (1 − f) is invertible and(1 − f)−1 =
∑

n≥0 fn.

Proof: First of all,
∑+∞

n=0 fn is convergent inR0[[M ]] (in the topology defined by the filtration), and is
even summable, becauseω(fn) → ∞ whenn → +∞ (see [6]). Now for everyN ∈ N, (1− f)

∑N
n=0 =

1− fN+1 → 1 whenN → +∞. Since
∑

n≥0 fn is summable, andR0[[M ]] is a topological algebra, we
obtain asymptotically(1 − f)

∑

n≥0 fn = 1. 2

According to Lemma 19, for every elementf ∈ M, we can define, as in the ordinary case, thestar
operationf∗ =

∑

n≥0 fn.
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Remark 20 Suppose thatM is a locally finite monoid with zero which is also finite. Then for every
f ∈ M, f is nilpotent (since(fn)n∈N is summable in the discrete topology). So in this particularcase,
there is no need of topology to computef∗, as the example given in the Introduction.

Lemma 21 The set1 + M is a group under multiplication.

Proof: It is sufficient to prove that〈f∗, 1M 〉 = 1R for everyf ∈ M. For everyn > 0, 〈fn, 1M 〉 = 0.
Since the projectionπ1M

is continuous, we have

〈f∗, 1M 〉 = 〈1 +
∑

n≥1

fn, 1M 〉 = 〈1, 1M 〉 +
∑

n≥0

〈fn, 1M 〉 = 1R . (11)

2

If M is an ordinary locally finite monoid, thecharacteristic seriesof M is define as the seriesζ =
∑

x∈X x ∈ R[[M ]]. If X ⊆ M , thenX =
∑

x∈X x is thecharacteristic seriesof X . More generally,
if M is a locally finite monoid with zero, then we also define thecharacteristic seriesof M by ζ0 =
∑

x∈M0
x ∈ R0[[M ]], and if X ⊆ M , then its characteristic series isX0 =

∑

x∈X0
x whereX0 =

X \ {0M}. We are now in position to state the Möbius inversion formula in the setting of (locally finite)
monoids with zero.

Proposition 22 (Möbius inversion formula) The characteristic seriesζ0 is invertible.

Proof: It is sufficient to prove thatζ0 ∈ 1 + M, which is obviously the case sinceζ0 = 1 + ζ+
0 , where

ζ+
0 = M+

0 =
∑

x∈M0\{1M} x ∈ M. 2

We now apply several of the previous results on Rees quotients. So letM be a locally finite monoid
andI be a two-sided proper ideal ofM in such a way thatM/I is a locally finite monoid with zero. Let
us denote byMI (resp. M) the augmentation ideal ofM/I (resp. M ). Let Φ : R[[M ]] → R0[[M/I]]
be theR-algebra epimorphism defined in eq. (7). We know that it is continuous when bothR[[M ]] and
R0[[M/I]] have their topology of simple convergence. It is also continuous for the topologies defined by
the filtrations(M≥n)n and((MI)≥n)n. Indeed, letn ∈ N, then for everyf ∈ M≥n, Φ(f) ∈ (MI)≥n.
It admits a sections from R0[[M/I]] into R[[M ]] (soΦ(s(f)) = f for everyf ∈ R0[[M/I]]) defined by

〈s(f), x〉 =

{
〈f, x〉 if x 6∈ I ,
0R otherwise.

This map is easily seen as anR-module morphism but in general not

a ring homomorphism.

Lemma 23 Letf ∈ 1 + MI , thens(f) ∈ 1 + M, andf−1 = Φ(s(f))−1.

Proof: Since〈f, 1M/I〉 = 1R, then〈s(f), 1M 〉 = 1R (because1M/I = 1M ). Therefores(f) ∈ 1 + M.
Thuss(f)−1 ∈ 1 + M, andΦ(s(f)−1) = Φ(s(f))−1 (becauseΦ is a ring homomorphism). Finally,
fΦ(s(f))−1 = Φ(s(f))Φ(s(f))−1 = 1 andΦ(s(f))−1 is a right inverse off . The same holds for the
left-side. 2

In the ordinary case,i.e., whenM is a (locally finite) monoid, the inverse(−ζ+)∗ of the characteristic
seriesζ = 1 + ζ+ is called theMöbius series, and denotedµ(M). By analogy, we define theMöbius
seriesof a locally finite monoid with zeroM as the seriesµ0(M) = (−ζ+

0 )∗, inverse ofζ0 = 1 + ζ+
0 in

R0[[M ]]. Therefore it satisfiesµ0(M)ζ0 = ζ0µ0(M) = 1.
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Lemma 24 LetM be a locally finite monoid andI be a two-sided proper ideal ofM . Then,µ0(M/I) =
Φ(µ(M)). Moreover if〈µ(M), x〉 = 0R for everyx ∈ I, thenµ0(M/I) = µ(M).

Proof: The Rees quotientM/I is a locally finite monoid with zero, and so its Möbius seriesexists.
Moreoverζ0 = M/I

0
∈ 1+MI, and according to Lemma 23,s(ζ0) ∈ 1+M, and(ζ0)

−1 = Φ(s(ζ0))
−1.

We have
s(ζ0) =

∑

x 6∈I

x

= M \ I

= M − I
= ζ − I .

(12)

The seriesζ+ − I ∈ R[[M ]] belongs to the augmentation idealM of R[[M ]] (as we already know), so
the seriesζ − I = 1 + ζ+ − I is invertible inR[[M ]] with inverse(I − ζ+)∗. Therefore, according to
Lemma 23,

µ0(M/I) = Φ(s(ζ0))
−1

= Φ(s(M/I
0
))−1

= Φ(s(M/I
0
)−1)

= Φ((I − M+)∗)
= Φ((I − ζ+)∗)
= (Φ(I − ζ+))∗

(becauseΦ is a continuous – for the filtrations – algebra homomorphism)
= (Φ(I)

︸︷︷︸

=0

−Φ(ζ+))∗

= Φ((−ζ+)∗)
= Φ((1 + ζ+)−1)
= Φ(ζ−1)
= Φ(µ(M)) .

(13)

Now, if 〈µ(M), x〉 = 0R for everyx ∈ I, thenµ0(M) = Φ(µ(M)) = µ(M). 2

Corollary 25 LetX be any nonempty set. LetI be a proper two-sided ideal ofX∗. Then,

µ0(X
∗/I) =

{
µ(X∗) if X ∩ I = ∅ ,
µ((X \ I)∗) if X ∩ I 6= ∅ .

(14)

Proof: We can apply Lemma 24 to obtainµ0(X
∗/I) = Φ(µ(X∗)). According to [8],µ(X∗) = 1 −

∑

x∈X x. If X ∩ I = ∅, thenµ0(X
∗/I) = Φ(µ(X∗)) = µ(X∗), and ifX ∩ I 6= ∅, then letY = X \ I.

We haveΦ(µ(X∗)) = 1 −
∑

y∈Y y = µ(Y ∗). 2

Example 26 1. LetX be any nonempty set. LetI = {ω ∈ X∗ : ∃x ∈ X, |ω|x ≥ 2}. The set
X∗/I consists of all standard words, i.e., word without repetition of any letter. Then according to
Corollary 25,µ0(X

∗/I) = µ(X∗) = 1 − X as announced in Section 1 Introduction.
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2. LetX be any set. A congruence≡ onX∗ is saidmultihomogeneous[14, 15] if, and only if,ω ≡ ω′

implies|ω|x = |ω′|x for everyx ∈ X . A quotient monoidX∗/ ≡ of X∗ by a multihomogeneous
congruence is called amultihomogeneous monoid. For instance, any free partially commutative
monoid, the plactic [21], hypoplactic [19, 22], Chinese [15] and sylvester [18] monoids are multi-
homogeneous. Such a monoidM = X/ ≡ is locally finite and therefore admits a M̈obius function
µ with µ(1M ) = 1 andµ(x) = −1 for everyx ∈ X . An epimorphismEv from M onto the free
commutative monoidX⊕, thecommutative image, is given byEv(ω) =

∑

x∈X |ω|xδx, whereδx

is the indicator function ofx. Any proper idealI of X⊕ gives rise to a proper two-sided ideal
Ev

−1(I) of M . LetI2 = {f ∈ X⊕ :
∑

x∈X f(x) ≥ 2}. Then, as sets,M/Ev
−1(I) = {1M} ∪ X

andµ0(M) = 1 − X.
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