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ABSTRACT

In this work, we consider the problem of blind identification of un-
derdetermined mixtures in a cyclostationary context relying on sixth-
order statistics. We propose to exploit the cyclostationarity at higher
orders by taking into account the knowledge of source cyclic fre-
quencies in the sample estimator of the observation hexacovariance.
Two blind identification algorithms based on the proposed estima-
tor are considered and their performances are tested by means of
computer simulations. Our simulation results show that significant
improvements can be obtained when both second and fourth-order
cyclo-stationarities are exploited.

Index Terms— Blind identification, underdetermined mixtures,
cyclostationarity, hexacovariance. 1

1. INTRODUCTION

Blind identification and blind source separation methods have been
successfully applied in multidisciplinary contexts, including radio-
communications, sonar, radar, biomedical signal processing and data
analysis, just to mention a few. A widespread class of these methods
rely on independent component analysis by means of higher-order
statistics [1]. In this context, a problem that have attracted a particu-
lar interest is that of blind identification of underdetermined mixtures
(i.e. when we have more sources than sensors). Several solutions
have been proposed in the literature to solve this problem (see, e.g.
[2, 3, 4, 5, 6, 7] and references therein). The solution proposed in
these works may resort to second, fourth or sixth-order statistics of
the output data.

In several applications such as radiocommunications and pas-
sive listening, the sources may be nonstationary, and they are often
(quasi)-cyclostationary. This property appears as soon as the obser-
vations are oversampled and/or when the different sources have dif-
ferent bandwidth. The work [8] addressed the behavior of second-
and four-order blind source separation algorithms in a cyclostation-
ary context. The authors proposed to exploit the cyclostationary
property of the sources by adding a correction term to the standard
sample estimator of the quadricovariance which takes into account
the known cyclic frequencies of the received sources. The results
presented in [8] show that the performance of fourth-order statis-
tics based blind source separation algorithms can be considerably
improved when the proposed estimator is used. The cyclostationar-
ity property has no yet been considered for cumulant estimators of
orders higher than four. The works [9, 10] exploit sixth-order statis-
tics in the blind identification problem. Following these works, a

1This work has been supported in part by Amesys contract DP021371
CSE002 “aIntercom”.

family of blind identification algorithms called BIOME (Blind Iden-
tification of Overcomplete MixturEs) was proposed in [4]. Although
powerful, these algorithms do not take into account the cyclosta-
tionary nature of the sources since they rely on the standard sample
estimate of the hexacovariance.

In this work, we propose to exploit the higher-order cyclosta-
tionarity in the blind identification problem. Motivated by the results
of [8, 11] on one hand, and of [4] on the other hand, we propose to
take into account the known cyclic frequencies of the sources in the
calculation of the empirical estimator of the hexacovariance. Two
blind identification algorithms based on the proposed estimator are
tested. The first one is the 6-BIOME algorithm of [4], also referred
to as “BIRTH” in the 6th order case, while the second one is a direct
minimization of a tensor model fitting error by an iterative algorithm.

2. PROBLEM DEFINITION AND ASSUMPTIONS

Consider a noisy mixture of P statistically independent narrowband
sources received by an array of M sensors. The vector y(k) con-
taining the discrete-time version of the complex envelopes of the
received signal at the sensor outputs can be modeled according to
the following classical linear model:

y(k) =

P∑
p=1

sp(k)hp + n(k)
.
= Hs(k) + n(k), (1)

where H = [h1, . . . ,hP ] ∈ CM×P , s(k) =
[s1(k), . . . , sP (k)]T ∈ CP and n(k) ∈ CM are the mixing
matrix, source and noise random vectors, respectively. It is assumed
that for any fixed time index k, s(k) and n(k) are statistically
independent. We are interested in the case where the received source
signals are cyclostationary and have a nonzero carrier residue.
These properties are generally verified in interception or passive
listening applications. In this scenario, the input-output model (1)
may be too restrictive so that we adopt following observation model:

y(k) =

P∑
p=1

sp(k)e−(2π∆fpkTs+φp)hp + n(k)

= Hs(k) + n(k), (2)

where s(k) = [s1(k), . . . , sP (k)]T is the new source signal vector,
with sp(k)

.
= sp(k)e−(2π∆fpkTs+φp), while ∆fp and φp are, re-

spectively, the carrier residue and phase of the p-th source and Ts

is the sampling period. The sources are assumed to have the same
symbol period T , while the observations are sampled at the Nyquist
rate, i.e. Ts ≥ T/2.

Before to proceed, the following hypotheses are assumed:



H1. The sources s1(k), . . . , sP (k) are non-Gaussian, cyclosta-
tionary, cycloergodic, and mutually uncorrelated up to order
6;

H2. The noise vector n(k) is stationary and ergodic, following a
complex-valued Gaussian distribution;

H3. The sixth order marginal source cumulants are not null and
have all the same sign;

H4. The mixing matrix H does not contain collinear columns.

The problem is to identify the mixing matrix H (up to trivial
column permutation and scaling) and, possibly, the source vector
s(k) from the only knowledge of the observation vector y(k) by
means of an estimation of its associated sixth-order statistics. Recall
that we are interested in the so-called underdetermined case, which
means that we have P > M .

After the identification of the mixing matrix, we consider a
Maximum-A-Posteriori (MAP) criterion to estimate the source vec-
tor s(k) by means of an exhaustive search over the known finite al-
phabet of the sources. This methodology will be used for evaluating
the Bit-Error-Rate (BER) of the proposed blind identification algo-
rithms exploiting higher-order cyclostationarity.

3. HIGHER-ORDER STATISTICS IN THE PRESENCE OF
CYCLOSTATIONARITY

As discussed in [8, 11], in the cyclostationary context the covari-
ance function of sp(k) admits a Fourier series expansion over the
set Γp = {αp} of cyclic frequencies, where the coefficients of this
expansion correspond to the cyclic covariances of the p-th source.
Therefore, the covariance matrix of y(k) contains cyclic frequen-
cies of all the sources belonging to the set {Γ1, . . . , ΓP }. In the
general case, the N -th order cyclic covariance of y(k) associated
with a given cyclic frequency α is defined by:

c
ip+1,...,iN

i1,...,ip,y (α) =
〈
c

ip+1,...,iN

i1,...,ip,y (k)e−2παkTs
〉

d
(3)

where c
ip+1,...,iN

i1,...,ip,y (k) are the N -th order output cumulants and
〈
f(k)

〉
d

.
= limK→∞(1/K)

K∑
k=1

f(k) corresponds to the discrete-

time temporal mean operation of f(k) over an infinite number of
samples. We assume that the set {Γ1, . . . , ΓP } of cyclic frequencies
of the sources is known. It is worth noting that a set of these cyclic
frequencies depends on the nonzero carrier residues of the sources
∆f1, . . . , ∆fP .

The main motivation for considering the cyclostationarity prop-
erty in the blind identification and source separation problems comes
from the fact that, when the observations are (quasi)-cyclostationary,
the time-averaged cumulants ĉ

ip+1,...,iN

i1,...,ip,y (i.e. those calculated at the
zero cyclic frequency only) generate, as K becomes infinite, an “ap-
parent” (biased) estimation of the cumulants instead of the true cu-
mulants. This is a consequence of the time dependence of the statis-
tics of the data for (quasi)-cyclostationary sources [8]. This estima-
tion bias can, however, be compensated by adding a correction term
to the sample estimator that takes into account all the nonzero cyclic
frequencies present in the observed data. We propose to exploit the
cyclostationarity property by means of sixth-order statistics (hexaco-
variance). It is worth mentioning that the hexacovariance has been
considered in [10, 4] for blind identification of the underdetermined
mixtures. However, these works have not exploited the cyclostation-
arity property of the sources. Here, we rely on the results of [8, 11]

(which have considered the quadricovariance) to address the perfor-
mance of two blind identification algorithms based on the hexaco-
variance. These algorithms are presented in Section 4. Our goal is
to evaluate the potential improvements obtained when higher-order
cyclic moments are exploited.
Proposed hexacovariance estimator: Let ci4,i5,i6

i1,i2,i3,y be an element
of the hexacovariance of the observations y(k). The cyclic estimator
ĉ
i4,i5,i6
i1,i2,i3,y of the hexacovariance based on K snapshots of the data is

given by:

ĉ
i4,i5,i6
i1,i2,i3,y

.
= r̂i4,i5,i6

i1,i2,i3
(0)

− [3]
( ∑

α,β
α+β=0

r̂i4
i1,i2,i3

(α)r̂i6
i5

(β)
)

− [9]
( ∑

α,β
α+β=0

r̂i4,i5
i1,i2

(α)r̂i6
i3

(β)
)

− [3]
( ∑

α,β
α+β=0

r̂i1,i2(α)r̂i4,i5,i6
i3

(β)
)

+ 2[9]
( ∑

α,β,γ
α+β+γ=0

r̂i1,i2(α)r̂i4
i3

(β)r̂i5,i6(γ)
)

+ 2[6]
( ∑

α,β,γ
α+β+γ=0

r̂i4
i1

(α)r̂i5
i2

(β)r̂i6
i3

(γ)
)

(4)

where

r̂i4,i5,i6
i1,i2,i3

(0)
.
=

1

K

K∑

k=1

yi1(k)yi2(k)yi3(k)y∗i4(k)y∗i5(k)y∗i6(k)

is the estimated sixth-order moment at the zero frequency and

r̂
ip+1,...,ip+q

i1,...,ip
(α)

.
=

1

K

K∑

k=1

yi1(k) · · · yip(k)y∗ip+1(k) · · · y∗ip+q
(k)e−2παkTs .

is the estimated (p + q)-th order moment evaluated at the cyclic fre-
quency α, where p + q ≤ 6. In the compact expression (4), [n]
denotes the McCullagh bracket notation representing the existence
of n monomials of the same order that arises by permuting sepa-
rately either superscripts or subscripts [12] [13]. Finally, note that
the values taken by α, β, and γ satisfying α + β + γ = 0, are those
of the known cyclic frequencies.
Remark: The proposed estimator of the hexacovariance is only “ap-
proximately unbiased” since we have ignored the bias introduced by
the estimated sixth-order moment. This approximation has two mo-
tivations. First, the complexity associated with the calculation of the
unbiased sixth-order moment estimator is prohibitive. Second, the
performances obtained with the proposed approximation are satis-
factory, as it will be shown in Section 5.

4. BLIND IDENTIFICATION ALGORITHMS

In this section, we exploit the higher-order cyclostationarity of the
sources by considering two blind identification algorithms capable
of identifying underdetermined mixtures. The first one is the sixth-
order version of the BIOME family of algorithms and is called 6-
BIOME [4]. The second algorithm is based on the same mod-
eling, but the 6th order cumulants are stored in a 3rd order ten-
sor instead of a matrix. Before presenting these algorithms, we



introduce some notation and properties associated with the matrix
representations of the hexacovariance tensor. Thanks to the mul-
tilinearity proprety of cumulants, the hexacovariance ci4,i5,i6

i1,i2,i3,y of
the observations y(k) = Hs(k) is a sixth-order rank-P tensor
C ∈ CM×M×M×M×M×M which can be written as

Cy =

P∑
p=1

κp(hp⊗⊗⊗hp⊗⊗⊗hp⊗⊗⊗h∗p⊗⊗⊗h∗p⊗⊗⊗h∗p), (5)

where ⊗⊗⊗ denotes the outer product between vectors and κp is the
marginal 6th order cumulant of the p-th source. The latter model is
sometimes referred to as “PARAFAC”.

Symmetric matrix factorization

The overall information contained in the hexacovariance tensor Cy
defined in (5) can be organized in a symmetric matrix Cy ∈
CM3×M3

defined as follows [4]:

Cy =

P∑
p=1

κp

(
hp ⊗ hp ⊗ h∗p

)(
hp ⊗ hp ⊗ h∗p

)

= H¯3∆s(H
¯3)H, (6)

where ⊗ and ¯ denote, respectively the Kronecker and Khatri-Rao
products, H¯3 = H¯H¯H∗ ∈ CM3×P and ∆s ∈ CP×P is a di-
agonal matrix containing the marginal source cumulants κ1, . . . , κP

along the main diagonal. The 6-BIOME algorithm briefly, which is
presented in Section 4.1, relies on model (6).

Non-symmetric matrix factorizations

We can organize the information contained in the hexacovariance
tensor in alternative (non-symmetric) matrix forms. Let us consider
the following one:

C
′
y =

(
H¯H¯H¯H∗ ¯H∗

)
H(3)T,∈ CM5×M (7)

or, alternatively,

C
′
y =

(
H(1) ¯H(2)

)
H(3)T, (8)

where H(1) = H¯H¯H, H(2) = H∗¯H∗ and H(3) = H∗∆s.
The factorization (8) is an equivalent third-order PARAFAC model of
dimensions M3×M2×M representing the hexacovariance tensor.
In Section 4.2, this factorization is exploited for blind identification
by means of the Levenberg-Marquardt (LM) algorithm.

4.1. Sixth-order BIOME (6-BIOME)

The 6-BIOME algorithm is reminiscent of the BIRTH (Blind Iden-
tification using Redundancies in the daTa Hexacovariance matrix)
algorithm proposed in [9] and later improved in [10]. It exploits the
multilinear algebraic structure of the hexacovariance by solving a
joint approximate diagonalization problem based on the symmetri-
cally unfolded matrix factorization (6) of the estimated hexacovari-
ance (4). Following the idea of [4, 9], we can write the square-root
of (6) as:

(Cy)1/2 = H¯3 ∆s V (9)

where V is a unitary matrix. The 6-BIOME algorithm is summa-
rized as follows:

6-BIOME ALGORITHM

1. Estimate the hexacovariance tensor using all the cyclic mo-
ments (4) and form Cy;

2. Compute the square-root (Cy)1/2 ∈ CM3×P from the
Eigen-Value Decomposition (EVD) of Cy;

3. Slice (Cy)1/2 into M matrix blocks Γm ∈ CM2×P ;

4. Find V by solving a simultaneous diagonalization problem
from M(M − 1)/2 Hermitian matrices Θm,n

.
= Γ†mΓn;

5. Calculate Ĥ¯3 = (Cy)1/2VH;

6. Arrange each of the P columns of Ĥ¯3 in vector bm ∈ CM3
;

7. Transform each vector bm ∈ CM3
in a set of M matrices

B ∈ CM×M and calculate the dominant eigenvector hm of
each of these matrices;

8. Form Ĥ, the columns of which are the vectors hm.

4.2. Identification with Levenberg-Marquardt (PARAFAC-LM)

The second algorithm is based on the 3rd order tensor representa-
tion (7) of decomposition (5). The proposed approach consists of
iteratively fitting this 3rd order storage of the hexacovariance ten-
sor using the Levenberg-Marquardt (LM) method2.We consider the
minimization of the following quadratic cost function:

f(p) =
1

2
‖e(p)‖2F =

1

2
eH(p)e(p), (10)

where e(p) = vec
(
Ĉ
′
y − (Ĥ(1) ¯ Ĥ(2))Ĥ(3)T

) ∈ CM6×1 is the
residue and p is the parameter vector defined as:

p =




pĤ(1)

pĤ(2)

pĤ(3)


 =




vec(Ĥ(1)T)

vec(Ĥ(2)T)

vec(Ĥ(3)T)


 ∈ C3MP×1, (11)

and the LM update is given as follows:

p(i + 1) = p(i)− [
JH(i)J(i) + λ(i)I

]−1
g(i), (12)

where J(i) denotes the Jacobian matrix:

J(i) =
[
JĤ(1)(i) JĤ(2)(i) JĤ(3)(i)

]
∈ CM6×3MP , (13)

and g(i) denotes the gradient vector:

g(i) =




gĤ(1)(i)
gĤ(2)(i)
gĤ(3)(i)


 ∈ C3MP×1 (14)

After convergence, an estimate of the mixture Ĥ up to column per-
mutation and scaling is obtained from the estimated parameter vector
pĤ(3) .

2Note that the LM algorithm has been used in a different context to fit 3rd
order tensors in [14].



Estimation error
Data block length (K) 200 5000 20000

6-BIOME class. 0.0860 0.0469 0.0360
6-BIOME cyclo. 0.0729 0.0388 0.0226

PARAFAC-LM class. 0.0634 0.0392 0.0327
PARAFAC-LM cyclo. 0.0573 0.0279 0.0226

Table 1. Estimation error for 6-BIOME and PARAFAC-LM using
classical and cyclostationary hexacovariance estimators.

5. SIMULATION RESULTS

We evaluate the performance of 6-BIOME and PARAFAC-LM al-
gorithms when using the cyclostationarity-based hexacovariance es-
timator proposed in Section 3. The results were obtained from 100
Monte Carlo runs. For each run, the noisy mixture of cyclostationary
sources is generated from a simulator of radiocommunication sig-
nals developed by A.Chevreuil [15], which allows the control of the
transmission parameters as well as the parameters defining the radio
channel. We have considered a reference carrier of 10MHz and a
common symbol period of T = 0.4 ms. The sources are modulated
using Binary Phase Shift Keying (BPSK). The pulse shaping filter is
a square root raised cosine with roll-off factor 0.3 and the sampling
rate of the observed data at the receiver is Ts = T/2. A uniform
linear array of sensors separated by half a wavelength is considered.
At each run, the angles of arrival of the sources are randomly drawn
between 0◦ et 80◦ according to a uniform distribution. The Signal-
to-Noise Ratio (SNR) is fixed at 10 dB in all simulations. At each
run, the performance is evaluated from the following normalized er-
ror measure:

e(H, Ĥ) =
‖H− Ĥ‖2F
‖H‖2F

.

First, we are interested in evaluating the estimation error assuming
3 sources and 2 sensors. Table 1 shows the median value of the
estimation error obtained with 6-BIOME and PARAFAC-LM algo-
rithms using both classical (“class”) and cyclostationary (“cyclo”)
hexacovariance estimators for different data block lengths. It can
be seen that the exploitation of higher-order cyclostationarity im-
proves the performance of both algorithms. Note also that the pro-
posed PARAFAC-LM algorithm offers better results than 6-BIOME.
Table 2 shows the Bit-Error-Rate (BER) performance of 6-BIOME
and PARAFAC-LM algorithms averaged over 100 Monte Carlo runs.
For each run, the BER is calculated a posteriori using a Maximum-a-
Posteriori (MAP) sequence estimator based on the estimated mixing
matrix using 5000 observations. As a reference for comparison, the
performance of the perfect MAP estimator, which assumes perfect
knowledge of the mixing matrix, is shown. For both algorithms, an
improved BER performance is observed when higher-order cyclosta-
tionarity is exploited. Such a BER improvement is more pronounced
in the case (P, M) = (4, 3) where the performance of the classical
hexacovariance estimator is limited due to the higher number of pa-
rameters to be estimated.

6. CONCLUSION

We have addressed the problem of blind identification of underde-
termined mixtures in a cyclostationary context by exploiting sixth-
order statistics. A “corrected” hexacovariance estimator has been
presented which takes into account the second- and fourth-order
cyclic moments. Using the proposed estimator, we have assessed the
performance of 6-BIOME and PARAFAC-LM algorithms relying on

BER
(P, M) (3, 2) (4, 3)

6-BIOME class. 0.0653 0.1103
6-BIOME cyclo. 0.0503 0.0771

PARAFAC-LM class. 0.0315 0.0914
PARAFAC-LM cyclo. 0.0248 0.0676

Perfect MAP (H known) 0.0137 0.0064

Table 2. BER performance of 6-BIOME and PARAFAC-LM ob-
tained with a MAP estimator. SNR=10dB.

different matrix factorizations of the estimated hexacovariance. Our
results show that both algorithms benefit from the exploitation of
higher-order cyclostationarity, thus offering an improved identifica-
tion of the mixing matrix. We have also observed an improved per-
formance of PARAFAC-LM over the 6-BIOME algorithm.
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