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Abstract. In this paper, we investigate a new Gradient-Vector-Flow
(GVF)( [38])-inspired static external force field for active contour mod-
els, deriving from the edge map of a given image and allowing to increase
the capture range. Contrary to prior related works, we reduce the num-
ber of unknowns to a single one v by assuming that the expected vector
field is the gradient field of a scalar function. The model is phrased in
terms of a functional minimization problem comprising a data fidelity
term and a regularizer based on the super norm of Dv. The minimiza-
tion is achieved by solving a second order singular degenerate parabolic
equation. A comparison principle as well as the existence/uniqueness of
a viscosity solution together with regularity results are established. Ex-
perimental results for image segmentation with details of the algorithm
are also presented.

1 Introduction

1.1 Motivations

Many of the well-known variational segmentation methods require a careful
choice of the initial condition. One of the most famous variational methods to
process this partition of the image is the active contour model introduced by
Kass, Witkin, and Terzopoulos ([30]). It consists in evolving a parameterized
curve so that it matches the object boundary. The shape taken by the curve
through the process is related to an energy minimization, this energy compris-
ing a data fitting term and a regularizer, and being non-convex. Thereof, we can
only expect local minimizers, which, in practice, means that the contour to be
deformed must be initialized near the object boundary. Cohen ([18]) has pro-
posed a way to alleviate this constraint by adding an inflating/deflating force in
the modelling, defined by kn, n denoting the unit inward normal to the curve
and k, a constant. According to the sign of the constant k, the curve inflates
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or deflates. Thereby, in practice, the contour to be deformed is either initialized
inside the object, or it encloses the object of interest.

In [38], Xu and Prince address both the problems of initialization and slow
and/or poor convergence near boundaries with strong concavities by introducing
a new static external force called Gradient Vector Flow (GVF). The initializa-
tion constraint is removed, that is, initialization can be made inside, outside or
across the object boundaries, and the front evolution is easily handled even in
boundary concavities. The main idea behind this model is to increase the cap-
ture range of the external edge-map-related force field, and to make the contour
evolve toward the desired boundaries, here where classical methods would fail
to. Unlike classical active contours, the introduced external force does not derive
from a potential function and cannot be computed straightforwardly from the
image edge map. More precisely, the model cannot be phrased in terms of a
unique functional minimization problem but is defined in two steps. In a first
step, the external force (GVF) w = (u, v)T is obtained by minimizing an en-
ergy functional in a variational framework. The corresponding Euler-Lagrange
equations are computed and lead to solve a linear partial differential equation
decoupled system by a gradient descent method. The second step consists then
in replacing, in the dynamic snake equation, the classical potential force by the
newly computed external force w. This method motivated the following works.
In [34], Paragios et al. propose to integrate this boundary spatial diffusion tech-
nique to the geodesic active contours ( [16]). In [29], Jifeng et al. propose to
improve the diffusion properties of the GVF force field. They obtain a new force
by replacing the Laplacian operator used in the GVF model by its diffusion
term in the normal direction that is, the normalized infinity Laplacian operator.
Unlike the GVF model, their new field (called NGVF for GVF in the normal
direction) is anisotropic. Furthermore, the NGVF is stable for bigger time steps,
improves slightly segmentation results, and allows to detect more quickly long
and thin concavities.

Our work is much motivated by [38] and [29]. We wanted to provide, in a
rigorous mathematical framework, a new method to generate this external force
field. Contrary to these prior works, we propose to reduce the number of un-
knowns to a single one, by assuming that the sought vector field is the gradient
field of a scalar function. Also, the introduced minimization problem contains a
data-fitting term related to the original GVF model and a regularizer that penal-
izes the super norm of the unknown gradient. Thus the problem becomes related
to the absolutely minimizing Lipschitz extensions and to the infinity Laplacian.

The absolute minimal Lipschitz extension model was introduced by Aronsson
in [2] (see also [1, 3, 4]) in the following way. Given Ω ⊂ IRn a bounded, open
and connected domain with sufficiently smooth boundary, and b ∈ C(∂Ω), solve

inf
u∈W 1,∞(Ω), u=b on ∂Ω

‖Du‖L∞(Ω) . (1)

A minimizer of (1) is called an absolutely minimizing Lipschitz interpolant of
b|∂Ω inside Ω. Aronsson proved the existence of an absolute minimal Lipschitz
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extension and Jensen proved the uniqueness. Aronsson also derived the Euler-
Lagrange equation governing the absolute minimizer in the sense of viscosity
solutions:

Δ∞u = D2u(Du, Du) = 0 in Ω. (2)

We refer to [5, 10, 20] for more details. The operator Δ∞ is called the infin-
ity Laplacian and solutions of (2) are said to be ∞-harmonic. Jensen proved
a comparison principle and an existence/uniqueness result of (2) for Lipschitz
continuous boundary data (see [28]).

Before depicting our model, we briefly make a non-exhaustive review of some
prior works related to AMLE and infinity Laplacian in the field of image pro-
cessing.

1.2 Prior Related Works

As stressed by Caselles et al., the equation Δ∞u = D2u(Du, Du) = 0 was
introduced in the field of computer vision as edge detector (see [37], [39]). It
earlier appeared in the domain of edge enhancement (see [35]) and served as the
basis of Canny edge detection [12]. In [17], Caselles et al. investigate the AMLE
and the infinity Laplacian in the field of image processing with applications to the
restoration of images. Motivated by prior applications devoted to coding ( [13],
[14]), they address the issue of interpolating data given on a set of points and/or
curves in the plane. Another application, dedicated to shape metamorphism
(the process which consists in evolving a source shape into a target shape by
intermediate steps) is proposed by Cong et al. in [19] and makes use of the
infinity Laplacian. Also, in [31], Mémoli et al. propose a new framework for
brain warping using Minimizing Lipschitz Extensions. To finish, in [24], Elion
and Vese aim at solving the (BV, G) decomposition model introduced by Meyer
in [32]. In that purpose, Elion and Vese focus on an isotropic decomposition of
the image f ≈ u + v with v = ΔP = div(DP ) and DP ∈ (L∞(Ω))2.

The outline of the paper is as follows: Sect. 2 is devoted to the depiction
of the model and the derivation of the associated evolution problem. Section 3
is dedicated to the theoretical study of the obtained parabolic problem. We
first prove a comparison principle, then prove existence and uniqueness of a
viscosity solution. Regularity results of this solution are also given. We conclude
the paper with experimental results and integrate this new external force field
in a segmentation problem. Details of the algorithm are also provided.

2 Depiction of the Model

Let Ω be a bounded open subset of IRn, ∂Ω its boundary and let I be a given
bounded image function defined by I : Ω̄ → IR. For the purpose of illustration we
consider n = 2. Let g be an edge-detector map. The function g is applied to the
norm of the image gradient, and satisfies the following properties: g : [0,∞[→
[0,∞[, g(0) = 1, g strictly decreasing, and limr→+∞ g(r) = 0. An example of
such a function is g : r �→ 1

1+r2 . We denote by W = (w1, w2) = −Dg(||DI||) the
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associated gradient vector field. In homogeneous regions, ||DI|| 	 0 so g(||DI||)
is almost equal to 1. On boundaries, ||DI|| is large so g(||DI||) is almost zero.
Also, in homogeneous regions, W is almost the null vector. Along the boundaries,
the vector field W points toward the middle of the edges (see such an example
in Fig. 1).

We plan to extrapolate the vector field on the whole image domain in a vari-
ational framework. A majority of existing regularization functionals aims at
minimizing the global variation of the unknown and thus provides little local
control. In this work, we propose to minimize the super norm of the unknown
gradient. This choice is also motivated by the fact that the Laplacian operator
(that naturally appears in the GVF model) can be decomposed into the sum
of the second derivative in the normal direction, and the second derivative in
the tangent direction. The former component that is kept in the NGVF model
weighs heavily in the extrapolation process and has good properties unlike the
later component which proves to be parasitic particularly when dealing with thin
and long concavities. Also, unlike prior related works, we reduce the number of
unknowns to a single one by assuming that the expected vector field is the gra-
dient vector field of a scalar function. We thus propose to minimize the following
functional:

inf
v∈W 1,∞(Ω)

∫
Ω

||Dv − W ||2||W ||2 dx + μ ||Dv||L∞(Ω), (3)

where μ > 0 is a tuning parameter.

Remark 1. Functional (3) is defined on W 1,∞(Ω). The domain Ω being bounded,
the inclusion L∞(Ω) ⊂ L2(Ω) holds so Dv ∈ L2(Ω).

Remark 2. If v is a minimizer of (3), so is v + C where C denotes any real con-
stant. This is not a problem since we are interested in the associated gradient vec-
tor field. If v ∈ W 1,∞(Ω), v is Lipschitz continuous and thus, by Rademacher’s
theorem, differentiable almost everywhere.

To minimize the above energy, we make use of the absolutely minimizing Lips-
chitz extensions. Following the results on AMLE recalled in Sect. 1, we obtain the
Euler-Lagrange equation satisfied by v if it minimizes (3) and solve it by gradient
descent. More precisely, classically, in image processing, the equation is defined
on a domain R of IR2 (e.g., on the square [0, 1]× [0, 1]). In this case, boundary
conditions must be defined: Neumann boundary conditions on ∂R are well-suited
to the image processing framework since it corresponds to the reflection of the
data through the edges. Thus it is no longer necessary to define boundary val-
ues. Following [6] and [15], we propose to simplify the problem by working with
periodic solutions. The function v, primarily defined on [0, 1]× [0, 1], is extended
to IR2. First, by symmetry, we extend it to [−1, 1]× [−1, 1] and then in all of IR2

by periodicity (see Sect. 3.3.1 from [6]). We thus obtain that ∀h ∈ ZZ2, ∀x ∈ IR2,
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v(x+2h) = v(x). Also, we assume that the initial condition v0 and the functions
x �→ wk(x), k = 1, 2 are extended to IR2 with the same periodicity.

Given T > 0, we then obtain the following problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
= 2 ||W ||2Δv + 2 〈D||W ||2, Dv 〉 − 2 div

(||W ||2W )

+μD2v

(
Dv

|Dv| ,
Dv

|Dv|
)

on IR2 × (0, T ),

= b(x)Δv − 〈 d(x), Dv 〉 − h(x) + μ D2v

(
Dv

|Dv| ,
Dv

|Dv|
)

,

v(x, t = 0) = v0(x) in IR2,

(4)

with b : x �→ 2||W (x)||2, d : x �→ −2 D||W ||2(x), h : x �→ 2 div
(||W ||2W )

(x),
and with the assumptions v0 ∈ C(IR2) ∩ W 1,∞(IR2), b ∈ C(IR2) and bounded
by ξb, d ∈ C(IR2) ∩ W 1,∞(IR2), bounded by ξd and with Lipschitz constant κd,
h ∈ C(IR2) ∩ W 1,∞(IR2), bounded by ξh and with Lipschitz constant κh , and
with 〈·, ·〉 denoting the euclidean scalar product in IR2. We also assume that
the mapping IR2 � x �→ b1/2(x) is Lipschitz continuous on IR2 with Lipschitz
constant κb1/2 .

3 Theoretical Results

This problem falls within the framework of the theory of viscosity solutions.
Indeed, we obtain a second order singular degenerate parabolic equation. The
concept of viscosity solutions has been introduced in 1981 by Crandall and Lions
( [22]). This theory was developed to study first-order partial differential equa-
tions of nondivergence form, typically, Hamilton-Jacobi equations. Later, the
study of viscosity solutions was extended to second-order elliptic and parabolic
equations (for a good introduction to the theory of viscosity solutions, we refer
to Barles [8,7], the article of Crandall, Ishii and Lions [21], Crandall, Lions [23],
Ishii [26], and Ishii, Lions [27]). We also refer to the related work [9].

In our problem, the evolution equation in (4) can be rewritten in the form:

∂v

∂t
+ G

(
x, Dv, D2v

)
= 0,

with G : IR2 × IR2 − {0IR2} × S2 (S2 being the set of symmetric 2 × 2 matrices
equipped with its natural partial order) defined by:

G(x, p, X) = 〈d(x), p〉 + h(x)− b(x) trace (X)− μ
pT

|p|X
p

|p| ,

= 〈d(x), p〉 + h(x)− b(x) trace (X)− μ trace
(

p
⊗

p

|p|2 X

)
,

= c(x, p) + E (x, X) + F (p, X) ,

with the following properties:
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1. The operators G, F : (p, X) �→ −μ trace
(

p
⊗

p
|p|2 X

)
and E : (x, X) �→

−b(x) trace (X) are independent of v and are elliptic, i.e., ∀X, Y ∈ S2,
∀p ∈ IR2,

if X ≤ Y then F (p, X) ≥ F (p, Y ). (5)

The operators G, E, and F are therefore proper.
2. F is locally bounded on IR2 × S2, continuous on IR2 \ {0IR2} × S2, and

F ∗(0, 0) = F∗(0, 0) = 0, (6)

where F ∗ (resp. F∗) is the upper semicontinuous (usc) envelope (resp. lower
semicontinuous (lsc) envelope) of F .

3. c : IR2 × IR2 � (x, p) �→ 〈d(x), p〉 + h(x) is locally Lipschitz continuous in
space and ∀x, y ∈ IR2 × IR2,

|c(x, p)− c(y, p)| ≤ (κd|p|+ κh) |x − y|. (7)

We start by proving a comparison principle that will be useful to prove the
uniqueness of the viscosity solution of the considered problem.

Theorem 1 (Comparison principle). Let u ∈ USC(IR2 × [0, T )), bounded,
periodic (with the same periodicity as the initial condition of (4)), be a sub-
solution and v ∈ LSC(IR2 × [0, T )), bounded, periodic (with the same period-
icity as the initial condition of (4)), be a supersolution of (4). Assume that
u0(x) = u(x, 0) ≤ v0(x) = v(x, 0) in IR2, then u ≤ v in IR2 × [0, T ).

Proof. This proof is rather classical. We follow the arguments of [21]. We first
observe that for λ > 0, ũ = u − λ

T−t is also a subsolution of (4) and

ũt + G∗(x, Dũ, D2ũ) ≤ − λ

(T − t)2
≤ − λ

T 2
.

Since u ≤ v follows from ũ ≤ v in the limit λ → 0, it will simply suffice to prove
the comparison under the additional assumptions:⎧⎨

⎩
(i)ut + G∗

(
x, Du, D2u

) ≤ − λ

T 2
.

(ii) lim
t→T

u(x, t) = −∞.
(8)

Let us set M = supIR2×[0,T ) u(x, t)−v(x, t). We aim to show that M ≤ 0. In this
purpose, we argue by contradiction and assume that M > 0. We introduce the
duplication function f(x, y, t) = u(x, t) − v(y, t) − (4ε)−1|x − y|4 and consider
M0 = supIR2×IR2×[0,T )

{
u(x, t)− v(y, t)− (4ε)−1|x − y|4} , ε > 0. Obviously,

M0 ≥ M > 0. Moreover, this supremum is reached owing to the bound above of
u and −v, the fact that f is such that ∀h ∈ ZZ2, f(x+2h, y +2h, t) = f(x, y, t),
and (8)(ii). We denote by (x0, y0, t0) ∈ IR2 × IR2 × [0, T ) a point of maximum.
We first prove that t0 > 0 for ε small enough and then rise a contradiction using
Th. 8.3 from [21], which allows to conclude that M ≤ 0. Consequently, u ≤ v in
IR2 × [0, T ). ��
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We now give an existence result using the classic Perron’s method (see Sect. 4
from [21]).

We start by constructing a subsolution U−. Let us set U− = infIR2(v0) − Ct
with C = ξh. U− is twice differentiable in space, once differentiable in time,
bounded, and periodic with the same periodicity as v0 and U− is a subsolution
of (4). Similarly, U+ = supIR2(v0) + Ct is a supersolution of (4). Obviously,
U−(x, 0) ≤ U+(x, 0). We can define:

v = sup {w; w periodic with the same periodicity as v0,
subsolution such that U− ≤ w ≤ U+} .

In that case, Perron’s method states that v is a periodic discontinuous solution
of (4) with the same periodicity as v0. Clearly, the solution is bounded since U+

is bounded. Also as v is a solution, v∗ is a subsolution and v∗ a supersolution so
from the comparison principle v∗ ≤ v∗. But v∗ ≤ v∗ so v∗ = v∗ = v, which gives
that v is continuous on IR2 × [0, T ).

Conclusion 1. We have proved the existence and uniqueness of a bounded, pe-
riodic, continuous on IR2 × [0, T ) viscosity solution of (4).

We now prove that a solution of (4) is Lipschitz continuous in space, and uni-
formly continuous in time.

Theorem 2 (Regularity results). Let us assume that ||Dv0||L∞(IR2) ≤ B0

with B0 > 0. Then the solution of (4) satisfies:

||Dv(·, t)||L∞(IR2) ≤ B(t),

with B(t) = κh
eαt−1

α + B0e
αt, and with α = 8κ2

b1/2 + κd.

Proof. The function v is bounded, continuous on IR2 × [0, T ), and periodic with
the same periodicity as v0. We set Φε(x, y, t) = B(t)

(|x − y|2 + ε2
) 1

2 and aim at
proving that v(x, t)− v(y, t) ≤ Φε(x, y, t).

Let us set M = sup(x,y)∈IR2×IR2, t∈[0,T ) (v(x, t)− v(y, t)− Φε(x, y, t)). We thus
aim to show that M ≤ 0. Once again, we argue by contradiction and assume
that M > 0. So we conclude that v(x, t)− v(y, t) ≤ Φε(x, y, t) and letting ε tend
to 0, one obtains:

v(x, t)− v(y, t) ≤ B(t)|x − y|.

Exchanging x and y yields:

|v(x, t)− v(y, t)| ≤ B(t)|x − y|. ��

Theorem 3 (Regularity results). The solution v is uniformly continuous in
time.
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Proof. We proceed like in [25]. In a first time, we assume that v0 is bounded,
periodic, C2, and such that there exists C, ||Dv0||L∞(IR2), ||D2v0||L∞(IR2) ≤ C.
Let us set

C1 = sup
x∈IR2

(
ζ + E(x, D2v0) + F∗(Dv0, D

2v0), ζ − E(x, D2v0)− F ∗(Dv0, D
2v0)

)

with ζ = ξd||Dv0||L∞(IR2) + ξh. Let us also set v− = v0 −C1t and v+ = v0 +C1t.
It can be checked that v− is a subsolution of (4) and v+ is a supersolution. Then,
there exists a unique solution v of (4) and, by the comparison principle, it yields:

∀x ∈ IR2, ∀t ∈ [0, T ), |v(x, t) − v0(x)| ≤ C1 t.

Letting u(x, t) = v(x, t + h), we obtain that u is the solution of{
∂u

∂t
+ G(x, Du, D2u) = 0

u(x, t = 0) = v(x, h)
.

Classical arguments (comparison principle) allow to conclude that |u(x, t) −
v(x, t)| ≤ C1 h, that is |v(x, t+ h)− v(x, t)| ≤ C1h. So v is uniformly continuous
in time. Then we assume that v0 is only bounded, periodic and Lipschitz contin-
uous, and use mollification (see Chap. IV from [11] and Sect. 2.5 from [6]). Using
the first step of the proof, we obtain the result and the modulus of continuity of
v which depends on B0. ��
Conclusion 2. We have proved the existence and uniqueness of a viscosity so-
lution of problem (4), bounded, periodic, continuous on IR2 × [0, T ), Lipschitz
continuous in space so differentiable almost everywhere, and uniformly continu-
ous in time.

We now discretize the evolution equation. In the sequel, we set Ω � x = (x1, x2).

4 Experimental Results

Let Δx1 and Δx2 be the spatial steps, Δt be the time step and (x1i, x2j) =
(iΔx1, jΔx2) be the grid points, 1 ≤ i ≤ M and 1 ≤ j ≤ N . For a function Ψ :
Ω → IR, let Ψn

ij = Ψ(iΔx1, jΔx2, nΔt). To discretize (4), we use an explicit finite
difference scheme as follows. Also, the problem is complemented by Neumann
boundary conditions. For the discretization of the convection component, we
refer to [36] (we have used the usual notations for the finite difference operators
and the notation d = (d1, d2)).

vn+1
i,j = vn

i,j + Δt bi,j

(
Dx1x1vn

i,j + Dx2x2vn
i,j

)

−Δt

(
max

(
(d1)i,j , 0

)
Dx1− vn

i,j +min
(
(d1)i,j , 0

)
Dx1

+ vn
i,j (9)

+max
(
(d2)i,j , 0

)
Dx2− vn

i,j +min
(
(d2)i,j , 0

)
Dx2

+ vn
i,j

)
− Δt hi,j

+Δt μ
Dx1x1vn

i,j(D
x1vn

i,j)
2+2Dx1vn

i,jD
x2vn

i,jD
x1,x2vn

i,j+Dx2x2vn
i,j(D

x2vn
i,j)

2

(Dx1vn
i,j)2+(Dx2vn

i,j)2+ε
.
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Fig. 1. On the left, depiction of the initial gradient vector field W = −Dg(||DI ||), on
the right, the obtained vector field with our proposed approach (μ = 0.05, Δt = 0.1)

Fig. 2. On the left, depiction of the initial gradient vector field W = −Dg(||DI ||), on
the right, the obtained vector field with our proposed approach (μ = 0.1, Δt = 0.1)

4.1 Numerical Experimentations of Extrapolation

The experiments have been performed on a 2.21 GHz Athlon with 1.00 GB of
RAM. In all our experiments, Δx1 = Δx2 = 1. We apply our model to real
data and for each test, we provide a view of the initial gradient vector field
−Dg(||DI||) and a view of the extrapolated vector field. The initialization was
made either by setting v0 ≡ 0, or by setting v0 ≡ −g(||DI||). In all the tests
we performed, it does not seem to influence the obtained result. The number of
iterations as well as the computational time (order of the second) are similar for
the three methods (GVF, NGVF and our proposed approach). Our method qual-
itatively performs in a way similar to the GVF and the NGVF: we increase the
capture range of the vector field and we obtain downward components within the
boundary concavity. Nevertheless, contrary to the the GVF and NGVF models,
the method requires only one unknown. We start with an image taken from the
Image Toolbox of Matlab (Fig. 1), and with an image showing a slice of Tuffeau
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Fig. 3. Steps of the segmentation of the synthetic image taken from [34]

Fig. 4. Steps of the segmentation of the image of the brain
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(Fig. 2, Courtesy of ISTO/ESRF). Our proposed approach performs well but
seems to be sensitive to the textures of the objects contained in the image.

4.2 Application to Segmentation

This part is dedicated to segmentation and more precisely to the integration of
this extrapolated vector field in the geodesic active contour model, in order to
alleviate the constraint on the choice of the initial condition.

The geodesic active contour model, introduced by Caselles et al. in [16], is cast
in the level set setting developed by Osher and Sethian in [33]. We propose, as done
in [34], to replace W = −Dg(||DI||) of the geodesic active contour model by the
extrapolated vector field obtained with our proposed approach. To illustrate this,
we propose an example taken from [34]. It demonstrates that the initial condition
can be made of several contours selected inside, outside or across the boundaries of
interest, provided the initial curves contain part of the skeleton of the extrapolated
vector field. The classical geodesic active contour model does not authorize this
flexibility in the initialization step and therefore the method alone would fail to
detect all the shapes. Of course, the proposed method cannot detect automatically
interior contours but this drawback is overcome, still with the flexibility in the
initialization step. We illustrate this remark with Fig. 4 that represents a slice of
the brain (Courtesy of the Laboratory Of Neuro Imaging, UCLA).

5 Conclusion

This paper was devoted to the theoretical study of a new method to extrapolate
vector fields using the infinity Laplacian and with applications to image process-
ing. Contrary to prior related works, the number of unknowns is reduced to a
single one. The problem is phrased in a variational framework and the Euler-
Lagrange equation is then derived. It is solved using a gradient descent method,
which leads to a parabolic problem that falls within the viscosity solution theory
framework. The existence and uniqueness of a viscosity solution continuous in
space and time, Lipschitz continuous in space and uniformly continuous in time
is established. The theoretical study is complemented by several numerical ex-
perimentations, first dedicated to the extrapolation problem, and then extended
to the segmentation problem. The experimentations show that the proposed ap-
proach performs well, even if in strong concavities the results are slightly less
accurate than with the NGVF. The model is sensitive to the geometry of the
boundaries and to the textures present in the images. In the segmentation frame-
work, the introduction of this new force field allows to widen the choice of the
initial condition.
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