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Abstract—We consider the problem of extracting the source
signals from an under-determined convolutive mixture assuming
known mixing filters. State-of-the-art methods operate in the
time-frequency domain and rely on narrowband approximation
of the convolutive mixing process by complex-valued multiplica-
tion in each frequency bin. The source signals are then estimated
by minimizing either a mixture fitting cost or a `1 source sparsity
cost, under possible constraints on the number of active sources.
In this article, we define a wideband `2 mixture fitting cost
circumventing the above approximation and investigate the use of
a `1,2 mixed-norm cost promoting disjointness of the source time-
frequency representations. We design a family of convex func-
tionals combining these costs and derive suitable optimization
algorithms. Experiments indicate that the proposed wideband
methods result in a signal-to-distortion ratio improvement of 2
to 4 dB compared to the state-of-the-art on reverberant speech
mixtures.

Index Terms—Source separation, convolutive mixture, narrow-
band approximation, mixed norms, convex optimization

I. INTRODUCTION

In many situations, such as a concert or a cocktail party, the
recorded sound signals are mixtures of several sound sources.
The mth mixture channel xm(t) is then given by

xm(t) =
N∑
n=1

Amn ? sn(t) + em(t) , (1)

where sn(t) is the nth source signal, the filters Amn(t) are
called mixing filters, ? denotes convolution, and em(t) is
the background noise. Blind source separation is the task of
estimating the source signals from the mixture.

In this work, we consider the so-called under-determined
setting, where the number of sources is larger than the number
of mixture channels (ie N > M ). State-of-the-art under-
determined source separation methods operate in the time-
frequency domain and rely on narrowband approximation of
the convolutive mixing process by complex-valued multiplica-
tion in each frequency bin. The separation task is split into two
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successive subtasks. First, frequency-dependent mixing matri-
ces are estimated by clustering the mixture time-frequency co-
efficients based on the associated sound directions. The source
time-frequency coefficients are then separately estimated in
each time-frequency bin, typically either by minimizing some
mixture fitting cost under the constraint that at most one
source be active [1], [2], a method known as binary masking,
or by minimizing a `1 source sparsity cost [3], [4]. These
costs implement the assumption that the source time-frequency
representations are disjoint or sparse, respectively. According
to a recent evaluation [5], these methods achieve limited
separation performance in realistic reverberant environments.

In this article, we focus on addressing the second subtask,
namely the estimation of the source signals assuming that
the mixing filters Amn are known. We investigate two pos-
sible reasons for the limited performance of state-of-the-art
methods. Firstly, while the narrowband approximation is valid
when the length of the mixing filters is short compared to that
of the time-frequency analysis window, this condition does
not hold in reverberant environments. Significant performance
improvements have been observed in the determined setting
using wideband methods that jointly process all frequency
bins [6]. Yet, these methods do not apply to the under-
determined setting. Secondly, while maximum disjointness
of the source time-frequency representations appears to be a
reasonable assumption, the additional constraint exploited by
binary masking that at most one source be active in each time-
frequency bin does not hold in practice.

This article provides four contributions in light of the above
issues. Firstly, we define a wideband `2 mixture fitting cost
that circumvents the narrowband approximation. It is the
first time, to our knowledge, that a way of avoiding this
approximation is proposed in the under-determined setting.
Secondly, motivated by recent theoretical results about the so-
called mixed norms [7], [8], we investigate the use of a `12

mixed-norm cost promoting disjointness of the source time-
frequency representations without constraining the number of
active sources per time-frequency bin. Thirdly, we design a
family of convex functionals combining these costs as well as
state-of-the-art costs and exploit recent advances in the area of
convex optimization to derive suitable optimization algorithms.
Finally, we compare the proposed methods with state-of-the-
art methods on a set of speech mixtures with different numbers
of sources, reverberation times and microphone spacings. We
thereby extend and improve our preliminary paper [9], which
presented a single functional and a less efficient algorithm
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evaluated on two mixtures only.
The structure of the rest of the article is as follows. In Sec-

tion II, we introduce some notations and recall the principles
of state-of-the-art methods. In Section III, we explain how the
source separation problem can be recast as that of minimizing
a convex functional and present a family of narrowband and
wideband functionals. In Section IV, we summarize relevant
theoretical results in the area of convex optimization and pro-
vide the details of the resulting source separation algorithms.
Finally, we compare the proposed methods with state-of-the-
art methods in Section V and conclude in Section VI.

II. STATE OF THE ART

We start by introducing the notations used in the rest of the
article and presenting state-of-the-art methods used to separate
under-determined convolutive mixtures.

A. Matrix notation

The problem under consideration is the following: N source
signals sn(t) of duration T are recorded by M < N micro-
phones, yielding M mixture channels xm(t). The effect of
acoustic propagation between the sources and the microphones
is modeled by a set of mixing filters Amn(t) of length P .
Denoting by x ∈ RM×T and s ∈ RN×T the matrices of
mixture channels and source signals and by A ∈ RM×N×P
the three-way array of mixing filters, the mixing process (1)
can be rewritten more concisely in matrix form as

x = A ? s + e , (2)

where e ∈ RM×T models the background noise. Since M <
N , A is not invertible, hence suitable approaches must be
found to estimate s given x and A.

B. Blind vs non-blind source separation

As we suppose the mixing system A known, the framework
under consideration is the non blind source separation. In
many practical applications, one has to solve the general
problem of blind source separation: the mixing system A
and the sources s must be estimated in the same time. In
the convolutive underdetermined case considered here, both
part are challenging tasks. Estimating the mixing system is
arguably the most difficult part, but, even if the mixing system
is known, the source separation quality is still far from the
best one could expected [10]. We choose to concentrate here
on this second part. Indeed, in order to compare the different
models described in this work, it seems natural to evaluate
them on the ground-truth model with the true mixing system.
In addition, we provide in Section V-G some results to evaluate
the robustness of the different models to error in evaluation of
the mixing system. These results indicate that the design of
wideband under-determined blind source separation algorithms
is a relevant long-term research goal. Few wideband filter
estimation algorithms exist today, e.g. the subspace-based
channel identification algorithm in [11], yet this algorithm is
not suitable for long filters such as those arising in the context
of audio due to large memory requirements. The design of such
algorithms will be the subject of future work.

C. Time-frequency transform

A popular approach is to rely on the assumption that the
sources admit disjoint or sparse representations in the time-
frequency domain. Under this assumption, only a few sources
contribute significantly to the mixture in each time-frequency
bin so that the mixing process becomes “locally invertible”
and estimates of the source time-frequency coefficients can be
obtained [12].

More precisely, let us denote by Φ ∈ CT×B the matrix rep-
resenting an energy-preserving Short-Time Fourier Transform
(STFT) operator. This operator transforms a signal of length
T into a set of B ≥ T time-frequency coefficients. The STFT
coefficients x̃ ∈ CM×B of the mixture x are given by

x̃ = xΦ (3)

while the sources s can be resynthesized from their estimated
STFT coefficients s̃ ∈ CN×B by

s = s̃Φ∗ (4)

where Φ∗ ∈ CB×T is the adjoint operator of Φ, that is its
Hermitian transpose. Note that, strictly speaking, (3) defines
analysis STFT coefficients, while (4) defines synthesis STFT
coefficients. Due to the absence of possible confusion between
these two notions, we omit the terms “analysis” or “synthesis”
in the following.

D. Narrowband approximation

Besides its desirable effect on the sparsity of the sources, the
STFT offers a convenient way of dealing with the convolutive
mixing process. Indeed, after applying the STFT, the mixing
model (2) becomes

x̃ = (A ? s + e)Φ . (5)

Considering each frequency bin f individually, the above con-
volution can be approximated by the complex-valued matrix
product [2], [4]

x̃(t, f) ' Ã(f)s̃(t, f) + ẽ(t, f) , (6)

where x̃(t, f), s̃(t, f) and ẽ(t, f) are the vectors of mixture
and source STFT coefficients in time-frequency bin b = (t, f)
and Ã(f) is a mixing matrix equal to the Fourier transform of
the mixing system. Denoting by ×f the frequency-wise matrix
product operator [13], this can also be written in matrix form
as

x̃ ' Ã×f s̃ + ẽ . (7)

This ubiquitous narrowband approximation stems from a
first-order Taylor expansion of x̃. It is generally assumed to
be valid when the mixing filters are short compared to the
STFT window. However, no mathematical quantification of
the approximation error can be found in the literature to our
knowledge. Lemma 1 in the Appendix shows that the approxi-
mation error is small when the Fourier transform of the STFT
window is concentrated at low frequencies and the derivative
of Ã is small. This is equivalent to the respective conditions
that the window be smooth enough, which is usually the case,
and that the mixing filters be concentrated around the null
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delay. Consequently, the narrowband approximation holds for
anechoic mixtures with small delays, but not for reverberant
mixtures or anechoic mixtures with larger delays.

We provide in section V-A some numerical results to
illustrate the approximation error of the narrowband approxi-
mation (6) compared with model (2) with no additional noise
(e = 0). The results illustrate the conditions highlighted
by Lemma 1 in Appendix. Note however that no direct
relationship exists between the approximation error on the
mixture and the resulting error on the sources

E. DUET

The well-known binary masking method for source sepa-
ration exploits the assumption that the sources are disjoint in
the time-frequency domain, so that a single source is active
in each time-frequency bin [1], [2]. The active source and its
STFT coefficients are estimated by minimizing some cost of
fitting the observed mixture STFT coefficients by the product
of the mixing matrix and the source STFT coefficients. The
Degenerate Unmixing Estimation Technique (DUET) relies on
the `2 mixture fitting cost [1]

min
s̃(t,f) s.t. ‖s̃(t,f)‖0=1

‖x̃(t, f)− Ã(f)s̃(t, f)‖22 (N-DUET)

where the `p norm of a vector or a matrix z with I entries
indexed by i is defined for p > 0 by

‖z‖p =

(
I∑
i=1

|zi|p
)1/p

(8)

and ‖z‖0 denotes the number of nonzero entries of z. This
cost can be minimized by computing the cost associated with
each possible active source by least-squares projections and
selecting the source leading to the lowest cost [14]. This
approach can be generalized to up to M−1 active sources per
time-frequency bin, resulting in a combinatorial optimization
problem [14].

F. `1 norm minimization

An alternative method is to rely on the assumption that the
sources are sparse in the time-frequency domain, i.e. only a
few STFT coefficients significantly differ from zero for each
source. This assumption can be exploited by minimizing the
`1 norm of the coefficients subject to an exact mixture fitting
constraint [15], [4]

min
s̃(t,f) s.t. x̃(t,f)=Ã(f)s̃(t,f)

‖s̃(t, f)‖1. (N-`1)

This sparsity cost generally results in M or little more than M
active sources per time-frequency bin [4] and can be optimized
by e.g. FOCUSS [16], second-order cone programming [4] or
gradient-based algorithms [17]. Note that the `1 norm can be
replaced by an `p quasi-norm with p < 1, but the problem
is not convex anymore. The additional constraint that exactly
M sources are active in each time-frequency bin is sometimes
assumed, resulting in a combinatorial optimization problem
[4].

III. SOURCE SEPARATION BY MINIMIZATION OF
NARROWBAND OR WIDEBAND FUNCTIONALS

In this section, we recast the source separation problem into
a more general convex optimization framework and construct
a family of convex functionals that generalize those underlying
DUET or `1 norm minimization. This approach will allow us
to re-use and adapt efficient algorithms proposed in the convex
optimization community.

A. Convex optimization framework

The general form of convex optimization problems we shall
consider reads

min
s̃∈CN×B

L(x,A, s̃) + λP(s̃) (9)

where the different components of the functional to be mini-
mized are
• a convex loss or data term L(x,A, s̃) measuring the fit

between the observed mixture x and the source STFT
coefficients s̃ given the mixing system A,

• a convex penalty or regularization term P(s̃) modeling
the sparsity or disjointness assumptions about the source
STFT coefficients s̃,

• an hyperparameter λ ∈ R+ governing the balance be-
tween the data term and the regularization term.

In the following, we propose two possible data terms and two
possible regularization terms, yielding four distinct function-
als.

B. Mixed norms

While the assumption that the source STFT coefficients are
sparse translates into the convex cost (N-`1), the alternative
assumption underlying DUET that a single source be active
in each time-frequency bin does not translate into a convex
cost. Moreover, this assumption holds only for mixtures with
a sufficiently small number of sources. We design a convex
cost promoting disjointness of the source time-frequency rep-
resentations through the use of a mixed norm defined hereafter.

Definition 1 (Mixed norm): Let p ≥ 1 and q ≥ 1. Let z ∈
CI×J be a matrix with row index i and column index j. The
`p,q norm of z is called mixed norm and defined by [7], [8]

‖z‖p,q =

 J∑
j=1

(
I∑
i=1

|zij |p
)q/p1/q

.

The classical `p norm in (8) is a particular instance of the `p,q
norm with p = q.

The meaning of a given mixed norm depends on the choice
of the exponents p and q and the associated matrix indexes.
In the convex optimization framework under study, the entries
of the matrix s̃ ∈ CN×B of source STFT coefficients are each
associated with a source n and a time-frequency bin b = (t, f).
We define the `1,2 norm of s̃ as

‖s̃‖21,2 =
∑
t,f

(
N∑
n=1

|s̃n(t, f)|

)2

. (10)
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While minimization of the `1 norm induces sparsity over
the whole considered matrix, minimization of the `1,2 norm
induces sparsity over each column separately [7]. Hence, this
norm promotes maximum disjointness of the source time-
frequency representations, without constraining the proportion
of significant STFT coefficients for each source.

C. Narrowband Lasso and E-Lasso

The constraint of exact fitting of the mixture STFT coef-
ficients in (N-`1) does not account for the fact that (6) is an
approximation of the actual mixing process. Consequently, it
appears natural to relax this constraint and replace it by the
`2 mixture fitting cost in (N-`1), which yields the following
convex optimization problem in each time-frequency bin:

min
s̃(t,f)∈CN

1
2
‖x̃(t, f)− Ã(f)s̃(t, f)‖22 + λ‖s̃(t, f)‖1. (11)

This functional was introduced in [18] to estimate the number
of active sources in each time-frequency bin under the con-
straint that at most M sources are active, while estimating the
STFT coefficients of the active sources either by (N-`1) with
M active sources or by generalization of (N-DUET) with up
to M−1 active sources. By contrast, we exploit this functional
to estimate the STFT coefficients of all sources. This approach
is mathematically more consistent and enables the recovery of
more than M active sources in theory.

The summation of (11) over all time-frequency bins results
in the global optimization problem

min
s̃∈CN×B

1
2
‖x̃− Ã×f s̃‖22 + λ‖s̃‖1. (N-Lasso)

This problem is equivalent to (11) and is a particular instance
of the so-called Lasso [19] or basis pursuit denoising [15] con-
vex optimization problem. Because it relies on the narrowband
approximation, we call it narrowband Lasso.

As mentioned above, the choice of the `1 norm for the
regularization term is known to induce sparsity over the time-
frequency plane. When λ is large, the influence of the regu-
larization term is stronger hence most estimated source STFT
coefficients are set to zero. In particular, high frequencies are
typically zeroed out, since the associated STFT coefficients
have smaller absolute values. This undesirable behavior can be
circumvented by considering `1,2 norm regularization instead,
which leads to a particular instance of the so-called Elitist-
Lasso (E-Lasso) optimization problem [7]

min
s̃∈CN×B

1
2
‖x̃− Ã×f s̃‖22 +

λ

2
‖s̃‖21,2 (N-E-Lasso)

that we call narrowband E-Lasso. This regularization promotes
a small number of active sources in each time-frequency bin.
However, it results in at least one nonzero coefficient over each
column of the considered matrix [8], which means that at least
one source is estimated to be active in each time-frequency bin.

The state-of-the-art `1 norm minimization method can be
viewed as a particular case of the proposed narrowband Lasso
and E-Lasso methods, as justified by the following remark.

Remark 1: There exists α ≥ 0 such that if λ ≤ α, then any
solution of (N-Lasso) or (N-E-Lasso) is a solution of (N-`1).

Proof: Let ˆ̃s be a solution of (N-Lasso) and ˇ̃s a solution
of (N-`1).

A classical theorem of convex optimization theory (see e.g.
[20, p. 24]) implies that there exists α ≥ 0 such that for any
λ ≤ α, the solution is such that the data term is equal to zero
hence Ã(f)ˆ̃s(t, f) = x̃(t, f) for all (t, f).

Since ‖x̃−Ã×f ˆ̃s‖22 = ‖x̃−Ã×f ˇ̃s‖22 = 0 and by definition
of ˆ̃s, ‖ˆ̃s‖1 ≤ ‖ˇ̃s‖1. If there existed (t, f) such that ‖ˆ̃s(t, f)‖1 >
‖ˇ̃s(t, f)‖1, then there would exist (t′, f ′) 6= (t, f) such that
‖ˆ̃s(t′, f ′)‖1 < ‖ˇ̃s(t′, f ′)‖1 which contradicts the definition of
ˇ̃s(t′, f ′). Hence ‖ˆ̃s(t, f)‖1 = ‖ˇ̃s(t, f)‖1 for all (t, f), which
proves that ˆ̃s is a solution of (N-`1).

A similar proof applies to the solutions of (N-E-Lasso).

D. Wideband Lasso and E-Lasso

Given the form of the narrowband Lasso (N-Lasso) and E-
Lasso functionals (N-E-Lasso), a natural way of circumventing
the narrowband assumption is now to replace the approximate
mixing model (6) within the data term by the true time-
domain model (2) where the time-domain source signals are
obtained from their STFT coefficients via (4). This leads to the
following wideband counterparts of the above functionals that
we call wideband Lasso and wideband E-Lasso respectively:

min
s̃∈CN×B

1
2
‖x−A ? s̃Φ∗‖22 + λ‖s̃‖1 (W-Lasso)

min
s̃∈CN×B

1
2
‖x−A ? s̃Φ∗‖22 +

λ

2
‖s̃‖21,2. (W-E-Lasso)

Ideally, since the mixing model (2) is assumed to be exact,
one would expect that the `1 or `1,2 norm of the source STFT
coefficients should be minimized under an exact time-domain
mixture fitting constraint:

min
s̃ s.t. x=A?s̃Φ∗

‖s̃‖1 (W-`1)

min
s̃ s.t. x=A?s̃Φ∗

‖s̃‖21,2 (W-`1,2)

However, as we will see in Section IV, relaxed optimization
problems (W-Lasso) and (W-E-Lasso) can be optimized quite
efficiently compared to their constrained counterparts (W-`1)
and (W-`1,2). Moreover, as in the narrowband case, one can
make the following remark, which admits a similar proof.

Remark 2: There exists α ≥ 0 such that if λ ≤ α, then any
solution of (W-Lasso) is a solution of (W-`1) and any solution
of (W-E-Lasso) is a solution of (W-`1,2).

In particular, Remarks 2 emphases that the solution of the
two methods (W-Lasso) and (W-E-Lasso) will be different, in
general, as soon as λ 6= 0.

E. Remark on the `2 data term

From a purely Bayesian point of view, a `2 data term
corresponds to a Gaussian prior. Consequently, when e in
model (2) is a iid Gaussian white noise, the choice of such a
data term in (W-Lasso) and (W-E-Lasso) is sounded. However,
after the STFT, the noise ẽ which appears in approximation (6)
is no longer iid. The choice of the `2 data term in (N-Lasso)
and (N-E-Lasso) is justified as constraint on the energy of the
sought solution, but does not correspond as a “true” prior on
the noise ẽ.
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IV. CONVEX OPTIMIZATION ALGORITHMS

We now explain how to minimize the four functionals
introduced above through recent developments in convex op-
timization that we apply to the problems at hand.

Let us synthetically describe the framework used to solve
the general problem (9). More specifically, the algorithms we
are interested in deal with problems of the form

min
s̃
L(s̃) + λP(s̃) (12)

with L and P being convex, lower semicontinuous functions,
and L L-Lipschitz differentiable.

Various algorithms were developed and studied in the last
few years, in particular:
• the Iterative Shrinkage/Thresholding Algorithm (ISTA)

[21], [22] used in our preliminary paper [9],
• Nesterov schemes [20],
• the Fast Iterative Shrinkage/Thresholding Algorithm

(FISTA) [23].
Variants of ISTA were proposed to speed it up. However, we
restrain ourselves to these three algorithms, which have the
advantage of remaining simple, with no other parameter than
the input functional. Moreover, important theoretical results
are available, in particular on the speed of convergence.

All these algorithms have the advantage to tackle non-
differentiable convex functionals of the form (12), when
P is a non-differentiable convex function. Resolving such
kind of problems relies on proximity operators introduced
by Moreau [24]. In this section we shall summarize gen-
eral concepts and derive particular algorithms suited to the
minimization of functionals of the form (9), for the data and
regularization terms described in the previous section.

A. Proximity operators and general algorithms

To start with, let us give the formal definition of proximity
operators and the standard derivation of these operators for `1
and `12 norms.

Definition 2 (Proximity operator): Let ϕ : CI → C be a
lower semicontinuous, convex function. The proximity opera-
tor associated with ϕ denoted by proxϕ : CI → CI is given
by

proxϕ(z) =
1
2

argmin
u∈CI

‖z− u‖22 + ϕ(u). (13)

The norms `1 and `12 are convex, lower semicontinuous
functions, nondifferentiable in 0, whose proximity operators
can be computed in closed form. For the sake of simplicity, if
z = 0, z

|z| = 0 by convention in the following.
Proposition 1 (Prox of λ‖.‖1): Let z ∈ CI . Then, u =

proxλ‖.‖1(z) is given entrywise by soft thresholding:

ui =
zi
|zi|

(|zi| − λ)+

where (z)+ = max(0, z).
Proposition 2 (Prox of λ

2 ‖.‖
2
1,2): Let z ∈ CI×J . For each

column j, let i′j be the sequence of row indexes such that the
entries zi′j ,j in that column are ordered by decreasing absolute

value: |zi′j+1,j | ≤ |zi′j ,j | for all i′j . Then, u = proxλ
2 ‖.‖

2
1,2

(z)
is given entrywise by

uij =
zij
|zij |

|zij | − λ

1 + λIj

Ij∑
i′j=1

|zi′j ,j |

+

with Ij being the index such that

λ

Ij∑
i′j=1

(
|zi′j ,j | − |zIj ,j |

)
< |zIj ,j |

and

|zIj+1,j | ≤ λ
Ij+1∑
i′j=1

(
|zi′j ,j | − |zIj+1,j |

)
.

One can refer to [8] for the proof of these two propositions.
It appears that these proximity operators reduce to a simple
shrinkage/thresholding operator, hence the names ISTA and
FISTA of the derived algorithms.

For the sake of completeness, we provide the general forms
of ISTA, FISTA and Nesterov schemes in Algorithms 1, 2
and 3. All these algorithms have been proved to converge to
a solution of (12). However, the convergence rate of ISTA
is O( 1

k ) where k is the number of iterations, while that of
the other two algorithms is O( 1

k2 ). In the context of audio
source separation, we found that ISTA did not converge in
reasonable time [9]. FISTA is based on Nesterov’s ideas [25]
and has the same convergence rate as the Nesterov schemes
described in [20]. However, as it can be seen in Algorithms
2 and 3, Nesterov schemes rely on the computation of two
gradients and two proximity operators at each iteration, instead
of one gradient and one proximity operator only for FISTA.
Preliminary experiments (not showed here) indicated that
FISTA is a little bit more efficient than Nesterov schemes
in the context of audio source separation, since computation
of the gradient is quite expensive in this case. Therefore, we
choose to focus on FISTA in the following. However, that does
not mean that FISTA is more efficient than Nesterov schemes
in general, from an optimization point of view.

Algorithm 1: ISTA [21], [22]

Initialization: s̃(0) ∈ CN×B , k = 1.
repeat

s̃(k) = prox λ
LP

(s̃(k−1) − ∇L(s̃(k−1))
L );

until convergence ;

B. Application to the proposed functionals

Let us now derive the details of the application of FISTA to
the proposed functionals, starting by the regularization term.
The proximity operator of the `1 norm as applied to STFT
coefficients can be readily computed from Proposition 1. A
practical implementation of the proximity operator of the `1,2
mixed norm is given in Algorithm 4.
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Algorithm 2: FISTA [23]

Initialization: s̃(0) ∈ CN×B , z(0) = s̃(0), t(0) = 1, k = 1.
repeat

s̃(k) = prox λ
LP

(
z(k−1) − ∇L(z(k−1))

L

)
;

τ (k) = 1+
√

1+4τ(k−1)2

2 ;
z(k) = s̃(k) + τ(k−1)−1

τ(k) (s̃(k) − s̃(k−1));
k = k + 1

until convergence ;

Algorithm 3: Nesterov schemes [20]

Initialization: s(0) ∈ RN×B , g(0) = 0, γ = 2
L , κ(0) = 0.

repeat

τ (k) = γ+
√
γ2+4γκ(k−1)

2 ;
v(k) = proxκ(k−1)λP(s̃(0) − g(k−1));
z(k) = κ(k−1)s̃(k−1)+τ(k)v(k)

κ(k−1)+τ(k) ;

s̃(k) = prox λ
LP

(z(k) − ∇L(z(k))
L );

g(k) = g(k−1) + τ (k)∇L(s̃(k));
κ(k) = κ(k−1) + τ (k−1);
k = k + 1

until convergence ;

Under the narrowband assumption, the data term L(s̃) =
1
2‖x̃− Ã×f s̃‖22 is L-Lipschitz differentiable with gradient

∇L(s̃) = −Ã∗×f (x̃− Ã×f s̃) (14)

where the adjoint Ã∗ of Ã is such that Ã∗(f) is the Hermitian
transpose of Ã(f) for each f . The Lipschitz constant L is
given by

L = max
f
‖Ã∗(f)Ã(f)‖2op (15)

with ‖.‖2op denoting the operator norm associated with the `2
vector norm. For a matrix, this norm is equal to the maximum
absolute singular value.

Under the wideband assumption, the data term L(s̃) =
1
2‖x−A ? s̃Φ∗‖22 is L-Lipschitz differentiable with gradient

∇L(s̃) = [A∗ ? (x−A ? s̃Φ∗)]Φ (16)

where that the adjoint A∗ of A is obtained by transposition
of source and channel indexes and time reversal of the filters.
Introducing the linear operator T : CN×B → RM×T defined
by

T (s̃) = A ? (s̃Φ∗) (17)

and its adjoint operator T ∗ : RM×T → CN×B defined by

T ∗(x) = (A∗ ? x)Φ, (18)

the Lipschitz constant L is given by

L = ‖T ∗T ‖2op . (19)

This operator norm can be computed using the well-known
power iteration algorithm. Algorithm 5 recalls this procedure
as applied to T ∗T .

Algorithm 4: Computation of u = proxλ
2 ‖.‖

2
1,2

(z)

for each (t, f) do
y(t, f) = sort z(t, f) in order of decreasing absolute
value;
for n = 1 : N do
‖y1:n(t, f)‖1 =

∑n
i=1 |yi(t, f)|;

find I such that:
|yI(t, f)| > λ

1+λI ‖y1:I(t, f)‖1
and
|yI+1(t, f)| ≤ λ

1+λ(I+1)‖y1:I+1(t, f)‖1;
for n = 1 : N do

un(t, f) = zn(t,f)
|zn(t,f)|

(
|zn(t, f)| − λ‖y1:I(t,f)‖1

1+λI

)+

;

Algorithm 5: Computation of L via power iteration

Initialization: v ∈ RN×B .
repeat

w = (A∗ ?A ? vΦ∗)Φ;
L = ‖w‖∞;
v = w

L ;
until convergence ;

where ‖w‖∞ norm denotes the maximum absolute value of
the vector (or matrix) w.

By combining the above results for the data term and the
regularization term, the application of FISTA to the proposed
functionals leads to Algorithm 6.

While FISTA seems to be an efficient algorithm to optimize
our functionals, some practical issues still remain. Firstly, the
convergence criterion is not easy to choose. Popular choices
are criteria like ‖s̃(k+1) − s̃(k)‖ < ε or ‖s̃

(k+1)−s̃(k)‖
s̃(k)

< ε.
However, these quantities do not decrease monotonically and
the choice of ε clearly depends on the mixture x and the hyper-
parameter λ. More precisely, for small λ, FISTA requires a
larger number of iterations to reach convergence. Secondly, the
convergence speed of FISTA strongly depends on the chosen
initialization. One can refer to [26] for more practical details
on the convergence of these different algorithms.

Consequently, we chose to fix a priori the number of
iterations to 20000 in practice, and we used the continuation
trick, also known as warm start or fixed point continuation
[27]: we first run FISTA with a large value of λ, then iteratively
decrease the value of λ and initialize FISTA with the result of
the previous run.

V. EXPERIMENTAL EVALUATION

We evaluated the narrowband and wideband source separa-
tion methods proposed in Section III over convolutive mixtures
of speech sources and compared them to the state-of-the-art
methods described in Section II. For all experiments, the test
signals were sampled at 11 kHz and the STFT was computed
with half-overlapping sine windows of 512 samples (' 46 ms).
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Algorithm 6: Source separation via FISTA

Initialization: s̃(0) ∈ CN×B , z(0) = s̃(0), τ (0) = 1, k = 1.
repeat

switch data term do
case narrowband

a(k) = z(k−1) − 1
LÃ∗×f (x̃− Ã×f s̃(k−1));

case wideband
a(k) = z(k−1)− 1

L [A∗ ? (x−A? s̃(k−1)Φ∗)]Φ;

switch regularization term do
case `1

s̃(k) = prox λ
L‖.‖1

(a(k)) (see Proposition 1);

case `1,2
s̃(k) = prox λ

2L‖.‖
2
1,2

(a(k)) (see Algorithm 4);

τ (k) = 1+
√

1+4τ(k−1)2

2 ;
z(k) = s̃(k) + τ(k−1)−1

τ(k) (s̃(k) − s̃(k−1));
k = k + 1

until convergence ;

A. Numerical comparison between wideband and narrowband
models

First of all, we report in Table I the numerical approx-
imation error of the narrowband model (6) compared with
the wideband model (2) for N = 4 sources. These relative
approximation errors are computed as:

Ea =
‖xnarrow − xwide‖2

‖xwide‖2
,

where xnarrow is the mixture obtained from the narrowband
model and xwide the mixture from the wideband model. Errors
for N = 3, 5 or 6 sources are of the same order of magnitude.
One can remark that these numerical results confirm that the
narrowband model collapses for filters with long delay, as
expected from Lemma 1. Moreover, Table I provides the value
of the corresponding infinity norm of the Fourier transform of
the mixing system Ã′. Again, these numerical results are in
adequacy with Lemma 1: ‖Ã‖∞ reaches the highest value for
RT60 = 250 ms.

TABLE I
NUMERICAL ILLUSTRATION OF LEMMA 1: APPROXIMATION ERROR OF
THE NARROWBAND APPROXIMATION COMPARED WITH THE WIDEBAND

MODEL AND VALUE OF ‖Ã′‖∞.

RT60 dist Ea ‖Ã′‖∞

Anechoic 5 cm 0.018 0.80
1 m 0.018 0.84

50 ms 5 cm 0.035 1.95
1 m 0.039 1.97

250 ms 5 cm 0.188 4.87
1 m 0.217 4.87

B. Experimental protocol

For the following, the experimental protocol is described
hereafter. The mixing filters were room impulse responses

simulated via the image technique [28] using the Roomsim
software1 with the same room size as in [5]. The number of
microphones was set to M = 2 and the number of sources was
varied in the range 3 ≤ N ≤ 6. For each number of sources N ,
six different sets of mixing filters were generated correspond-
ing to three different reverberation times RT60 (anechoic,
RT60 = 50 ms and RT60 = 250 ms) and two different
microphone spacings d (d = 5 cm and d = 1 m). Each
set of mixing filters was convolved with ten different sets of
male and/or female speech sources from various nationalities,
yielding ten mixtures per mixing condition.

In order to only evaluate the different methods in the light
of the source separation efficiency, we choose not to add any
artificial noise. Such a choice was made to do not measure the
denoising abilities of the algorithms.

Each mixture was separated with the proposed narrowband
and wideband Lasso and E-Lasso methods in (N-Lasso),
(N-E-Lasso), (W-Lasso) and (W-E-Lasso) for different values
of the hyper-parameter λ. The separation performance was
then assessed for each λ using the Signal-to-Distortion Ratio
(SDR), the Signal-to-Interference Ratio (SIR) and the Signal-
to-Artifacts Ratio (SAR) in decibels (dB) as defined in [29].
The SDR indicates the overall quality of each estimated source
compared to the target, while the SIR reveals the amount
of residual crosstalk from the other sources and the SAR is
related to the amount of musical noise. These measures were
subsequently averaged over all sources and all mixtures for
each mixing condition. The state-of-the-art narrowband DUET
and `1 norm minimization methods in (N-DUET) and (N-`1),
with the same known mixing system A, were also performed
as a baseline.

C. Performance analysis as a function of λ

Figure 1 illustrates the variation of the SDR as a function
of λ with N = 4, RT60 = 250 ms and d = 1 m. The curves
in this figure are quite different from those in our preliminary
paper [9]. Indeed, this work relied on the Modified Discrete
Cosine Transform (MDCT) instead of the STFT and on ISTA
without the continuation trick, which did not experimentally
converge, contrary to FISTA here.

Several interesting trends can be seen. Firstly, the perfor-
mance of the narrowband Lasso and E-Lasso methods becomes
equal to that of the narrowband `1 norm minimization method
when λ→ 0, which is consistent with Remark 1. Furthermore,
the performance of the wideband Lasso and the wideband E-
Lasso are different for λ → 0 (c.f. Remark 2). Secondly, the
performance of the narrowband Lasso and E-Lasso methods
is maximum for λ > 0, while that of the wideband Lasso and
E-Lasso methods is maximum for λ→ 0. As we choose not to
add any noise (e = 0 in Eq. (2)), observing a better behavior
of the wideband methods when λ → 0 is consistent with the
mixing model. Furthermore, since narrowband methods are
an approximation of model (2), it is expected that relaxing
the equality constraint yields a better estimation, according to
SDR, when λ > 0. Thought we observe an improvement using
this relaxation in practice, it remains small. This disappointing

1http://media.paisley.ac.uk/˜dccampbell/Roomsim/
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observation could come from the bad `2 prior made on the data
term, as explained in Section III-E.

Similar trends were observed for other mixing conditions. In
the following, we compare all methods after selecting the best
λ for each mixing condition as that maximizing the average
SDR over the ten corresponding mixtures.

Fig. 1. Variation of the average SDR as a function of λ over speech mixtures
with N = 4 sources, RT60 = 250 ms and d = 1 m.

D. Performance analysis as a function of reverberation time
and microphone spacing

The resulting SDR figures are shown in Table II for different
values of RT60 and d. Among state-of-the-art methods, DUET
outperforms `1 norm minimization in all cases but the anechoic
case. In order to be able to decide if a method performs better
than an another one, we have applied an ANOVA at 1% on the
results. If the null hypothesis of the ANOVA is rejected (i.e.
some methods can be considered statistically better than some
another), we applied the Fisher protocol (i.e. several paired
Fisher-Student T-test) to determine which methods perform
best. Algorithms which perform statistically best are in bold.

The proposed narrowband Lasso and E-Lasso methods
consistently improve performance over `1 norm minimization.
This confirms again that introducing a data term into the model
helps dealing with the error resulting from the narrowband
approximation. Moreover, under this approximation, E-Lasso
regularization appears always more appropriate than the Lasso.
This corroborates our analysis of the limitations of the Lasso
with large λ in Section III-B and our claim that promoting
disjointness instead of sparsity of the source time-frequency
representations is a better strategy in this context. Note how-
ever that the observed improvements remain inferior to 1 dB
in all cases but one. This is not enough to justify the use of the
narrowband E-Lasso method in practice since it performs at
most as well as DUET except in the anechoic case, despite its
larger computational cost and the use of an additional hyper-
parameter λ.

The same remark applies to the proposed wideband Lasso
and E-Lasso methods in environments with low reverberation
time RT60 ≤ 50 ms. This was expected since the narrowband
assumption is valid when the mixing filters are shorter than the
STFT window length, hence circumventing this assumption
does not provide significant benefit. However, wideband Lasso
and E-Lasso improve the average SDR by 2 to 4 dB compared

to DUET in a more realistic environment with RT60 =
250 ms. This improvement is huge compared to the small
difference of performance between state-of-the-art methods.
One possible explaination is that wideband methods are less
sensitive to spatial aliasing than narrowband methods [30].
Also, the issue of choosing the hyper-parameter λ does not
arise here since λ → 0 appears to be always a reasonable
choice, so that these methods can be applied in practice. Note
also that E-Lasso regularization performs worse than the Lasso
in this context.

Table III provides more insight into the performance of
state-of-the-art methods and wideband methods when RT60 =
250 ms and d = 1 m. It can be seen that, besides improving the
SDR, the wideband Lasso method also improves both the SIR
by 4 dB compared to DUET and the SAR by 3 dB compared to
`1 norm minimization, which are the state-of-the-art methods
providing fewer interference and fewer artifacts respectively.
Again, algorithms which perform statistically best are in bold.

E. Performance analysis as a function of the number of
sources

Fig. 2. Variation of the average SDR as a function of N over speech mixtures
with RT60 = 250 ms and d = 1 m.

In addition to the above discussion for N = 4 sources,
we provide in Figure 2 the results for 3 ≤ N ≤ 6 sources
with RT60 = 250 ms and d = 1 m. The performance of
all methods as well as the performance improvement brought
by wideband methods appears to decrease when the number
of sources increases. This is natural since the disjointness or
sparsity assumptions underlying all methods hold to a lesser
extent with a large number of sources. Yet, wideband E-Lasso
still improves the average SDR by 3 dB compared to DUET
with N = 6 sources.

F. Summary

We resume here the results shown above.
• If RT60 = 250 ms, the wideband methods outperform the

narrowband methods. (W-Lasso) seems to perform a bit
better than (W-E-Lasso), but the difference between the
two methods is less than 1 dB. The parameter λ should
be chosen close to zero in the noise-free case, and one
can use the continuation trick to perform this optimization
more efficiently.
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TABLE II
AVERAGE SDR IN DECIBELS AS A FUNCTION OF RT60 AND d OVER SPEECH MIXTURES WITH N = 4 SOURCES.

RT60 d
narrowband wideband

DUET `1 min. Lasso E-Lasso Lasso E-Lasso

anechoic 5 cm 5.9 4.5 6.4 6.7 5.7 6.5
1 m 7.3 7.7 7.8 8.0 7.6 8.1

50 ms 5 cm 5.5 4.2 4.3 4.3 4.4 4.5
1 m 6.4 6.3 6.4 6.4 7.0 7.4

250 ms 5 cm 2.7 1.8 2.1 2.1 5.9 5.0
1 m 3.4 2.8 3.0 3.4 7.6 7.2

TABLE III
AVERAGE SDR, SIR AND SAR IN DECIBELS OVER SPEECH MIXTURES WITH N = 4 SOURCES, RT60 = 250 MS AND d = 1 M.

method narrowband wideband
DUET `1 min. Lasso E-Lasso Lasso E-Lasso

SDR 3.4 2.8 3.0 3.4 7.6 7.2
SIR 10.0 6.4 6.8 7.7 14.0 13.9
SAR 5.1 6.5 6.4 6.4 9.1 8.5

• If RT60 ≤ 50 ms, even if the wideband methods (in par-
ticular (W-E-Lasso)) perform better than the narrowband
methods, improvement is not high enough to justify the
use of such methods because of the computational cost
(c.f. Section V-H): (N-`1) seems the more appropriate
method in the anechoic case and (N-DUET) otherwise.

G. Robustness to error in filtering system evaluation

All the previous experiments were made in the non blind
case, when the mixing system A is perfectly known. However,
in a practical situation, one would solve the blind problem, and
needs to estimate this mixing system. In order to evaluate the
robustness of the proposed wideband methods, we made the
two following experiments. In these two experiments, we kept
the best performance reached by the wideband methods, which
implies to choose the appropriate parameter λ.

In the first experiment we cut the true filters at 25, 50, 100
and 150 ms after the direct sound arrival. The aim of this
experiment is to show whether the good performance of the
wideband methods was due to accurate modeling of the first
echos or of the tail of the filters. Figure 3 shows that the longer
the filters, the better the SDR of the wideband methods. The
tail of the filters seems important to reach satisfactory results.
While the best performance can be reached for a specific λ >
0, one can choose in practice λ → 0. Indeed, the difference
of performance is very small (< 0.5 dB). On the other hand,
the narrowband methods (N-DUET) and (N-`1) perform best
when the tail of the filters is cut, and it would be interesting to
investigate a new approach to model error of the narrowband
methods. Even when filters are cut to 50 ms, which is the
same order of magnitude than the length of the STFT window,
wideband methods perform better than narrowband methods.

Figure 4 shows the results of the second experiment, where
we add Gaussian noise with exponentially decaying amplitude
with the same slope as the reverberation. The input SNR was
computed only on the reverberant part of the filters. Wideband
methods still perform better than narrowband methods. How-
ever, in that case, one must choose the right parameter λ. If the
(W-Lasso) performs best, as shown in Figure 4, it is in practice
much more sensitive to the choice of λ than the (W-E-Lasso):

Fig. 3. Variation of the average SDR as a function of the length of the filters
over speech mixtures with RT60 = 250 ms and d = 1 m.

after reaching the maximum SDR, the performance of the
(W-Lasso) collapses very quickly contrary to the (W-E-Lasso).

Fig. 4. Variation of the average SDR as a function of the noise level over
speech mixtures with RT60 = 250 ms and d = 1 m.

H. Computational comparison

To close this experimental section, we give some indications
about the computational time of the different methods, to sep-
arate N = 4 sources with a RT60 = 250 ms, d = 1 m mixing



10 IEEE TRANS. ON AUDIO, SPEECH AND LANGUAGE PROCESSING

system. The fastest is obviously (N-DUET), which takes less
than one second to proceed the separation. The (N-`1) method,
implemented via the Newton-based optimization technique
in [17] takes about three hours. The proposed narrowband
methods (N-Lasso) and (N-E-Lasso) take about 1.5 hours for
20000 iterations of FISTA. The (W-E-Lasso) is little bit longer,
because of the complexity of the proximity operator associated
with the `12 norm. Finally, the wideband methods (W-Lasso)
and (W-E-Lasso) take respectively about 5 hours and 6 hours
to run 20000 iterations of FISTA.

VI. CONCLUSION

We proposed a general convex optimization framework for
under-determined convolutive source separation, which relies
on the minimization of a family of narrowband or wideband
functionals, assuming that the mixing filters are known or
have been estimated using e.g. some subspace-based channel
identification technique. It is the first time, to our knowledge,
that a way of avoiding the narrowband assumption is proposed
in the under-determined setting. We translated this framework
into a family of algorithms that were carefully compared on a
range of speech mixtures. In light of the results, we conclude
that the best method is either DUET or `1 norm minimization
depending on the microphone spacing in environments with
low reverberation and the proposed wideband Lasso method
in more realistic environments whose reverberation time is on
the order of a hundred milliseconds or more. In the latter case,
wideband Lasso improves the SDR, SIR and SAR measures
by several decibels compared to the best state-of-the-art.

There are numerous perspectives to this work. Firstly, the
proposed framework could be exploited for the estimation
of the mixing filters, possibly using additional sparsity or
nonstationarity constraints about filter coefficients. Similarly,
this framework could be used to achieve denoising in addition
to source separation in case the mixture contains some additive
noise by readily modeling such noise by the data term with
λ > 0. Secondly, one must keep a look on the work made in
the convex optimization community to find a possibly faster
algorithm. Finally, while the mixed norm considered here was
not retained for practical separation purposes, different mixed
norms could be defined to improve the modeling of the source
signals by favoring persistent structures in the source time-
frequency representations.
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APPENDIX

Lemma 1: Let x ∈ L2(R), s ∈ L2(R) and A ∈ C1(R)
such that

x = A ? s.

Then, denoting by Sx (resp. Ss) the STFT of x (resp. s) with
an analysis window g in the Sobolev W 1,2(R), the STFT of
x can be expressed in each time-frequency bin (t, f) by

Sx(t, f) = Ã(f)Ss(t, f) +R(t, f)

where Ã is the Fourier transform of A and

|R(t, f)| ≤ ‖Ã′‖∞‖s‖2
(∫

R
|νg̃(ν)|2 d ν

)1/2

.

Proof: Applying the Fourier transform to (1), we obtain
x̃ = Ãs̃. We can then write the STFT of x as

Sx(t, f) =
∫

R
Ã(ν)s̃(ν)g̃(ν − f)e2iπνt d ν. (20)

The Taylor expansion of order 1 of Ã in f is given by

Ã(ν) = Ã(f) + (ν − f)rf (ν) (21)

where
|rf (ν)| ≤ ‖Ã′‖∞ (22)

and Ã′ denotes the derivative of Ã. By inserting (21) into (20),
we get

Sx(t, f) = Ã(f)Ss(t, f) +R(t, f)

with

R(t, f) =
∫

R
rf (ν)s̃(ν)(ν − f)g̃(ν − f)e2iπνt dν.

Thanks to the Cauchy-Swartz inequality, one can write

|R(t, f)| ≤ ‖rf‖∞ ‖s‖2
(∫

R
|νg̃(ν)|2 d ν

)1/2

,

which, combined with (22), yields the desired result.
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