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Beyond the Narrowband Approximation: Wideband

Convex Methods for Under-Determined Reverberant

Audio Source Separation
Matthieu Kowalski, Emmanuel Vincent, Rémi Gribonval

Abstract—We consider the problem of extracting the source
signals from an under-determined convolutive mixture assuming
known mixing filters. State-of-the-art methods operate in the
time-frequency domain and rely on narrowband approximation
of the convolutive mixing process by complex-valued multiplica-
tion in each frequency bin. The source signals are then estimated
by minimizing either a mixture fitting cost or a ℓ1 source sparsity
cost, under possible constraints on the number of active sources.
In this article, we define a wideband ℓ2 mixture fitting cost
circumventing the above approximation and investigate the use of
a ℓ12 mixed-norm cost promoting disjointness of the source time-
frequency representations. We design a family of convex func-
tionals combining these costs and derive suitable optimization
algorithms. Experiments indicate that the proposed wideband
methods result in a signal-to-distortion ratio improvement of 2
to 5 dB compared to the state-of-the-art on reverberant speech
mixtures.

Index Terms—Source separation, convolutive mixture, narrow-
band approximation, mixed norms, convex optimization

I. INTRODUCTION

In many situations, such as a concert or a cocktail party, the

recorded sound signals are mixtures of several sound sources.

The mth mixture channel xm(t) is then given by

xm(t) =

N
∑

n=1

Amn ⋆ sn(t) (1)

where sn(t) is the nth source signal, the filters Amn(t) are

called mixing filters and ⋆ denotes convolution. Blind source

separation is the task of estimating the source signals from the

mixture.

In this work, we consider the so-called under-determined

setting, where the number of sources is larger than the number

of mixture channels. State-of-the-art under-determined source

separation methods operate in the time-frequency domain and

rely on narrowband approximation of the convolutive mixing

process by complex-valued multiplication in each frequency

bin. The separation task is split into two successive subtasks.

First, frequency-dependent mixing matrices are estimated by

clustering the mixture time-frequency coefficients based on the

associated sound directions. The source time-frequency coef-

ficients are then separately estimated in each time-frequency
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bin, typically either by minimizing some mixture fitting cost

under the constraint that at most one source be active [1],

[2], a method known as binary masking, or by minimizing

a ℓ1 source sparsity cost [3], [4]. These costs implement the

assumption that the source time-frequency representations are

disjoint or sparse, respectively. According to a recent evalua-

tion [5], these methods achieve limited separation performance

in realistic reverberant environments.

In this article, we focus on addressing the second subtask,

namely the estimation of the source signals assuming that the

mixing filters Amn are known or have been estimated using

e.g. some subspace-based channel identification technique [6].

We investigate two possible reasons for the limited perfor-

mance of state-of-the-art methods. Firstly, while the narrow-

band approximation is valid when the length of the mixing

filters is short compared to that of the time-frequency analysis

window, this condition does not hold in reverberant envi-

ronments. Significant performance improvements have been

observed in the determined setting using wideband methods

that jointly process all frequency bins [7]. Yet, these methods

do not apply to the under-determined setting. Secondly, while

maximum disjointness of the source time-frequency represen-

tations appears to be a reasonable assumption, the additional

constraint exploited by binary masking that at most one source

be active in each time-frequency bin does not hold in practice.

This article provides four contributions in light of the above

issues. Firstly, we define a wideband ℓ2 mixture fitting cost

that circumvents the narrowband approximation. It is the

first time, to our knowledge, that a way of avoiding this

approximation is proposed in the under-determined setting.

Secondly, motivated by recent theoretical results [8], [9] about

the so-called mixed norms, we investigate the use of a ℓ12
mixed-norm cost promoting disjointness of the source time-

frequency representations without constraining the number of

active sources per time-frequency bin. Thirdly, we design a

family of convex functionals combining these costs as well as

state-of-the-art costs and exploit recent advances in the area of

convex optimization to derive suitable optimization algorithms.

Finally, we compare the proposed methods with state-of-the-

art methods on a set of speech mixtures with different numbers

of sources, reverberation times and microphone spacings. We

thereby extend and improve our preliminary paper [10], which

presented a single functional and a less efficient algorithm

evaluated on two mixtures only.

The structure of the rest of the article is as follows. In Sec-

tion II, we introduce some notations and recall the principles
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of state-of-the-art methods. In Section III, we explain how the

source separation problem can be recast as that of minimizing

a convex functional and present a family of narrowband and

wideband functionals. In Section IV, we summarize relevant

theoretical results in the area of convex optimization and pro-

vide the details of the resulting source separation algorithms.

Finally, we compare the proposed methods with state-of-the-

art methods in Section V and conclude in Section VI.

II. STATE OF THE ART

We start by introducing the notations used in the rest of the

article and presenting state-of-the-art methods used to separate

under-determined convolutive mixtures.

A. Matrix notation

The problem under consideration is the following: N source

signals sn(t) of duration T are recorded by M < N micro-

phones, yielding M mixture channels xm(t). The effect of

acoustic propagation between the sources and the microphones

is modeled by a set of mixing filters Amn(t) of length P .

Denoting by x ∈ R
M×T and s ∈ R

N×T the matrices of

mixture channels and source signals and by A ∈ R
M×N×P

the three-way array of mixing filters, the mixing process (1)

can be rewritten more concisely in matrix form as

x = A ⋆ s . (2)

Since M < N , A is not invertible, hence suitable approaches

must be found to estimate s given x and A.

B. Time-frequency transform

A popular approach is to rely on the assumption that the

sources admit disjoint or sparse representations in the time-

frequency domain. Under this assumption, only a few sources

contribute significantly to the mixture in each time-frequency

bin so that the mixing process becomes “locally invertible”

and estimates of the source time-frequency coefficients can be

obtained [11].

More precisely, let us denote by Φ ∈ C
T×B the matrix rep-

resenting an energy-preserving Short-Time Fourier Transform

(STFT) operator. This operator transforms a signal of length

T into a set of B ≥ T time-frequency coefficients. The STFT

coefficients x̃ ∈ C
M×B of the mixture x are given by

x̃ = xΦ (3)

while the sources s can be resynthesized from their estimated

STFT coefficients s̃ ∈ C
N×B by

s = s̃Φ∗ (4)

where Φ∗ ∈ C
B×T is the adjoint operator of Φ, that is its

Hermitian transpose. Note that, strictly speaking, (3) defines

analysis STFT coefficients, while (4) defines synthesis STFT

coefficients. Due to the absence of possible confusion between

these two notions, we omit the terms “analysis” or “synthesis”

in the following.

C. Narrowband approximation

Besides its desirable effect on the sparsity of the sources, the

STFT offers a convenient way of dealing with the convolutive

mixing process. Indeed, after applying the STFT, the mixing

model (2) becomes

x̃ = (A ⋆ s)Φ. (5)

Considering each frequency bin f individually, the above con-

volution can be approximated by the complex-valued matrix

product [2], [4]

x̃(t, f) ≃ Ã(f)s̃(t, f) (6)

where x̃(t, f) and s̃(t, f) are the vectors of mixture and source

STFT coefficients in time-frequency bin b = (t, f) and Ã(f)
is a mixing matrix equal to the Fourier transform of the mixing

system. Denoting by ×f the frequency-wise matrix product

operator [12], this can also be written in matrix form as

x̃ ≃ Ã×f s̃. (7)

This ubiquitous narrowband approximation stems from a

first-order Taylor expansion of x̃. It is generally assumed to

be valid when the mixing filters are short compared to the

STFT window. However, no mathematical quantification of

the approximation error can be found in the literature to our

knowledge. Lemma 1 in the Appendix shows that the approxi-

mation error is small when the Fourier transform of the STFT

window is concentrated at low frequencies and the derivative

of Ã is small. This is equivalent to the respective conditions

that the window be smooth enough, which is usually the case,

and that the mixing filters be concentrated around the null

delay. Consequently, the narrowband approximation holds for

anechoic mixtures with small delays, but not for reverberant

mixtures or anechoic mixtures with larger delays.

D. DUET

The well-known binary masking method for source sepa-

ration exploits the assumption that the sources are disjoint in

the time-frequency domain, so that a single source is active

in each time-frequency bin [1], [2]. The active source and its

STFT coefficient are estimated by minimizing some cost of

fitting the observed mixture STFT coefficients by the product

of the mixing matrix and the source STFT coefficients. The

Degenerate Unmixing Estimation Technique (DUET) relies on

the ℓ2 mixture fitting cost [1]

min
s̃(t,f) s.t. ‖s̃(t,f)‖0=1

‖x̃(t, f) − Ã(f)s̃(t, f)‖2
2 (N-DUET)

where the ℓp norm of a vector or a matrix z with I entries

indexed by i is defined for p > 0 by

‖z‖p =

(

I
∑

i=1

|zi|p
)1/p

(8)

and ‖z‖0 denotes the number of nonzero entries of z. This cost

can be minimized by computing the cost associated with each

possible active source by least-squares projection and selecting

the source leading to the lowest cost [13]. This approach can be

generalized to up to M − 1 active sources per time-frequency

bin, resulting in a combinatorial optimization problem [13].
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E. ℓ1 norm minimization

An alternative method is to rely on the assumption that the

sources are sparse in the time-frequency domain, i.e. only a

few STFT coefficients significantly differ from zero for each

source. This assumption can be exploited by minimizing the

ℓ1 norm of the coefficients subject to an exact mixture fitting

constraint [14], [4]

min
s̃(t,f) s.t. x̃(t,f)=Ã(f)s̃(t,f)

‖s̃(t, f)‖1. (N-ℓ1)

This sparsity cost generally results in M or little more than M

active sources per time-frequency bin [4] and can be optimized

by e.g. FOCUSS [15], second-order cone programming [4]

or gradient-based algorithms [16]. Note that the ℓ1 norm can

be replaced by an ℓp norm with p ≤ 1, but the problem is

not convex anymore for p < 1. The additional constraint that

exactly M sources are active in each time-frequency bin is

sometimes assumed, resulting in a combinatorial optimization

problem [4].

III. SOURCE SEPARATION BY MINIMIZATION OF

NARROWBAND OR WIDEBAND FUNCTIONALS

In this section, we recast the source separation problem into

a more general convex optimization framework and construct

a family of convex functionals that generalize those underlying

DUET or ℓ1 norm minimization. This approach will allow us

to re-use and adapt efficient algorithms proposed in the convex

optimization community.

A. Convex optimization framework

The general form of convex optimization problems we shall

consider reads

min
s̃∈CN×B

L(x,A, s̃) + λP(s̃) (9)

where the different components of the functional to be mini-

mized are

• a convex loss or data term L(x,A, s̃) measuring the fit

between the observed mixture x and the source STFT

coefficients s̃ given the mixing system A,

• a convex penalty or regularization term P(s̃) modeling

the sparsity or disjointness assumptions about the source

STFT coefficients s̃,

• an hyperparameter λ ∈ R+ governing the balance be-

tween the data term and the regularization term.

In the following, we propose two possible data terms and two

possible regularization terms, yielding four distinct function-

als.

B. Mixed norms

While the assumption that the source STFT coefficiens are

sparse translates into the convex cost (N-ℓ1), the alternative

assumption underlying DUET that a single source be active

in each time-frequency bin does not translate into a convex

cost. Moreover, this assumption holds only for mixtures with

a sufficiently small number of sources. We design a convex

cost promoting disjointness of the source time-frequency rep-

resentations through the use of a mixed norm defined hereafter.

Definition 1 (Mixed norm): Let p ≥ 1 and q ≥ 1. Let z ∈
C

I×J be a matrix with row index i and column index j. The

ℓp,q norm of z is called mixed norm and defined by [8], [9]

‖z‖p,q =





J
∑

j=1

(

I
∑

i=1

|zij |p
)q/p





1/q

.

The classical ℓp norm in (8) is a particular instance of the ℓp,q

norm with p = q.

The meaning of a given mixed norm depends on the choice

of the exponents p and q and the associated matrix indexes.

In the convex optimization framework under study, the entries

of the matrix s̃ ∈ C
N×B of source STFT coefficients are each

associated with a source n and a time-frequency bin b = (t, f).
We define the ℓ1,2 norm of s̃ as

‖s̃‖2
1,2 =

∑

t,f

(

N
∑

n=1

|s̃n(t, f)|
)2

. (10)

While minimization of the ℓ1 norm induces sparsity over

the whole considered matrix, minimization of the ℓ1,2 norm

induces sparsity over each column separately [8]. Hence, this

norm promotes maximum disjointness of the source time-

frequency representations, without constraining the proportion

of significant STFT coefficients for each source.

C. Narrowband Lasso and E-Lasso

The constraint of exact fitting of the mixture STFT coef-

ficients in (N-ℓ1) does not account for the fact that (6) is an

approximation of the actual mixing process. Consequently, it

appears natural to relax this constraint and replace it by the

ℓ2 mixture fitting cost in (N-ℓ1), which yields the following

convex optimization problem in each time-frequency bin:

min
s̃(t,f)∈CN

1

2
‖x̃(t, f) − Ã(f)s̃(t, f)‖2

2 + λ‖s̃(t, f)‖1. (11)

This functional was introduced in [17] to estimate the number

of active sources in each time-frequency bin under the con-

straint that at most M sources are active, while estimating the

STFT coefficients of the active sources either by (N-ℓ1) with

M active sources or by generalization of (N-DUET) with up

to M−1 active sources. By contrast, we exploit this functional

to estimate the STFT coefficients of all sources. This approach

is mathematically more consistent and enables the recovery of

more than M active sources in theory.

The summation of (11) over all time-frequency bins results

in the global optimization problem

min
s̃∈CN×B

1

2
‖x̃ − Ã×f s̃‖2

2 + λ‖s̃‖1. (N-Lasso)

This problem is equivalent to (11) and is a particular instance

of the so-called Lasso [18] or basis pursuit denoising [14] con-

vex optimization problem. Because it relies on the narrowband

approximation, we call it narrowband Lasso.
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As mentioned above, the choice of the ℓ1 norm for the

regularization term is known to induce sparsity over the time-

frequency plane. When λ is large, the influence of the regu-

larization term is stronger hence most estimated source STFT

coefficients are set to zero. In particular, high frequencies are

typically zeroed out, since the associated STFT coefficients

have smaller absolute values. This undesirable behavior can be

circumvented by considering ℓ1,2 norm regularization instead,

which leads to a particular instance of the so-called Elitist-

Lasso (E-Lasso) optimization problem [8]

min
s̃∈CN×B

1

2
‖x̃ − Ã×f s̃‖2

2 +
λ

2
‖s̃‖2

1,2 (N-E-Lasso)

that we call narrowband E-Lasso. This regularization promotes

a small number of active sources in each time-frequency bin.

However, it results in at least one nonzero coefficient over each

column of the considered matrix [9], which means that at least

one source is estimated to be active in each time-frequency bin.

The state-of-the-art ℓ1 norm minimization method can be

viewed as a particular case of the proposed narrowband Lasso

and E-Lasso methods, as justified by the following remark.

Remark 1: There exists α ≥ 0 such that if λ ≤ α, then any

solution of (N-Lasso) or (N-E-Lasso) is a solution of (N-ℓ1).

Proof: Let ˆ̃s be a solution of (N-Lasso) and ˇ̃s a solution

of (N-ℓ1).

A classical theorem of convex optimization theory (see e.g.

[19, p. 24]) implies that there exists α ≥ 0 such that for any

λ ≤ α, the solution is such that the data term is equal to zero

hence Ã(f)ˆ̃s(t, f) = x̃(t, f) for all (t, f).
Since ‖x̃−Ã×f

ˆ̃s‖2
2 = ‖x̃−Ã×f

ˇ̃s‖2
2 = 0 and by definition

of ˆ̃s, ‖ˆ̃s‖1 ≤ ‖ˇ̃s‖1. If there existed (t, f) such that ‖ˆ̃s(t, f)‖1 >

‖ˇ̃s(t, f)‖1, then there would exist (t′, f ′) 6= (t, f) such that

‖ˆ̃s(t′, f ′)‖1 < ‖ˇ̃s(t′, f ′)‖1 which contradicts the definition of
ˇ̃s(t′, f ′). Hence ‖ˆ̃s(t, f)‖1 = ‖ˇ̃s(t, f)‖1 for all (t, f), which

proves that ˆ̃s is a solution of (N-ℓ1).

A similar proof applies to the solutions of (N-E-Lasso).

D. Wideband Lasso and E-Lasso

Given the form of the narrowband Lasso (N-Lasso) and E-

Lasso functionals (N-E-Lasso), a natural way of circumventing

the narrowband assumption is now to replace the approximate

mixing model (6) within the data term by the true time-

domain model (2) where the time-domain source signals are

obtained from their STFT coefficients via (4). This leads to the

following wideband counterparts of the above functionals that

we call wideband Lasso and wideband E-Lasso respectively:

min
s̃∈CN×B

1

2
‖x − A ⋆ s̃Φ∗‖2

2 + λ‖s̃‖1 (W-Lasso)

min
s̃∈CN×B

1

2
‖x − A ⋆ s̃Φ∗‖2

2 +
λ

2
‖s̃‖2

1,2. (W-E-Lasso)

Ideally, since the mixing model (2) is assumed to be exact,

one would expect that the ℓ1 or ℓ1,2 norm of the source STFT

coefficients should be minimized under an exact time-domain

mixture fitting constraint:

min
s̃ s.t. x=A⋆s̃Φ∗

‖s̃‖1 (W-ℓ1)

min
s̃ s.t. x=A⋆s̃Φ∗

‖s̃‖2
1,2 (W-ℓ1,2)

However, as we will see in Section IV, relaxed optimization

problems (W-Lasso) and (W-E-Lasso) can be optimized quite

efficiently compared to their constrained counterparts (W-ℓ1)

and (W-ℓ1,2). Moreover, as in the narrowband case, one can

make the following remark, which admits a similar proof.

Remark 2: There exists α ≥ 0 such that if λ ≤ α, then any

solution of (W-Lasso) is a solution of (W-ℓ1) and any solution

of (W-E-Lasso) is a solution of (W-ℓ1,2).

IV. CONVEX OPTIMIZATION ALGORITHMS

We now explain how to minimize the four functionals intro-

duced above through recent developments in convex optimiza-

tion that we apply to the problems at hand. Readers interested

by practical implementation of the proposed methods may

skip this section at first and refer directly to Algorithm 6 for

pseudo-code.

Let us synthetically describe the framework used to solve

the general problem (9). More specifically, the algorithms we

are interested in deal with problems of the form

min
s̃

L(s̃) + λP(s̃) (12)

with L and P being convex, lower semicontinuous functions,

and L L-Lipschitz differentiable.

Various algorithms were developed and studied in the last

few years, in particular:

• the Iterative Shrinkage/Thresholding Algorithm (ISTA)

[20], [21] used in our preliminary paper [10],

• Nesterov schemes [19],

• the Fast Iterative Shrinkage/Thresholding Algorithm

(FISTA) [22].

Variants of ISTA were proposed to speed it up. However, we

restrain ourselves to these three algorithms, which have the

advantage to remain simple, with no other parameter than the

input functional. Moreover important theoretical results are

available, in particular on convergence speed.

All these algorithms have the advantage to tackle non-

differentiable convex functionals of the form (12), when

P is a non-differentiable convex function. Resolving such

kind of problems relies on proximity operators introduced

by Moreau [23]. In this section we shall summarize general

concepts and derive particular algorithms suited to the min-

imization of functionals of the form (9), with the data and

regularization terms described in the previous section.

A. Proximity operators and general algorithms

To start with, let us give the formal definition of proximity

operators and the standard derivation of these operators for ℓ1
and ℓ12 norms.

Definition 2 (Proximity operator): Let ϕ : C
I → C be a

lower semicontinuous, convex function. The proximity opera-

tor associated with ϕ denoted by proxϕ : C
I → C

I is given

by

proxϕ(z) =
1

2
argmin
u∈CI

‖z − u‖2
2 + ϕ(u). (13)

The norms ℓ1 and ℓ12 are convex, lower semicontinuous

functions, nondifferentiable in 0, whose proximity operators
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can be computed in closed form. For the sake of simplicity, if

z = 0, z
|z| = 0 by convention in the following.

Proposition 1 (Prox of λ‖.‖1): Let z ∈ C
I . Then, u =

proxλ‖.‖1
(z) is given entrywise by soft thresholding:

ui =
zi

|zi|
(|zi| − λ)+

where (z)+ = max(0, z).
Proposition 2 (Prox of λ

2 ‖.‖2
1,2): Let z ∈ C

I×J . For each

column j, let i′j be the sequence of row indexes such that the

entries zi′
j
,j in that column are ordered by decreasing absolute

value: |zi′
j
+1,j | ≤ |zi′

j
,j | for all i′j . Then, u = proxλ

2 ‖.‖2
1,2

(z)

is given entrywise by

uij =
zij

|zij |



|zij | −
λ

1 + λIj

Ij
∑

i′
j
=1

|zi′
j
,j |





+

with Ij being the index such that

λ

Ij
∑

i′
j
=1

(

|zi′
j
,j | − |zIj ,j |

)

< |zIj ,j |

and

|zIj+1,j | ≤ λ

Ij+1
∑

i′
j
=1

(

|zi′
j
,j | − |zIj+1,j |

)

.

One can refer to [9] for the proof of these two propositions.

It appears that these proximity operators reduce to a simple

shrinkage/thresholding operator, hence the names ISTA and

FISTA of the derived algorithms.

For the sake of completeness, we provide the general forms

of ISTA, FISTA and Nesterov schemes in Algorithms 1, 2

and 3. All these algorithms have been proved to converge to

a solution of (12). However, the convergence rate of ISTA

is O( 1
k ) where k is the number of iterations, while that of

the other two algorithms is O( 1
k2 ). In the context of audio

source separation, we found that ISTA did not converge in

reasonable time [10]. FISTA is based on Nesterov’s ideas [24]

and has the same convergence rate as the Nesterov schemes

described in [19]. However, as it can be seen in Algorithms

2 and 3, Nesterov schemes rely on the computation of two

gradients and two proximity operators at each iteration, instead

of one gradient and one proximity operator only for FISTA.

Preliminary experiments (not showed here) indicated that

FISTA is a little bit more efficient than Nesterov schemes

in the context of audio source separation, since computation

of the gradient is quite expensive in this case. Therefore, we

choose to focus on FISTA in the following. However, that does

not mean that FISTA is more efficient than Nesterov schemes

in general, from an optimization point of view.

Algorithm 1: ISTA [20], [21]

Initialization: s̃(0) ∈ C
N×B , k = 1.

repeat

s̃(k) = prox λ
L
P(s̃(k−1) − ∇L(s̃(k−1))

L );

until convergence ;

Algorithm 2: FISTA [22]

Initialization: s̃(0) ∈ C
N×B , z(0) = s̃(0), t(0) = 1, k = 1.

repeat

s̃(k) = prox λ
L
P

(

z(k−1) − ∇L(z(k−1))
L

)

;

τ (k) = 1+
√

1+4τ(k−1)2

2 ;

z(k) = s̃(k) + τ(k−1)−1
τ(k) (s̃(k) − s̃(k−1));

k = k + 1
until convergence ;

Algorithm 3: Nesterov schemes [19]

Initialization: s(0) ∈ R
N×B , g(0) = 0, γ = 2

L , κ(0) = 0.

repeat

τ (k) =
γ+

√
γ2+4γκ(k−1)

2 ;

v(k) = proxκ(k−1)λP(s̃(0) − g(k−1));

z(k) = κ(k−1)s̃(k−1)+τ(k)v(k)

κ(k−1)+τ(k) ;

s̃(k) = prox λ
L
P(z(k) − ∇L(z(k))

L );

g(k) = g(k−1) + τ (k)∇L(s̃(k));
κ(k) = κ(k−1) + τ (k−1);

k = k + 1
until convergence ;

B. Application to the proposed functionals

Let us now derive the details of the application of FISTA to

the proposed functionals, starting by the regularization term.

The proximity operator of the ℓ1 norm as applied to STFT

coefficients can be readily computed from Proposition 1. A

practical implementation of the proximity operator of the ℓ1,2

mixed norm is given in Algorithm 4.

Algorithm 4: Computation of u = proxλ
2 ‖.‖2

1,2
(z)

for each (t, f) do
y(t, f) = sort z(t, f) in order of decreasing absolute

value;

for n = 1 : N do

‖y1:n(t, f)‖1 =
∑n

i=1 |yi(t, f)|;
find I such that:

|yI(t, f)| > λ
1+λI ‖y1:I(t, f)‖1

and

|yI+1(t, f)| ≤ λ
1+λ(I+1)‖y1:I+1(t, f)‖1;

for n = 1 : N do

un(t, f) = zn(t,f)
|zn(t,f)|

(

|zn(t, f)| − λ‖y1:I(t,f)‖1

1+λI

)+

;

Under the narrowband assumption, the data term L(s̃) =
1
2‖x̃ − Ã×f s̃‖2

2 is L-Lipschitz differentiable with gradient

∇L(s̃) = −Ã∗×f (x̃ − Ã×f s̃) (14)

where the adjoint Ã∗ of Ã is such that Ã∗(f) is the Hermitian

transpose of Ã(f) for each f . The Lipschitz constant L is

given by

L = max
f

‖Ã∗(f)Ã(f)‖2op
(15)
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with ‖.‖2op
denoting the operator norm associated with the ℓ2

vector norm. For a matrix, this norm is equal to the maximum

absolute signular value.

Under the wideband assumption, the data term L(s̃) =
1
2‖x − A ⋆ s̃Φ∗‖2

2 is L-Lipschitz differentiable with gradient

∇L(s̃) = [A∗ ⋆ (x − A ⋆ s̃Φ∗)]Φ (16)

where that the adjoint A∗ of A is obtained by transposition

of source and channel indexes and time reversal of the filters.

Introducing the linear operator T : C
N×B → R

M×T defined

by

T (s̃) = A ⋆ (s̃Φ∗) (17)

and its adjoint operator T ∗ : R
M×T → C

N×B defined by

T ∗(x) = (A∗ ⋆ x)Φ, (18)

the Lipschitz constant L is given by

L = ‖T ∗T ‖2op
. (19)

This operator norm can be computed using the well-known

power iteration algorithm. Algorithm 5 recalls this procedure

as applied to T ∗T .

Algorithm 5: Computation of L via power iteration

Initialization: v ∈ R
N×B .

repeat
w = (A∗ ⋆ A ⋆ vΦ∗)Φ;

L = ‖w‖∞;

v = w
L ;

until convergence ;

where ‖w‖∞ norm denotes the maximum absolute value of

the vector (or matrix) w.

By combining the above results for the data term and the

regularization term, the application of FISTA to the proposed

functionals leads to Algorithm 6.

While FISTA seems to be an efficient algorithm to optimize

our functionals, some practical issues still remain. Firstly, the

convergence criterion is not easy to choose. Popular choices

are criteria like ‖s̃(k+1) − s̃(k)‖ < ε or
‖s̃(k+1)−s̃(k)‖

s̃(k) < ε.

However, these quantities do not decrease monotonically and

the choice of ε clearly depends on the mixture x and the hyper-

parameter λ. More precisely, for small λ, FISTA requires a

larger number of iterations to reach convergence. Secondly, the

convergence speed of FISTA strongly depends on the chosen

initialization. One can refer to [25] for more practical details

on the convergence of these different algorithms.

Consequently, we chose to fix a priori the number of

iterations to 20000 in practice, and we used the continuation

trick, also known as warm start or fixed point continuation

[26]: we first run FISTA with a large value of λ, then iteratively

decrease the value of λ and initialize FISTA with the result of

the previous run.

Algorithm 6: Source separation via FISTA

Initialization: s̃(0) ∈ C
N×B , z(0) = s̃(0), τ (0) = 1, k = 1.

repeat

switch data term do

case narrowband

a(k) = z(k−1) − 1
LÃ∗×f (x̃ − Ã×f s̃

(k−1));

case wideband

a(k) = z(k−1)− 1
L [A∗ ⋆ (x−A⋆ s̃(k−1)Φ∗)]Φ;

switch regularization term do

case ℓ1
s̃(k) = prox λ

L
‖.‖1

(a(k)) (see Proposition 1);

case ℓ1,2

s̃(k) = prox λ
2L

‖.‖2
1,2

(a(k)) (see Algorithm 4);

τ (k) = 1+
√

1+4τ(k−1)2

2 ;

z(k) = s̃(k) + τ(k−1)−1
τ(k) (s̃(k) − s̃(k−1));

k = k + 1
until convergence ;

V. EXPERIMENTAL EVALUATION

We evaluated the narrowband and wideband source separa-

tion methods proposed in Section III over convolutive mixtures

of speech sources and compared them to the state-of-the-art

methods described in Section II. For all experiments, the test

signals were sampled at 11 kHz and the STFT was computed

with half-overlapping sine windows of 512 samples (≃ 46 ms).

A. Experimental protocol

The experimental protocol was the following. The mixing

filters were room impulse responses simulated via the image

technique [27] using the Roomsim software1 with the same

room size as in [5]. The number of microphones was set to

M = 2 and the number of sources was varied in the range

3 ≤ N ≤ 6. For each number of sources N , six different

sets of mixing filters were generated corresponding to three

different reverberation times RT60 (anechoic, RT60 = 50 ms

and RT60 = 250 ms) and two different microphone spacings

d (d = 5 cm and d = 1 m). Each set of mixing filters was

convolved with ten different sets of male and/or female speech

sources from various nationalities, yielding ten mixtures per

mixing condition.

Each mixture was separated with the proposed narrowband

and wideband Lasso and E-Lasso methods in (N-Lasso),

(N-E-Lasso), (W-Lasso) and (W-E-Lasso) for different values

of the hyper-parameter λ. The separation performance was

then assessed for each λ using the Signal-to-Distortion Ratio

(SDR), the Signal-to-Interference Ratio (SIR) and the Signal-

to-Artifacts Ratio (SAR) in decibels (dB) as defined in [28].

The SDR indicates the overall quality of each estimated source

compared to the target, while the SIR reveals the amount

of residual crosstalk from the other sources and the SAR

is related to the amount of musical noise. These measures

1http://media.paisley.ac.uk/˜dccampbell/Roomsim/
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were subsequently averaged over all sources and all mixtures

for each mixing condition. The state-of-the-art narrowband

DUET and ℓ1 norm minimization methods in (N-DUET) and

(N-ℓ1) were also evaluated for comparison using the same

performance measures.

B. Performance analysis as a function of λ

Figure 1 illustrates the variation of the SDR as a function

of λ with N = 4, RT60 = 250 ms and d = 1 m. The curves

in this figure are quite different from those in our preliminary

paper [10]. Indeed, this work relied on the Modified Discrete

Cosine Transform (MDCT) instead of the STFT and on ISTA

without the continuation trick, which did not experimentally

converge, contrary to FISTA here.

Several interesting trends can be seen. Firstly, the per-

formance of the narrowband Lasso and E-Lasso methods

becomes equal to that of the narrowband ℓ1 norm minimization

method when λ → 0, which is consistent with Remark 1.

Secondly, the performance of the narrowband Lasso and E-

Lasso methods is maximum for λ > 0, while that of the

wideband Lasso and E-Lasso methods is maximum for λ → 0.

This confirms our claims that the narrowband approximation

is indeed an approximation and that introducing a data term

into the optimized functional helps dealing with the resulting

mixture fitting error, while wideband separation should ideally

be performed subject to an exact mixture fitting constraint.

Similar trends were observed for other mixing conditions. In

the following, we compare all methods after selecting the best

λ for each mixing condition as that maximizing the average

SDR over the ten corresponding mixtures.

Fig. 1. Variation of the average SDR as a function of λ over speech mixtures
with N = 4 sources, RT60 = 250 ms and d = 1 m.

C. Performance analysis as a function of reverberation time

and microphone spacing

The resulting SDR figures are shown in Table I for different

values of RT60 and d. Among state-of-the-art methods, DUET

performs best when the microphones are closer while ℓ1 norm

minimization performs best when the microphones are farther

apart. In order to be able to decide if a method performs better

than an another one, we have applied an ANOVA at 1% on the

results. If the null hypothesis of the ANOVA is rejected (i.e.

some methods can be considered statistically better than some

another), we applied the Fisher protocol (i.e. several paired

Fisher-Student T-test) to determined which methods perform

best. Algorithms which perform statistically the best are in

bold.

The proposed narrowband Lasso and E-Lasso methods

consistently improve performance over ℓ1 norm minimization.

This confirms again that introducing a data term into the model

helps dealing with the error resulting from the narrowband

approximation. Moreover, under this approximation, E-Lasso

regularization appears always more appropriate than the Lasso.

This corroborates our analysis of the limitations of the Lasso

with large λ in Section III-B and our claim that promoting

disjointness instead of sparsity of the source time-frequency

representations is a better strategy in this context. Note how-

ever that the observed improvements remain inferior to 1 dB

in all cases but one. This is not enough to justify the use of the

narrowband E-Lasso method in practice as opposed to state-

of-the-art methods, due to its larger computational cost and to

the need of choosing the additional hyper-parameter λ based

on e.g. prior knowledge of the mixing conditions.

The same remark applies to the proposed wideband Lasso

and E-Lasso methods in environments with low reverberation

time RT60 ≤ 50 ms. This was expected since the narrowband

assumption is valid when the mixing filters are shorter than

the STFT window length, hence circumventing this assump-

tion does not provide significant benefit. However, wideband

Lasso and E-Lasso improve the average SDR by 3 to 5

dB compared to the best state-of-the-art method in a more

realistic environment with RT60 = 250 ms. This improvement

is huge compared to the small difference of performance

between state-of-the-art methods themselves. Also, the issue

of choosing the hyper-parameter λ does not arise here since

λ → 0 appears to be always a reasonable choice, so that these

methods can be applied in practice. Note also that E-Lasso

regularization performs worse than the Lasso in this context.

Table II provides more insight into the performance of

state-of-the-art methods and wideband methods when RT60 =
250 ms and d = 1 m. It can be seen that, besides improving the

SDR, the wideband Lasso method also improves both the SIR

by 6 dB compared to DUET and the SAR by 3 dB compared to

ℓ1 norm minimization, which are the state-of-the-art methods

providing fewer interference and fewer artifacts respectively.

Again, algorithms which perform statistically the best are in

bold. For RT60 = 50 ms and d = 1 m, there is no statistical

difference between all the results.

TABLE II
AVERAGE SDR, SIR AND SAR IN DECIBELS OVER SPEECH MIXTURES

WITH N = 4 SOURCES, RT60 = 250 MS AND d = 1 M.

method
narrowband wideband

DUET ℓ1 min. Lasso E-Lasso Lasso E-Lasso

SDR 1.0 2.8 3.0 3.4 7.6 7.2

SIR 8.2 6.4 6.8 7.7 14.0 13.9

SAR 2.8 6.5 6.4 6.4 9.1 8.5
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TABLE I
AVERAGE SDR IN DECIBELS AS A FUNCTION OF RT60 AND d OVER SPEECH MIXTURES WITH N = 4 SOURCES.

RT60 d
narrowband wideband

DUET ℓ1 min. Lasso E-Lasso Lasso E-Lasso

anechoic
5 cm 5.4 4.5 6.4 6.7 5.7 6.5

1 m 3.6 7.7 7.8 8.0 7.6 8.1

50 ms
5 cm 5.1 4.2 4.3 4.3 4.4 4.5
1 m 3.1 6.3 6.4 6.4 7.0 7.4

250 ms
5 cm 2.4 1.8 2.1 2.1 5.9 5.0
1 m 1.0 2.8 3.0 3.4 7.6 7.2

D. Performance analysis as a function of the number of

sources

In addition to the above discussion for N = 4 sources,

we provide in Figure 2 the results for 3 ≤ N ≤ 6 sources

with RT60 = 250 ms and d = 1 m. The performance of

all methods as well as the performance improvement brought

by wideband methods appears to decrease when the number

of sources increases. This is natural since the disjointness or

sparsity assumptions underlying all methods hold to a lesser

extent with a large number of sources. Yet, wideband E-Lasso

still improves the average SDR by more than 3 dB compared

to ℓ1 norm minimization with N = 6 sources.

Fig. 2. Variation of the average SDR as a function of N over speech mixtures
with RT60 = 250 ms and d = 1 m.

VI. CONCLUSION

We proposed a general convex optimization framework for

under-determined convolutive source separation, which relies

on the minimization of a family of narrowband or wideband

functionals, assuming that the mixing filters are known or

have been estimated using e.g. some subspace-based channel

identification technique. It is the first time, to our knowledge,

that a way of avoiding the narrowband assumption is proposed

in the under-determined setting. We translated this framework

into a family of algorithms that were carefully compared on a

range of speech mixtures. In light of the results, we conclude

that the best method is either DUET or ℓ1 norm minimization

depending on the microphone spacing in environments with

low reverberation and the proposed wideband Lasso method

in more realistic environments whose reverberation time is on

the order of a hundred milliseconds or more. In the latter case,

wideband Lasso improves the SDR, SIR and SAR measures

by several decibels compared to the best state-of-the-art.

There are numerous perspectives to this work. Firstly, the

proposed framework could be exploited for the estimation

of the mixing filters, possibly using additional sparsity or

nonstationarity constraints about filter coefficients. Similarly,

this framework could be used to achieve denoising in addition

to source separation in case the mixture contains some additive

noise by readily modeling such noise by the data term with

λ > 0. Secondly, one must keep a look on the work made in

the convex optimization community to find a possibly faster

algorithm. Finally, while the mixed norm considered here was

not retained for practical separation purposes, different mixed

norms could be defined to improve the modeling of the source

signals by favoring persistent structures in the source time-

frequency representations.

APPENDIX

Lemma 1: Let x ∈ L2(R), s ∈ L2(R) and A ∈ C1(R)
such that

x = A ⋆ s.

Then, denoting by Sx (resp. Ss) the STFT of x (resp. s) with

an analysis window g in the Sobolev W 1,2(R), the STFT of

x can be expressed in each time-frequency bin (t, f) by

Sx(t, f) = Ã(f)Ss(t, f) + R(t, f)

where Ã is the Fourier transform of A and

|R(t, f)| ≤ ‖Ã′‖∞‖s‖2

(∫

R

|νg̃(ν)|2 d ν

)1/2

.

Proof: Applying the Fourier transform to (1), we obtain

x̃ = Ãs̃. We can then write the STFT of x as

Sx(t, f) =

∫

R

Ã(ν)s̃(ν)g̃(ν − f)e2iπνt d ν. (20)

The Taylor expansion of order 1 of Ã in f is given by

Ã(ν) = Ã(f) + (ν − f)rf (ν) (21)

where

|rf (ν)| ≤ ‖Ã′‖∞ (22)

and Ã′ denotes the derivative of Ã. By inserting (21) into (20),

we get

Sx(t, f) = Ã(f)Ss(t, f) + R(t, f)

with

R(t, f) =

∫

R

rf (ν)s̃(ν)(ν − f)g̃(ν − f)e2iπνt dν.
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Thanks to the Cauchy-Swartz inequality, one can write

|R(t, f)| ≤ ‖rf‖∞ ‖s‖2

(∫

R

|νg̃(ν)|2 d ν

)1/2

,

which, combined with (22), yields the desired result.
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