
THE UBIQUITY OF GENERALIZED CLUSTER CATEGORIES

CLAIRE AMIOT, IDUN REITEN, AND GORDANA TODOROV

Abstract. Associated with a finite dimensional algebra of global dimension at most 2, a
generalized cluster category was introduced in [Ami08]. It was shown to be triangulated, and 2-
Calabi-Yau when it is Hom-finite. By definition, the cluster categories of [BMR+06] are a special
case. In this paper we show that a large class of 2-Calabi-Yau triangulated categories, including
those associated with elements in Coxeter groups from [BIRS09a], are triangle equivalent to
generalized cluster categories. This was already shown for some special elements in [Ami08]
and then more generally for c-sortable elements in [AIRT10].
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2.5. Interpretation of X and Y 12
3. Main Theorem 14
3.1. Statement of the main result 14
3.2. Global dimension of Ā 15
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Introduction

Throughout this paper k is an algebraically closed field. Let Q be a finite quiver without
oriented cycles. In [BMR+06], the cluster category CQ was defined to be the orbit category
Db(kQ)/τ−[1], where τ is the Auslander-Reiten translation in the bounded derived category
Db(kQ). The category CQ is Hom-finite, triangulated [Kel05], and 2-Calabi-Yau (2-CY for
short), that is, there is a functorial isomorphism DHomCQ(X, Y ) ≃ HomCQ(Y,X [2]), where
D = Homk(−, k). A theory for a special kind of objects, called cluster-tilting objects, was
developed in [BMR+06]. This work was motivated via [MRZ03] by the Fomin-Zelevinsky theory
of cluster algebras [FZ02], where the cluster-tilting objects are the analogs of clusters.

Another category where a similar theory was developed is the category modΛ of finite dimen-
sional modules over a preprojective algebra Λ of Dynkin type [GLS06, GLS07a]. This category
is Hom-finite and Frobenius. Moreover, it is stably 2-CY, that is, its stable category modΛ
(which is triangulated) is 2-CY.

Much of the work on cluster categories from [BMR+06, BMR07, BMR08] has been generalized
to the setting of 2-CY triangulated categories with cluster-tilting objects, and new results have
been proved in the general setting ( [IY08, KR08, KR07], and others). It is of interest to
investigate such categories, both for developing new theory and for providing applications to
new classes of cluster algebras. In particular, it is of interest to find classes of 2-CY triangulated
categories with cluster-tilting objects. An important class is the stable categories Ew of the
Frobenius categories Ew associated with elements w in Coxeter groups [BIRS09a], (see [GLS07b]
for independent work when w is adaptable). This class contains both the cluster categories CQ
and modΛ discussed above as special cases (see [BIRS09a], [GLS07b]). In Ew and Ew, there are
standard cluster-tilting objects Tw associated with any reduced expression w of w.

A new class of triangulated 2-CY categories was introduced in [Ami08]. They are generalized
cluster categories CĀ associated with algebras Ā of global dimension at most 2, rather than
global dimension 1. In this case the orbit category Db(Ā)/τ−[1] is not necessarily triangulated,
so CĀ is defined to be its triangulated hull. If CĀ is Hom-finite, then it is triangulated 2-CY
and Ā is a cluster-tilting object in CĀ.

A natural question is how the generalized cluster categories are related to the previous classes
of Hom-finite triangulated 2-CY categories. It was already shown in [Ami08] that some classes
of categories Ew are equivalent to generalized cluster categories, including CQ and modΛ, where
Λ is preprojective of Dynkin type. This result is extended to the case of c-sortable words in
[AIRT10], with a similar choice for Ā. One of the main results in this paper is the following:
Each category Ew associated with an element w in a Coxeter group is equivalent to a generalized
cluster category CĀ for some algebra Ā of global dimension at most 2 (Theorem 4.4).

Actually, we prove our main result in a more general setting: We start with a Frobenius
category E , which we assume to be Hom-finite, stably 2-CY and which has a cluster-tilting
object T . We assume that the endomorphism algebra EndE(T ) is Jacobian and has a grading
with certain properties. From these data we construct an algebra Ā of global dimension at most
2 and a triangle equivalence CĀ ≃ E (Theorem 3.1) sending the canonical cluster-tilting object Ā
of CĀ to the cluster-tilting object T in E . The algebra Ā is constructed as the degree zero part of
EndE(T ), and we show that EndE(T ) and EndCĀ(Ā) are isomorphic algebras (Proposition 3.12).
This is an important step in the proof of the equivalence. It is however not known in general
if 2-CY categories are equivalent when they have cluster-tilting objects whose endomorphism
algebras are isomorphic. The only general result known of this type is that if the quiver Q
of EndC(T ) has no oriented cycles, where T is a cluster-tilting object in an algebraic 2-CY
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category C, then C is triangle equivalent to the cluster category CQ [KR08]. A crucial step in
this paper for proving the equivalence CĀ ≃ E is the construction of a triangle functor from CĀ
to E , sending Ā to T . This is done by first constructing a triangle functor from Db(Ā) to E ,
with strong use of the Frobenius structure of E .

It is also important to deal with the endomorphism algebra EndE(T ) of the cluster-tilting
object T in the Frobenius category E , rather than only EndE(T ). We assume that this algebra
is a graded frozen Jacobian algebra (see section 1 for definitions), with potential homogeneous
of degree 1. Theorem 3.1 applies in particular to the categories Ew associated to any element
in a Coxeter group associated with a finite quiver without oriented cycles (see section 4).

The paper is organized as follows. In section 1 we recall some background material on
cluster-tilting objects in 2-CY categories, on generalized cluster categories from [Ami08] and on
Jacobian algebras from [DWZ08], together with the generalization to frozen Jacobian algebras
given in [BIRS09b].

In section 2 we construct a special triangle (Proposition 2.7), which is useful for our con-
struction of a functor from CĀ to E .

Section 3 is devoted to the proof of the triangle equivalence from CĀ to E (Theorem 3.1). We
first show that the global dimension of Ā is at most 2. Then we construct our triangle functor
from CĀ to E using the special triangle from section 2, together with a universal property from
[Kel05, Ami08]. Finally we show that our functor is an equivalence by using a criterion from
[KR08].

In section 4 we apply the main theorem to prove that for any element w in a Coxeter group,
the 2-CY triangulated category Ew is triangle equivalent to some generalized cluster category,
which was our original motivation (Theorem 4.4).

In section 5 we give two examples to illustrate our results. The first one is an illustration of
Theorem 4.4. In the second one we use Theorem 3.1 to construct a triangle equivalence from
a generalized cluster category CĀ to a category Ew which sends the canonical cluster-tilting
object Ā to a cluster-tilting object T in Ew, where T is not associated to a reduced expression
of w.

Notations. By a triangulated category we mean a k-linear triangulated category satisfying the
Krull-Schmidt property. For all triangulated categories we will denote the shift functor by [1].
By a Frobenius category we mean an exact k-category with enough projectives and injectives
,where the projectives and the injectives coincide. If E is Frobenius, then the associated stable
category E is triangulated [Hap88] and is by definition algebraic. For an object T in an additive
k-category, we denote by add (T ) the additive closure of T . For a k-algebra A, we denote by
ModA the category of right A-modules and by modA the category of finitely presented right
A-modules. We also denote by D(A) the derived category D(ModA) and by DbA the bounded
derived category Db(modA). Let D be the usual duality Homk(?, k). The tensor product −⊗−,
when not specified, is over the ground field k. For a quiver Q we denote by Q0 its set of vertices,
by Q1 its set of arrows, by s the source map and by t the target map.

1. Background

In this section we collect some background material relevant for this paper.

1.1. Cluster-tilting objects. Let C be a k-category which is Hom-finite, that is, has finite
dimensional homomorphism spaces over k. Assume that C is either Frobenius stably 2-CY
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(that is, its stable category is 2-CY) or triangulated 2-CY. Then an object T in C is said to be
cluster-tilting if

(i) T is rigid, i.e. Ext1C(T, T ) = 0, and
(ii) Ext1C(T,X) = 0 implies that X is a summand of a finite direct sum of copies of T .

Note that when C is Frobenius stably 2-CY, then any indecomposable projective-injective
module is a summand of every cluster-tilting object. The finite dimensional algebras EndC(T ),
where C is triangulated 2-CY, are called 2-CY-tilted algebras.

Assume that T = T1 ⊕ . . .⊕ Tn is a cluster-tilting object in a triangulated 2-CY category C,
where the Ti are indecomposable and pairwise not isomorphic. Then for each i = 1, . . . , n there
is a unique indecomposable object T ∗

i not isomorphic to Ti, such that T ∗ = (T/Ti) ⊕ T ∗
i is a

cluster-tilting object [BMR+06],[IY08]. The new object T ∗ is called the mutation of T at Ti.
If T = T1 ⊕ . . . ⊕ Tn is a cluster-tilting object in a Frobenius stably 2-CY category, we can

only mutate at the Ti which are not projective-injective.
When T ∗

i is defined, there are exchange sequences if C is Frobenius

0 // T ∗
i

f // B
g // Ti

// 0 and 0 // Ti

f ′

// B′
g′ // T ∗

i
// 0

or exchange triangles if C is triangulated

T ∗
i

f // B
g // Ti

// T ∗
i [1] and Ti

f ′

// B′
g′ // T ∗

i
// Ti[1]

where f , f ′ are minimal left add (T/Ti)-approximations and g, g′ are minimal right add (T/Ti)-
approximations. These sequences (or triangles) play an important role in the categorification
of cluster algebras.

There is also a related kind of sequences investigated in [IY08].

Proposition 1.1. [Iyama-Yoshino] Let as before C be a Hom-finite Frobenius stably 2-CY
category with a cluster-tilting object T = T1 ⊕ . . . ⊕ Tn. For each i = 1, . . . , n, if Ti is not
projective-injective, there are exact sequences

0 // T+
i

f // E
g // Ti

// 0 and 0 // Ti

f ′

// E ′
g′ // T+

i
// 0

for some indecomposable object T+
i in C, such that g (resp. g′) is right almost split in add (T )

(resp. in add ((T/Ti)⊕T
+
i )) and f ′ (resp. f) is left almost split in add(T ) (resp. in add ((T/Ti)⊕

T+
i )).

The induced sequence 0 // Ti

f ′

// E ′
fg′ // E

g // Ti
// 0 is called the 2-almost split

sequence associated with Ti.

There is a corresponding result when C is triangulated. For any indecomposable direct
summand Ti of a cluster-tilting object T , there are triangles

T+
i

f // E
g // Ti

// T+
i [1] and Ti

f ′

// E ′
g′ // T+

i
// Ti[1] )

where the maps f, f ′ are left almost split and g, g′ are right almost split. For cluster categories,
it was shown in [BMR+06] that these triangles coincide with the exchange triangles. More
generally, they clearly coincide with the exchange triangles if and only if there are no loops in
the quiver of EndC(T ).
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Using the existence of 2-almost split sequences in a Hom-finite Frobenius category, we can
construct minimal projective and injective resolutions of simple modules over EndC(T ). Note
that it already follows from [Iya07, 2.5.3] that EndC(T ) has global dimension at most 3.

Proposition 1.2. Let C be a Hom-finite Frobenius stably 2-CY category with a cluster-tilting
object T = T1 ⊕ . . . ⊕ Tn, where the Ti are indecomposable and pairwise non isomorphic. Let
B := EndC(T ) be the endomorphism algebra of T , and let Q be the quiver of B, which is then
isomorphic to kQ/I for some admissible ideal I in kQ. For each i = 1, . . . , n, such that Ti

is not projective-injective, denote by Si the simple B-module HomC(T, Ti)/Rad(HomC(T, Ti)).
Then the minimal projective and injective resolutions of the simple B-module Si are of the form:

0 // eiB
(b)

//
⊕

b∈Q1,s(b)=i et(b)B
(rab) //

⊕
a∈Q1,t(a)=i es(a)B

(a)
// eiB // Si

// 0

0 // Si
// D(Bei)

(b)
//
⊕

b∈Q1,s(b)=i D(Bet(b))
(r′

ab
)
//
⊕

a∈Q1,t(a)=i D(Bes(a))
(a)

// D(Bei) // 0 ,

for some maps ra,b, where the sets {arab| a, b ∈ Q1, t(a) = s(b) = i, t(b) = j} and {r′abb| s(b) =
t(a) = i, s(a) = j} are bases of eiIej.

Proof. Applying the functor HomC(T,−) to the 2-almost-split sequence

0 // Ti

f ′

// E ′
fg′ // E

g // Ti
// 0

we get the following exact sequence of B-modules

0 // HomC(T, Ti) // HomC(T,E
′) // HomC(T,E) // HomC(T, Ti) // Si

// 0

which is a minimal projective resolution of the simple B-module Si.
Let Q be the quiver of B, and B ≃ kQ/I. Since g is minimal right almost split in add (T ),

we have
E ≃

⊕

a∈Q1| t(a)=i

Ts(a) and HomC(T, g) ≃ (a){a∈Q1| t(a)=i}.

Since f ′ is minimal left almost split in add (T ), we have

E ′ ≃
⊕

b∈Q1| s(b)=i

Tt(b) and HomC(T, f
′) ≃ (b){b∈Q1| s(b)=i}.

For a, b ∈ Q1 with t(a) = i and s(b) = i, let rab : et(b)B → es(a)B be the map induced
by fg′ :

⊕
b∈Q1| s(b)=i Tt(b) →

⊕
a∈Q1| t(a)=i Ts(a). Since the 2-almost split sequence associated

to Ti induces a minimal projective resolution of the simple B-module Si, the set {arab| a, b ∈
Q1, t(a) = s(b) = i, t(b) = j} is a basis of the set of relations eiIej .

To get the other sequence of the proposition, we apply the functor DHomC(−, T ) to the
2-almost split sequence associated to Ti, and we proceed similarly.

�

1.2. Generalized cluster categories. Let Λ be a finite dimensional k-algebra of global di-
mension at most 2. We denote by Db(Λ) the bounded derived category of finitely generated
(right) Λ-modules. It has a Serre functor that we denote by S, which coincides with τ [1].

The generalized cluster category CΛ is defined in [Ami08] as the triangulated hull (Db(Λ)/S[−2])∆
in the sense of [Kel05] of the orbit category Db(Λ)/S[−2]. The composition of the functors

πΛ : Db(Λ) // // Db(Λ)/S[−2] �
� // CΛ



6 CLAIRE AMIOT, IDUN REITEN, AND GORDANA TODOROV

is a triangle functor.
The following definition and theorem give a more explicit description of the generalized

cluster category. This is added here for the convenience of the reader but will not be used later.

Definition 1.3. [Kel09] Denote by Θ2 a cofibrant resolution of the complex of Λ-bimodules
RHomΛ(DΛ,Λ)[2], that is a complex of projective Λ-bimodules which is quasi-isomorphic to
RHomΛ(DΛ,Λ)[2]. Then the derived 3-preprojective algebra is defined as the tensor DG algebra:

Π3(Λ) := TΛΘ2 = Λ⊕Θ2 ⊕ (Θ2 ⊗Λ Θ2)⊕ . . . .

We set Π3(Λ) := H0(Π3(Λ)). It is called the 3-preprojective algebra.

Theorem 1.4. [Kel05, Ami08] Let Λ be a finite dimensional algebra of global dimension at
most 2. Then there exists a triangle equivalence

CΛ := (DbΛ/S[−2])∆ ≃ perΠ3(Λ)/D
bΠ3(Λ)

where perΠ3(Λ) is the thick subcategory of DΠ3(Λ) generated by Π3(Λ), and D
bΠ3(Λ) is the

thick subcategory of DΠ3(Λ) formed by the objects having finite dimensional total cohomology.

There is a useful criterion for constructing triangle functors from a generalized cluster cate-
gory CΛ to some stable category E . It can be deduced from the universal property of πΛ given
in subsection 4.1 of [Ami08] (see also section 9 of [Kel05] or the appendix of [IO09] for more
details). This criterion, which is given in the next proposition, is a key step for proving the
equivalence of the main theorem of this paper.

For a Frobenius category E and an algebra Λ, we here denote by Db(Λop ⊗ E) the bounded
derived category of the exact category (modΛop) ⊗ E whose objects are objects in E having
a structure of finitely generated left Λ-module (see for example [Kel06, sections 2 and 3] for
precise definitions of tensor products of k-categories and derived categories).

Proposition 1.5. Let CΛ be a generalized cluster category, where Λ is a finite dimensional
algebra of global dimension at most 2. Let E be a Frobenius category. Let M be an object
in E and assume that M has a left Λ-module structure. Assume that there is a morphism in
Db(Λop ⊗ E)

α : M −→ RHomΛ(DΛ,Λ)
L

⊗Λ M [2]

whose cone lies in Db(Λop ⊗ P), where P is the full subcategory of E of projective-injectives.
Then there exists a triangle functor CΛ → E such that the following diagram commutes

Db(Λ)
−

L

⊗ΛM //

πΛ

��

Db(E)

��
CΛ // E

.

Note that the endofunctor −
L

⊗ΛRHomΛ(DΛ,Λ)[2] ≃ RHomΛ(DΛ,−)[2] of Db(Λ) is isomor-
phic to the functor S−1[2]. Hence Proposition 1.5 requires in particular that for any X in Db(Λ),

there is a morphism X
L

⊗Λ M → X
L

⊗Λ RHomΛ(DΛ,Λ)
L

⊗Λ M [2] ≃ S
−1X [2]

L

⊗Λ M in Db(E)
whose cone is in Db(P). In other words, the images of X and of S−1X [2] under the composition

Db(Λ)
−

L

⊗ΛM // Db(E) // Db(E)/Db(P) = E
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are isomorphic. Here the category Db(P) is the thick subcategory of Db(E) generated by P.
Thus the localization of Db(E) by Db(P) is equivalent to the stable category E by [KV87], and
this localization gives us the right vertical map of this diagram. This implies immediately that

the functor
L

⊗ΛM : Db(Λ) → E factors through the orbit category Db(Λ)/S[−2]. However the
proof that it factors through the generalized cluster category as a triangle functor is non trivial
and uses the universal property of triangulated orbit categories [Kel05, IO09].

The case when the 3-preprojective algebra of Λ is finite dimensional is especially nice.

Theorem 1.6. [Ami08, Theorem 4.10] Let Λ be a finite dimensional algebra of global dimension
at most 2, and assume that the algebra Π3(Λ) is finite dimensional. Then the category CΛ is a
Hom-finite 2-Calabi-Yau category, the object πΛ(Λ) ∈ CΛ is a cluster-tilting object and we have
an isomorphism

EndCΛ(πΛ(Λ)) ≃ Π3(Λ).

1.3. Jacobian algebras and generalizations. Quivers with potentials and their associated
Jacobian algebras have been investigated in [DWZ08]. Let Q be a finite quiver. For each arrow
a in Q, the cyclic derivative ∂a with respect to a is the unique linear map ∂a : kQ→ kQ which
takes the class of a path p to the sum

∑
p=uav vu taken over all decompositions of the path p

(where u and v are possibly idempotent elements ei associated to the vertex i). A potential on
Q is any linear combination W of cycles in Q. The associated Jacobian algebra is by definition
the algebra

Jac(Q,W ) := kQ/〈∂aW ; a ∈ Q1〉.

There is a more general definition given in [DWZ08], dealing with the complete path algebras,
and hence there is also a larger class of Jacobian algebras. However, in this paper we only
consider the Jacobian algebras defined above.

Any finite dimensional Jacobian algebra (in the general sense) is 2-CY-tilted ([Ami08, Kel09]).
As a partial converse, some classes of 2-CY-tilted algebras associated with elements in Coxeter
groups are Jacobian ([BIRS09b]). Furthermore, the 2-CY-tilted algebras given by the canonical
cluster-tilting object in a generalized cluster category are Jacobian, as stated in the following
result [Kel09, Theorem 6.11 a)].

Theorem 1.7 (Keller). Let A = kQ/I be an algebra of global dimension at most 2, such that
I is generated by a finite set of minimal relations (ri). The relation ri starts at the vertex s(ri)

and ends at the vertex t(ri). Let Q̃ be the quiver obtained from Q by adding additional arrows
ai : t(ri)→ s(ri) for each minimal relation ri, and let WA be the potential

∑
i airi. Then there

is an isomorphism of algebras:

EndCA(A) ≃ Jac(Q̃,WA).

There is a generalization of quivers with potentials (Q,W ) to frozen quivers with potentials
(Q,W, F ) in [BIRS09b]. Here F = (F0, F1) is a pair consisting of a subset F0 of vertices of
Q (called frozen vertices) and the subset F1 = {a ∈ Q1, s(a) ∈ F0 and t(a) ∈ F0} of arrows
(called frozen arrows). The associated frozen Jacobian algebra is by definition the algebra

Jac(Q,W, F ) := kQ/〈∂aW, a /∈ F1〉

As for ordinary quivers with potential in [DWZ08], one can define a reduced frozen quiver
with potential (Q,W, F ) by requiring that each term in W has length at least 3 and has at
least one arrow in Q1 \ F1.
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2. A useful triangle

In this section we study the Calabi-Yau property of a frozen Jacobian algebra B, when B
is the endomorphism algebra of a cluster-tilting object in a Frobenius stably 2-Calabi-Yau
category (subsection 2.2). Then we assume that B has a special grading and construct some
algebras A and Ā related to B (subsection 2.3). Using the grading on B and the Calabi-Yau
property we construct a triangle in the category Db(Āop ⊗ B), which will be crucial for the
proof of our main result (subsections 2.4 and 2.5).

2.1. Basic setup. Let E be a Frobenius category which is Hom-finite and stably 2-Calabi-
Yau. While we are mainly interested in the stable category E , it will be important to first
consider a cluster-tilting object T in the Frobenius category E , and its endomorphism algebra
B := EndE(T ). We assume that this algebra B is isomorphic to Jac(Q,W, F ) for some reduced
frozen quiver with potential (Q,W, F ). Notice that the quiver of B is Q since the potential W
is reduced. We also assume the following:

(H1) The vertices in F0 correspond to the isoclasses of projective-injective indecomposables
in the Frobenius category E .

(H2) The set {∂aW, a /∈ F1}, which by definition generates the ideal of relations of the
algebra Jac(Q,W, F ), forms a k-basis for this ideal. In particular, for any a ∈ Q1 \ F1, we have
∂aW 6= 0.

For i ∈ Q0 we denote by ei the primitive idempotent of B associated to i. Denote by eF
the idempotent

∑
i∈F0

ei and consider the factor algebra B̄ := B/BeFB. By (H1) we have an

isomorphism of algebras B̄ ≃ EndE(T ).
Let Q̄ be the full subquiver of Q obtained from Q by deleting the vertices in F0. We then

have a projection kQ // // kQ/kQeFkQ ≃ kQ̄ . We denote by W̄ the image of W under this

projection. It is not hard to see that there is an isomorphism B̄ ≃ Jac(Q̄, W̄ ). Indeed, since
any arrow a in F1 satisfies s(a) ∈ F0 and t(a) ∈ F0, the partial derivative ∂aW̄ vanishes for any
a in F1.

2.2. Calabi-Yau property for B. In this subsection we describe the minimal projective and
injective resolutions of B̄ as B̄-B-bimodule and deduce a Calabi-Yau property linking these
two algebras. We start with giving explicit projective and injective resolutions over B of the
simple B̄-modules.

Lemma 2.1. Let B ≃ Jac(Q,W, F ) be the endomorphism algebra of a cluster-tilting object T
in a Hom-finite Frobenius stably 2-CY category E . Assume that (H1) and (H2) hold. Then for
any i ∈ Q0 \ F0, the sequences

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(a−1(∂bW ))

//
⊕

a,t(a)=i es(a)B
(a)

// eiB // Si
// 0

and

0 // Si
// D(Bei)

(b)
//
⊕

b,s(b)=i D(Bet(b))
((∂aW )b−1)

//
⊕

a,t(a)=i D(Bes(a))
(a)
// D(Bei) // 0

are minimal projective and injective resolutions of the simple B-module Si. When v is a path
in Q, we write a−1v = u if v = au in kQ and a−1v = 0 otherwise.
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Proof. By (H1), if i is not in F0, the corresponding summand Ti of T is not projective-injective.
Hence by Proposition 1.1, there exists a 2-almost split sequence associated with Ti . Moreover,
since the potential W is reduced, then Q is the quiver of EndE(T ). Thus by Proposition 1.2 we
obtain a minimal projective B-resolution of Si

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(rab) //

⊕
a,t(a)=i es(a)B

(a)
// eiB // Si

// 0 ,

where {arab| t(a) = i, s(b) = i} is a basis for the space of relations with target i. By (H2) the
set {∂bW | s(b) = i} is a basis for the same space. Thus a minimal projective resolution of Si

can be written as

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(a−1(∂bW ))

//
⊕

a,t(a)=i es(a)B
(a)

// eiB // Si
// 0

which proves the first claim. The proof is similar for the injective resolution. �

We use Lemma 2.1 to obtain exact sequences of B̄-B-bimodules which permit to get the
functorial minimal projective and injective resolutions of any B̄-module when viewed as a B-
module. This is inspired by [Boc08].

Proposition 2.2. There exist exact sequences in mod (B̄op ⊗B)

(a) 0 //
⊕

i/∈F0
Pi,i //

⊕
a/∈F1

Ps(a),t(a) //
⊕

a/∈F1
Pt(a),s(a) //

⊕
i/∈F0

Pi,i // B̄ // 0

(b) 0 // B̄ //
⊕

i/∈F0
Ii,i //

⊕
a/∈F1

Is(a),t(a) //
⊕

a/∈F1
It(a),s(a) //

⊕
i/∈F0

Ii,i // 0

where Pi,j := B̄ei ⊗ ejB and Ii,j := Homk(Bej , B̄ei) for (i, j) ∈ Q0 ×Q0.

Remark 2.3. For M ∈ mod B̄, if we apply the functor M ⊗B̄ − to the sequence (a) we get
an exact sequence in modB since Pi,j is projective as left B̄-module. This sequence is the
minimal projective resolution of M when viewed as a B-module since Pi,j is projective as right
B-module.

Similarly, if we apply the functor M ⊗B̄ − to the sequence (b) we get an exact sequence in
modB since Ii,j is projective as left B̄-module. This sequence is the minimal injective resolution
of M when viewed as a B-module since Ii,j is injective as right B-module.

Proof. For (i, j) ∈ Q0×Q0 denote by Πi,j the projective B-bimodule Bei⊗ ejB. Then consider
the following sequence

(c)
⊕

i/∈F0
Πi,i

d2 //
⊕

a/∈F1
Πs(a),t(a)

d1 //
⊕

a∈Q1
Πt(a),s(a)

d0 //
⊕

i∈Q0
Πi,i.

where the maps d0, d1 and d2 are defined as follows:

d2(ei ⊗ ei) =
∑

a,t(a)=i a⊗ ei −
∑

b,s(b)=i ei ⊗ b;

d1(es(a) ⊗ et(a)) =
∑

b∈Q1
∂a,bW where ∂a,b(apbq) = p⊗ q ∈ Bet(b) ⊗ es(b)B

for a cycle apbq in Q;
d0(et(a) ⊗ es(a)) = a⊗ es(a) − et(a) ⊗ a.

It is easy to check that this is a complex of B-bimodules, and that Cokerd0 = B. (The map⊕
i∈Q0

Πi,i → B is the multiplication map.)
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Applying the functor B̄ ⊗B −, we get the complex of B̄-B-bimodules

⊕
i/∈F0

Pi,i
d2 //

⊕
a/∈F1

Ps(a),t(a)
d1 //

⊕
a/∈F1

Pt(a),s(a)
d0 //

⊕
i/∈F0

Pi,i.

Indeed, if i ∈ F0, then B̄ei ⊗ eiB = 0, and if a ∈ F1, then B̄et(a) ⊗ es(a)B = 0.
Applying the functor Si ⊗B̄ − with i /∈ F0, we get the complex

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
((∂aW )b−1)

//
⊕

a,t(a)=i es(a)B
(a)

// eiB

which is exactly the minimal projective resolution of Si as B-module described in Lemma 2.1.
Thus the following sequence in mod (B̄op ⊗B) is exact:

0 //
⊕

i/∈F0
Pi,i //

⊕
a/∈F1

Ps(a),t(a)
//
⊕

a/∈F1
Pt(a),s(a)

//
⊕

i/∈F0
Pi,i // B̄ // 0,

so that (a) follows.

We now prove the existence of the sequence (b), where the proof is dual. Let us define the
sequence of B-bimodules

⊕
i∈Q0

Υi,i
d0 //

⊕
a∈Q1

Υs(a),t(a)
d1 //

⊕
a/∈F1

Υt(a),s(a)
d2 //

⊕
i/∈F0

Υi,i

where Υi,j := Homk(Bej , Bei) for (i, j) ∈ Q0 ×Q0. The maps d0, d1, d2 are the following

d0(φi) = (
∑

s(a)=i a⊗ ei −
∑

t(b)=i ei ⊗ b).(φi)

d1(φa) =
∑

b∈Q1
(∂a,bW ).(φa)

d2(φa) = (a⊗ ei − ei ⊗ a).(φa)

where (a⊗ b)(φ)(−) = φ(−a)b. For instance we have

d0(φi)(−) =
∑

s(a)=i

φi(−a)−
∑

t(b)=i

φi(−)b.

The kernel of d0 is B, the bimodule map B →
⊕

Υi,i maps 1B to (1Bei)i. Using the fact that
Sl ⊗B̄ Homk(Bei, B̄ej) ≃ δj,leiDB we get the exact sequence (b). �

We have the following direct consequence (see also [KR07, 5.4,Thm (b)]) which we include
even though it will not be used later in this paper.

Corollary 2.4. There is an isomorphism RHomB(DB, B̄)[3] ≃ B̄ in Db(B̄op ⊗ B).

Proof. Since Ii,j = Homk(Bej , eiB̄) is injective as a right B-module, then using the exact
sequence (b) of Proposition 2.2, we obtain that RHomB(DB, B̄) is isomorphic in Db(B̄op ⊗B)
to the complex

⊕
i/∈F0

Ri,i //
⊕

a/∈F1
Rs(a),t(a)

//
⊕

a/∈F1
Rt(a),s(a)

//
⊕

i/∈F0
Ri,i

where Ri,j is the bimodule HomB(DB, Ii,j). Moreover we have the following isomorphisms

HomB(DB, Ii,j) = HomB(DB,Homk(Bej, B̄ei))
≃ Homk(DBej , B̄ei)
≃ B̄ei ⊗ ejB
= Pi,j

in mod(B̄op ⊗ B). Then the claim follows from the exact sequence (a) of Proposition 2.2.
�
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Remark 2.5. If there exists an algebra B = Jac(Q,W, F ) with F0 = ∅ such that the sequences
in Lemma 2.1 are exact, then we get an isomorphism in D(Bop⊗B) between RHom(DB,B)[3]
and B (since in this case B̄ = B). This means by definition that B is bimodule 3-CY. This
is exactly what Bocklandt proved in [Boc08, Theorem 4.3], namely that a Jacobian algebra
B is bimodule 3-CY if the sequence (c) is exact. In our setup, F0 is never empty since it
corresponds to the projective-injectives. Also the algebra B is not Jacobian in general, and the
Jacobian algebra B̄ is never of global dimension 3 (indeed it is either hereditary or of infinite
global dimension [KR07, section 2 Corollary]). However we have an isomorphism between B̄
and RHomB(DB, B̄)[3] in Db(B̄op ⊗ B).

Remark 2.6. In the next subsections, we will assume that moreover the algebra B has a special
grading that induces an isomorphism RHomB(DB, B̄)[3](−1) ≃ B̄ in Db(gr (B̄op ⊗ B)), where
gr (B̄op ⊗ B) is the category of finite dimensional graded B̄op ⊗ B-modules and where (1) is
the degree-shift in the category of graded B-modules. However, since Proposition 2.2 and
Corollary 2.4 hold without any grading hypothesis, we have separated subsection 2.2 from
subsections 2.3, 2.4 and 2.5.

2.3. Construction of the algebras A and Ā. In order to identify appropriate subalgebras
of B which should give rise to the generalized cluster categories we are looking for, it will
be convenient to introduce some special gradings on the quiver. Assume as before that B =
EndE(T ) is isomorphic to some frozen Jacobian algebra Jac(Q,W, F ). Then we assume that
there exists a degree map ϕ : Q1 → {0, 1} with the following property:

(H3) The potential W is homogeneous of degree 1.

Since the potential is homogeneous, any relation ∂aW is homogeneous. Hence ϕ induces
a grading on B. Define the algebras A and Ā by A := B0 and Ā := A/AeFA. We have
surjective algebra maps: B → A→ Ā. We want to show the following, which is the main result
of the section.

Proposition 2.7. Let E be a Frobenius category which is Hom-finite and stably 2-Calabi-Yau.
We assume that there exists a cluster-tilting object T in E such that its endomorphism algebra
is isomorphic to Jac(Q,W, F ) for some reduced frozen quiver with potential (Q,W, F ). With
the assumptions (H1), (H2) and (H3), there exists a triangle

(∗) RHomA(DA, Ā)
L

⊗A B[2] // Ā
L

⊗A B // Ā // RHomA(DA, Ā)
L

⊗A B[3]

in Db(Āop ⊗ B), where A = B0 and Ā = A/AeFA.

The proof is given in the next subsections. In subsection 2.4 we construct a triangle X →
Y → Ā→ X [1] in Db(Āop⊗B). In subsection 2.5, we show that this triangle is the triangle (∗)
of Proposition 2.7.

2.4. A triangle X → Y → Ā → X [1]. The following is proved the same way as Proposi-
tion 2.2. We describe exact sequences of Ā-B-bimodules, which give the functorial minimal pro-
jective and injective resolutions of the Ā-modules when viewed as B-modules (cf Remark 2.3).

Proposition 2.8. There exist exact sequences in mod (Āop ⊗B)

(a′) 0 //
⊕

i/∈F0
Pi,i

d2 //
⊕

a/∈F1
Ps(a),t(a)

d1 //
⊕

a/∈F1
Pt(a),s(a)

d0 //
⊕

i/∈F0
Pi,i // Ā // 0
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(b′) 0 // Ā //
⊕

i/∈F0
Ii,i //

⊕
a/∈F1

Is(a),t(a) //
⊕

a/∈F1
It(a),s(a) //

⊕
i/∈F0

Ii,i // 0

where Pi,j := Āei ⊗ ejB, Ii,j := Homk(Bej , Āei) and the di are defined as in Proposition 2.2.

Let a ∈ Q1 \ F1 be an arrow with ϕ(a) = 1. By definition d1(es(a) ⊗ et(a)) =
∑

b∈Q1
∂a,bW .

If apbq is a cycle in W , then ∂a,b(apbq) = p⊗ q lies in Āet(b) ⊗ es(b)B. Since the degree of a is
1, and since we have assumed that the potential W is homogeneous of degree 1, then b is of
degree 0. Hence the restriction of d1

⊕
a/∈F1,ϕ(a)=1 Ps(a),t(a) //

⊕
a/∈F1,ϕ(a)=1 Pt(a),s(a)

is zero. Therefore the complex
⊕

i/∈F0
Pi,i //

⊕
a/∈F1

Ps(a),t(a) //
⊕

a/∈F1
Pt(a),s(a) //

⊕
i/∈F0

Pi,i

is isomorphic to the mapping cone of a complex morphism

X :=
⊕

i/∈F0
Pi,i //

��

⊕
a/∈F1,ϕ(a)=0 Ps(a),t(a) //

��

⊕
a/∈F1,ϕ(a)=1 Pt(a),s(a)

��
Y :=

⊕
a/∈F1,ϕ(a)=1 Ps(a),t(a) //

⊕
a/∈F1,ϕ(a)=0 Pt(a),s(a) //

⊕
i/∈F0

Pi,i.

It is not hard to check that all horizontal maps are homogeneous of degree 0, and all vertical
maps are homogeneous of degree 1. Denote by f the map X → Y . By Proposition 2.8 (a′), we

obtain the triangle X
f // Y // Ā // X [1] in D(Āop ⊗ B).

Dually, using the exact sequence (b′) in Proposition 2.8, it is possible to view Ā[1] as the
mapping cone of a morphism g : X ′ → Y ′, where horizontal maps are of degree 0, and vertical
maps are of degree −1.

X ′ :=
⊕

i/∈F0
Ii,i //

��

⊕
a/∈F1,ϕ(a)=0 Is(a),t(a) //

��

⊕
a/∈F1,ϕ(a)=1 It(a),s(a)

��
Y ′ :=

⊕
a/∈F1,ϕ(a)=1 Is(a),t(a) //

⊕
a/∈F1,ϕ(a)=0 It(a),s(a) //

⊕
i/∈F0

Ii,i

.

Thus we get a triangle Ā // X ′
g // Y ′ // Ā[1] in D(Āop ⊗ B).

2.5. Interpretation of X and Y . The aim of this subsection is to construct isomorphisms

Y ≃ Ā
L

⊗A B and X ≃ RHomB(DA, Ā)
L

⊗A B[2] in Db(Āop ⊗ B),

in order to prove Proposition 2.7.
We will first show the following

Lemma 2.9. In the setup of subsection 2.4, we have isomorphisms

Y0 ≃ Ā and X ′
0 ≃ Ā in Db(Āop ⊗ A)

The proof of this result uses the next lemma.
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Lemma 2.10. Let B be a Z-graded algebra. Let (X, dX) and (Y, dY ) be complexes of graded
B-modules such that the differentials dX and dY are homogeneous of degree 0. We denote by
(Xp, dXp) (resp. (Yp, dY p)) the part of degree p of the complex (X, dX) (resp. (Y, dY )). They are
complexes of B0-modules. Let f : X → Y be a morphism homogeneous of degree d, that is the
part fp of degree p of f is a morphism of B0-complexes Xp → Yp+d. Denote by Z = Cone(f) the
mapping cone of f : X → Y . Then for any integers p, q we have an isomorphism of B0-modules:

Hq(Z)p ≃ Hq(Cone(fp−d : Xp−d → Yp)).

Proof. The mapping cone of a morphism f homogeneous of degree d in the category of complexes
of graded modules with differential homogeneous of degree 0 is still a complex of graded modules
with differential homogeneous of degree 0, and we have

Cone(f) ≃
⊕

p∈Z

Cone(fp−d : Xp−d → Yp).

Then one can check the isomorphisms

Hq(Cone(f))p ≃ Hq((Cone(f))p) ≃ Hq(Cone(fp−d)).

�

Proof of Lemma 2.9. Applying Lemma 2.10 to the morphism f : X → Y defined in subsec-
tion 2.4, we get an isomorphism of (Āop ⊗A)-modules (remember that A = B0):

Hq(Cone(f : X → Y ))0 ≃ Hq(Cone(f−1 : X−1 → Y0)).

By the sequence (a′) of Proposition 2.8 the left term is zero unless q is 0, and when q is 0, it
is isomorphic to Ā. Since X is non zero only in positive degrees, the right hand side is just
Hq(Y0). Thus we get an isomorphism Y0 ≃ Ā in Db(Āop ⊗ A).

Using the triangle Ā // X ′
g // Y ′ // Ā[1] similarly, we get an isomorphism X ′

0 ≃ Ā in

D(Āop ⊗ A). �

The complex Y0 is a complex of projective (Āop ⊗ A)-modules. Thus for any Ā-module M ,

M
L

⊗Ā Y0 is a complex of projective A-modules. By Lemma 2.9, it is quasi-isomorphic to M
viewed as an A-module. Hence we have the following.

Corollary 2.11. Any Ā-module has projective dimension at most 2 when viewed as an A-
module.

We can now prove our desired isomorphisms.

Lemma 2.12. For complexes X and Y defined as in subsection 2.3, there are isomorphisms

Y ≃ Ā
L

⊗A B and X ≃ RHomB(DA, Ā)
L

⊗A B[2] in Db(Āop ⊗ B).

For the proof of this lemma, we need some basic results:

Lemma 2.13. Let B be a Z-graded algebra and A := B0. Let P = (P j, d) be a complex of
graded projective B-modules such that the differential d of P is homogeneous of degree 0. Let
P0 be the degree 0 part of P . Then P0 is a complex over A, and we have an isomorphism of
complexes

P ≃ P0 ⊗A B.
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Proof. Let i : A→ B and p : B → A be the canonical algebra maps. We get induced functors:

i∗ = −⊗A B : modA→ modB, and p∗ = −⊗B A : modB → modA

Since B0 ⊗A B ≃ B, then we have P j
0 ⊗A B = i∗ ◦ p∗(P j) ≃ P j since P j is a graded projective

B-module. Hence, since P is a complex of graded projective modules, we get

P0 ⊗A B = (P j
0 ⊗A B, i∗ ◦ p∗(d)).

Since i ◦ p(b) = b if and only if b is of degree 0, we get i∗ ◦ p∗(d) = d. �

Lemma 2.14. The functors (HomB(DB,−))0 and HomA(DA, (−)0) are isomorphic as functors
from injective B-modules to projective A-modules.

Proof. We have HomB(DB,DB)0 ≃ B0 = A and HomA(DA, (DB)0) ≃ HomA(DA,DA) ≃ A.
The rest is easy to check. It is enough to check it on DB, and this is clearly true. �

Proof of Lemma 2.12. Since Y is a complex of projective modules, we can apply Lemmas 2.13
and 2.9 to get an isomorphism

Y ≃ Y0 ⊗A B ≃ Ā
L

⊗A B in D(Āop ⊗ B).

Using the fact that HomB(DB, Ii,j) ≃ Pi,j, we get an isomorphism

RHomB(DB,X ′)[2] ≃ X in D(Āop ⊗ B).

Hence we obtain the following isomorphisms in D(Āop ⊗B)

X ≃ HomB(DB,X ′)[2]
≃ (HomB(DB,X ′))0 ⊗A B[2] by Lemma 2.13
≃ HomA(DA,X ′

0)⊗A B[2] by Lemma 2.14

≃ RHomA(DA, Ā)
L

⊗A B[2] by Lemma 2.9.

�

Proposition 2.7 is a direct consequence of the construction in subsection 2.4 of the triangle

X
f // Y // Ā // X [1] in D(Āop ⊗ B) and of Lemma 2.12.

3. Main Theorem

As in the previous section, E is a Frobenius category which is Hom-finite and stably 2-Calabi-
Yau. We assume that there exists a cluster-tilting object T in E whose endomorphism algebra
is isomorphic to Jac(Q,W, F ) for some reduced frozen quiver with potential (Q,W ) such that
(H1), (H2) and (H3) are satisfied. Under an additional assumption (H4), we show in this section
that the stable category E is triangle equivalent to a generalized cluster category.

3.1. Statement of the main result. In addition to the above assumptions, we assume that
we have the following, where ϕ is the degree map required for (H3):

(H4) If a : i→ j is in Q1 with i /∈ F0 and j ∈ F0 then ϕ(a) = 1.

As before we define the algebras A and Ā as A := B0 ⊂ B and Ā := A/AeFA, where eF is
the idempotent

⊕
i∈F0

ei. The aim of this section is to prove the following.
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Theorem 3.1. Let E be a Frobenius category which is Hom-finite and stably 2-CY. Assume that
there exists a cluster-tilting object T in E such that B := EndE(T ) is isomorphic to some graded
frozen Jacobian algebra Jac(Q,W, F ) which satisfies the conditions (H1)-(H4). Let A := B0 be
the subalgebra of degree 0 of B and Ā := A/AeFA. Then we have the following

(a) The algebra Ā is of global dimension at most 2;
(b) There exists a triangle equivalence CĀ ≃ E , where CĀ is the generalized cluster category

associated to the algebra Ā.

The proof of the theorem is given in the next three subsections. The fact that gl.dimĀ ≤
2 is proved in subsection 3.2, the existence of a triangle functor G : CĀ → E is proved in
subsection 3.3. Finally it is proved that G is an equivalence of triangulated categories in
subsection 3.4.

3.2. Global dimension of Ā. We start with describing the restriction functor R : Db(Ā) // Db(A)

induced by the projection A // Ā = A/AeFA .

Lemma 3.2. Let E , Jac(Q,W, F ), A and Ā be as in Theorem 3.1. Assume that Jac(Q,W, F )
satisfies conditions (H1)-(H4). Then for any i /∈ F0, we have the following:

(a) R(eiDĀ) ≃ eiDA,

(b) R(eiĀ) ≃ (P // Q // eiA) where P and Q are in add (eFA).

(c) The functor R is fully faithful.

Proof. Part (a) follows directly from (H4). By Corollary 2.11 any Ā-module has projective
dimension at most 2 when viewed as an A-module. Then (b) follows from (H4). Part (c)
follows directly. �

Proposition 3.3. Let E , Jac(Q,W, F ) and Ā be as in Theorem 3.1, and assume that Jac(Q,W, F )
satisfies (H1)-(H4). Then the global dimension of Ā is at most 2.

Proof. The complex X ′, defined in subsection 2.4 by

X ′ := (
⊕

i/∈F0
Ii,i //

⊕
a/∈F1,ϕ(a)=0 Is(a),t(a) //

⊕
a/∈F1,ϕ(a)=1 It(a),s(a) ),

is a complex of graded (Āop⊗B)-modules with differential homogeneous of degree 0. The part
X ′

0 of degree 0 is the complex

X ′
0 = (

⊕
i/∈F0

Ji,i //
⊕

a/∈F1,ϕ(a)=0 Js(a),t(a) //
⊕

a/∈F1,ϕ(a)=1 Jt(a),s(a) )

where J(i,j) := (I(i,j))0 = Homk(Bej , Āei)0 ≃ Homk(Aej , Āei). By Lemma 2.9, the complex X ′
0

is quasi-isomorphic to Ā. Hence there exists an exact sequence in mod(Āop ⊗ A)

0 // Ā //
⊕

i/∈F0
Ji,i //

⊕
a/∈F1,ϕ(a)=0 Js(a),t(a) //

⊕
a/∈F1,ϕ(a)=1 Jt(a),s(a) // 0

Since Ji,j is projective as left Ā-module and injective as right A-module, any right Ā-module,
when viewed as an A-module, has injective dimension 2 (cf Remark 2.3). By Lemma 3.2 (a)
the injective Ā-modules are injective when viewed as A-modules. Thus the global dimension of
Ā is at most 2.

�
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3.3. Construction of a triangle functor. Recall that A = B0 is the subalgebra of degree 0
of B = EndE(T ). Thus T has a left A-module structure. Hence we have the following diagram:

Db(Ā)
R

//

πĀ

��

−
L

⊗Ā(Ā
L

⊗AT )

++
Db(A)

−
L

⊗AT

// Db(E)

��
CĀ

G // E .

In this subsection, we prove the existence of a triangle functor G : CĀ → E making the above

diagram commute. This follows from Proposition 1.5 (for M = Ā
L

⊗A T ) together with the
following.

Proposition 3.4. In the setup of Theorem 3.1, there exists a morphism

α : Ā
L

⊗A T // RHomĀ(DĀ, Ā)
L

⊗Ā (Ā
L

⊗A T )[2] in Db(Āop ⊗ E)

whose cone is in Db(Āop ⊗ P), where P is the subcategory of E consisting of the projective-
injectives.

We divide the proof of this result into three lemmas.

Lemma 3.5. There exists an isomorphism

RHomA(DA, Ā)
L

⊗A T [2]
∼ // Ā

L

⊗A T in Db(Āop ⊗ E).

Proof. Applying −
L

⊗B T to the triangle (∗) in Proposition 2.7, we get the following triangle in
D(Āop ⊗ E):

RHomA(DA, Ā)
L

⊗A T [2] // Ā
L

⊗A T // Ā
L

⊗B T // RHomA(DA, Ā)
L

⊗A T [3] .

Using the projective resolution from Lemma 2.1 of the simple B-module Si for i ∈ Q0 \ F0 ,

we conclude that the object Si

L

⊗B T is quasi-isomorphic to the complex

0 // eiB ⊗B T //
⊕

a,s(a)=i et(a)B ⊗B T //
⊕

a,t(a)=i es(a)B ⊗B T // eiB ⊗B T,

which is the 2-almost split sequence associated with Ti

0 // Ti
//
⊕

a,s(a)=i Tt(a) //
⊕

a,t(a)=i Ts(a) // Ti
// 0 .

Hence Si

L

⊗B T is zero in Db(E). Therefore for each M ∈ modB whose support is in Q0 \ F0,

the object M
L

⊗B T is zero in Db(E). Consequently the object Ā
L

⊗B T is zero in D(Āop ⊗ E),
and the morphism

RHomA(DA, Ā)
L

⊗A T [2] // Ā
L

⊗A T

is an isomorphism in Db(Āop ⊗ E).
�
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Lemma 3.6. There exists a morphism

α : RHomA(DA, Ā)
L

⊗A T // RHomA(DA, Ā)
L

⊗A (Ā
L

⊗A T ) in Db(Āop ⊗ E)

whose cone is in Db(Āop ⊗ P).

Proof. Applying the functor RHomA(DA, Ā)
L

⊗A −
L

⊗A T to the exact sequence

AeFA // // A // // A/AeFA = Ā

of A-bimodules, we get the following triangle

RHomA(DA, Ā)
L

⊗A eFT // RHomA(DA, Ā)
L

⊗A T // RHomA(DA, Ā)
L

⊗A (Ā
L

⊗A T ) // .

Since A is finite dimensional and of finite global dimension, RHomA(DA, Ā) is in thick(A), the

thick subcategory of D(A) generated by A. Thus RHomA(DA, Ā)
L

⊗A eFT is in thick(eFT ),
the thick subcategory of D(E) generated by eFT . By (H1), eFT is projective injective, and
therefore it is in P. Hence the cone of the morphism

RHomA(DA, Ā)
L

⊗A T // RHomA(DA, Ā)
L

⊗A (Ā
L

⊗A T )

is in Db(Āop ⊗P). �

Lemma 3.7. There is an isomorphism

RHomA(DA, Ā)
L

⊗A Ā
∼ // RHomĀ(DĀ, Ā) in Db(Āop ⊗A).

Proof. Let Z be an injective resolution of Ā as a right A-module. Then we have

RHomA(DA, Ā)
L

⊗A Ā ≃ HomA(DA,Z)⊗A Ā

using the fact that HomA(DA,Z) is a complex of projectives.
For each A-module M , we define a morphism HM : HomA(DA,M) ⊗A Ā → HomA(DĀ,M)

as follows. Let ϕ be in HomA(DA,M), a ∈ Ā, and Φ ∈ DĀ. We define HM(ϕ ⊗ a)(Φ) :=
ϕ(Φa) ∈ M, where Φa(b) = Φ(ba) for any b ∈ A. The morphism HM is functorial in M . An
easy computation shows that the map HDA is an isomorphism. Since Z is a bounded complex
of injective A-modules, we get the following isomorphism in Db(Āop ⊗A)

RHomA(DA, Ā)
L

⊗A Ā = HomA(DA,Z)⊗A Ā
HZ // HomA(DĀ, Z) = RHomA(DĀ, Ā).

Moreover by Lemma 3.2 any injective resolution of an Ā-moduleX is an injective resolution ofX
viewed as an A-module, and the restriction functor is fully faithful. Thus we get isomorphisms
in Db(Āop ⊗A)

RHomA(DĀ, Ā) = HomA(DĀ, Z) ≃ HomĀ(DĀ, Z) = RHomĀ(DĀ, Ā).

�
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Proof of Proposition 3.4. Combining Lemmas 3.5, 3.6 and 3.7, we get the following morphisms
in Db(Āop ⊗ E)

Ā
L

⊗A T

≀ Lemma 3.5

RHomA(DA, Ā)
L

⊗A T [2]
Lemma 3.6

α // RHomA(DA, Ā)
L

⊗A (Ā
L

⊗A T )[2]

≀ Lemma 3.7

RHomĀ(DĀ, Ā)
L

⊗A T [2]

≀

RHomĀ(DĀ, Ā)
L

⊗Ā (Ā
L

⊗A T )[2]

By Lemma 3.6, the cone of the horizontal morphism is in Db(Āop ⊗ P). Hence we get Propo-
sition 3.4. �

Using Proposition 3.4, we can apply Proposition 1.5 for Λ = Ā and M = Ā
L

⊗A T and we
obtain the following.

Corollary 3.8. In the setup of Theorem 3.1, there exists a triangle functor G : CĀ → E such
that the following diagram commute:

Db(Ā)
R

//

πĀ

��

−
L

⊗Ā(Ā
L

⊗AT )

++
Db(A)

−
L

⊗AT

// Db(E)

��
CĀ

G // E .

3.4. Proof of the equivalence. In this subsection we show that the triangle functor G :
CĀ → E of Corollary 3.8 is an equivalence. The proof is separated into four steps. First we
show that the functor G sends the cluster-tilting object Ā to the cluster-tilting object T ∈ E .
The second step (Proposition 3.10) consists of proving that G induces an injective map from the
endomorphism algebra of Ā ∈ CĀ to the endomorphism algebra of T ∈ E . In Proposition 3.12,
we prove that these two endomorphism algebras are isomorphic. The last step follows from
[KR08] (Proposition 3.13) and finishes the proof of Theorem 3.1.

We have a triangle

AeFA
L

⊗A T // T // Ā
L

⊗A T // AeFA
L

⊗A T [1] in D(Āop ⊗ E)

and the object AeFA
L

⊗A T = eFT is in P. Hence Ā
L

⊗A T is isomorphic to T in E . Therefore
the triangle functor G sends the cluster-tilting object Ā to the cluster-tilting object T .

In order to prove Proposition 3.10 which is the second step, we first prove the following.
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Lemma 3.9. Let M be an object in Db(Ā) such that its homology is concentrated in non
positive degrees, and let f ∈ HomDb(Ā)(Ā,M) be a non zero morphism. Then the morphism

f
L

⊗A T ∈ HomDb(E)(Ā
L

⊗A T,M
L

⊗A T ) is non zero viewed as a morphism in E .

Proof. By Lemma 3.2 (c), the restriction functor Db(Ā) → Db(A) is fully faithful. We first

show that the morphism f
L

⊗A T is non zero as a morphism in Db(E).
Now by Lemma 3.2 (a), Ā is quasi-isomorphic to some complex in Db(A) of the form:

Ā = · · · // 0 // Q−2 // Q−1 // (1− eF )A // 0 // · · ·

with Q−1 and Q−2 in add (eFA). Since M is concentrated in non positive degrees, M is quasi
isomorphic to some bounded complex in Db(A) of the form

M = · · · // 0 // · · · // e−3A // e−2A // e−1A // e0A // 0 // · · ·

Hence f is isomorphic to a morphism of complexes of the form

· · · // 0 //

��

Q−2 //

f−2

��

Q−1

f−1

��

// (1− eF )A //

f0

��

0

��

// · · ·

· · · // e−3A
d−3

// e−2A
d−2

// e−1A
d−1

// e0A // 0 // · · ·

.

Hence f is isomorphic to f ◦ p, where p : (1− eF )A→ Ā is the projective cover. Hence f 0 is a
non zero morphism.

By definition the morphism f 0
L

⊗A T is the morphism of complexes:

· · · // 0 //

��

0 //

��

0

��

// (1− eF )T //

f0⊗AT

��

0

��

// · · ·

· · · // e−3T
d−3

// e−2T
d−2

// e−1T
d−1

// e0T // 0 // · · ·

Note that f 0
L

⊗A T = f 0 ⊗A T since (1 − eF )A and e0A are projective A-modules. In this
diagram, the maps di and f 0⊗A T are morphisms of degree 0, since they come from morphisms
in add (A).

Denote by P := · · · // P−2 // P−1 // P 0 a projective resolution in E of the object

(1 − eF )T and denote by p′ the map p′ : P → (1 − eF )T . Note that the P i are also injective

since E is a Frobenius category. Assume that the morphism f 0
L

⊗A T vanishes in Db(E). It
implies that the morphism (f 0 ⊗A T ) ◦ p′ is homotopic to zero.

· · · // P−3 //

��

P−2

��





























//

��

P−1 //

��

��





























P 0 //

p′

��

����
��

��
��

��
��

��
��

��
0 //

��

· · ·

· · · // 0 //

��

0 //

��

0

��

// (1− eF )T //

f0⊗AT

��
x

yy

0

��

// · · ·

· · · // e−3T
d−3

// e−2T
d−2

// e−1T
d−1

// e0T // 0 // · · ·

Since the complex M
L

⊗A T is quasi isomorphic to a bounded complex with components in
add (T ), an easy induction shows that the map f 0 ⊗A T = d−1x is homotopic to zero. Since
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f 0⊗A T and d−1 are homogeneous of degree 0, then we can assume that x : (1− eF )T → e−1T
is homogenous of degree 0. Therefore x can be written y ⊗A T for a map y ∈ HomDb(A)((1 −
eF )A, e0A). Therefore f 0 = d−1y is homotopic to zero, hence f 0 vanishes as a map in Db(A).

Consequently, if f 0 is not zero in DbA, then the map f
L

⊗A T is not zero in Db(E), since

f 0
L

⊗A T = (f
L

⊗A T ) ◦ (p
L

⊗A T ).

Assume now that f
L

⊗A T is zero in E . Since p
L

⊗A T : (1− eF )T → Ā
L

⊗A T is an isomorphism

in E , then f
L

⊗A T vanishes in E if and only if f 0
L

⊗A T vanishes in E . Thus f 0
L

⊗A T factors
through an object P in Db(P). For i ∈ Z we denote by P≥i and P≤i the positive and negative
truncations

P≥i := · · · 0 // P i // P i+1 // P i+2 // . . . P≤i := · · · // P i−2 // P i−1 // P i // 0 · · · .

For any i ∈ Z the object P i is projective and injective, thus the complex P and all its truncations
are fibrant and cofibrant. Therefore the space HomDb(E)((1 − eF )T, P

≤−1) vanishes because

(1 − eF )T is concentrated in degree 0. And the space HomDb(E)(P
≥1,M

L

⊗A T ) vanishes since

M (hence M
L

⊗A T ) is concentrated in non positive degrees. Consequently we can assume

that P = P 0 is a stalk complex with P ∈ add (eFT ) = P. We write f 0
L

⊗A T = g ◦ h

with g ∈ HomDb(E)(P
0, e0T ) and h ∈ HomDb(E)((1 − eF )T, P

0). Now by definition f 0
L

⊗A T ∈
HomDb(E)((1−eF )T, e0T ) is of degree 0. By hypothesis (H4), the morphism h is in non negative
degrees. Since B = EndDb(E)(T ) is only in positive degree we get a contradiction.

�

Using this fundamental lemma, we can prove the following.

Proposition 3.10. The functor G constructed in subsection 3.3 induces an injective map

EndCĀ(Ā)
// EndE(T ).

Proof. The two algebras EndCĀ(Ā) =
⊕

i≥0 HomDb(Ā)(Ā, S
−iĀ[2i]) and B̄ = EndE(T ) are graded

algebras. The first part of the proof consists of showing that the functor G : Db(Ā)→ E , which

sends Ā ∈ CĀ to T ∈ E , induces a morphism of graded algebras EndCĀ(Ā)
// EndE(T ) and

then that this morphism is injective using Lemma 3.9.

Let i ≥ 0 and f i ∈ HomDb(Ā)(Ā, S
−iĀ[2i]) be a non zero morphism. We define θ̄p for p ≥ 0 by

induction by θ̄1 = θ̄ = RHomĀ(DĀ, Ā)[2] = S
−1
2 A[2] and θ̄p := θ̄

L

⊗Āθ̄
p−1. Hence θ̄p = S

−p(Ā)[2p]
and f i is a non zero map in HomDb(Ā)(Ā, θ̄

i).
We first show that the triangle of Proposition 2.7 is in fact a triangle

RHomA(DA, Ā)
L

⊗A B(−1)[2]
//
Ā

L

⊗A B
// Ā //

RHomA(DA, Ā)
L

⊗A B(−1)[3]

in the category Db(gr (Ā ⊗ B)), where (1) is the degree shift of the graded algebra B. Indeed
the map f : X → Y constructed in subsection 2.4 is homogeneous of degree 1. Therefore by
Lemma 3.5, we obtain an isomorphism

Ā
L

⊗A B(1)
L

⊗B T ≃ RHomA(DA, Ā)
L

⊗A T [2].
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Since the maps constructed in Lemmas 3.6 and 3.7 come from maps in Db(A) they are of degree
0. Consequently the triangle of Proposition 2.7 is a triangle

RHomA(DA, Ā)
L

⊗A B(−1)[2]
//
Ā

L

⊗A B
// Ā //

RHomA(DA, Ā)
L

⊗A B(−1)[3]

in Db(gr (Ā ⊗ B)). Hence by Proposition 3.4 we get a map α : Ā
L

⊗A B(1)
L

⊗B T → θ̄
L

⊗A T in
Db(Āop ⊗ E) whose cone is in Db(P). We denote by αi the composition:

αi : Ā
L

⊗A B(i)
L

⊗B T
α //

θ̄
L

⊗A B(i− 1)
L

⊗B T
θ̄0

L

⊗Āα
//
θ̄2

L

⊗A B(i− 2)
L

⊗B T
// · · · //

θ̄i
L

⊗A T.

The image of f i
L

⊗AT in E is isomorphic (as a morphism in E) to the left fraction (αi)−1◦(f i
L

⊗AT ):

Ā
L

⊗A T

f i
L

⊗AT $$H
HHHHHHHH

Ā
L

⊗A B(i)
L

⊗B T

αixxppppppppppp

θ̄i
L

⊗A T

Thus the image of f i
L

⊗A T in E is a map of degree i and G induces a morphism of graded

algebras EndCĀ(Ā)
// EndE(T )

The functor −
L

⊗A T : DbĀ → E induces a map HomDb(Ā)(Ā, θ̄
i) → B̄. Since the object

θ̄i ∈ Db(Ā) has its homology concentrated in non positive degrees, this map is injective by

Lemma 3.9. By the remark above, if f i ∈ HomDbĀ(Ā, θ̄
i), then f i

L

⊗A T is a morphism of degree
i in the graded algebra EndE(T ) = B̄. Hence there is an injective map HomDb(Ā)(Ā, θ̄

i) → B̄i,

where B̄i is the degree i part of the graded algebra B̄ = EndE(T ). Therefore the functor
G : CĀ → E induces a morphism of graded algebras

⊕

i≥0

HomDb(Ā)(Ā, S
−iĀ[2i]) =

⊕

i≥0

HomDb(Ā)(Ā, θ̄
i) −→ B̄ =

⊕

i≥0

B̄i,

which is an injection HomDb(Ā)(Ā, θ̄
i) → B̄i for any i ≥ 0. Consequently it is an injective

algebra morphism.
�

The next result will be used in the proof of Proposition 3.12 which is the third step.

Lemma 3.11. Let Jac(Q,W, F ) be a frozen Jacobian algebra with W reduced. Assume there
is a grading ϕ : Q1 → {0, 1} satisfying the hypotheses (H2), (H3) and (H4). We denote by
Q̄ the full subquiver of Q with set of vertices Q̄0 := Q0 \ F0, and by W̄ the image of W under
the projection kQ→ kQ̄. Then the set {∂aW̄ , ϕ(a) = 1} is linearly independent. In particular,
∂aW̄ does not vanish for a in Q̄1 with ϕ(a) = 1.

Proof. Let a ∈ Q̄1 be an arrow with ϕ(a) = 1. By condition (H3) the potential W̄ is homoge-
neous of degree 1, and by assumption the degree map ϕ has non-negative values. Thus any term
in the potential W̄ contains exactly one arrow of degree 1. Consequently a cycle containing
a which is a summand of W does not contain any other arrow of degree 1. Then by (H4) it
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follows that this cycle does not pass through vertices in F0. Therefore we have ∂aW = ∂aW̄ .
Now by (H2) the set {∂aW,ϕ(a) = 1} is linearly independent, therefore we get the result. �

Proposition 3.12. Under the assumptions (H1)-(H4) there is an isomorphism of algebras

EndE(T ) ≃ EndCĀ(Ā).

Proof. The algebra B̄ = B/BeFB is isomorphic to the Jacobian algebra Jac(Q̄, W̄ ) (cf sec-
tion 2), where Q̄ is the full subquiver of Q whose vertices are not in F0 and where W̄ is the

image of W under the projection kQ // // kQ/kQeFkQ ≃ kQ̄ .

Let Q′ be the subquiver of Q defined by:

• Q′
0 := Q0;

• Q′
1 := {a ∈ Q1, ϕ(a) = 0}.

By definition we have A ≃ kQ′/〈∂aW, a /∈ F1 and ϕ(a) = 1〉. Let Q̄′ be the full subquiver of
Q′ with vertices Q̄′

0 = Q′
0 \ F0. Thus we get Ā ≃ kQ̄′/〈∂aW̄ , ϕ(a) = 1〉.

By Theorem 1.7, the endomorphism algebra EndCĀ(Ā) is isomorphic to the Jacobian algebra

Jac(˜̄Q′,WĀ) where ˜̄Q′ and WĀ are defined in Theorem 1.7. By the previous lemma, the set
{∂aW̄ , ϕ(a) = 1} is a basis for the ideal of relations of Ā. Hence we immediately see that
˜̄Q′ = Q̄ and that WĀ is the potential

WĀ =
∑

a,ϕ(a)=1

a∂aW̄ .

Therefore the potential W̄ is cyclically equivalent to the potential WĀ. Thus we have an

isomorphism Jac(˜̄Q′,WĀ) ≃ Jac(Q̄, W̄ ) which gives the desired isomorphism.
�

Now we finish the proof of Theorem 3.1. The triangle functor G : CĀ → E constructed in
subsection 3.3 sends the cluster-tilting object Ā ∈ CĀ to the cluster-tilting object T ∈ E . By
Proposition 3.10, it induces an injective map EndCĀ(Ā) → EndE(T ). These two algebras are
finite dimensional algebras which are isomorphic by Proposition 3.12. Therefore G induces a
bijection EndCĀ(Ā) ≃ EndE(T ). Then we conclude the proof of Theorem 3.1 using the following.

Proposition 3.13 ([KR08] Lemma 4.5). Let C and C′ be Hom-finite 2-Calabi-Yau triangulated
categories. Let T (resp. T ′) be a cluster-tilting object in C (resp. C′). If we have a triangle
functor G : C → C′ which sends T to T ′ and which induces an isomorphism between EndC(T )
and EndC′(T ′), then G is an equivalence.

4. 2-Calabi-Yau categories associated with elements in the Coxeter group

In this section we apply Theorem 3.1 to the categories associated with elements in the Coxeter
group introduced in [BIRS09a].

4.1. Results of [BIRS09a] and [BIRS09b]. Let Q be a finite quiver without oriented cycles.
We denote as usual by Q0 = {1, . . . , n} the set of vertices and by Q1 the set of arrows. The
preprojective algebra associated to Q is the algebra

kQ/〈
∑

a∈Q1

aa∗ − a∗a〉
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where Q is the double quiver of Q, which by definition is obtained from Q by adding to each
arrow a : i→ j in Q1 an arrow a∗ : i ← j pointing in the opposite direction. We denote by Λ
the completion of the preprojective algebra associated to Q, and by f.l.Λ the category of right
Λ-modules of finite length.

Let CQ be the Coxeter group associated to Q. It is defined by the generators si where i ∈ Q0

and by the relations

• s2i = 1,
• sisj = sjsi if there is no arrow between i and j,
• sisjsi = sjsisj if there is exactly one arrow between i and j.

A reduced expression w = su1
. . . sul

of an element w in CQ is an expression with l smallest
possible. When w = su1

. . . sul
is a reduced expression of w, the integer l(w) := l is called the

length of w.
For a vertex i in Q0 we denote by Ii the ideal Λ(1 − ei)Λ. Let w = su1

. . . sul
be a reduced

expression of an element w in CQ. For p ≤ l we denote by Iwp
the ideal Iup

Iup−1
. . .Iu1

.
The ideal Iw := Iwl

depends only on the element w ∈ CQ and not on the choice of the
reduced expression w. Therefore we denote by Λw the algebra Λ/Iw and by Ew := SubΛw the
subcategory of f.l.Λ consisting of submodules of finite direct sums of copies of Λw.

We have the following [BIRS09a, Theorem III.2.8].

Theorem 4.1 (Buan-Iyama-Reiten-Scott). Let w be an element in the Coxeter group CQ. Then
we have the following.

(a) The category Ew is a Hom-finite Frobenius stably 2-CY category.

(b) For any reduced expression w = su1
. . . sul

of w, the object Tw =
⊕l

p=1 eup
(Λ/Iwp

) is a
cluster-tilting object.

(c) The projective-injective indecomposable objects are euti
(Λ/Iwti

) where ti is the maximal
integer such that uti = i for i ∈ Q0.

The cluster-tilting object Tw depends on the choice of the reduced expression of w. We refer
to a cluster-tilting object of this form as a standard cluster-tilting object. Note that by mutation
we may get other cluster-tilting objects which are not standard.

We now define a quiver Qw associated with a reduced expression w = su1
. . . sul

of an element
w ∈ CQ as follows:

• vertices: 1, . . . , l(w).
• for each i ∈ Q0, one arrow t ← s if t and s are two consecutive vertices of type i (i.e.
us = ut = i) and t < s (we call these arrows arrows going to the left);
• for each a : i→ j ∈ Q1, put a : t→ s if t is a vertex of type i, s of type j, and if there is
no vertex of type i between t and s, and if s is the last vertex of type j before the next
vertex of type i in the expression w = su1

. . . sul
(we call these arrows the Q-arrows)

• for each a : i→ j ∈ Q1, put a
∗ : t→ s if t is of type j, s is of type i, if there is no vertex

of type j between t and s and if s is the last vertex of type i before the next vertex of
type j in the expression w (we call these arrows the Q∗-arrows).

For each Q-arrow a : t → s in Qw, we denote by Wa the composition aa∗p if there is a
(unique) Q∗-arrow a∗ : r → t in Qw where ur = us and where p is the composition of arrows
going to the left r ← · · · ← s. Otherwise we put Wa = 0. For each Q∗-arrow a∗ : t → r
in Qw, we denote by Wa∗ the composition a∗ap if there exists a (unique) Q-arrow a : s → t
with us = ur in Qw and where p is the composition of arrows going to the left s ← · · · ← r.
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Otherwise we put Wa∗ = 0. Then let Ww be the sum

Ww =
∑

a Q-arrow

Wa −
∑

a∗ Q∗-arrow

Wa∗ .

We have the following [BIRS09b, Theorem 6.8].

Theorem 4.2 (Buan-Iyama-Reiten-Smith). Let w = su1
. . . sul

be a reduced expression of an
element w of the Coxeter group CQ. Let Tw be the associated standard cluster-tilting object in
the category Ew. Then we have an isomorphism

EndEw(Tw) ≃ Jac(Qw,Ww, F )

where F0 := {t1, . . . , tn} consists of the last vertex of each kind in the reduced expression w and
F1 := {a ∈ Q1, s(a) ∈ F0 and t(a) ∈ F0}.

4.2. Definition of the grading. The algebra Λ and the associated Coxeter group do not
depend on the orientation of Q. For any reduced expression w = su1

. . . sul
of w ∈ CQ, the

category Ew and the cluster-tilting object Tw do not depend on the orientation of Q. From
now on we assume that the orientation of Q satisfies the property that ti < tj if there exists an
arrow i→ j, where ti is the maximal integer satisfying uti = i.

We define a grading on the quiver Qw as follows:

• ϕ(b) = 1 if b is a Q∗-arrow;
• ϕ(b) = 0 if b is a Q-arrow or an arrow going to the left.

With this choice of grading we show that our axioms are satisfied.

Lemma 4.3. The graded Jacobian algebra (Jac(Qw,Ww, F ), ϕ) satisfies the conditions (H1)-
(H4) of Theorem 3.1.

Proof. (H1) This holds by Theorems 4.1 and 4.2.

(H2) The potential Ww = W is reduced. Moreover it is easy to see that two different terms
of the potential W differ by at least two arrows. It follows that the set {∂aW | a /∈ F1, ∂aW 6= 0}
is a basis for the ideal of relations. We next show that for any arrow a /∈ F1, the derivative
∂aW does not vanish. Assume that some Q-arrow or Q∗-arrow a : r → s does not appear in the
potential, where ur = i, us = j and there is an arrow between i and j in the quiver Q. Then
there is no ut of type i with t > r. Thus we have r = ti. Then we must have s = tj. Therefore
a : r = ti → s = tj is in F1. Now let p : r ← s be an arrow going to the left, where r and s
are two consecutive vertices of type i. Since the expression su1

. . . sul
is reduced, there exists t

with r < t < s such that ut is of type j and there is (at least) one arrow between i and j in the
quiver Q. Let t be the maximal integer with this property. Then there is an arrow a : r → t,
and there is also an arrow a∗ : t → v where v ≥ s and uv is of type i. Thus p appears in the
potential W . Therefore for any arrow a of Qw which is not in F1, the derivative ∂aW is not
zero, and we have (H2).

(H3) By the definition of the potential in Theorem 4.2, this follows immediately.

(H4) By the choice of the orientation of Q, any arrow in F1 is a Q-arrow, hence of degree
0. Thus all arrows with target in F0 and source not in F0 are Q

∗-arrows, hence of degree 1, and
all arrows with source in F0 and target not in F0 are arrows going to the left, hence of degree
0. This implies condition (H4).

�

The following direct consequence is one of our main results.
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Theorem 4.4. The stable category Ew is a generalized cluster category.

4.3. Meaning of the grading. We show that the grading ϕ on EndEw(T ) defined in the
previous subsection is induced by a natural grading on the preprojective algebra.

Let w = su1
. . . sul

be a reduced expression of an element w of the Coxeter group CQ. Assume
that the orientation of Q satisfies the property that ti < tj if there exists an arrow i→ j, where
ti is the maximal integer satisfying uti = i.

We define a grading on the double quiver Q as follows:

• deg(a) = 0 if a is an arrow of Q;
• deg(a∗) = 1 if a∗ : j → i is an arrow pointing in the opposite direction of an arrow
a : i→ j in Q.

The ideal of relations (
∑

a∈Q1
aa∗ − a∗a) is homogeneous of degree 1, thus the grading on the

double quiver Q induces a grading on the preprojective algebra Λ.
For any i in Q0, the Λ-module eiΛ can be seen as a graded Λ-module with top in degree 0.

Then the ideal Ii = Λ(1−ei)Λ is a graded ideal. Hence for p ≤ l the ideal Iwp
= Iup

. . .Iu1
is a

graded ideal and the module Tp = eup
(Λ/Iwp

) is a finite length graded Λ-module. Therefore the
standard cluster-tilting object Tw = T1⊕· · ·⊕Tl is a graded Λ-module. Thus its endomorphism
algebra EndΛ(Tw) is naturally graded. We have the following connection with the previous
grading.

Proposition 4.5. The isomorphism of algebras EndΛ(Tw) ≃ Jac(Qw,Ww, F ) of Theorem 4.2
is an isomorphism of graded algebras

(EndΛ(Tw), deg) ≃ (Jac(Qw,Ww, F ), ϕ)

where deg is induced by the grading deg on the preprojective algebra Λ, and ϕ is the grading on
Qw defined in the previous section.

Proof. Each a : i→ j in Q1 gives maps ei(Λ/Iwr
)→ ej(Λ/Iws

), where ur = i and us = j. These
maps are obviously of degree 0 since they are induced by the degree zero map a : eiΛ→ ejΛ.

Each a : i → j in Q induces maps ej(Λ/Iwt
) → ei(Λ/Iws

), where ut = j and us = i. They
are induced by the degree 1 map a∗ : ejΛ→ eiΛ, thus they are maps of degree 1.

For any i in Q0, there are surjective maps ei(Λ/Iwt
) → ei(Λ/Iwr

), where ut = ur = i and
t > r. They are induced by the identity eiΛ→ eiΛ, thus they are maps of degree 0.

Hence we get the grading ϕ defined in the previous section. �

Remark 4.6. Note that the summands of Λw are all graded Λ-modules, but this does not imply
that all the objects in Ew are gradable. In the proof of [GS05, Proposition 5.2], Geiss and
Schröer describe explicitly a non gradable module over the preprojective algebra associated to
the Dynkin graph A6.

5. Examples

In this section we illustrate the previous theory through two examples. The first one is an
example covered by Theorem 4.2. It is given by a standard cluster-tilting object in the category
Ew for some reduced word w. The second example shows that Theorem 3.1 may also apply for
cluster-tilting objects in Ew which are not standard.
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5.1. Standard cluster-tilting object associated to a reduced word. Let Q be the fol-
lowing graph

2
KKK

K

1
tttt

3.

Let w be the reduced word s1s2s3s1s3s2s1 in the Coxeter group CQ. An admissible orientation
of Q as defined in section 4.2 is

2 ee aKKK
K

1 oo cyy
b tttt

3.

Let us put the following grading for the preprojective algebra Λ.

2
1

??
?

��?
??

?
0
���

����
��

1 1 //

1���

@@����

3.0oo
0???

__????

Then the canonical cluster-tilting object Tw of the Frobenius category Ew has the following
indecomposable summands:

T1 = 1 , T2 = 2
1 , T3 =

3
1 2

1
, T4 =

1
2 3
1 2

1
,

T5 =
3

1 2
2 1

, T6 =
2

3 1
1 2 3

2 1 2
1

and T7 =
1

2 3
3 1 2

1 2 1
2

The indecomposable projective injectives are T5, T6 and T7. As Λ0-module (=kQ-module) T6

is isomorphic to the direct sum 2
3 ⊕

1
2 ⊕

1
2 3 ⊕ 1 ⊕ 2 ⊕ 1 .

By [BIRS09a] and [BIRS09b], we know the shape of the quiver of B = EndEw(T ). Its grading
coming from the grading of Λ is the following.

T2

0
PPPPP

''PPPPP

1

++

T60oo

0
AA

  AA

T1

1}}

>>}}

1
PPPPP

''PPPPP

T40oo

1nnnnn

77nnnnn

1
AA

  AA

T70oo

T3

0}}

>>}}

T50oo

0������

GG����

0nnnnn

77nnnnn

The algebra A = B0 is then given by the quiver with relations.

2

&&NNNNNNNNNN _ Y R
H

;
1

*

6oo

��=
==

==

1 ` c w
+

7

` _ U
0
%

4oo

ppppp

=
=

= 7oo

3

@@�����
5oo

HH����������

88pppppppppp

The indecomposable projective A-modules are

1
4
7
, 2

6 ,
3
5 ,

4
3 7 2
5 6

, 5 , 6
5 , and

7
6 5

5

and the indecomposable injectives are
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1 , 4
2 ,

4
3 ,

1
4 ,

4 7
3 7 6

5
,

4
7 2
6

, and
1
4
7

The algebra Ā is given by the quiver with relations:

2

��=
==

==

1 ` c w
+

7

^ [ G
�

�

4oo

3

@@�����

It is an algebra of global dimension 2. We have EndCĀ(Ā) ≃ Jac(Q̄w, W̄w) where

Q̄w := 2
b

��=
==

==

1

a
@@�����

c

��=
==

==
4

eoo

3

d
@@�����

and W̄w := bae + dce. It is isomorphic to the algebra B̄.
We denote by G the composition

G : Db(Ā)
Res // Db(A)

−
L

⊗AB // Db(B)
−

L

⊗BT // Db(Ew) // Db(Ew)/D
b(P) ≃ Ew.

Let S2 be the simple Ā-module associated to the vertex 2. We will show that G(S2) and
G ◦ S−1(S2)[2] are isomorphic as objects in Ew, where S denotes the Serre functor of DbĀ.

The restriction of S2 in the category Db(A) is quasi-isomorphic to the complex

· · · // 0 // e5A // e6A // e2A // 0 // · · ·

Tensoring with B over A we get the complex

· · · // 0 // e5B // e6B // e2B // 0 // · · · .

Therefore G(S2) is the complex

G(S2) = (T5
// T6

// T2) .

Now the simple Ā-module S2 is quasi-isomorphic in Db(Ā) to the complex

· · · // 0 // e2(DĀ) // e4(DĀ) // e1(DĀ) // 0 // · · ·

Hence the restriction of S2

L

⊗Ā RHomĀ(DĀ, Ā)[2] = S
−1(S2)[2] in D

bA is isomorphic to

· · · // 0 // 2 // 4
2 3

// 1
4

// 0 // · · ·

which is quasi-isomorphic to the complex

· · · // 0 // 5 ⊕ 2
6

// 4
3 7 2
5 6

// 14
7

// 0 // · · ·

that is, to the complex

· · · // 0 // e5A⊕ e2A // e4A // e1A // 0 // · · ·
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Therefore the object G(S−1S2[2]) is the complex

G(S−1S2[2]) = (T5 ⊕ T2
// T4

// T1) .

Now the simple Ā-module S2 is also quasi-isomorphic to the complex

· · · // 0 // e2(DA) // e4(DA) // e1(DA) // 0 // · · ·

Hence the complex S2

L

⊗Ā RHomA(DA, Ā)
L

⊗A B[2] ≃ RHomA(DA, S2)
L

⊗A B[2] is the complex

· · · // 0 // e2B // e4B // e1B // · · · .

We have a morphism in the category Db(B):

· · · // 0 //

��

e2B //

��

e4B //

��

e1B //

��

· · ·

· · · // 0 // e5B // e6B // e2B // · · ·

whose cone is

· · · // 0 // e2B // e5B ⊕ e4B // e6B ⊕ e1B // e2B // 0 // · · · .

An easy computation shows that it is quasi-isomorphic to the simple B-module S2. Hence we
get the following triangle in Db(B):

S2

L

⊗Ā RHomA(DA, Ā)
L

⊗A B[2]
//
S2

L

⊗A B
// S2

//
S2

L

⊗A RHomA(DA, Ā)
L

⊗Ā B[3] .

Note that this triangle is nothing but S2

L

⊗Ā (∗) where (∗) is the triangle defined in Proposi-

tion 2.7. The object S2

L

⊗B T in Db(Ew) is then the complex

· · · // 0 // T2
// T5 ⊕ T4

// T6 ⊕ T1
// T2

// 0 // · · · .

A direct computation shows that it is acyclic. Indeed it is the 2-almost split sequence associated
with T2. Finally we have morphisms

(T2 → T4 → T1)
(ii)

,,YYYYYYYYYYYY(i)

rreeeeeeeeeeee

G(S2) = (T5 → T6 → T2)

��

(T5 ⊕ T2 → T4 → T1) = G(S−1S2[2])

��
0 ≃ (T2 → T5 ⊕ T4 → T1 ⊕ T6 → T2) (T5) ∈ D

b(P)

The cone of the morphism (i) is acyclic, and the cone of the morphism (ii) is T5[−2], which is
perfect. Thus in Ew = Db(Ew)/D

b(P), the objects G(S2) and G(S−1S2[2]) are isomorphic.

5.2. Example which is not associated with a word. Let E be the category modΛ where Λ
is the preprojective algebra of type A3, which is one of the cases investigated by Geiss, Leclerc
and Schröer in [GLS06]. This is a Frobenius category which is stably 2-Calabi-Yau and of the
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form Ew where w is the element in the Coxeter group of maximal length. Corresponding to the
reduced expression s1s2s3s1s2s1 is the standard cluster-tilting object:

T3 =
3
2
1

$$H
HHHH

T2 = 2
1

<<yyyyyy

""E
EE

EE
EE

T5 =
2

1 3
2

oo

$$H
HHHH

T1 = 1

<<yyyyyyy
T4 = 1

2
oo

::vvvvvvv
T6 =

1
2
3

oo

The endomorphism algebra is a frozen Jacobian algebra.
Let us mutate the object T2 = 2

1 . Its complement is T ∗
2 = 3 1

2 . The new cluster-tilting
object T ∗ is given by

T3 =
3
2
1

zzvvv
vvv

v

T ∗
2 = 3 1

2

zzvvvvvvvv
// T5 =

2
1 3
2

ddHHHHH

$$H
HHHH

T1 = 1

44

T4 = 1
2

ddHHHHHHHH

T6 =
1
2
3

oo

One can easily check that the endomorphism algebra is isomorphic to the frozen Jacobian
algebra B = Jac(Q,W, F ), where

3

b
0
��

����

Q := 2

c0
��

����

d
1 // 5

e
0<<

]]<<

f
0

<<

��<
<

1

a 1

11

4
h
0<<

]]<<

6g
0oo

,

W := acb+ dbe+ dhgf , F0 := {3, 5, 6} and F1 := {e, f}.
If we put ϕ(a) = ϕ(d) = 1 and ϕ(b) = ϕ(c) = ϕ(e) = ϕ(f) = ϕ(h) = 0, we obtain a grading

satisfying hypothesis (H1)-(H4) of Theorem 3.1. The algebra A is then given by the quiver

3

b����
��

�

2

c����
��

�
_____ 5

e

^^=====

f

��=
==

==

1
�
�



�
u

k d

4
h

^^=====

6g
oo

with relations cb = 0 and be = hgf . The algebra Ā is the hereditary algebra with quiver

1 2c
oo 4

h
oo .
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One can check that the image of S2 under the functor G : Db(Ā)
Res // Db(A)

−
L

⊗AT ∗

// Db(E) is

(T5

( e
fg ) // T4 ⊕ T3

( b h )
// T ∗

2 ).

The object S
−1(S2)[2] is quasi-isomorphic to the complex 2

4
// 12
4
, thus its restriction in

Db(A) is quasi-isomorphic to the complex

· · · // 0 // e3A
b // e2A

c // e1A // 0 // · · · .

Hence the complex G(S−1S2[2]) is

· · · // 0 // T3
b // T ∗

2
c // T1

// 0 // · · · .

We have morphisms in Db(E)

(T ∗
2 → T1)

(i)

tthhhhhhhhhhhhhhhhhhh
(ii)

**UUUUUUUUUUUUUUUUU

G(S2) = (T5 → T4 ⊕ T3 → T ∗
2 )

��

(T3 → T ∗
2 → T1) = G ◦ S(S2)[2]

��
0 ≃ (T ∗

2 → T1 ⊕ T5 → T3 ⊕ T4 → T ∗
2 ) (T3) ∈ D

b(P)

The cone of the morphism (i) is

T ∗
2

( cd )// T1 ⊕ T5

( a e
0 fg )// T3 ⊕ T4

( b h )
// T ∗

2

which is the 2-almost-split sequence associated to T ∗
2 , hence an acyclic complex. The cone of

the morphism (ii) is T3[−2], which is perfect. Thus in Db(E)/Db(P) the objects G(S2) and
G(S−1S2[2]) are isomorphic.

This example gives some hope that Theorem 3.1 can be applied to stably 2-CY categories
other than those coming from an element of a Coxeter group.
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(1987), no. 6, 225–228.
[MRZ03] R. Marsh, M. Reineke, and A. Zelevinsky, Generalized associahedra via quiver representations, Trans.

Amer. Math. Soc. 355 (2003), no. 10, 4171–4186 (electronic).
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