THE UBIQUITY OF GENERALIZED CLUSTER CATEGORIES
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ABSTRACT. Associated with a finite dimensional algebra of global dimension at most 2, a
generalized cluster category was introduced in . It was shown to be triangulated, and 2-
Calabi-Yau when it is Hom-finite. By definition, the cluster categories of [ are a special
case. In this paper we show that a large class of 2-Calabi-Yau triangulated categories, including
those associated with elements in Coxeter groups from , are triangle equivalent to
generalized cluster categories. This was already shown for some special elements in [[Ami0f]
and then more generally for c-sortable elements in .
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INTRODUCTION

Throughout this paper k is an algebraically closed field. Let ) be a finite quiver without
oriented cycles. In [BMRT0@], the cluster category Co was defined to be the orbit category
DP(kQ)/77[1], where 7 is the Auslander-Reiten translation in the bounded derived category
DP(kQ). The category Cq is Hom-finite, triangulated [Kel0F|, and 2-Calabi-Yau (2-CY for
short), that is, there is a functorial isomorphism DHome, (X,Y) ~ Home, (Y, X[2]), where
D = Homy(—, k). A theory for a special kind of objects, called cluster-tilting objects, was
developed in [BMRT06]. This work was motivated via [MRZ03] by the Fomin-Zelevinsky theory
of cluster algebras [FZ02], where the cluster-tilting objects are the analogs of clusters.

Another category where a similar theory was developed is the category mod A of finite dimen-
sional modules over a preprojective algebra A of Dynkin type [[GLS0M, [GLS074]. This category
is Hom-finite and Frobenius. Moreover, it is stably 2-CY, that is, its stable category mod A
(which is triangulated) is 2-CY.

Much of the work on cluster categories from [BMRT06, BMRO7, BMRO§] has been generalized
to the setting of 2-CY triangulated categories with cluster-tilting objects, and new results have
been proved in the general setting ( [[Y0§, [KR0§, [KRO7, and others). It is of interest to
investigate such categories, both for developing new theory and for providing applications to
new classes of cluster algebras. In particular, it is of interest to find classes of 2-CY triangulated
categories with cluster-tilting objects. An important class is the stable categories £, of the
Frobenius categories &,, associated with elements w in Coxeter groups [BIRS094], (see [GLS07H]
for independent work when w is adaptable). This class contains both the cluster categories Cg
and mod A discussed above as special cases (see [BIRS09d], [GLS07H)). In &, and £, there are
standard cluster-tilting objects Ty, associated with any reduced expression w of w.

A new class of triangulated 2-CY categories was introduced in [Ami0O§. They are generalized
cluster categories C; associated with algebras A of global dimension at most 2, rather than
global dimension 1. In this case the orbit category DP(A)/7~[1] is not necessarily triangulated,
so Cj is defined to be its triangulated hull. If Cz is Hom-finite, then it is triangulated 2-CY
and A is a cluster-tilting object in Cj.

A natural question is how the generalized cluster categories are related to the previous classes
of Hom-finite triangulated 2-CY categories. It was already shown in [Ami0§] that some classes
of categories £, are equivalent to generalized cluster categories, including Cy and mod A, where
A is preprojective of Dynkin type. This result is extended to the case of c-sortable words in
[ATIRTTQ], with a similar choice for A. One of the main results in this paper is the following:
Each category £,, associated with an element w in a Coxeter group is equivalent to a generalized
cluster category C4 for some algebra A of global dimension at most 2 (Theorem [4)).

Actually, we prove our main result in a more general setting: We start with a Frobenius
category £, which we assume to be Hom-finite, stably 2-CY and which has a cluster-tilting
object T. We assume that the endomorphism algebra Endg(7) is Jacobian and has a grading
with certain properties. From these data we construct an algebra A of global dimension at most
2 and a triangle equivalence C; ~ £ (Theorem B.1]) sending the canonical cluster-tilting object A
of C4 to the cluster-tilting object 7" in €. The algebra A is constructed as the degree zero part of
Endg (7)), and we show that Endg(T) and Endc, (A) are isomorphic algebras (Proposition B:13).
This is an important step in the proof of the equivalence. It is however not known in general
if 2-CY categories are equivalent when they have cluster-tilting objects whose endomorphism
algebras are isomorphic. The only general result known of this type is that if the quiver @)
of Ende(7T) has no oriented cycles, where T is a cluster-tilting object in an algebraic 2-CY
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category C, then C is triangle equivalent to the cluster category Cq [KRO§. A crucial step in
this paper for proving the equivalence Cz ~ £ is the construction of a triangle functor from Cy4
to £, sending A to T. This is done by first constructing a triangle functor from D"(A) to &,
with strong use of the Frobenius structure of £.

It is also important to deal with the endomorphism algebra Endg(7") of the cluster-tilting
object T in the Frobenius category &, rather than only Endg(7"). We assume that this algebra
is a graded frozen Jacobian algebra (see section 1 for definitions), with potential homogeneous
of degree 1. Theorem B.1] applies in particular to the categories &, associated to any element
in a Coxeter group associated with a finite quiver without oriented cycles (see section 4).

The paper is organized as follows. In section 1 we recall some background material on
cluster-tilting objects in 2-CY categories, on generalized cluster categories from [Ami0§] and on
Jacobian algebras from [DWZ09], together with the generalization to frozen Jacobian algebras
given in [BIRS09H].

In section 2 we construct a special triangle (Proposition P.7), which is useful for our con-
struction of a functor from Cz to £.

Section 3 is devoted to the proof of the triangle equivalence from Cz to £ (Theorem B.1]). We
first show that the global dimension of A is at most 2. Then we construct our triangle functor
from C; to £ using the special triangle from section 2, together with a universal property from
[Kel05], [Ami0§. Finally we show that our functor is an equivalence by using a criterion from
[KROg.

In section 4 we apply the main theorem to prove that for any element w in a Coxeter group,
the 2-CY triangulated category £,, is triangle equivalent to some generalized cluster category,
which was our original motivation (Theorem [.4).

In section 5 we give two examples to illustrate our results. The first one is an illustration of
Theorem 4. In the second one we use Theorem B.]] to construct a triangle equivalence from
a generalized cluster category Cz to a category &£, which sends the canonical cluster-tilting
object A to a cluster-tilting object T" in £€,, where T is not associated to a reduced expression
of w.

Notations. By a triangulated category we mean a k-linear triangulated category satisfying the
Krull-Schmidt property. For all triangulated categories we will denote the shift functor by [1].
By a Frobenius category we mean an exact k-category with enough projectives and injectives
,where the projectives and the injectives coincide. If £ is Frobenius, then the associated stable
category £ is triangulated [Hap8§| and is by definition algebraic. For an object T in an additive
k-category, we denote by add(T") the additive closure of T'. For a k-algebra A, we denote by
Mod A the category of right A-modules and by mod A the category of finitely presented right
A-modules. We also denote by D(A) the derived category D(Mod A) and by DPA the bounded
derived category D(mod A). Let D be the usual duality Homy(?, k). The tensor product —®—,
when not specified, is over the ground field k. For a quiver ) we denote by () its set of vertices,
by @, its set of arrows, by s the source map and by t the target map.

1. BACKGROUND
In this section we collect some background material relevant for this paper.

1.1. Cluster-tilting objects. Let C be a k-category which is Hom-finite, that is, has finite
dimensional homomorphism spaces over k. Assume that C is either Frobenius stably 2-CY
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(that is, its stable category is 2-CY) or triangulated 2-CY. Then an object 7" in C is said to be
cluster-tilting if

(i) T is rigid, i.e. Ext;(T,T) = 0, and

(ii) Exts(T, X) = 0 implies that X is a summand of a finite direct sum of copies of T'.

Note that when C is Frobenius stably 2-CY, then any indecomposable projective-injective
module is a summand of every cluster-tilting object. The finite dimensional algebras End¢(T),
where C is triangulated 2-CY, are called 2-CY-tilted algebras.

Assume that T =T, @ ... DT, is a cluster-tilting object in a triangulated 2-CY category C,
where the T; are indecomposable and pairwise not isomorphic. Then for each i = 1,... n there
is a unique indecomposable object T not isomorphic to T}, such that 7% = (T'/T;) & T} is a
cluster-tilting object [BMRT0|,[[Y0d]. The new object T* is called the mutation of T at Tj;.

UT=1T&...81T, is a cluster-tilting object in a Frobenius stably 2-CY category, we can
only mutate at the T; which are not projective-injective.

When 77 is defined, there are exchange sequences it C is Frobenius

0—Trlop2.om 0 and 0 ——T - p o1 0

or exchange triangles if C is triangulated

gt and T —-p LTy — T[]

(2 K3

where f, f' are minimal left add (7'/T;)-approximations and g, ¢ are minimal right add (7"/7T;)-
approximations. These sequences (or triangles) play an important role in the categorification
of cluster algebras.

There is also a related kind of sequences investigated in [[Y0J].

Proposition 1.1. [Tyama-Yoshino] Let as before C be a Hom-finite Frobenius stably 2-C'Y
category with a cluster-tilting object T' =T, & ... ® T,,. For each i = 1,...,n, if T; is not
projective-injective, there are exact sequences

g I g

0—TH 1o 2T —0  and 0—=T,—>p-2oTt—

for some indecomposable object T." in C, such that g (resp. ¢') is right almost split in add (T)
(resp. inadd ((T/T;)®T.")) and f' (resp. f)is left almost split in add (T') (resp. in add ((T/T;)®
h)).

7

The induced sequence 0 T; E E T; 0 is called the 2-almost split
sequence associated with T;.

There is a corresponding result when C is triangulated. For any indecomposable direct
summand T; of a cluster-tilting object T', there are triangles
gL, T;H[1) and 7, L1 T[]

K3 K3 K3

where the maps f, f/ are left almost split and ¢, ¢’ are right almost split. For cluster categories,
it was shown in [B d that these triangles coincide with the exchange triangles. More
generally, they clearly coincide with the exchange triangles if and only if there are no loops in

the quiver of Endc(T).
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Using the existence of 2-almost split sequences in a Hom-finite Frobenius category, we can
construct minimal projective and injective resolutions of simple modules over End¢(T"). Note
that it already follows from [[ya07, 2.5.3] that Endc(T") has global dimension at most 3.

Proposition 1.2. Let C be a Hom-finite Frobenius stably 2-CY category with a cluster-tilting
object T =T, ® ... D T,, where the T; are indecomposable and pairwise non isomorphic. Let
B := End¢(T) be the endomorphism algebra of T, and let Q) be the quiver of B, which is then
isomorphic to kQ/I for some admissible ideal I in kQ. For each i = 1,...,n, such that T;
is not projective-injective, denote by S; the simple B-module Home (T, T;)/Rad(Home (T, T;)).
Then the minimal projective and injective resolutions of the simple B-module S; are of the form:

(b) (Tab) (a)
0 e; B Drcq )i ety B — a€Q1 t(a)=i Cs(@) B e;B S 0

(b) (rap) (a)
0—5;, — D(Bei> - @bte,s(b):i D<B€t(b)) % @aEQl,t(a)zi D(Bes(a)) — D(Bei) —0,

for some maps 14, where the sets {arq| a,b € Q1,t(a) = s(b) = i,t(b) = 5} and {r},b| s(b) =
t(a) =1i,s(a) = j} are bases of e;Ie;.

Proof. Applying the functor Hom¢ (T, —) to the 2-almost-split sequence

OT@-fE’nggTi 0

we get the following exact sequence of B-modules

0 — Hom¢ (T, T;) — Hom¢ (T, E') — Hom¢(T, E) — Hom¢ (T, T;) — S; ——= 0

which is a minimal projective resolution of the simple B-module S;.
Let @ be the quiver of B, and B ~ k(@Q)/I. Since g is minimal right almost split in add (7'),
we have
E~ @ Ts(a) and HomC(Tv g) = (a){a€Q1\ t(a)=i}-
a€Q1] t(a)=i
Since f’ is minimal left almost split in add (7"), we have

E, ~ @ Tt(b) and Homc(T, f/) ~ (b){bte‘ s(b)=i}-
beQ1| s(b)=i
For a,b € @ with t(a) = ¢ and s(b) = i, let 74 : exp)B — €508 be the map induced
by fq : @beQ1| s(b)=i Tiw) — @ate\ Ha)=i Ty(q)- Since the 2-almost split sequence associated
to T; induces a minimal projective resolution of the simple B-module S;, the set {arq| a,b €
1, t(a) = s(b) =14,t(b) = j} is a basis of the set of relations e;/e;.
To get the other sequence of the proposition, we apply the functor DHom¢(—,T) to the

2-almost split sequence associated to T;, and we proceed similarly.
O

1.2. Generalized cluster categories. Let A be a finite dimensional k-algebra of global di-
mension at most 2. We denote by DP(A) the bounded derived category of finitely generated
(right) A-modules. It has a Serre functor that we denote by S, which coincides with 7[1].

The generalized cluster category Cy is defined in [Ami0g] as the triangulated hull (D(A)/S[—2])a
in the sense of of the orbit category DP(A)/S[—2]. The composition of the functors

mp : DP(A) — DP(A)/S[-2]—Cy
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is a triangle functor.
The following definition and theorem give a more explicit description of the generalized
cluster category. This is added here for the convenience of the reader but will not be used later.

Definition 1.3. [Kel09| Denote by ©, a cofibrant resolution of the complex of A-bimodules
RHomy (DA, A)[2], that is a complex of projective A-bimodules which is quasi-isomorphic to
RHomy (DA, A)[2]. Then the derived 3-preprojective algebra is defined as the tensor DG algebra:

Hg(A) = TA@Q :A@@Q@(@Q ®A@2)@
We set TI3(A) := H(TI3(A)). Tt is called the 3-preprojective algebra.

Theorem 1.4. [Kel0F, AmiO§] Let A be a finite dimensional algebra of global dimension at
most 2. Then there exists a triangle equivalence

Ca := (D"A/S[—2])a ~ perII3(A) /D TI5(A)

where perTI3(A) is the thick subcategory of DIIs(A) generated by II3(A), and DPII3(A) is the
thick subcategory of DII3(A) formed by the objects having finite dimensional total cohomology.

There is a useful criterion for constructing triangle functors from a generalized cluster cate-
gory Cp to some stable category £. It can be deduced from the universal property of w5 given
in subsection 4.1 of [[Ami0g] (see also section 9 of or the appendix of [[O09] for more
details). This criterion, which is given in the next proposition, is a key step for proving the
equivalence of the main theorem of this paper.

For a Frobenius category £ and an algebra A, we here denote by DP(A°P ® £) the bounded
derived category of the exact category (modA°P?) ® £ whose objects are objects in £ having
a structure of finitely generated left A-module (see for example [Kel0f, sections 2 and 3] for
precise definitions of tensor products of k-categories and derived categories).

Proposition 1.5. Let Cy be a generalized cluster category, where A is a finite dimensional
algebra of global dimension at most 2. Let £ be a Frobenius category. Let M be an object
in & and assume that M has a left A-module structure. Assume that there is a morphism in

DP(AP R €)
oa: M — RHomA(DA,A) Qlé)A M[Z]

whose cone lies in D°(AP @ P), where P is the full subcategory of € of projective-injectives.
Then there exists a triangle functor Cy — & such that the following diagram commutes

D(A) Y Do)
| |
Ca &

L
Note that the endofunctor — ®, RHom, (DA, A)[2] =~ RHom, (DA, —)[2] of D(A) is isomor-
phic to the functor S7![2]. Hence Proposition [ requires in particular that for any X in D?(A),
L L L L
there is a morphism X ®y M — X ®, RHomp (DA, A) @5 M[2] ~ ST'X[2] ®4 M in D°(E)
whose cone is in D(P). In other words, the images of X and of S™1X[2] under the composition

L
—QAM

D(A)

DP(E) —= D"(E)/DP(P) = &
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are isomorphic. Here the category DP(P) is the thick subcategory of D"(€) generated by P.
Thus the localization of DP(£) by DP(P) is equivalent to the stable category £ by [KV87], and
this localization gives us the right vertical map of this diagram. This implies immediately that

L
the functor @y M : D°(A) — £ factors through the orbit category D?(A)/S[—2]. However the
proof that it factors through the generalized cluster category as a triangle functor is non trivial
and uses the universal property of triangulated orbit categories [Kel05, [O09].

The case when the 3-preprojective algebra of A is finite dimensional is especially nice.

Theorem 1.6. [AmiOf, Theorem 4.10] Let A be a finite dimensional algebra of global dimension
at most 2, and assume that the algebra 113(A) is finite dimensional. Then the category Cyp is a
Hom-finite 2-Calabi- Yau category, the object mp(A) € Cp is a cluster-tilting object and we have
an 1somorphism

Ench (WA(A)) ~ Hg(A)

1.3. Jacobian algebras and generalizations. Quivers with potentials and their associated
Jacobian algebras have been investigated in [DWZ0§. Let @) be a finite quiver. For each arrow
a in Q, the cyclic derivative 0, with respect to a is the unique linear map 0, : kQ — kQ which
takes the class of a path p to the sum Zp:ww vu taken over all decompositions of the path p
(where u and v are possibly idempotent elements e; associated to the vertex i). A potential on
() is any linear combination W of cycles in ). The associated Jacobian algebra is by definition
the algebra
Jac(Q, W) :=kQ/{(0.,W;a € Q).

There is a more general definition given in [DWZ0§], dealing with the complete path algebras,
and hence there is also a larger class of Jacobian algebras. However, in this paper we only
consider the Jacobian algebras defined above.

Any finite dimensional Jacobian algebra (in the general sense) is 2-CY-tilted ([Ami0§, Kel09]).
As a partial converse, some classes of 2-CY-tilted algebras associated with elements in Coxeter
groups are Jacobian ([BIRS09H]). Furthermore, the 2-CY-tilted algebras given by the canonical
cluster-tilting object in a generalized cluster category are Jacobian, as stated in the following

result [Kel09, Theorem 6.11 a)].

Theorem 1.7 (Keller). Let A = kQ/I be an algebra of global dimension at most 2, such that
I is generated by a finite set of minimal relations (r;). The relation r; starts at the vertex s(r;)
and ends at the vertex t(r;). Let @ be the quiver obtained from @ by adding additional arrows
a; : t(r;) = s(r;) for each minimal relation r;, and let W4 be the potential . a;r;. Then there
s an isomorphism of algebras:

Ende, (A) ~ Jac(Q, W,).

There is a generalization of quivers with potentials (Q, W) to frozen quivers with potentials
(Q,W, F) in [BIRS09H]. Here F' = (Fy, F}) is a pair consisting of a subset Fy of vertices of
Q@ (called frozen vertices) and the subset F; = {a € Q1,s(a) € Iy and t(a) € Fy} of arrows
(called frozen arrows). The associated frozen Jacobian algebra is by definition the algebra

Jac(Q, W, F) := kQ/{0.W,a ¢ F})

As for ordinary quivers with potential in [|D g, one can define a reduced frozen quiver
with potential (Q, W, F') by requiring that each term in W has length at least 3 and has at
least one arrow in @ \ F.
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2. A USEFUL TRIANGLE

In this section we study the Calabi-Yau property of a frozen Jacobian algebra B, when B
is the endomorphism algebra of a cluster-tilting object in a Frobenius stably 2-Calabi-Yau
category (subsection 2.2). Then we assume that B has a special grading and construct some
algebras A and A related to B (subsection 2.3). Using the grading on B and the Calabi-Yau
property we construct a triangle in the category DP(A°® ® B), which will be crucial for the
proof of our main result (subsections 2.4 and 2.5).

2.1. Basic setup. Let £ be a Frobenius category which is Hom-finite and stably 2-Calabi-
Yau. While we are mainly interested in the stable category £, it will be important to first
consider a cluster-tilting object T in the Frobenius category &, and its endomorphism algebra
B := Endg(T). We assume that this algebra B is isomorphic to Jac(Q, W, F') for some reduced
frozen quiver with potential (Q, W, F'). Notice that the quiver of B is @ since the potential W
is reduced. We also assume the following;:

(H1) The vertices in Fy correspond to the isoclasses of projective-injective indecomposables
in the Frobenius category &.

(H2) The set {9,W,a ¢ Fi}, which by definition generates the ideal of relations of the
algebra Jac(Q, W, F'), forms a k-basis for this ideal. In particular, for any a € @1 \ F;, we have
O W # 0.

For i € Qo we denote by e; the primitive idempotent of B associated to i. Denote by ep
the idempotent ), e; and consider the factor algebra B := B/BepB. By (H1) we have an
isomorphism of algebras B ~ End¢ (7).

Let @ be the full subquiver of @ obtained from @ by deleting the vertices in F,. We then
have a projection kQ —= kQ/kQepkQ ~ kQ . We denote by W the image of W under this

projection. It is not hard to see that there is an isomorphism B ~ Jac(Q, W) Indeed, since
any arrow a in Fj satisfies s(a) € Fy and t(a) € Fy, the partial derivative 9,W vanishes for any
a in Fl-

2.2. Calabi-Yau property for B. In this subsection we describe the minimal projective and
injective resolutions of B as B-B-bimodule and deduce a Calabi-Yau property linking these
two algebras. We start with giving explicit projective and injective resolutions over B of the
simple B-modules.

Lemma 2.1. Let B ~ Jac(Q, W, F') be the endomorphism algebra of a cluster-tilting object T
in a Hom-finite Frobenius stably 2-C'Y category £. Assume that (H1) and (H2) hold. Then for
any i € Qo \ Fo, the sequences

(b) (a1 (W)

0 e;B D)= ex) B

@a,t(a):i 6s(a) B (@ eiB Sz 0

and

(b) ((BaW)b~1) (a)
0— S, — D(Be;) — @b,s(b):i D(Beyp)) —— at(a)=i D(Bes)) — D(Be;) — 0

are minimal projective and injective resolutions of the simple B-module S;. When v is a path
in Q, we write a”'v = u if v = au in kQ and a=*v = 0 otherwise.
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Proof. By (H1), if i is not in Fp, the corresponding summand 7; of 7" is not projective-injective.
Hence by Proposition [[1], there exists a 2-almost split sequence associated with T; . Moreover,
since the potential W is reduced, then @ is the quiver of Endg(T"). Thus by Proposition [[.2 we
obtain a minimal projective B-resolution of S;

b Ta ) a
0 e; B o @b,s(b):¢€t<b)B¥> at(a)=i €s(a)B © e; B Si 0,

where {arqy| t(a) = i,s(b) =i} is a basis for the space of relations with target i. By (H2) the
set {O,W| s(b) = i} is a basis for the same space. Thus a minimal projective resolution of S;
can be written as

(a=1(B,W))

(b) (a)
0 e; B @b,s(b):i eiw) B @a,t(a):i Cs()B e; B Si 0

which proves the first claim. The proof is similar for the injective resolution. O

We use Lemma to obtain exact sequences of B—B—bimoﬂules which permit to get the
functorial minimal projective and injective resolutions of any B-module when viewed as a B-

module. This is inspired by [Boc0g].

Proposition 2.2. There erist ezact sequences in mod (B°° ® B)

(@)  0—=>DBigr Pii — Bugr, Lo tta) = Bagr, Prta),sa) — Digr, Lii — B—0

(b) O - B - @Z¢F0 [ivi - @G¢F1 Is(a),t(a) - @Q¢F1 [t(a)vs(a) - @Z¢F0 [ivi - 0
where P, ; :== Be; @ e;B and I; ; := Homy(Be;, Be;) for (i,7) € Qo x Qo.

Remark 2.3. For M € mod B, if we apply the functor M ®z — to the sequence (a) we get
an exact sequence in mod B since P, ; is projective as left B-module. This sequence is the
minimal projective resolution of M when viewed as a B-module since P ; is projective as right
B-module.

Similarly, if we apply the functor M ®z — to the sequence (b) we get an exact sequence in
mod B since I; ; is projective as left B-module. This sequence is the minimal injective resolution
of M when viewed as a B-module since I; ; is injective as right B-module.

Proof. For (i,7) € Qo x Qo denote by II; ; the projective B-bimodule Be; ® e; B. Then consider
the following sequence

d d d,
() Digr, Wii —> Diagr, Usa).ita) — Baco, ita).s) — Dicg, ii-

where the maps dy, d; and dy are defined as follows:

dao(e; ®e€;) = D, 1a)=i 0 ® € — Dy =i € © b;
di(es(a) @ €ya)) = Zbte OapW where Oy 3(apbq) = p ® q € Beypy @ es) B
for a cycle apbg in Q;
do(€r(a) ® €5(a)) = A ® es(a) — €i(a) @ a.
It is easy to check that this is a complex of B-bimodules, and that Cokerdy = B. (The map
Dicq, llii — B is the multiplication map.)
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Applying the functor B ®p —, we get the complex of B-B-bimodules

d d d,
Di¢r, i —> Dugr, Pow)tte) — Buagr, Prtasta) —> Digr,

Indeed, if i € Fy, then Be; ® ;B = 0, and if a € F}, then Bet(a) ® ey B = 0.
Applying the functor S; ® 53 — with i ¢ F, we get the complex

((BaW)b™1)

b a
0 eiB © @b s( =i €t(b) B @a,t(a):i es(a)B L> eiB

which is exactly the minimal projecti\ie resolution of S; as B-module described in Lemma P.].
Thus the following sequence in mod (B°? ® B) is exact:

0—Bigr Lii — Buogr, Lot — Dagr Prtaysta) — Bigp, Lii — B —0,

so that (a) follows.
We now prove the existence of the sequence (b), where the proof is dual. Let us define the
sequence of B-bimodules

do d! d2
Dicq, Tii — Ducq, Tsttta) = Dugr, Te@),s) — Bigr, Tii

where Y ; := Hom(Be;, Be;) for (i,7) € Qo X Qo. The maps d°,d', d* are the following

d’(¢;) = (Zs(a):i a® e — Zt(b):i € ®b).(¢5)

dl(@t) = ZbeQ1<aa,bW>-<¢a>

P(¢a) = (a®e;—ei®a)(da)
where (a ® b)(¢)(—) = ¢(—a)b. For instance we have

C(G)(=) = Y dil—a) = Y oi(—
s(a)=i t(b)=i

The kernel of d° is B, the bimodule map B — @ Y;; maps 15 to (1p,);- Using the fact that
S) ®5 Homy(Be;, Be;) ~ §;,e;DB we get the exact sequence (b). O

We have the following direct consequence (see also [KR07, 5.4,Thm (b)]) which we include
even though it will not be used later in this paper.

Corollary 2.4. There is an isomorphism RHomg(DB, B)[3] ~ B in D*(B®* ® B).
Proof. Since I;; = Homy(Bej,e;B) is injective as a right B-module, then using the exact

sequence (b) of Proposition 2.3, we obtain that RHomp(D B, B) is isomorphic in D*(B°® @ B)
to the complex

Di¢r, Bii — Dagr, Bs i) — Dugr, Bita),sta) — Digr, Bii
where R; ; is the bimodule Homg (DB, I; j). Moreover we have the following isomorphisms

Homp (DB, 1, ;) Homp(D B, Homy(Be;, Be;))
Hom,.(DBe;, Be;)

BGZ‘ ® GjB

P

Z?j

[Enrauranl

in mod (B°? ® B). Then the claim follows from the exact sequence (a) of Proposition 2.2
U
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Remark 2.5. If there exists an algebra B = Jac(Q, W, F') with Fy = () such that the sequences
in Lemma P.T are exact, then we get an isomorphism in D(B° & B) between RHom(D B, B)[3]
and B (since in this case B = B). This means by definition that B is bimodule 3-CY. This
is exactly what Bocklandt proved in [Boc0§, Theorem 4.3|, namely that a Jacobian algebra
B is bimodule 3-CY if the sequence (c) is exact. In our setup, Fy is never empty since it
corresponds to the projective-injectives. Also the algebra B is not Jacobian in general, and the
Jacobian algebra B is never of global dimension 3 (indeed it is either hereditary or of infinite
global dimension [KR07, section 2 Corollary]). However we have an isomorphism between B

and RHomp(DB, B)[3] in D*(B°* ® B).

Remark 2.6. In the next subsections, we will assume that moreover the algebra B has a special
grading that induces an isomorphism RHomp(DB, B)[3](—1) ~ B in D"(gr (B ® B)), where
gr(B°? ® B) is the category of finite dimensional graded B°® ® B-modules and where (1) is
the degree-shift in the category of graded B-modules. However, since Proposition and
Corollary 2.4 hold without any grading hypothesis, we have separated subsection 2.2 from
subsections 2.3, 2.4 and 2.5.

2.3. Construction of the algebras A and A. In order to identify appropriate subalgebras
of B which should give rise to the generalized cluster categories we are looking for, it will
be convenient to introduce some special gradings on the quiver. Assume as before that B =
Endg (7)) is isomorphic to some frozen Jacobian algebra Jac(Q, W, F'). Then we assume that
there exists a degree map ¢ : Q1 — {0, 1} with the following property:

(H3) The potential W is homogeneous of degree 1.

Since the potential is homogeneous, any relation 0, is homogeneous. Hence ¢ induces
a grading on B. Define the algebras A and A by A := B, and A := A/AepA. We have
surjective algebra maps: B — A — A. We want to show the following, which is the main result
of the section.

Proposition 2.7. Let £ be a Frobenius category which is Hom-finite and stably 2-Calabi- Yau.
We assume that there exists a cluster-tilting object T in € such that its endomorphism algebra
is isomorphic to Jac(Q, W, F) for some reduced frozen quiver with potential (Q, W, F'). With
the assumptions (H1), (H2) and (H3), there exists a triangle

__ L _ L - __ L
(%) RHom (DA, A) @4 B[2] —= A®4 B— A ——= RHomy (DA, A) ®, B3]

in DP(A°® ® B), where A = By and A = A/AepA.

The proof is given in the next subsections. In subsection 2.4 we construct a triangle X —
Y — A — X|[1] in D*(A°’ ® B). In subsection 2.5, we show that this triangle is the triangle (x)
of Proposition B.7.

2.4. A triangle X - Y — A — X[1]. The following is proved the same way as Proposi-
tion .. We describe exact sequences of A-B-bimodules, which give the functorial minimal pro-
jective and injective resolutions of the A-modules when viewed as B-modules (cf Remark B.3).

Proposition 2.8. There erist ezact sequences in mod (A% ® B)

d d d, _
(@) 0—=@igr Pii = Dugr, Pra)tta) = Dagr, Pita),sa) — Digr, Pii — A—0
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) 0—=A—=Bigr Llii — Bugr, Ls@ it — Bagr, ltta)s) — Pigr, Lii — 0
where P, ; == Ae; ® ¢;B, I, j := Homy(Be;, Ae;) and the d; are defined as in Proposition 3.

Let a € @1\ F1 be an arrow with p(a) = 1. By definition d;(es) ® €i(a)) = D peq, FapW -
If apbq is a cycle in W, then 0,;(apbg) = p ® ¢ lies in flet(b) ® esr)B. Since the degree of a is
1, and since we have assumed that the potential W is homogeneous of degree 1, then b is of
degree 0. Hence the restriction of d;

D¢ o(@)=1 Lot — Dagry pa)=1 Pi(a).s(a)
is zero. Therefore the complex
Dicr, i — Dogr, Do)t — Duagr, Prta)st) — Digr, P

is isomorphic to the mapping cone of a complex morphism

X = @Bj¢p, Lii Dagrr o(@)=0 Pst@ @) — Dagrr p(a)=1 Pria).s(a)
Y= Dugr p(a)=1 Psta)tta) — Dagr p(a)=0 Li(@),s(a) Di¢r, Fii-

It is not hard to check that all horizontal maps are homogeneous of degree 0, and all vertical
maps are homogeneous of degree 1. Denote by f the map X — Y. By Proposition P.§ ('), we

obtain the triangle X — >y A X[1] in D(A® @ B).

Dually, using the exact sequence (V') in Proposition P.§, it is possible to view A[1] as the
mapping cone of a morphism ¢g : X’ — Y’ where horizontal maps are of degree 0, and vertical
maps are of degree —1.

X' = @igr, L Dagri pt)-0 @@ — Bugr g1 luasta) -

| | |

Y= @agr gyt Ls@)tta) —= Dagry p(=o Lita)s(@ Digr, i

Thus we get a triangle A X' L=y A[l] in D(A® @ B).

2.5. Interpretation of X and Y. The aim of this subsection is to construct isomorphisms

_ L __ L _
Y ~A®sB and X ~RHomp(DA,A)®4 B[2] in D°(A® ® B),

in order to prove Proposition R.7.
We will first show the following

Lemma 2.9. In the setup of subsection 2.4, we have isomorphisms
Yo~ A and X)~A inD°(AP® A)

The proof of this result uses the next lemma.
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Lemma 2.10. Let B be a Z-graded algebra. Let (X,dx) and (Y,dy) be complezes of graded
B-modules such that the differentials dx and dy are homogeneous of degree 0. We denote by
(X, dxp) (resp. (Yp,dy,)) the part of degree p of the complex (X, dx) (resp. (Y,dy)). They are
complexes of By-modules. Let f : X — Y be a morphism homogeneous of degree d, that is the
part f, of degree p of f is a morphism of By-complexes X, — Y, 4. Denote by Z = Cone(f) the
mapping cone of f : X — Y. Then for any integers p, q we have an isomorphism of By-modules:

HY(Z), ~ HY(Cone(fp—a: Xp—a—Yy)).

Proof. The mapping cone of a morphism f homogeneous of degree d in the category of complexes
of graded modules with differential homogeneous of degree 0 is still a complex of graded modules
with differential homogeneous of degree 0, and we have

Cone(f) ~ @ Cone(fp—dq: Xp—a = Y,).
PEZL

Then one can check the isomorphisms
H(Cone(f)), =~ H'((Cone(f)),) =~ H*(Cone(f, a).
O

Proof of Lemma B.9. Applying Lemma to the morphism f : X — Y defined in subsec-
tion 2.4, we get an isomorphism of (A°? ® A)-modules (remember that A = By):

H(Cone(f : X = Y))g~ HY(Cone(f_1: X1 — Yp)).
By the sequence (a’) of Proposition R.§ the left term is zero unless ¢ is 0, and when ¢ is 0, it

is isomorphic to A. Since X is non zero only in positive degrees, the right hand side is just
H4(Yy). Thus we get an isomorphism Yy >~ A in DP(A @ A).

Using the triangle A X 2=y A[1] similarly, we get an isomorphism X} ~ A in

D(AP @ A). 0

The complex Yj is a complex of projective (A°? ® A)-modules. Thus for any A-module M,

L
M ®; Y, is a complex of projective A-modules. By Lemma P.9, it is quasi-isomorphic to M
viewed as an A-module. Hence we have the following.

Corollary 2.11. Any A-module has projective dimension at most 2 when viewed as an A-
module.

We can now prove our desired isomorphisms.

Lemma 2.12. For complexes X and Y defined as in subsection 2.3, there are isomorphisms

L L _
Y~A®sB and X ~RHomg(DA A)®,B[2] inD"(AP® B).
For the proof of this lemma, we need some basic results:

Lemma 2.13. Let B be a Z-graded algebra and A := By. Let P = (P7,d) be a complex of
graded projective B-modules such that the differential d of P is homogeneous of degree 0. Let
Py be the degree 0 part of P. Then Py is a complex over A, and we have an isomorphism of
complezes

P~Fy®4B.
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Proof. Let i : A — B and p: B — A be the canonical algebra maps. We get induced functors:
"=—®4B:modA — modB, and p* = —®p A: mod B — mod A

Since By ®4 B ~ B, then we have Pg ®a B =1* o p*(P?) ~ P’ since P7 is a graded projective
B-module. Hence, since P is a complex of graded projective modules, we get

Py®4 B = (P} ®4 B,i* op*(d)).
Since i o p(b) = b if and only if b is of degree 0, we get i* o p*(d) = d. O

Lemma 2.14. The functors (Homg(DB, —)), and Hom4 (DA, (=)o) are isomorphic as functors
from injective B-modules to projective A-modules.

Proof. We have Homg(DB, DB)y ~ By = A and Hom4 (DA, (DB)g) ~ Homs(DA, DA) ~ A.
The rest is easy to check. It is enough to check it on DB, and this is clearly true. O

Proof of Lemma B.13. Since Y is a complex of projective modules, we can apply Lemmas R.13
and P.9 to get an isomorphism

Y 2Yy@0aB~A®aB in DAP @ B).
Using the fact that Hompg (DB, I, ;) ~ P, ;, we get an isomorphism
RHomg(DB, X')[2] ~ X in D(A”® ® B).

Hence we obtain the following isomorphisms in D(A° ® B)

X Homg(DB, X')[2]
(Homgp(DB, X)), ®a B[2] by Lemma
Hom (DA, X)) ®4 B|2] by Lemma .14

~ RHomy (DA, A) (%)A B[2] by Lemma 2.9

1R

l

OJ

Proposition B.7 is a direct consequence of the construction in subsection 2.4 of the triangle

x-1oy A X[1] in D(A* ® B) and of Lemma P12

3. MAIN THEOREM

As in the previous section, £ is a Frobenius category which is Hom-finite and stably 2-Calabi-
Yau. We assume that there exists a cluster-tilting object T" in £ whose endomorphism algebra
is isomorphic to Jac(Q, W, F) for some reduced frozen quiver with potential (@, W) such that
(H1), (H2) and (H3) are satisfied. Under an additional assumption (H4), we show in this section
that the stable category & is triangle equivalent to a generalized cluster category.

3.1. Statement of the main result. In addition to the above assumptions, we assume that
we have the following, where ¢ is the degree map required for (H3):
(H4) If a:i— jisin @ with i ¢ Fy and j € F, then ¢(a) = 1.

As before we define the algebras A and A as A := By C B and A := AJAer A, where ep is
the idempotent €, 7, €~ The aim of this section is to prove the following.
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Theorem 3.1. Let £ be a Frobenius category which is Hom-finite and stably 2-CY. Assume that
there exists a cluster-tilting object T' in € such that B := Endg(T) is isomorphic to some graded
frozen Jacobian algebra Jac(Q, W, F') which satisfies the conditions (H1)-(H4). Let A := By be
the subalgebra of degree 0 of B and A := A/AerA. Then we have the following

(a) The algebra A is of global dimension at most 2;
(b) There exists a triangle equivalence Cz ~ &, where Cj is the generalized cluster category
associated to the algebra A.

The proof of the theorem is given in the next three subsections. The fact that gl.dimA <
2 is proved in subsection 3.2, the existence of a triangle functor G : C;5 — & is proved in
subsection 3.3. Finally it is proved that G is an equivalence of triangulated categories in
subsection 3.4.

3.2. Global dimension of A. We start with describing the restriction functor R : DP(A) — DP(A)
induced by the projection 4 —— A= A/AepA .

Lemma 3.2. Let £, Jac(Q, W, F), A and A be as in Theorem [5.1. Assume that Jac(Q, W, F)

satisfies conditions (H1)-(H4). Then for any i ¢ Fy, we have the following:
(a) R(e;DA) ~ ¢; DA,

(b) R(e;A) ~ (P——Q ——=¢;A) where P and Q) are in add (epA).
(¢) The functor R is fully faithful.

Proof. Part (a) follows directly from (H4). By Corollary any A-module has projective
dimension at most 2 when viewed as an A-module. Then (b) follows from (H4). Part (c)
follows directly. O

Proposition 3.3. Let £, Jac(Q, W, F) and A be as in Theorem[B.1, and assume that Jac(Q, W, F')
satisfies (H1)-(H4). Then the global dimension of A is at most 2.

Proof. The complex X', defined in subsection 2.4 by
X" = (Bigr, Lii — Dagr,pa)=0 Is(@)t) — Dagr pa)=1 Tt@)s(a) ),

is a complex of graded (A°° ® B)-modules with differential homogeneous of degree 0. The part
X of degree 0 is the complex

X(/) = (@i¢Fo Jm‘ - ®a¢F1,<p(a):0 Js(a),t(a) - @a¢F1,<p(a):1 Jt(a),s(a) )

where Ji; ;) := (Lgj))o = Hom,,(Be;, Ae;)o =~ Homy,(Ae;, Ae;). By Lemma B.9, the complex X,
is quasi-isomorphic to A. Hence there exists an exact sequence in mod (A°? ® A)

0—=A— @@¢F0 Ji7i - @Q¢F1,¢(a):0 Js(a),t(a) - @a¢F1,¢(a):1 Jt(a),s(a) —0

Since J; ; is projective as left A-module and injective as right A-module, any right A-module,
when viewed as an A-module, has injective dimension 2 (cf Remark R.3). By Lemma B.3 (a)
the injective A-modules are injective when viewed as A-modules. Thus the global dimension of
A is at most 2.

O
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3.3. Construction of a triangle functor. Recall that A = By is the subalgebra of degree 0
of B = Endg(T'). Thus T has a left A-module structure. Hence we have the following diagram:

—ég(ﬁéAT)
D"(A) —>D(A) — D(€)
| -
TA
o) e —— G o ~ .

In this subsection, we prove the existence of a triangle functor G : C; — £ making the above

L
diagram commute. This follows from Proposition [[.J (for M = A ®4 T) together with the
following.

Proposition 3.4. In the setup of Theorem [3.1, there exists a morphism
L _ __L _ L . Db AOP E
a: A, T —RHom;(DA, A) &, (A®aT)2] D (APRE)

whose cone is in DP(A® ® P), where P is the subcategory of £ consisting of the projective-
mjectives.

We divide the proof of this result into three lemmas.

Lemma 3.5. There exists an isomorphism
_ L N . 0
RHoma(DA, A) 6, T[2] —> Ag, T "D (APE).

L
Proof. Applying — ®p T to the triangle () in Proposition P.7, we get the following triangle in
D(A® R E):
L L L _ L
RHomA(DA,A) XA T[Z] — A Xa T—A Xp T — RHomA(DA,A) XA T[g] :
Using the projective resolution from Lemma R.1] of the simple B-module S; for i € Qg \ Fp ,
L
we conclude that the object S; ®p T is quasi-isomorphic to the complex
0—eB®@p T — Dasa)—i €t B 8T — D )= s B 5T —e;Bep T,
which is the 2-almost split sequence associated with T;

0—T1T, — @a,s(a):i Tt(a) - @a,t(a):i Ts(a) —T1,—0.

L
Hence S; ®@p T is zero in DP(). Therefore for each M € mod B whose support is in Qg \ Fy,

L L _
the object M ®@p T is zero in DP(E). Consequently the object A ®p T is zero in D(A® ® £),
and the morphism
L L
RHomA(DA, A) XA T[Q] — A XA T

is an isomorphism in DP(A® @ £).
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Lemma 3.6. There exists a morphism

o : RHom(DA, A) &4 T —> RHoma(DA, A) &4 (A, T) inD(AP&E)
whose cone is in DP(AP @ P).
Proof. Applying the functor RHom (DA, A) Q%A — Q%A T to the exact sequence
AepA—— A —= A/Aep A=A

of A-bimodules, we get the following triangle

RHom (DA, A) & e T —> RHoma(DA, A) &4 T —> RHom (DA, A) 64 (A4 T) —> -

Since A is finite dimensional and of finite global dimension, RHom 4(DA, A) is in thick(A), the

L
thick subcategory of D(A) generated by A. Thus RHom4(DA, A) ®4 epT is in thick(erT),
the thick subcategory of D(E) generated by epT. By (H1), erT is projective injective, and
therefore it is in P. Hence the cone of the morphism

__ L __ L _ L
RHomA(DA, A) XA T —— RHomA(DA, A) XA (A XA T)
is in DP(AP @ P). O

Lemma 3.7. There is an isomorphism
RHom (DA, A) éA A-—~~RHomi(DA A) inD"(A® ® A).
Proof. Let Z be an injective resolution of A as a right A-module. Then we have

S _
RHoma (DA, A) ®4 A ~Homy(DA,Z) @4 A

using the fact that Hom (DA, Z) is a complex of projectives.

For each A-module M, we define a morphism Hy; : Hom4(DA, M) ® 4 A — Hom (DA, M)
as follows. Let ¢ be in Homy(DA, M), @ € A, and ® € DA. We define Hy(p ® @)(®) :=
o(Pz) € M, where ®z(b) = P(ba) for any b € A. The morphism H), is functorial in M. An
easy computation shows that the map Hp4 is an isomorphism. Since Z is a bounded complex
of injective A-modules, we get the following isomorphism in DP(A° @ A)

Hz

RHomA(DA, A) QIZ‘)A /_1 = HomA(DA, Z) Xa /_1 HomA(D"ZL Z) = RHomA(D"ZL A)

Moreover by Lemma 8.9 any injective resolution of an A-module X is an injective resolution of X

viewed as an A-module, and the restriction functor is fully faithful. Thus we get isomorphisms
in DP(A® ® A)

RHom (DA, A) = Hom (DA, Z) ~ Hom4(DA, Z) = RHom4(DA, A).
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Proof of Proposition [3.4. Combining Lemmas B.5, B.§ and B.7, we get the following morphisms
in DP(A® ® &)

- - L

RHom (DA, A) ®4 T[2]

l

L L
RHom (DA, A) @5 (A®4 T)[2]
By Lemma 3.6, the cone of the horizontal morphism is in D*(A°? ® P). Hence we get Propo-
sition B4 0O
_ L
Using Proposition B.4, we can apply Proposition [.5 for A = A and M = A®4 T and we
obtain the following.

Corollary 3.8. In the setup of Theorem [3.1), there exists a triangle functor G : C; — £ such
that the following diagram commute:

—é‘@,&(‘ié‘)AT)
D(A) —=D"(A) — D"(€)
—®aT l
Ta
Cx < £

3.4. Proof of the equivalence. In this subsection we show that the triangle functor G :
Ciz — & of Corollary B.§ is an equivalence. The proof is separated into four steps. First we
show that the functor G sends the cluster-tilting object A to the cluster-tilting object T’ € &.
The second step (Proposition B.10) consists of proving that G induces an injective map from the
endomorphism algebra of A € C; to the endomorphism algebra of 7' € £. In Proposition .13,
we prove that these two endomorphism algebras are isomorphic. The last step follows from
[KRO§] (Proposition B.1J) and finishes the proof of Theorem B.T].

We have a triangle
L T GE L in D(A? ® &)
A€FA ®AT A®AT AGFA XA T[]_]

L L
and the object AepA ®4 T = epT is in P. Hence A ®4 T is isomorphic to T" in £. Therefore
the triangle functor G sends the cluster-tilting object A to the cluster-tilting object T'.

In order to prove Proposition which is the second step, we first prove the following.
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Lemma 3.9. Let M be an object in DF(A) such that its homology is concentrated in non
positive degrees, and let f € Homeb(A)(A, M) be a non zero morphism. Then the morphism

L L L
f®aT € Hompye)(A®A T, M ®4T) is non zero viewed as a morphism in .
Proof. By Lemma B.3 (c), the restriction functor DP(A) — DP(A) is fully faithful. We first

L
show that the morphism f ®4 T is non zero as a morphism in Db(&).
Now by Lemma (a), A is quasi-isomorphic to some complex in DP(A) of the form:

Aeiim— 00— Q2 Q' —— (1 —ep)A— -

with Q7! and Q=2 in add (epA). Since M is concentrated in non positive degrees, M is quasi
isomorphic to some bounded complex in DP(A) of the form

M=... 0 s 6_3A 6_214 —— 6_1A 60A 0
Hence f is isomorphic to a morphism of complexes of the form
0 Q= Q@ —— (L= ep)A——— -
e ]
d73 d72 —1
e_3A e oA ——=e_1A eoA 0

Hence f is isomorphic to f op, where p : (1 —er)A — A is the projective cover. Hence fY is a
non zero morphism.

L
By definition the morphism f° ®,4 T is the morphism of complexes:

0 0 0 1-ep)T —=0—>"-""
L e |
d73 d72 d71
e_3T e_ol ——=e_{T eod’ 0

Note that f° (}%A T = fO®4 T since (1 — ep)A and eyA are projective A-modules. In this
diagram, the maps d* and f°®4 T are morphisms of degree 0, since they come from morphisms
in add (A).

Denote by P:=...——= p~2 ——= p-1 —— p0 a projective resolution in &£ of the object
(1 — ex)T and denote by p’ the map p’ : P — (1 — ep)T. Note that the P® are also injective

L
since £ is a Frobenius category. Assume that the morphism f° @, T vanishes in Db(&). It
implies that the morphism (f° ®4 T) o p’ is homotopic to zero.

p3 p2 pt P 0

VA NVA A

€,3T G,QT —— €,1T d 60T 0

L
Since the complex M ®4 T is quasi isomorphic to a bounded complex with components in
add (T), an easy induction shows that the map f°®4 T = d~'x is homotopic to zero. Since
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fo®4 T and d~! are homogeneous of degree 0, then we can assume that x : (1 —ep)T — e, T
is homogenous of degree 0. Therefore 2 can be written y ®4 1" for a map y € Homps(4)((1 —
er)A, egA). Therefore fO = d~'y is homotopic to zero, hence f° vanishes as a map in D°(A).

L
Consequently, if f© is not zero in DA, then the map f ®4 T is not zero in D(£), since
L L L
fPoaT=(f@aT)o(p®aT).
L L _L
Assume now that f®4 7T is zero in €. Since pR4 T : (1 —ep)T — A®4 T is an isomorphism

L L L
in £, then f ®4 T vanishes in £ if and only if f® ®4 T vanishes in £. Thus f° ®4 T factors
through an object P in D(P). For i € Z we denote by P=* and P<' the positive and negative
truncations

P2 .—...) — Pt — pitl — pit2 —» ... pst.—...— pi—2 —s pi-l —» pi —>()...,

For any ¢ € Z the object P?is projective and injective, thus the complex P and all its truncations
are fibrant and cofibrant. Therefore the space Hompug)((1 — ep)T, P=~") vanishes because

L
(1 —ep)T is concentrated in degree 0. And the space Homps(g)(P=', M ®4 T') vanishes since
L
M (hence M ®4 T) is concentrated in non positive degrees. Consequently we can assume
L
that P = P° is a stalk complex with P € add(erT) = P. We write f®@4T = goh

L
with g € Hompu ey (P°,€0T) and h € Hompug)((1 — ep)T, P°). Now by definition f®®,4 T €
Hompu ey ((1—ep)T, eT) is of degree 0. By hypothesis (H4), the morphism % is in non negative
degrees. Since B = Endpy(g)(T) is only in positive degree we get a contradiction.

O
Using this fundamental lemma, we can prove the following.
Proposition 3.10. The functor G constructed in subsection 3.3 induces an injective map
Endc, (A) — End.(T).

Proof. The two algebras Ende  (A) = @, Homps 1) (A, ST A[2i]) and B = End¢(T) are graded
algebras. The first part of the proof consists of showing that the functor G : D*(A) — £, which
sends A € C5 to T € &, induces a morphism of graded algebras Endc, (A) — End.(T) and

then that this morphism is injective using Lemma [3.9.
Let i > 0 and f* € Homps 4 (A, S™A[2i]) be a non zero morphism. We define 67 for p > 0 by
o o _ L _ _
induction by ' = § = RHom4(DA, A)[2] = S;'A[2] and 67 := 0® 1607, Hence 0? = S7P(A)[2p]

and f*is a non zero map in Home(A)(/_l, %).
We first show that the triangle of Proposition B.7 is in fact a triangle

__ L _ - __ L
RHom (DA, A) $4 B(~1)[2] —= A®, B— A~ RHom (DA, A) &, B(~1)[3]

in the category D°(gr (A ® B)), where (1) is the degree shift of the graded algebra B. Indeed
the map f : X — Y constructed in subsection 2.4 is homogeneous of degree 1. Therefore by
Lemma B.5, we obtain an isomorphism

_L L __ L
A@A B(l) XB T~ RHomA(DA,A) XA T[Q]
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Since the maps constructed in Lemmas B.g and B.] come from maps in D?(A) they are of degree
0. Consequently the triangle of Proposition .7 is a triangle

__ L _ L - __ L
RHomy (DA, A) @4 B(-1)[2) =~ A®, B~ A~ RHomu(DA, A) ®4 B(—1)[3]

1)
_ _L L _L
in D’(gr(A ® B)). Hence by Proposition B.4 we get a map a : A®4 B(1) @5 T = 0 ®4 T in
DP(A°P @ £) whose cone is in DP(P). We denote by af the composition:

_ L
€O®Aa

. _ L L a L ) L = L ) L _. L
a' AR Bi)®@pT — ~0®aB(i—1)®T 0P R4B(1—2)@pT """ T 04T

The image of f’® AT in £ is isomorphic (as a morphism in £) to the left fraction (') 'o(f ’® AT):

L

_ L
A®sB(i)@p T

®r'

A

L
Thus the image of f* ®4 T in £ is a map of degree ¢ and G induces a morphism of graded
algebras Endc, (A) — End(T')

L _ o _
The functor — ®4 T : DA — £ induces a map Homp4)(A4,60") — B. Since the object
§° € DP(A) has its homology concentrated in non positive degrees, this map is injective by

Lemma B.9. By the remark above, if f’ € Homp 5(A, 0), then fi (}%A T is a morphism of degree
i in the graded algebra End.(T) = B. Hence there is an injective map Hompn 4 (A 0") — B,
where B; is the degree i part of the graded algebra B = End.(T). Therefore the functor
G : C;z — £ induces a morphism of graded algebras

@ Home(A)(A S~ A[2i]) @ Home(A ) — B = @ B;,

>0 >0 >0

which is an injection Homps 4 (/_1 0") — B; for any i > 0. Consequently it is an injective
algebra morphism.

O
The next result will be used in the proof of Proposition which is the third step.

Lemma 3.11. Let Jac(Q, W, F') be a frozen Jacobian algebra with W reduced. Assume there
is a grading ¢ : Q1 — {0, 1} satisfying the hypotheses (H2), (H3) and (H4). We denote by
Q the full subquiver of Q with set of vertices Qo = Qo \ Fy, and by W the image of W under
the projection kQ — kQ. Then the set {0,W,¢(a) = 1} is linearly independent. In particular,

0,W does not vanish for a in Q, with ¢(a) = 1.

Proof. Let a € Q; be an arrow with ¢(a) = 1. By condition (H3) the potential W is homoge-
neous of degree 1, and by assumption the degree map ¢ has non-negative values. Thus any term
in the potential W contains exactly one arrow of degree 1. Consequently a cycle containing
a which is a summand of W does not contain any other arrow of degree 1. Then by (H4) it
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follows that this cycle does not pass through vertices in F,. Therefore we have 9,W = 9,W.
Now by (H2) the set {9, W, p(a) = 1} is linearly independent, therefore we get the result. [

Proposition 3.12. Under the assumptions (H1)-(H4) there is an isomorphism of algebras
EndQ(T) ~ Endcg (/_1)

Proof. The algebra B = B/BepB is isomorphic to the Jacobian algebra Jac(Q, W) (cf sec-
tion 2), where @ is the full subquiver of () whose vertices are not in Fy and where W is the

image of W under the projection kQ —= kQ/kQerkQ ~ kQ .
Let @' be the subquiver of () defined by:
e Qp := Qo;
o Q) :={ae Qi p(a) =0}
By definition we have A ~ kQ'/(0,W,a ¢ F; and ¢(a) = 1). Let Q' be the full subquiver of
{0a

Q' with vertices Q) = Qf, \ Fy. Thus we get A ~ kQ'/ W p(a) =1).

By Theorem [, the endomorphism algebra Endc, (A) is isomorphic to the Jacobian algebra
Jac(Q’ W ;) where Q’ and Wy are defined in Theorem [[.7. By the previous lemma, the set
{0.W,¢(a) = 1} is a basis for the ideal of relations of A. Hence we immediately see that

Q' = @Q and that Wy is the potential
Wi = Z ad,W .

a,p(a)=1
Therefore the potential W is cyclically equivalent to the potential Wj;. Thus we have an

isomorphism Jac(Q’, W) ~ Jac(Q, W) which gives the desired isomorphism.
0

Now we finish the proof of Theorem B.1]. The triangle functor G : C; — £ constructed in
subsection 3.3 sends the cluster-tilting object A € Cj to the cluster-tilting object T € £. By
Proposition B-I0, it induces an injective map Ende, (A) — Endc(T). These two algebras are
finite dimensional algebras which are isomorphic by Proposition B.13. Therefore G induces a
bijection Endc, (A) ~ End.(T'). Then we conclude the proof of Theorem B-J using the following.

Proposition 3.13 ([KR0§] Lemma 4.5). Let C and C' be Hom-finite 2-Calabi- Yau triangulated
categories. Let T (resp. T') be a cluster-tilting object in C (resp. C'). If we have a triangle
functor G : C — C' which sends T' to T" and which induces an isomorphism between Ende(T)
and Ende/(T"), then G is an equivalence.

4. 2-CALABI-YAU CATEGORIES ASSOCIATED WITH ELEMENTS IN THE COXETER GROUP

In this section we apply Theorem B.1] to the categories associated with elements in the Coxeter

group introduced in [BIRS094]].

4.1. Results of [BIRS094] and [BIRS09H]. Let @ be a finite quiver without oriented cycles.
We denote as usual by Qg = {1,...,n} the set of vertices and by (); the set of arrows. The
preprojective algebra associated to () is the algebra

k@/(Z aa® — a*a)

ac@Q
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where @ is the double quiver of Q, which by definition is obtained from @ by adding to each
arrow a : ¢ — j in Q1 an arrow a* : ¢ < j pointing in the opposite direction. We denote by A
the completion of the preprojective algebra associated to (), and by f.I. A the category of right
A-modules of finite length.

Let Cg be the Coxeter group associated to ). It is defined by the generators s; where i € Q)
and by the relations

o s7=1,
e s;5; = s;s; if there is no arrow between ¢ and j,
® s5;5;5; = 5;8;5; if there is exactly one arrow between ¢ and j.

A reduced expression W = sy, ...s,, of an element w in Cg is an expression with [ smallest
possible. When w = s,, ...s,, is a reduced expression of w, the integer [(w) := [ is called the
length of w.

For a vertex ¢ in )y we denote by Z; the ideal A(1 —e;)A. Let w = s,, ... s,, be a reduced
expression of an element w in Cg. For p < I we denote by 7, the ideal Z,, 7,,,_,...Z,,.
The ideal Z,, := 7, depends only on the element w € Cy and not on the choice of the
reduced expression w. Therefore we denote by A,, the algebra A/Z, and by &, := SubA,, the
subcategory of f.I. A consisting of submodules of finite direct sums of copies of A,,.

We have the following [BIRS094, Theorem I11.2.8].

l

Theorem 4.1 (Buan-Iyama-Reiten-Scott). Let w be an element in the Coxeter group Cq. Then
we have the following.

(a) The category &, is a Hom-finite Frobenius stably 2-C'Y category.
. . l .
(b) For any reduced expression W = sy, ... s, of w, the object Ty, = D, _, €u,(A/Ly,) is a
cluster-tilting object.
(¢) The projective-injective indecomposable objects are ey, (A/Lw, ) where t; is the mazimal
integer such that u,, =i fori € Q.

The cluster-tilting object Ty, depends on the choice of the reduced expression of w. We refer
to a cluster-tilting object of this form as a standard cluster-tilting object. Note that by mutation
we may get other cluster-tilting objects which are not standard.

We now define a quiver @)y, associated with a reduced expression w = s,, ... s,, of an element
w € Cg as follows:

e vertices: 1,...,[(w).

e for each i € (g, one arrow t < s if ¢ and s are two consecutive vertices of type i (i.e.
us =uy = 1) and ¢t < s (we call these arrows arrows going to the left);

e foreacha:7— 7€ @y, put a:t— siftisavertex of type ¢, s of type j, and if there is
no vertex of type ¢ between ¢ and s, and if s is the last vertex of type j before the next
vertex of type i in the expression w = sy, ..., (we call these arrows the Q-arrows)

o foreacha:i7— 7€ Q, put a* : t — sif tis of type j, s is of type i, if there is no vertex
of type j between ¢ and s and if s is the last vertex of type ¢ before the next vertex of
type j in the expression w (we call these arrows the Q*-arrows).

For each QQ-arrow a : t — s in )y, we denote by W, the composition aa*p if there is a
(unique) Q*-arrow a* : r — t in @)y, where u, = ug and where p is the composition of arrows
going to the left r <— --- <— 5. Otherwise we put W, = 0. For each Q*-arrow a* : t — r
in Q, we denote by W, the composition a*ap if there exists a (unique) Q-arrow a : s — t
with us = u, in Qw and where p is the composition of arrows going to the left s < --- < r.
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Otherwise we put W,« = 0. Then let Wy, be the sum

Yo Wam D W

a Q-arrow a* Q*-arrow
We have the following [BIRS09H, Theorem 6.8].

Theorem 4.2 (Buan-Iyama-Reiten-Smith). Let w = s, ...s,, be a reduced expression of an
element w of the Cozeter group Cq. Let Ty, be the associated standard cluster-tilting object in
the category €,. Then we have an isomorphism

Endg, (Tw) ~ Jac(Qw, Wy, F)

where Fy := {t1,...,t,} consists of the last vertex of each kind in the reduced expression w and

Fy:={a € Q1,s(a) € Fy and t(a) € Fp}.

4.2. Definition of the grading. The algebra A and the associated Coxeter group do not
depend on the orientation of ). For any reduced expression w = s, ...s,, of w € Cgp, the
category &, and the cluster-tilting object Ty, do not depend on the orientation of (). From
now on we assume that the orientation of () satisfies the property that ¢; < ¢; if there exists an
arrow ¢ — j, where ¢; is the maximal integer satisfying u;, = i.
We define a grading on the quiver @, as follows:
o o(b) =1if bis a Q*-arrow;
e o(b) =0if b is a Q-arrow or an arrow going to the left.

With this choice of grading we show that our axioms are satisfied.

Lemma 4.3. The graded Jacobian algebra (Jac(Qw, Wy, F'), @) satisfies the conditions (H1)-
(H4) of Theorem [3_1.

Proof. (H1) This holds by Theorems [T and [L.2.

(H2) The potential Wy, = W is reduced. Moreover it is easy to see that two different terms
of the potential W differ by at least two arrows. It follows that the set {9, W] a ¢ Fy,0,W # 0}
is a basis for the ideal of relations. We next show that for any arrow a ¢ Fj, the derivative
0,W does not vanish. Assume that some Q-arrow or Q*-arrow a : r — s does not appear in the
potential, where u, = 7, us; = j and there is an arrow between ¢ and j in the quiver ). Then
there is no u; of type ¢ with ¢ > r. Thus we have r = ¢;. Then we must have s = ¢;. Therefore
a:r =t —s==t;isin F;. Now let p : r <~ s be an arrow going to the left, where r and s
are two consecutive vertices of type ¢. Since the expression s, ...s,, is reduced, there exists ¢
with 7 < ¢ < s such that u; is of type j and there is (at least) one arrow between ¢ and j in the
quiver (). Let ¢t be the maximal integer with this property. Then there is an arrow a : 7 — t,
and there is also an arrow a* : t — v where v > s and u, is of type 7. Thus p appears in the
potential W. Therefore for any arrow a of @)y, which is not in Fj, the derivative 9, is not
zero, and we have (H2).

(H3) By the definition of the potential in Theorem [.3, this follows immediately.

(H4) By the choice of the orientation of ), any arrow in F} is a Q-arrow, hence of degree

0. Thus all arrows with target in F and source not in Fy are (Q*-arrows, hence of degree 1, and

all arrows with source in Fy and target not in Iy are arrows going to the left, hence of degree
0. This implies condition (H4).

O

The following direct consequence is one of our main results.
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Theorem 4.4. The stable category £, is a generalized cluster category.

4.3. Meaning of the grading. We show that the grading ¢ on Endg, (7') defined in the
previous subsection is induced by a natural grading on the preprojective algebra.

Let w = s, ...s,, be areduced expression of an element w of the Coxeter group C. Assume
that the orientation of () satisfies the property that ¢; < t; if there exists an arrow i — j, where
t; is the maximal integer satisfying u;, = i.

We define a grading on the double quiver @ as follows:

e deg(a) =0 if a is an arrow of Q;
e deg(a*) = 1if a* : 7 — i is an arrow pointing in the opposite direction of an arrow
a:i—jin Q.
The ideal of relations (Zate aa* — a*a) is homogeneous of degree 1, thus the grading on the

double quiver () induces a grading on the preprojective algebra A.

For any 7 in @)y, the A-module e;A can be seen as a graded A-module with top in degree 0.
Then the ideal Z; = A(1—e;)A is a graded ideal. Hence for p <1 the ideal Zy,, = 7, ...Z,, is a
graded ideal and the module T}, = e, (A/Zy,) is a finite length graded A-module. Therefore the
standard cluster-tilting object Ty, = 11 ®- - - @71, is a graded A-module. Thus its endomorphism
algebra Endy(Tyw) is naturally graded. We have the following connection with the previous
grading.

Proposition 4.5. The isomorphism of algebras Endy(Ty) =~ Jac(Qw, Wy, F) of Theorem [{.3
1 an isomorphism of graded algebras

(Endp(Tw),deg) ~ (Jac(Qw, Wy, F), )

where deg is induced by the grading deg on the preprojective algebra A, and o is the grading on
Qw defined in the previous section.

Proof. Each a : 7 — jin Q; gives maps e;(A/Iy, ) — €;(A/Iy,), where u, = i and us = j. These
maps are obviously of degree 0 since they are induced by the degree zero map a : e;A — ¢;A.

Each @ : i — j in @ induces maps e;(A/Zy,) = €;(A/I,), where u; = j and u, = i. They
are induced by the degree 1 map a* : ;A — ¢;A, thus they are maps of degree 1.

For any i in @, there are surjective maps e;(A/Zy,) — €;(A/Zy.), where u; = u, = ¢ and
t > r. They are induced by the identity e;A — e;A, thus they are maps of degree 0.

Hence we get the grading ¢ defined in the previous section. O

Remark 4.6. Note that the summands of A, are all graded A-modules, but this does not imply
that all the objects in &, are gradable. In the proof of [[GS0F, Proposition 5.2], Geiss and
Schroer describe explicitly a non gradable module over the preprojective algebra associated to
the Dynkin graph Ag.

5. EXAMPLES

In this section we illustrate the previous theory through two examples. The first one is an
example covered by Theorem [£.2. It is given by a standard cluster-tilting object in the category
&, for some reduced word w. The second example shows that Theorem B.1] may also apply for
cluster-tilting objects in &, which are not standard.
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5.1. Standard cluster-tilting object associated to a reduced word. Let () be the fol-
lowing graph

2
(>

Let w be the reduced word 5152535153521 in the Coxeter group Cg. An admissible orientation
of ) as defined in section 4.2 is

Let us put the following grading for the preprojective algebra A.

2
VAN
VAR
1 1—

Then the canonical cluster-tilting object Ty, of the Frobenius category &, has the following
indecomposable summands:

[\
—

1 2
The indecomposable projective injectives are Ty, T and T7. As Ag-module (=k@-module) Tj
is isomorphic to the direct sum 3 @3 D, 1, D1 D 2D 1.

By [BIRS094d] and [BIRS09H], we know the shape of the quiver of B = Endg, (T). Its grading

coming from the grading of A is the following.

T2 0 TG
/11 \O\ 17 \0\
Ty Ny 0 T, 0 0/ T
1 AN
1 1
\ A \ /
Ty~—0 =T,

The algebra A = By is then given by the quiver with relations.

2 == = -0
\/\\\/\//// \
4 7
\\/ \\\\ /
J=——

bt

The indecomposable projective A-modules are

and the indecomposable injectives are



THE UBIQUITY OF GENERALIZED CLUSTER CATEGORIES

4 1
4 4 1

1 3 76 7 2 and 4

9 29 3 49 5 ) 6 9 7

It is an algebra of global dimension 2. We have Endc, (A) ~ Jac(Qw, Wy,) where

Qw = 2
7N
l=—4
\i d/4
3
and Wy, := bae + dce. It is isomorphic to the algebra B.

We denote by GG the composition

L L
—®aB —®BT

G : D (A) —2 - pP(A)

Dh(B)

D°(£,) —=D(£,)/D*(P) ~ £

27

w*

Let S, be the simple A-module associated to the vertex 2. We will show that G(S,) and

G 0 S71(Sy)[2] are isomorphic as objects in £,, where S denotes the Serre functor of DPA.
The restriction of Sy in the category DP(A) is quasi-isomorphic to the complex

0 65A 66A 62A O

Tensoring with B over A we get the complex

0 €5B €6B €QB 0

Therefore G(S2) is the complex
G(SQ) = (T5 —— T6 —— TQ) .
Now the simple A-module S, is quasi-isomorphic in DP(A) to the complex

—>0—>62(D/_1)—>64(DA)—>61(D/_1)—>0—>

L _
Hence the restriction of Sy ® 4 RHom 5(DA, A)[2] = S71(S,)[2] in DA is isomorphic to

0 2 2t i 0
which is quasi-isomorphic to the complex

> (—>5@Z —=3 7 2

5 6

s

that is, to the complex

co— ) —>65A@62A 64A 61A 0
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Therefore the object G(S™15,[2]) is the complex
G(S_l»SQ[Q]) - <T5 @ T2 —— T4 —— Tl) .
Now the simple A-module S, is also quasi-isomorphic to the complex

—>O—>62(DA) —>64(DA) —>61(DA) —())— -

L L L
Hence the complex Sy ® ; RHom (DA, A) ® 4 B[2] ~ RHomy (DA, Ss) ®4 B[2] is the complex

© —>0—>GQB 64B elB

We have a morphism in the category D®(B):

0 e B e, B e1B

.

0 €5B GGB 628

whose cone is

0 GQB 65B@64B—>663@613—>623—>0%‘"'-

An easy computation shows that it is quasi-isomorphic to the simple B-module S;. Hence we
get the following triangle in D"(B):

L _ L L __ L
SQ ®A RHomA(DA,A) XA B[Z] —>SQ éAB—>S2—>SQ XA RHomA(DA,A) ®A B[g] :

L
Note that this triangle is nothing but Sy ® ; (*) where (x) is the triangle defined in Proposi-
L
tion R.7. The object Sy ®p T in D"(&,) is then the complex

0 T, Is 0Ty —=Ts DT 15 0

A direct computation shows that it is acyclic. Indeed it is the 2-almost split sequence associated
with T5. Finally we have morphisms

/ \

G(SQ) = (T5 — T(; — Tg) (T5 ) T2 — T4 — Tl) = G(Silsgp])
b b
0~ (Ty = Ts0Ty — Ty ® Ty — Tp) (Ts) € DP(P)

The cone of the morphism (i) is acyclic, and the cone of the morphism (i) is T5[—2], which is

perfect. Thus in &, = D*(E,)/D"(P), the objects G(S3) and G(S™15,[2]) are isomorphic.

5.2. Example which is not associated with a word. Let £ be the category mod A where A
is the preprojective algebra of type Az, which is one of the cases investigated by Geiss, Leclerc
and Schroer in [[GLS06]. This is a Frobenius category which is stably 2-Calabi-Yau and of the
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form &, where w is the element in the Coxeter group of maximal length. Corresponding to the
reduced expression s15253515251 is the standard cluster-tilting object:

=W

/\2

T T5—1

/\/\

||
W

The endomorphism algebra is a frozen Jacobian algebra.
Let us mutate the object Ty, = 2. Tts complement is Ty = 3,1. The new cluster-tilting
object T™ is given by

W

One can easily check that the endomorphism algebra is isomorphic to the frozen Jacobian
algebra B = Jac(Q, W, F'), where

//>3\e

o N

Q = 2——1—5
o N Nof
¥ ¢ h\ N

1 4<—0—6

W :=acb+ dbe + dhgf, Fy :=={3,5,6} and F := {e, f}.
If we put ¢(a) = p(d) =1 and ¢(b) = ¢(c) = p(e) = ¢(f) = ¢(h) = 0, we obtain a grading
satisfying hypothesis (H1)-(H4) of Theorem B.I]. The algebra A is then given by the quiver

NS

with relations cb = 0 and be = hgf. The algebra A is the hereditary algebra with quiver

1=—2<—4.
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L
One can check that the image of Sy under the functor G : DP(A) fes DP(A) oA DP(€) is

(fg) T a1 "

(T5 Ty).

The object S71(S)[2] is quasi-isomorphic to the complex % —= % , thus its restriction in

DP(A) is quasi-isomorphic to the complex

b GQA = 61A 0

0 63A
Hence the complex G(S7155[2]) is

0— T3 —=T5 —~ T} —=0
We have morphisms in DP(€)

(15 — Th)
(@) (i)
OQ(T;—)Tl@T5—)T3@T4—)T;) (Tg)GDb(P)

The cone of the morphism (i) is

q (6 7q) (bh)
Jﬁﬂ@ﬂ—,—gﬁg@n—ﬂ;

which is the 2-almost-split sequence associated to T3, hence an acyclic complex. The cone of
the morphism (i7) is T3[—2], which is perfect. Thus in D(E)/D"(P) the objects G(S,) and
G(S7'S5,[2]) are isomorphic.

This example gives some hope that Theorem B.1] can be applied to stably 2-CY categories
other than those coming from an element of a Coxeter group.
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