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THE UBIQUITY OF GENERALIZED CLUSTER CATEGORIES

CLAIRE AMIOT, IDUN REITEN, AND GORDANA TODOROV

Abstract. Associated with some finite dimensional algebras of global dimension at most 2,
a generalized cluster category was introduced in [Ami08], which was shown to be triangulated
and 2-Calabi-Yau when it is Hom-finite. By definition, the cluster categories of [BMR+06]
are a special case. In this paper we show that a large class of 2-Calabi-Yau triangulated
categories, including those associated with elements in Coxeter groups from [BIRS09a], are
triangle equivalent to generalized cluster categories. This was already shown for some special
elements in [Ami08].
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Introduction

Throughout the paper k is an algebraically closed field. Let Q be a finite quiver without
oriented cycles. In [BMR+06], the cluster category CQ was defined to be the orbit category
Db(kQ)/τ−[1] where τ is the Auslander-Reiten translation in the bounded derived category
Db(kQ). The category CQ is Hom-finite and triangulated [Kel05], and 2-Calabi-Yau (2-CY
for short), that is, there is a functorial isomorphism DHomCQ

(X, Y ) ≃ HomCQ
(Y, X[2]), where

D = Homk(−, k). A theory for a special kind of objects, called cluster-tilting objects, was
developed in [BMR+06]. This work was motivated via [MRZ03] by the Fomin-Zelevinsky theory
of cluster algebras [FZ02], where the cluster-tilting objects are the analogs of clusters.

Another category where a similar theory was developed is the category modΛ of finite dimen-
sional modules over a preprojective algebra of Dynkin type [GLS07a], [GLS06]. This category
is Hom-finite and Frobenius. Moreover it is stably 2-CY, that is, its stable category (which is
triangulated) is 2-CY.

Much of the work on cluster categories has been generalized to the setting of 2-CY triangu-
lated categories with cluster-tilting objects, and new results have been proved in the general
setting ( [IY08], [KR08], [KR07], and others). It is of interest to investigate such categories,
both for developing new theory and for providing applications to new classes of cluster algebras.
In particular, it is of interest to find new classes of 2-CY triangulated categories with cluster-
tilting objects. An important class is the stable categories Ew of the Frobenius categories Ew

associated with reduced words w in Coxeter groups [BIRS09a], [GLS08], [GLS07b]. This class
contains both classes of examples discussed above as special cases (see [BIRS09a], [GLS07b]).

A new class of triangulated 2-CY categories was introduced in [Ami08]. They are generalized
cluster categories CĀ associated with algebras Ā of global dimension at most 2, rather than
global dimension 1. In this case the orbit category Db(Ā)/τ−[1] is not necessarily triangulated,
so CĀ is defined to be its triangulated hull. If CĀ is Hom-finite, then it is triangulated 2-CY
and Ā is a cluster-tilting object in CĀ.

A natural question is how the generalized cluster categories are related to the previous classes
of triangulated 2-CY categories. It was already shown in [Ami08] that some classes of categories
Ew are equivalent to generalized cluster categories, including CQ and modΛ. This result is
extended to the case of c-sortable words in [AIRT09] with a similar choice for Ā. One of the
main results in this paper is: Each category Ew associated with a reduced word is equivalent to
a generalized cluster category CĀ for some algebra Ā of global dimension at most 2 (Theorem
4.4).

Actually, we prove our main result in a more general setting: We start with a Frobenius
category E which we assume to be Hom-finite, stably 2-CY and with a cluster-tilting object T .
We assume that the endomorphism algebra EndE(T ) is Jacobian and has a grading with certain
properties. From these data we construct an algebra Ā of global dimension ≤ 2 and a triangle
equivalence CĀ ≃ E (Theorem 3.1) sending the canonical cluster-tilting object Ā of CĀ to the
cluster-tilting object T . The algebra Ā is constructed as the degree zero part of EndE(T ), and
we show EndE(T ) ≃ EndCĀ

(Ā) (Proposition 3.5), which is an important step in the proof of the
equivalence. It is however not known in general if 2-CY categories are equivalent when they
have cluster-tilting objects whose endomorphism algebras are isomorphic. The only general
result known of this type is that if the quiver Q of EndC(T ) has no oriented cycles, where T
is a cluster-tilting object in an algebraic 2-CY category, then C is triangle equivalent to the
cluster category CQ [KR08]. A crucial step in this paper for proving the equivalence CĀ ≃ E is
the construction of a triangle functor CĀ → E sending Ā to T . This is done by constructing a
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triangle functor Db(Ā)→ E with the strong use of the Frobenius structure of E and then using
the universal property of the projection πĀ : Db(Ā)→ CĀ from [Kel05] and [Ami08]. It will be
important to also deal with the endomorphism algebra EndE(T ) of the cluster-tilting object T
in the Frobenius category, which we assume to be a graded frozen Jacobian algebra (see section
1 for definitions) with potential homogeneous of degree 1. Theorem 3.1 applies in particular to
the categories Ew associated to any element of the Coxeter group (see section 4).

The paper is organized as follows. In section 1 we recall some background material on
cluster-tilting objects in 2-CY categories, on generalized cluster categories from [Ami08] and on
Jacobian algebras from [DWZ08], together with the generalization to frozen Jacobian algebras
from [BIRS09b].

In section 2 we construct a special triangle (Proposition 2.8) which is useful for our construc-
tion of a functor from CĀ to E .

Section 3 is devoted to the proof of the equivalence from CĀ to E (Theorem 3.1) . We first
show that the global dimension of Ā is at most 2. Then we construct our triangle functor
from CĀ to E using the special triangle from section 2, together with a universal property from
[Ami08]. Finally we show that our functor is an equivalence by using a criterion from [KR08].

In section 4 we apply the main theorem to prove that for any reduced word w, the 2-CY
triangulated category Ew is triangle equivalent to some generalized cluster category, which was
our original motivation (Theorem 4.4).

In section 5 we give two examples to illustrate our theorems. The first one is an application
of Theorem 4.4. In the second one we use Theorem 3.1 to construct a triangle equivalence from
a generalized cluster category CĀ to a category Ew which sends the canonical cluster-tilting
object Ā to a cluster-tilting object T of Ew, where T is not associated to a reduced expression
of w.

Notations. By triangulated category we mean k-linear triangulated category satisfying the
Krull-Schmidt property. For all triangulated categories we will denote the shift functor by [1].
By Frobenius category we mean an exact k-category with enough projectives and injectives
and where projectives and injectives coincide. For a finite-dimensional k-algebra A, we denote
by modA the category of finite-dimensional right A-modules. Let D be the usual duality
Homk(?, k). The tensor product −⊗−, when not specified, will be over the ground field k. For
a quiver Q we will denote by Q0 its set of vertices, by Q1 its set of arrows, by s the source map
and by t the target map.

1. Background

In this section we collect some background material relevant for this paper.

1.1. Cluster-tilting objects. Let C be a k-category which is Hom-finite, that is, has finite
dimensional homomorphism spaces. Assume that C is either Frobenius stably 2-CY (that is, its
stable category is 2-CY) or triangulated 2-CY. Then an object T in C is said to be cluster-tilting
if

(i) T is rigid, i.e. Ext
1
C(T, T ) = 0, and

(ii) Ext
1
C(T, X) = 0 implies that X is a summand of a finite direct sum of copies of T .

Note that when C is Frobenius stably 2-CY, then any indecomposable projective-injective
module is a summand of every cluster-tilting object. The finite dimensional algebras EndC(T ),
where C is triangulated 2-CY, are called 2-CY-tilted algebras.



4 CLAIRE AMIOT, IDUN REITEN, AND GORDANA TODOROV

Assume that T = T1 ⊕ . . . ⊕ Tn is a cluster-tilting object in a triangulated 2-CY category
C, where the Ti are indecomposable and pairwise non isomorphic. Then for each i = 1, . . . , n
there is a unique indecomposable object T ∗

i not isomorphic to Ti, such that T ∗ = T/Ti ⊕ T ∗
i is

a cluster-tilting object [BMR+06],[IY08]. The new object T ∗ is called the mutation of T at Ti.
If T = T1 ⊕ . . . ⊕ Tn is a cluster-tilting object in a Frobenius stably 2-CY category, we can

only mutate the Ti which are not projective-injective.
When T ∗

i is defined, there are exchange sequences if C is Frobenius

0 // T ∗
i

f // B
g // Ti

// 0 and 0 // Ti

f ′

// B′
g′ // T ∗

i
// 0

or exchange triangles if C is triangulated

T ∗
i

f // B
g // Ti

// T ∗
i [1] and Ti

f ′

// B′
g′ // T ∗

i
// Ti[1]

where f , f ′ are minimal left add (T/Ti)-approximations and g, g′ are minimal right add (T/Ti)-
approximations. These sequences (or triangles) play an important role in the categorification
of cluster algebras.

There is also a related kind of sequences investigated in [IY08].

Proposition 1.1. [Iyama-Yoshino] Let C be a Hom-finite Frobenius stably 2-CY category with
a cluster-tilting object T = T1⊕ . . .⊕Tn. For each i = 1, . . . , n, if Ti is not projective-injective,
there are exact sequences

0 // T+
i

f // E
g // Ti

// 0 and 0 // Ti

f ′

// E ′
g′ // T+

i
// 0

for some indecomposable object T+
i in C, such that g (resp. g′) is right almost split in add (T )

(resp. in add (T/Ti⊕ T+
i )) and f ′ (resp. f) is left almost split in add (T ) (resp. in add (T/Ti⊕

T+
i )).

The induced sequence 0 // Ti

f ′

// E ′
fg′ // E

g // Ti
// 0 is called the 2-almost split

sequence associated with Ti.
There is the corresponding result when C is triangulated. For any direct summand Ti of a

cluster-tilting object T , there are triangles

T+
i

f // E
g // Ti

// T+
i [1] and Ti

f ′

// E ′
g′ // T+

i
// Ti[1] )

where the maps f, g, f ′ and g′ are almost split. For cluster categories, it was shown in [BMR+06]
that these triangles coincide with the exchange triangles. More generally, they clearly coincide
if and only if there are no loops in the quiver of EndC(T ).

Using the existence of 2-almost split sequences, we can construct minimal projective and
injective resolutions of simple modules over EndC(T ).

Proposition 1.2. Let C be a Hom-finite Frobenius stably 2-CY category with a cluster-tilting
object T = T1 ⊕ . . . ⊕ Tn. Let B := EndC(T ) be the endomorphism algebra of T , and let Q be
the quiver of B ≃ kQ/I. For each i = 1, . . . , n, such that Ti is not projective-injective, denote
by Si the simple B-module HomC(T, Ti)/Rad(HomC(T, Ti)). Then we have exact sequences in
modB:

0 // eiB
(b)

//
⊕

b∈Q1,s(b)=i et(b)B
(rab) //

⊕
a∈Q1,t(a)=i es(a)B

(a)
// eiB // Si

// 0
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0 // Si
// D(Bei)

(b)
//
⊕

b∈Q1,s(b)=i D(Bet(b))
(r′

ab
)
//
⊕

a∈Q1,t(a)=i D(Bes(a))
(a)

// D(Bei) // 0 ,

where the sets {arab| a, b ∈ Q1, t(a) = s(b) = i, t(b) = j} and {r′abb| s(b) = t(a) = i, s(a) = j}
are bases of eiIej.

Proof. Applying the functor HomC(T,−) to the 2-almost-split sequence

0 // Ti

f ′

// E ′
fg′ // E

g // Ti
// 0

we get the following exact sequence of B-modules

0 // HomC(T, Ti) // HomC(T, E ′) // HomC(T, E) // HomC(T, Ti) // Si
// 0

which is a minimal projective resolution of the simple B-module Si.
Let Q be the quiver of B, and B ≃ kQ/I. Since g is right almost split in add(T ), we have

E ≃
⊕

a∈Q1| t(a)=i

Ts(a) and HomC(T, g) ≃ (a){a∈Q1| t(a)=i}.

Since f ′ is left almost split in add (T ), we have

E ′ ≃
⊕

b∈Q1| s(b)=i

Tt(b) and HomC(T, f ′) ≃ (b){b∈Q1| s(b)=i}.

For a, b ∈ Q1 with t(a) = i and s(b) = i, let rab : et(b)B → es(a)B be the map induced by
fg′ :

⊕
b∈Q1| s(b)=i Tt(b) →

⊕
a∈Q1| t(a)=i Ts(a). Since the 2-almost split sequence associated to Ti

induces a minimal projective resolution of the simple Si, the set {arab| a, b ∈ Q1, t(a) = s(b) =
i, t(b) = j} is a basis of the set of relations eiIej .

To get the other sequence of the proposition, we apply the functor DHomC(−, T ) to the
2-almost split sequence associated to Ti, and we proceed similarly.

�

1.2. Generalized cluster categories. Let Λ be a finite dimensional k-algebra of global di-
mension ≤ 2. We denote by Db(Λ) the bounded derived category of finitely generated Λ-
modules. It has a Serre functor that we denote by S, which coincides with τ [1].

The category CΛ has been defined in [Ami08] as the triangulated hull of the orbit category
Db(Λ)/S[−2]. There is a triangle functor

πΛ : Db(Λ) // // Db(Λ)/S[−2]
�

� // CΛ .

When the endomorphism algebra EndCΛ
(πΛ(Λ)) is finite dimensional, the category CΛ is called

the generalized cluster category and we have the following result:

Theorem 1.3 (Theorem 4.10 of [Ami08]). Let Λ be a finite dimensional algebra of global
dimension ≤ 2, and assume that the endomorphism algebra EndCΛ

(πΛ(Λ)) is finite dimensional.
Then CΛ is a Hom-finite, 2-Calabi-Yau category and πΛ(Λ) ∈ CΛ is a cluster-tilting object.

There is the following criterion for constructing triangle functors from a generalized cluster
category CΛ to some stable category E . It can be deduced from the universal property of πΛ

given in subsection 4.1 of [Ami08] (see also section 9 of [Kel05] or appendix of [IO09] for more
details). The next proposition is a key-step in the process of constructing the equivalence of
the main theorem of this paper.
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Here for a Frobenius category E and an algebra Λ we denote by Db(Λop ⊗ E) the bounded
derived category of Λop⊗E as defined in [Kel94]. Objects are bounded complexes of objects in
E with a structure of left Λ-modules.

Proposition 1.4. Let CΛ be a generalized cluster category, where Λ is an algebra of global
dimension ≤ 2. Let E be a Frobenius category. Let M be an object in E and assume that M
has a structure of left Λ-module. Assume that there is a morphism in Db(Λop ⊗ E)

α : M −→ RHomΛ(DΛ, Λ)
L
⊗Λ M [2]

whose cone lies in Db(Λop ⊗ P), where P is the subcategory of E of projective-injectives. Then
there exists a triangle functor CΛ → E such that the following diagram commutes

DbΛ
−

L
⊗ΛM //

πΛ

��

Db(E)

��
CΛ // E

.

Note that the endofunctor −
L
⊗Λ RHomΛ(DΛ, Λ)[2] ≃ RHomΛ(DΛ,−)[2] of Db(Λ) is isomor-

phic to the functor S
−1[2]. Hence Proposition 1.4 requires in particular that the images of Λ

and of S
−1Λ[2] under the composition

Db(Λ)
−

L
⊗ΛM // Db(E) // Db(E)/Db(P) = E

are isomorphic. Here the category Db(P) is the thick subcategory of Db(E) generated by P.
Therefore the localization of Db(E) by Db(P) is equivalent to the stable category E by [KV87].

1.3. Jacobian algebras and generalizations. Quivers with potentials and their associated
Jacobian algebras have been investigated in [DWZ08]. Let Q be a finite quiver. For each arrow
a in Q, the cyclic derivative ∂a with respect to a is the unique linear map

∂a : kQ→ kQ

which takes the class of a path p to the sum
∑

p=uav vu taken over all decompositions of the

path p (where u and v are possibly idempotent elements ei associated to the vertex i). A
potential on Q is any linear combination W of cycles in Q. The associated Jacobian algebra is
by definition the algebra

Jac(Q, W ) := kQ/〈∂aW ; a ∈ Q1〉.

There is a more general definition given in [DWZ08], dealing with the complete path algebras,
and hence there is also a larger class of Jacobian algebras. However in this paper we only
consider the Jacobian algebras defined above.

Any finite dimensional Jacobian algebra (in the general sense) is 2-CY-tilted ([Ami08],
[Kel09]). As a partial converse, some classes of 2-CY-tilted algebras associated with words are
Jacobian ([BIRS09b]). Furthermore, the 2-CY-tilted algebras given by the canonical cluster-
tilting object in a generalized cluster category are Jacobian, as stated in the following result
obtained from Theorem 6.11 a) of [Kel09].
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Theorem 1.5 (Keller). Let A = kQ/I be an algebra of global dimension ≤ 2, such that I is
generated by a finite set of minimal relations (ri). The relation ri starts at the vertex s(ri) and
ends at the vertex t(ri). Then we have an isomorphism of algebras:

EndCA
(A) ≃ Jac(Q̃, WA)

where the quiver Q̃ is the quiver Q with additional arrows ai : t(ri) → s(ri), and the potential
WA is

∑
i airi.

There is a generalization of quivers with potentials (Q, W ) to frozen quivers with potentials
(Q, W, F ) in [BIRS09b], where F = (F0, F1) is a pair of a subset F0 of vertices of Q (called
frozen vertices) and a subset F1 of arrows contained in {a ∈ Q1, s(a) ∈ F0 and t(a) ∈ F0}
(called frozen arrows). The associated frozen Jacobian algebra is by definition the algebra

Jac(Q, W, F ) := kQ/〈∂aW, a /∈ F1〉

As in [DWZ08], one can define a reduced frozen quiver with potential (Q, W, F ) such that
each term in W has at least one arrow in Q1 \ F1 and has length at least 3.

2. A useful triangle

This section is devoted to technical results which will be useful in the proof of the main
theorem. In particular we construct a triangle which is crucial for constructing the morphism
α of Proposition 1.4 and hence the functor from the generalized cluster categories.

Let E be a Frobenius category which is Hom-finite and stably 2-Calabi-Yau. While we are
mainly interested in the stable category E , it will be important to first consider cluster-tilting
objects T in E , and their endomorphism algebras B := EndE(T ), which we assume to be
isomorphic to Jac(Q, W, F ) for some reduced frozen quiver with potential (Q, W, F ). Notice
that the quiver of B is Q since the potential W is reduced. We also assume that

(H1) the vertices in F0 correspond to the projective-injectives in E ;
(H2) the set {∂aW, a /∈ F1} forms a basis of the relations of Jac(Q, W, F ), in particular

for any a not in F1, we have ∂aW 6= 0.
For i ∈ Q0 we denote by ei the primitive idempotent of B associated to i. Let us define the

idempotent eF :=
⊕

i∈F0
ei and the algebra B̄ := B/BeFB. Thus we have an isomorphism of

algebras B̄ ≃ EndE(T ).
Let Q̄ be the full subquiver of Q with vertices not in F0. We have a projection

kQ // // kQ/kQeF kQ ≃ kQ̄ .

We denote by W̄ the image of W under this projection. It is not hard to see that there is an
isomorphism B̄ ≃ Jac(Q̄, W̄ ). Indeed, since any arrow a in F1 satisfies s(a) ∈ F0 and t(a) ∈ F0,
the partial derivative ∂aW̄ vanishes for any a in F1.

2.1. Description of projective and injective resolutions in mod(B̄op⊗B). In this section
we describe the minimal projective and injective resolutions of B̄ as B̄-B-bimodule. First we
give explicitly the projective (resp. injective) resolutions of the simple B̄-modules.

Lemma 2.1. Let B ≃ Jac(Q, W, F ) be the endomorphism algebra of a cluster-tilting object T
in a Hom-finite Frobenius stably 2-CY category E . With the assumptions (H1) and (H2), for
any i ∈ Q0 \ F0, the sequences

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(a−1∂bW )

//
⊕

a,t(a)=i es(a)B
(a)

// eiB // Si
// 0
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and

0 // Si
// D(Bei)

(b)
//
⊕

b,s(b)=i D(Bet(b))
(∂aWb−1)

//
⊕

a,t(a)=i D(Bes(a))
(a)
// D(Bei) // 0

are the minimal projective and injective resolutions of the simple B-module Si. Here for a path
v in Q, we use the notation a−1v = u if v = au in kQ and 0 else.

Proof. By hypothesis (H1), if i is not in F0, the corresponding summand of T is not projective-
injective, hence there exists a 2-almost split sequence associated with Ti by Proposition 1.1.
Moreover, since the potential W is reduced, we have QEndE(T ) = Q. Thus by Proposition 1.2
we get a minimal projective B-resolution of Si

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(rab) //

⊕
a,t(a)=i es(a)B

(a)
// eiB // Si

// 0 ,

where {arab| t(a) = i, s(b) = i} is a basis of the space of relations with target i. By hypothesis
(H2), the set {∂bW | s(b) = i} is a basis of the same space. Thus a minimal projective resolution
of Si can be written as

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(a−1∂bW )

//
⊕

a,t(a)=i es(a)B
(a)

// eiB // Si
// 0

The proof is similar for the injective resolution. �

From this lemma, we deduce a description of a minimal projective (resp. injective) resolution
of B̄ as a B̄-B-bimodule. This is inspired by [Boc08].

Proposition 2.2. There exist exact sequences in mod (B̄op ⊗ B)

(a) 0 //
⊕

i/∈F0
Pi,i //

⊕
a/∈F1

Ps(a),t(a) //
⊕

a/∈F1
Pt(a),s(a) //

⊕
i/∈F0

Pi,i // B̄ // 0

(b) 0 // B̄ //
⊕

i/∈F0
Ii,i //

⊕
a/∈F1

Is(a),t(a) //
⊕

a/∈F1
It(a),s(a) //

⊕
i/∈F0

Ii,i // 0

where Pi,j := B̄ei ⊗ ejB and Ii,j := Homk(Bej , B̄ei).

Proof. Denote by Πi,j := Bei ⊗ ejB the projective B-bimodule. Let us define the following
sequence

(c)
⊕

i/∈F0
Πi,i

d2 //
⊕

a/∈F1
Πs(a),t(a)

d1 //
⊕

a∈Q1
Πt(a),s(a)

d0 //
⊕

i∈Q0
Πi,i.

The maps d0, d1 and d2 are defined as follows:

d2(ei ⊗ ei) =
∑

a,t(a)=i a⊗ ei −
∑

b,s(b)=i ei ⊗ b;

d1(es(a) ⊗ et(a)) =
∑

b∈Q1
∂a,bW where ∂a,b(apbq) = p⊗ q ∈ Bet(b) ⊗ es(b)B

for apbq a cycle in Q;
d0(et(a) ⊗ es(a)) = a⊗ es(a) − et(a) ⊗ a.

It is easy to check that this is a complex of B-bimodules, and that Cokerd1 = B. (The map⊕
i∈Q0

Πi,i → B is the multiplication map.)

Applying the functor B̄ ⊗B −, we get the complex of B̄-B-bimodules

⊕
i/∈F0

Pi,i
d2 //

⊕
a/∈F1

Ps(a),t(a)
d1 //

⊕
a/∈F1

Pt(a),s(a)
d0 //

⊕
i/∈F0

Pi,i.

Indeed, if i ∈ F0, then B̄ei ⊗ eiB = 0, and if a ∈ F1, then B̄et(a) ⊗ es(a)B = 0.
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Applying the functor Si ⊗B̄ − with i /∈ F0, we get the complex

0 // eiB
(b)

//
⊕

b,s(b)=i et(b)B
(∂aWb−1)

//
⊕

a,t(a)=i es(a)B
(a)

// eiB

which is exactly the minimal projective resolution of Si as B-module described in Lemma 2.1.
Thus the following sequence in mod (B̄op ⊗B) is exact:

0 //
⊕

i/∈F0
Pi,i //

⊕
a/∈F1

Ps(a),t(a)
//
⊕

a/∈F1
Pt(a),s(a)

//
⊕

i/∈F0
Pi,i // B̄ // 0.

We now prove the existence of the sequence (b), where the proof is dual. Let us define the
following sequence of B-B-bimodules

⊕
i∈Q0

Υi,i
d0

//
⊕

a∈Q1
Υs(a),t(a)

d1

//
⊕

a/∈F1
Υt(a),s(a)

d2

//
⊕

i/∈F0
Υi,i

where Υi,j := Homk(Bej , Bei). The maps d0, d1, d2 are the following

d0(φi) = (
∑

s(a)=i a⊗ ei −
∑

t(b)=i ei ⊗ b).(φi)

d1(φa) =
∑

b∈Q1
(∂a,bW ).(φa)

d2(φa) = (a⊗ ei − ei ⊗ a).(φa)

where (a⊗ b)(φ)(−) = φ(−a)b; so for instance

d0(φi)(−) =
∑

s(a)=i

φi(−a)−
∑

t(b)=i

φi(−)b.

The kernel of d0 is B, the bimodule map B →
⊕

Υi,i maps 1B to (1Bei
)i. Using the fact that

Sl ⊗B̄ Homk(Bei, B̄ej) ≃ δj,leiDB

we get the exact sequence (b). �

We have the following direct consequence (see also part (b) of the theorem in section 5.4 of
[KR07]) which we include even though it will not be used later in this paper.

Corollary 2.3. We have an isomorphism in D(B̄op ⊗ B)

RHomB(DB, B̄)[3] ≃ B̄.

Proof. Since Ii,j = Homk(Bej , eiB̄) is injective as a right B-module, then RHomB(DB, B̄) is
isomorphic in D(B̄op ⊗ B) to the complex

⊕
i/∈F0

Ri,i //
⊕

a/∈F1
Rs(a),t(a)

//
⊕

a/∈F1
Rt(a),s(a)

//
⊕

i/∈F0
Ri,i

where Ri,j is the bimodule HomB(DB, Ii,j). We have the following isomorphisms

HomB(DB, Ij,i) = HomB(DB, Homk(Bei, B̄ej))
≃ Homk(DBei, B̄ej)
≃ B̄ej ⊗ eiB
= Pj,i

in mod(B̄op ⊗ B), from which the result follows immediately.
�
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Remark 2.1. If the sequences of Lemma 2.1 exist for F0 being empty, then we get an isomorphism
in D(Bop ⊗ B) between RHom(DB, B)[3] and B (since in this case B̄ = B). This means by
definition that B is bimodule 3-CY. This is exactly what Bocklandt proved in Theorem 4.3 of
[Boc08], namely that a Jacobian algebra B is bimodule 3-CY if the sequence (c) is exact. In
our setup, since F0 corresponds to the projective-injectives, it is never empty. Also the algebra
B is never Jacobian, and the Jacobian algebra B̄ is never of global dimension 3 (indeed it is
either hereditary or of infinite global dimension by Corollary of section 2 of [KR07]). However
we have an isomorphism in D(B̄op ⊗B) between B̄ and RHomB(DB, B̄)[3].

2.2. Grading on the quiver. In order to identify appropriate subalgebras of B which should
give rise to the generalized cluster categories we are looking for, it will be convenient to introduce
some gradings on the quiver. Let as before B = EndE(T ) be isomorphic to Jac(Q, W, F ). We
assume that there exists a degree map ϕ : Q1 → {0, 1} with the following property:

(H3) the potential W is homogeneous of degree 1.
Since the potential is homogeneous, any relation ∂aW is homogeneous, thus ϕ induces a

grading on B = EndE(T ).
Define the algebras A and Ā by A := B0 and Ā := A/AeF A. We have the surjective

algebra maps: B → A→ Ā.
The purpose of this subsection is to construct a triangle

(∗) RHomA(DA, Ā)
L
⊗A B[2] // Ā

L
⊗A B // ĀB // RHomA(DA, Ā)

L
⊗A B[3]

in D(Āop ⊗ B), which will be important for constructing the morphism α of Proposition 1.4.
The proof of the following proposition is exactly the same as the proof of Proposition 2.2. It

describes the minimal projective and injective resolutions of Ā as (Āop ⊗ B)-module.

Proposition 2.4. There exist exact sequences in mod (Āop ⊗ B)

(a′) 0 //
⊕

i/∈F0
Pi,i

d2 //
⊕

a/∈F1
Ps(a),t(a)

d1 //
⊕

a/∈F1
Pt(a),s(a)

d0 //
⊕

i/∈F0
Pi,i // Ā // 0

(b′) 0 // Ā //
⊕

i/∈F0
Ii,i //

⊕
a/∈F1

Is(a),t(a)
//
⊕

a/∈F1
It(a),s(a)

//
⊕

i/∈F0
Ii,i // 0

where Pi,j := Āei ⊗ ejB and Ii,j := Homk(Bej , Āei).

Let a be an arrow which is not in F1 and such that ϕ(a) = 1. Then by definition d1(es(a) ⊗
et(a)) =

∑
b∈Q1

∂a,bW . If apbq is a cycle in W , then ∂a,b(apbq) = p ⊗ q lies in Āet(b) ⊗ es(b)B.
Since the degree of a is 1, and since the potential W is homogeneous of degree 1, then b is of
degree 0. Hence the restriction of d1

⊕
a/∈F1,ϕ(a)=1 Ps(a),t(a) //

⊕
a/∈F1,ϕ(a)=1 Pt(a),s(a)

is zero. Therefore the complex

⊕
i/∈F0

Pi,i //
⊕

a/∈F1
Ps(a),t(a)

//
⊕

a/∈F1
Pt(a),s(a)

//
⊕

i/∈F0
Pi,i

can be viewed as the total complex of the morphism
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X :=
⊕

i/∈F0
Pi,i //

��

⊕
a/∈F1,ϕ(a)=0 Ps(a),t(a) //

��

⊕
a/∈F1,ϕ(a)=1 Pt(a),s(a)

��
Y :=

⊕
a/∈F1,ϕ(a)=1 Ps(a),t(a) //

⊕
a/∈F1,ϕ(a)=0 Pt(a),s(a) //

⊕
i/∈F0

Pi,i.

It is not hard to check that all horizontal maps are homogeneous of degree 0, and all vertical
maps are homogeneous of degree 1. Let us call f the map X → Y . By Proposition 2.4 (a), we
then get the following triangle in D(Āop ⊗B)

X
f // Y // Ā // X[1].

Now we will use basic lemmas about complexes of graded modules in order to show that

Y ≃ Ā
L
⊗A B and X ≃ RHomB(DA, Ā)

L
⊗A B[2].

Lemma 2.5. Let B be a Z-graded algebra. Let (X, dX) and (Y, dY ) be complexes of graded
B-modules such that the differentials dX and dY are homogeneous of degree 0. We denote by
(Xp, dXp) (resp. (Yp, dY p)) the part of degree p of the complex (X, dX) (resp. (Y, dY )). These
are complexes of B0-modules. Let f : X → Y be a morphism of complexes homogeneous of
degree 1. Denote by Z = Tot(f) the total complex of f : X → Y . Then for any integers p, q
we have an isomorphism of B0-modules:

Hq(Z)p ≃ Hq(Tot(fp−1 : Xp−1 → Yp)).

Applying the lemma to our situation, we get an isomorphism of Āop⊗A-modules (remember
that A = B0):

Hq(Tot(f : X → Y ))0 ≃ Hq(Tot(f−1 : X−1 → Y0)).

By the sequence (a′) of Proposition 2.4 the left term is zero unless q is 0, and then it is
isomorphic to Ā. Since X is only in positive degree, the right hand side is just Hq(Y0). Thus
we get an isomorphism in D(Āop ⊗ A)

(1) Y0 ≃ Ā.

Remark 2.2. This implies that any Ā-module has projective dimension 2 when viewed as an
A-module.

Dually, using the exact sequence (b′) of Proposition 2.4, it is possible to view Ā[1] as the cone
of the map

X ′ :=
⊕

i/∈F0
Ii,i //

��

⊕
a/∈F1,ϕ(a)=0 Is(a),t(a) //

��

⊕
a/∈F1,ϕ(a)=1 It(a),s(a)

��
Y ′ :=

⊕
a/∈F1,ϕ(a)=1 Is(a),t(a) //

⊕
a/∈F1,ϕ(a)=0 It(a),s(a) //

⊕
i/∈F0

Ii,i

where horizontal maps are of degree 0, and vertical maps are of degree −1. And similarly we
get an isomorphism in D(Āop ⊗A)

(2) X ′
0 ≃ Ā.
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Moreover, using the fact that HomB(DB, Ii,j) ≃ Pi,j, it is easy to check that we have an
isomorphism in D(Āop ⊗B)

(3) RHomB(DB, X ′)[2] ≃ X.

Now we will prove that we have isomorphisms

Y ≃ Ā
L
⊗A B and X ≃ RHomB(DA, Ā)

L
⊗A B[2]

in D(Āop ⊗ B) in order to get the triangle (∗) . For this we will use the following lemmas:

Lemma 2.6. Let B be a Z-graded algebra and A := B0. Let (P, d) be a complex of graded
projective B-modules such that the differential d of P is homogeneous of degree 0. Let P0 be
the degree 0 part of P , then P0 is a complex over A, and we have an isomorphism

P ≃ P0 ⊗A B.

Proof. Let i : A→ B and p : B → A be the canonical algebra maps. We get induced functors:

i∗ = −⊗A B : modA→ modB, and p∗ = −⊗B A : modB → modA

Since B0 ⊗A B ≃ B, then for any graded projective B-module M , we have M0 ⊗A B =
i∗ ◦ p∗(M) ≃M . Hence we have

P0 ⊗A B = (P0 ⊗A B, i∗ ◦ p∗(d)).

Since i ◦ p(b) = b if and only if b is of degree 0, we get the result. �

Lemma 2.7. The functors (HomB(DB,−))0 and HomA(DA, (−)0) are isomorphic as functors
from injective B-modules to projective A-modules.

Proof. It is enough to check it on DB, and this is clearly true. �

Since Y is a complex of projective modules, we can apply Lemma 2.6, and using (1), we get
an isomorphism in D(Āop ⊗ B)

(4) Y ≃ Y0 ⊗A B ≃ Ā
L
⊗A B.

Moreover, we have the isomorphisms in D(Āop ⊗B)

X ≃ HomB(DB, X ′)[2] by (3)
≃ (HomB(DB, X ′))0 ⊗A B[2] by Lemma 2.6
≃ HomA(DA, X ′

0)⊗A B[2] by Lemma 2.7

≃ RHomA(DA, Ā)
L
⊗A B[2] by (2).

Hence we have the following.

Proposition 2.8. Let E be a Frobenius category which is Hom-finite and stably 2-Calabi-Yau.
We assume that there exists a cluster-tilting object T in E such that its endomorphism algebra
is isomorphic to Jac(Q, W, F ) for some frozen quiver with reduced potential (Q, W ). With the
assumptions (H1), (H2) and (H3), there exists a triangle

(∗) RHomA(DA, Ā)
L
⊗A B[2] // Ā

L
⊗A B // ĀB // RHomA(DA, Ā)

L
⊗A B[3]

in D(Āop ⊗ B), where A = B0 and Ā = A/AeF A.
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3. Main Theorem

As in the previous section, E is a Frobenius category which is Hom-finite and stably 2-
Calabi-Yau. We assume that there exists a cluster-tilting object T in E whose endomorphism
algebra is isomorphic to Jac(Q, W, F ) for some frozen quiver with reduced potential (Q, W )
with assumptions (H1) and (H2).

We assume that there exists a degree map ϕ : Q1 → {0, 1} with the following hypothesis:
(H3) the potential W is homogeneous of degree 1;
(H4) if a : i→ j is in Q1 with i /∈ F0 and j ∈ F0 then ϕ(a) = 1;
(H5) the set {∂aW̄ , ϕ(a) = 1} is linearly independent, where W̄ is the image of the

potential W under the projection kQ → kQ/kQeF kQ = kQ̄. So in particular, ∂aW̄ does not
vanish for a in Q̄1 with ϕ(a) = 1.

As before we define the algebras A and Ā as A := B0 ⊂ B and Ā := A/AeF A, where eF is
the idempotent

⊕
i∈F0

ei.
In this section we prove the following.

Theorem 3.1. Let E be a Frobenius category which is Hom-finite and stably 2-CY. Assume that
there exists a cluster-tilting object T in E such that B := EndE(T ) is isomorphic to some graded
frozen Jacobian algebra Jac(Q, W, F ) which satisfies the conditions (H1)-(H5). Let A := B0 be
the subalgebra of degree 0 of B and Ā := A/AeFA be the quotient algebra of A where eF is the
idempotent of the frozen vertices. Then

(1) the algebra Ā is of global dimension ≤ 2;
(2) there exists a triangle equivalence CĀ ≃ E , where CĀ is the generalized cluster category

associated to the algebra Ā.

The proof of the theorem is given in the next three subsections: the fact that gl.dimĀ ≤ 2
is proved in 3.1, the existence of a triangle functor G : CĀ → E is proved in 3.2, and in 3.3 it is
proved that G is an equivalence of triangulated categories.

3.1. Global dimension of Ā. We first describe the restriction functor Db(Ā) // Db(A)

induced by the projection A // Ā = A/AeFA .

Lemma 3.2. Let E , Jac(Q, W, F ), A and Ā be as in Theorem 3.1 Assume that Jac(Q, W, F )

satisfies conditions (H1)-(H4). Let Res : Db(Ā) // Db(A) be the restriction functor. Then

for any i /∈ F0:

(1) Res(eiDĀ) ≃ eiDA,

(2) Res(eiĀ) ≃ (P // Q // eiA) where P and Q are in add (eFA).

Moreover, the functor Res is fully faithful.

Proof. By hypothesis (H4), the first item is clear.
By Remark 2.2 any Ā-module has projective dimension ≤ 2 when viewed as an A-module,

thus combining this with (H4) we get the second item. �

Proposition 3.3. Let E Jac(Q, W, F ) and Ā be as in Theorem 3.1. Assume that Jac(Q, W, F )
satisfies conditions (H1)-(H4). Then we have

gl.dimĀ ≤ 2.



14 CLAIRE AMIOT, IDUN REITEN, AND GORDANA TODOROV

Proof. By equation (2) of the previous section Ā is isomorphic to X ′
0 as Āop⊗A-modules, thus

we have an exact sequence in mod(Āop ⊗ A):

0 // Ā //
⊕

i/∈F0
Ri,i //

⊕
a/∈F1,ϕ(a)=0 Rt(a),s(a) //

⊕
a/∈F1,ϕ(a)=1 Rs(a),t(a) // 0

where Ri,j := Homk(Aei, Āej). This gives, for any right Ā-module, an injective resolution of
length 3 of its restriction as a right A-module. By (1) of Lemma 3.2, the injective resolution of
the restriction of any Ā-module is an injective resolution in modA. Thus the global dimension
of Ā is ≤ 2.

�

3.2. Construction of a triangle functor. Recall that A = B0 is the subalgebra of degree
0 of B = EndE(T ). Thus T has a structure of left A-module. Hence we have the following
diagram:

Db(Ā)
Res // Db(A)

−
L
⊗AT //

−
L
⊗AB $$I

III
II

II
I

Db(E) // E .

Db(B)
−

L
⊗BT

::vvvvvvvvv

Applying −
L
⊗B T to the triangle (∗) of Proposition 2.8, we get the following triangle in

D(Āop ⊗ E)

RHomA(DA, Ā)
L
⊗A T [2] // Ā

L
⊗A T // Ā

L
⊗B T // RHomA(DA, Ā)

L
⊗A T [3] .

Using the projective resolution of Lemma 2.1 of the simple B-module Si for i ∈ Q0 \ F0 , we

get that the object Si

L
⊗B T is quasi-isomorphic to the complex

0 // eiB ⊗B T //
⊕

a,s(a)=i et(a)B ⊗B T //
⊕

a,t(a)=i es(a)B ⊗B T // eiB ⊗B T,

which is the 2-almost split sequence associated with Ti

0 // Ti
//
⊕

a,s(a)=i Tt(a) //
⊕

a,t(a)=i Ts(a) // Ti
// 0 .

Hence Si

L
⊗B T is zero in Db(E). Therefore the object Ā

L
⊗B T is zero in D(Āop⊗E), and hence

the morphism

(i) RHomA(DA, Ā)
L
⊗A T [2]→ Ā

L
⊗A T

is an isomorphism in Db(Āop ⊗ E).
Now the exact sequence of A-A-bimodules

AeF A // // A // // A/AeF A = Ā

induces the following triangle in D(Āop ⊗ A):

(∗∗) RHomA(DA, Ā)
L
⊗A AeF A // RHomA(DA, Ā) // RHomA(DA, Ā)

L
⊗A Ā // .

Let Z be an injective resolution of Ā as a right A-module. Then we have

RHomA(DA, Ā)
L
⊗A Ā ≃ HomA(DA, Z)⊗A Ā.
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Now for each A-module M , we define a map

GM : HomA(DA, M)⊗A Ā→ HomA(DĀ, M).

Let ϕ be in HomA(DA, M), a ∈ Ā, and Φ ∈ DĀ. We define

GM(ϕ⊗ a)(Φ) := ϕ(Φa) ∈M,

where Φa(b) = Φ(ba) for any b ∈ A. Since Ā has finite projective dimension as an A-module,
this map is an isomorphism in modA. Thus we get the isomorphism in D(Āop ⊗A)

RHomA(DA, Ā)
L
⊗A Ā = HomA(DA, Z)⊗A Ā

GZ // HomA(DĀ, Z) = RHomA(DĀ, Ā).

Moreover by Lemma 3.2 any injective resolution of an Ā-module is an injective resolution of
the restriction of the module as an A-module, and the restriction functor is fully faithful. Thus
we get isomorphisms in D(Āop ⊗ A)

RHomA(DĀ, Ā) = HomA(DĀ, Z) ≃ HomĀ(DĀ, Z) = RHomĀ(DĀ, Ā).

By Lemma 3.2 the A-module eiAeF A, with i /∈ F0, is quasi-isomorphic to a complex of the

form P // Q where P and Q are in add (eF A). Thus the object AeF A
L
⊗A T is in Db(A⊗P),

where P is the full subcategory of E consisting of projective-injectives. Therefore the object

RHomA(DA, Ā)
L
⊗A AeF A

L
⊗A T is in Db(Āop ⊗P).

Hence applying the functor −
L
⊗A T to the triangle (∗∗), we get that the morphism

(ii) RHomA(DA, Ā)
L
⊗A T → RHomĀ(DĀ, Ā)

L
⊗A T

has a cone in Db(Āop ⊗ P).
Finally, combining (i) and (ii) we have the diagram in D(Āop ⊗ E)

(∗ ∗ ∗) RHomA(DA, Ā)
L
⊗A T [2]

(i)

((QQQQQQQQQQQQQQ
(ii)

ttiiiiiiiiiiiiiiii

RHomĀ(DĀ, Ā)
L
⊗A T [2] Ā

L
⊗A T.

The cone of the left morphism is in Db(Āop ⊗P) and the right morphism is an isomorphism in
D(Āop ⊗ E). Therefore we get a morphism

α : Ā
L
⊗A T → RHomĀ(DĀ, Ā)

L
⊗A T [2] = RHomĀ(DĀ, Ā)

L
⊗Ā (Ā

L
⊗A T )[2].

By Proposition 1.4 (for M = Ā
L
⊗A T ) the composition of the functors

Db(Ā)
Res

//

πĀ

��

−
L
⊗Ā(Ā

L
⊗AT )

++
Db(A)

−
L
⊗AT

// Db(E)

��
CĀ

G // E

factors through the generalized cluster category CĀ, and the factorization G is a triangle functor.
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3.3. Proof of the equivalence. The aim of this subsection is to show that the triangle functor
G : CĀ → E is an equivalence.

We have a triangle

AeF A
L
⊗A T // T // Ā

L
⊗A T // AeF A

L
⊗A T [1]

in D(Āop ⊗ E) and the object AeF A
L
⊗A T is in Db(Ā ⊗ P). Hence the image of Ā in E is

isomorphic to T , so that the triangle functor G sends the cluster-tilting object Ā to the cluster-
tilting object T . Then we use Lemma 4.5 of [KR08]:

Proposition 3.4 (Keller-Reiten). Let C and C′ be 2-Calabi-Yau triangulated categories. Let T
(resp. T ′) be a cluster-tilting object in C (resp. C′). If we have a triangle functor G : C → C′

which sends T to T ′ and which induces an equivalence between add(T ) and add(T ′), then G is
an equivalence.

Thus, in order to prove that G is an equivalence it is enough to prove the following.

Proposition 3.5. Under assumptions (H1)-(H5) we have an isomorphism of algebras

EndE(T ) ≃ EndCĀ
(Ā).

Proof. The algebra B̄ = B/BeF B is isomorphic to the Jacobian algebra Jac(Q̄, W̄ ) (cf section
2), where Q̄ is the full subquiver of Q whose vertices are not in F0 and where W̄ is the image

of W under the projection kQ // // kQ/kQeF kQ ≃ kQ̄ .

Let Q′ be the subquiver of Q defined by:

• Q′
0 := Q0;

• Q′
1 := {a ∈ Q1, ϕ(a) = 0}.

By definition we have

A ≃ kQ′/〈∂aW, a /∈ F1 and ϕ(a) = 1〉.

Let Q̄′ be the full subquiver of Q′ with vertices Q̄′
0 = Q′

0 \ F0. Thus we get

Ā ≃ kQ̄′/〈∂aW̄ , ϕ(a) = 1〉.

By condition (H5) the set {∂aW̄ , ϕ(a) = 1} is a basis for the ideal of relations 〈∂aW̄ , ϕ(a) =
1〉. By Theorem 1.5, using the fact that {∂aW̄ , ϕ(a) = 1} is a basis, the endomorphism algebra

EndCĀ
(Ā) is isomorphic to the Jacobian algebra Jac(˜̄Q′, WĀ) where WĀ is the potential

WĀ =
∑

a,ϕ(a)=1

a∂aW̄ .

By condition (H3) the potential W̄ is homogeneous of degree 1 and the degree map ϕ has
non-negative values. Thus any term in the potential W̄ contains exactly one arrow of degree

1. Hence we have ˜̄Q′ = Q̄ and W̄ = WĀ. Therefore we have

Jac(˜̄Q′, WĀ) ≃ Jac(Q̄, W̄ )

which gives the desired isomorphism.
�

Hence we have finished the proof of Theorem 3.1.
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4. Application to 2-Calabi-Yau categories associated with elements in the

Coxeter group

In this section we apply Theorem 3.1 to the categories associated with elements in the Coxeter
group introduced in [BIRS09a].

4.1. Results of [BIRS09a] and [BIRS09b]. Let Q be a finite quiver without oriented cycles.
We denote by Q0 = {1, . . . , n} the set of vertices and as usual by Q1 the set of arrows. The
preprojective algebra associated to Q is the algebra

kQ/〈
∑

a∈Q1

aa∗ − a∗a〉

where Q is the double quiver of Q, which is obtained from Q by adding to each arrow a : i→ j
in Q1 an arrow a∗ : i← j pointing in the opposite direction. We denote by Λ the completion of
the preprojective algebra associated to Q and by f.l.Λ the category of right Λ-modules of finite
length.

Let CQ be the Coxeter group associated to Q. It is defined by the generators si where i ∈ Q0

and by the relations

• s2
i = 1,

• sisj = sjsi if there is no arrows between i and j,
• sisjsi = sjsisj if there is exactly one arrow between i and j.

A reduced expression w = su1
. . . sul

of an element of CQ is an expression of w with l as small
as possible. When su1

. . . sul
is a reduced expression of w, the integer l(w) := l is then called

the length of w.
For a vertex i in Q0 we denote by Ii the two-sided ideal Λ(1− ei)Λ. Let w = su1

. . . sul
be

a reduced expression of an element in CQ. For p ≤ l we denote by Iwp
the two-sided ideal

Iup
Iup−1

. . .Iu1
. We denote by Λw the algebra Λ/Iwl

and by Ew := SubΛw the subcategory of
f.l.Λ consisting of submodules of finite direct sums of copies of Λw. The ideal Iw depends on
the element w ∈ CQ and not on the choice of the reduced expression.

Let us recall Theorem III.2.8 of [BIRS09a].

Theorem 4.1 (Buan-Iyama-Reiten-Scott). Let w be an element in the Coxeter group CQ. Then
the category Ew is a Hom-finite Frobenius stably 2-CY category.

Moreover for any reduced expression su1
. . . sul

of w, the object Tw =
⊕l

p=1 eup
(Λ/Iwp

) is a

cluster-tilting object. The projective-injective indecomposable objects are euti
(Λ/Iwti

) where ti
is the maximal integer such that uti = i for i ∈ Q0.

The cluster-tilting object Tw depends on the choice of the reduced expression of w. We refer
to a cluster-tilting object of this form as a standard cluster-tilting object. Note that by mutation
we may get other cluster-tilting objects which are not standard.

We now define a quiver Qw associated with a reduced expression w = su1
. . . sul

as follows:

• vertices: 1, . . . , l(w).
• for each i ∈ Q0, one arrow t ← s if t and s are two consecutive vertices of type i (i.e.

us = ut = i) and t < s (we call these arrows arrows going to the left);
• for each a : i→ j ∈ Q1, put a : t→ s if t is a vertex of type i, s of type j, and if there is

no vertex of type i between t and s and if s is the last vertex of type j before the next
vertex of type i in the expression w = su1

. . . sul
(we call these arrows the Q-arrows)
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• for each a : i→ j ∈ Q1, put a∗ : t→ s if t is of type j, s is of type i, if there is no vertex
of type j between t and s and if s is the last vertex of type i before the next vertex of
type j in the expression of w (we call these arrows the Q∗-arrows).

For each Q-arrow a : t → s in Qw, we denote by Wa the composition aa∗p if there is a
(unique) Q∗-arrow a∗ : r → t in Qw where ur = us and where p is the composition of arrows
going to the left r ← · · · ← s. Otherwise we put Wa = 0. For each Q∗-arrow a∗ : t → r
in Qw, we denote by Wa∗ the composition a∗ap if there exists a (unique) Q-arrow a : s → t
with us = ur in Qw and where p is the composition of arrows going to the left s ← · · · ← r.
Otherwise we put Wa∗ = 0. Then let Ww be the sum

Ww =
∑

a Q-arrow

Wa −
∑

a∗ Q∗-arrow

Wa∗ .

Let us recall Theorem 6.8 of [BIRS09b].

Theorem 4.2 (Buan-Iyama-Reiten-Smith). Let w = su1
. . . sul

be a reduced expression of an
element of the Coxeter group CQ. Let Tw be the standard cluster-tilting object of the category
Ew associated to this reduced expression. Then we have an isomorphism

EndEw
(Tw) ≃ Jac(Qw, Ww, F )

where F0 := {t1, . . . , tn} and F1 := {a ∈ Q1, s(a) ∈ F0 and t(a) ∈ F1}.

4.2. Description of the grading. The algebra Λ and the Coxeter group do not depend on
the orientation of Q. For any reduced expression w = su1

. . . sul
, the category Ew and the

cluster-tilting object Tw do not depend on the orientation of Q. From now on we assume that
the orientation of Q satisfies the property

if there exists i→ j, then ti < tj ,

where ti is the maximal integer satisfying uti = i.
We define a grading on the quiver Qw as follows:

• ϕ(b) = 1 if b is a Q∗-arrow;
• ϕ(b) = 0 if b is a Q-arrow or an arrow going to the left.

Lemma 4.3. The graded Jacobian algebra (Jac(Qw, Ww, F ), ϕ) satisfies the conditions (H1)-
(H5) of Theorem 3.1.

Proof. (H1) This holds by Theorems 4.1 and 4.2.
(H2) The potential Ww = W is reduced. Moreover two different terms of the potential W

differ by at least two arrows. Thus the set {∂aW | a /∈ F1, ∂aW 6= 0} is a basis. Let us show
that for any arrow a /∈ F1, the derivative ∂aW does not vanish. Assume that a Q-arrow or a
Q∗-arrow a : r → s does not appear in the potential, where ur = i, us = j and there is an arrow
between i and j in the quiver Q. The fact that a does not appear in the potential implies that
there is no ut of type i with t > r. Thus we have r = ti. Then we must have s = tj. Therefore
a : r = ti → s = tj is in F1. Now let p : r ← s be an arrow going to the left, where r and s
are two consecutive vertices of type i. Since the expression su1

. . . sul
is reduced, there exists t

with r < t < s such that ut is of type j and there is (at least) one arrow between i and j in the
quiver Q. Let t be the maximal integer with this property. Then there is an arrow a : r → t,
and there is also an arrow a∗ : t → v where v ≥ s and uv is of type i. Thus p appears in the
potential W . Therefore for any arrow a of Qw which is not in F1, the derivative ∂aW is not
zero, and we have (H2).
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(H3) By the definition of the potential in Theorem 4.2, this follows immediately.
(H4) By the choice of the orientation of Q, any arrow in F1 is a Q-arrow, hence of degree

0. Thus all arrows with target in F0 and source not in F0 are Q∗-arrows, hence of degree 1, and
all arrows with source in F0 and target not in F0 are arrows going to the left, hence of degree
0. This implies condition (H4).

(H5) Let Q̄w be the full subquiver of Qw with vertices not in F0. Let b : r → s be an
arrow of Q̄w of degree 1, thus we have r 6= ti and s 6= tj . Hence, there exists an arrow a : s→ t.
Since s is not tj , we have t 6= ti. Thus the arrow a is in Q̄w. Therefore the arrow b appears in
the potential W̄ . Moreover two different summands of the potential W̄ differ by at least two
arrows. Thus condition (H5) holds.

�

Now we get the following direct consequence, which is one of our main results.

Theorem 4.4. The stable category Ew is a generalized cluster category.

4.3. Meaning of the grading. We show that the grading ϕ on EndEw
(T ) defined in the

previous section is induced by a natural grading on the preprojective algebra.
Let w = su1

. . . sul
, be a reduced expression of an element of the Coxeter group CQ. Assume

that the orientation of Q satisfies the property

if there exists i→ j, then ti < tj ,

where ti is the maximal integer satisfying uti = i.
Let us define a grading on the double quiver Q:

• deg(a) = 0 if a is an arrow of Q;
• deg(a∗) = 1 if a∗ : j → i is an arrow pointing in the opposite direction of an arrow

a : i→ j of Q.

The ideal of relations (
∑

a∈Q1
aa∗ − a∗a) is homogeneous of degree 1, thus the grading on the

double quiver Q induces a grading on the preprojective algebra Λ.
For any i in Q0, the Λ-module eiΛ can be seen as a graded Λ-module with top in degree 0.

Then the ideal Ii = Λ(1− ei)Λ is a graded ideal. Hence for p ≤ l the ideal Iwp
= Iup

. . .Iu1
is

a graded ideal and the module Tp = eup
(Λ/Iwp

) is a finite length graded Λ-module.
Therefore the cluster-tilting object Tw = T1 ⊕ · · · ⊕ Tl is a graded Λ-module. Thus its

endomorphism algebra EndΛ(Tw) is naturally graded.
We have the following connection with the previous grading.

Proposition 4.5. The isomorphism of algebras EndΛ(Tw) ≃ Jac(Qw, Ww, F ) of Theorem 4.2
is an isomorphism of graded algebras

(EndΛ(Tw), deg) ≃ Jac(Qw, Ww, F ), ϕ)

where deg is induced by the grading deg on the preprojective algebra Λ, and ϕ is the grading on
Qw defined in the previous section.

Proof. Each a : i→ j in Q1 gives maps ei(Λ/Iwr
)→ ej(Λ/Iws

), where ur = i and us = j. These
maps are obviously of degree 0 since they are induced by the degree zero map a : eiΛ→ ejΛ.

Each a : i → j in Q induces maps ej(Λ/Iwt
) → ei(Λ/Iws

), where ut = j and us = i. They
are induced by the degree 1 map a∗ : ejΛ→ eiΛ, thus they are maps of degree 1.

For any i in Q0, there are surjective maps ei(Λ/Iwt
) → ei(Λ/Iwr

), where ut = ur = i and
t > r. They are induced by the identity eiΛ→ eiΛ, thus they are maps of degree 0.

Hence we have the same grading as ϕ defined in the previous section. �
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Remark 4.1. Note that the summands of Λw are all graded Λ-modules, but this does not imply
that all the objects in Ew are gradable. In the proof of Proposition 5.2 of [GS05], Geiss and
Schröer describe explicitly a non gradable module over the preprojective algebra associated to
the Dynkin graph A6.

5. Examples

In this section we illustrate the previous theory through two examples. The first one is an
example covered by Theorem 4.2, given by a standard cluster-tilting object in the category Ew

for some reduced word w. The second example shows that Theorem 3.1 also may apply for
cluster-tilting objects in Ew which are not standard.

5.1. Canonical cluster-tilting object associated to a word. Let Q be the following graph

2
KKK

K

1
tttt

3.

Let w be the reduced word s1s2s3s1s3s2s1 in the Coxeter group CQ. An admissible orientation
of Q as defined in section 4.2 is

2 ee aKKK
K

1 oo cyy
b tttt

3.

Let us put the following grading for the preprojective algebra Λ.

2
1

??
?

��?
??

?
0
���

����
��

1 1 //

1���

@@����

3.0oo
0???

__????

Then the canonical cluster-tilting object Tw of the Frobenius category Ew has the following
indecomposable summands:

T1 = T(1,1) = 1 , T2 = T(2,1) = 2
1 , T3 = T(3,1) =

3
1 2

1
, T4 = T(1,2) =

1
2 3

1 2
1
,

T5 = T(3,2) =
3

1 2
2 1

, T6 = T(2,2) =
2

3 1
1 2 3

2 1 2
1

and T7 = T(1,3) =
1

2 3
3 1 2

1 2 1
2

The indecomposable projective injectives are T5, T6 and T7. As Λ0-module (=kQ-module) T6

is isomorphic to the direct sum 2
3 ⊕

1
2 ⊕

1
2 3 ⊕ 1 ⊕ 2 ⊕ 1 .

By [BIRS09a] and [BIRS09b], we know the shape of the quiver of B = EndEw
(T ). Its grading

coming from the grading of Λ is the following.

T2

0
PPPPP

''PPPPP

1

++

T60oo

0
AA

  AA

T1

1}}

>>}}

1
PPPPP

''PPPPP

T40oo

1nnnnn

77nnnnn

1
AA

  AA

T70oo

T3

0}}

>>}}

T50oo

0������

GG����

0nnnnn

77nnnnn

The algebra A = B0 is then given by the quiver with relations.
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2

&&NNNNNNNNNN _ Y R
H

;
1

*

6oo

��=
==

==

1 ` c w
+

7

` _ U
0
%

4oo

ppppp

=
=

= 7oo

3

@@�����
5oo

HH����������

88pppppppppp

The indecomposable projective A-modules are

1
4
7
, 2

6 , 3
5 ,

4
3 7 2

5 6
, 5 , 6

5 , and
7

6 5
5

and the indecomposable injectives are

1 , 4
2 , 4

3 , 1
4 ,

4 7
3 7 6

5
,

4
7 2

6
, and

1
4
7

The algebra Ā is given by the quiver with relations:

2

��=
==

==

1 ` c w
+

7

^ [ G
�

�

4oo

3

@@�����

It is an algebra of global dimension 2. We have EndCĀ
(Ā) ≃ Jac(Q̄w, W̄w) where

Q̄w := 2
b

��=
==

==

1

a
@@�����

c

��=
==

==
4

eoo

3

d
@@�����

and W̄w := bae + dce. It is isomorphic to the algebra B̄.
We denote by G the composition

G : Db(Ā)
Res // Db(A)

−
L
⊗AB // Db(B)

−
L
⊗BT // Db(Ew) // Db(Ew)/Db(P) ≃ Ew.

Let S2 be the simple Ā-module associated to the vertex 2. We will show that G(S2) and
G ◦ S

−1(S2)[2] are isomorphic as objects in Ew.

The restriction of S2 in the category Db(A) is quasi-isomorphic to the complex

· · · // 0 // e5A // e6A // e2A // 0 // · · ·

Tensoring it with B over A we get

· · · // 0 // e5B // e6B // e2B // 0 // · · · .

Therefore G(S2) is the complex

G(S2) = (T5
// T6

// T2) .
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Now the simple S2 is quasi-isomorphic in Db(Ā) to the complex

· · · // 0 // e2(DĀ) // e4(DĀ) // e1(DĀ) // 0 // · · ·

Hence the restriction of S2

L
⊗Ā RHomĀ(DĀ, Ā)[2] = S

−1(S2)[2] in DbA is isomorphic to

· · · // 0 // 2 // 4
2 3

// 1
4

// 0 // · · ·

which is quasi-isomorphic to the complex

· · · // 0 // 5 ⊕ 2
6

// 4
3 7 2

5 6
// 1
4
7

// 0 // · · ·

that is, to the complex

· · · // 0 // e5A⊕ e2A // e4A // e1A // 0 // · · ·

Therefore the object G(S−1S2[2]) is the complex

G(S−1S2[2]) = (T5 ⊕ T2
// T4

// T1) .

Now the simple S2 is also quasi-isomorphic to the complex

· · · // 0 // e2(DA) // e4(DA) // e1(DA) // 0 // · · ·

Hence the complex S2

L
⊗Ā RHomA(DA, Ā)

L
⊗A B[2] ≃ RHomA(DA, S2)

L
⊗A B[2] is the complex

· · · // 0 // e2B
a1 // e4B

q1
1 // e1B // · · · .

We have a morphism in the category Db(B):

· · · // 0 //

��

e2B //

��

e4B //

��

e1B //

��

· · ·

· · · // 0 // e5B // e6B // e2B // · · ·

whose cone is

· · · // 0 // e2B // e5B ⊕ e4B // e6B ⊕ e1B // e2B // 0 // · · · .

One can compute that it is quasi-isomorphic to the simple B-module S2. Hence we get a
triangle in Db(B):

S2

L
⊗Ā RHomA(DA, Ā)

L
⊗A B[2]

//
S2

L
⊗A B

// S2
//
S2

L
⊗A RHomA(DA, Ā)

L
⊗Ā B[3] .

Note that if we apply the triangle functor S2

L
⊗Ā − to the triangle (∗) of Proposition 2.8, we

get the same triangle.

The object S2

L
⊗B T of Db(Ew) is then the complex

· · · // 0 // T2
// T5 ⊕ T4

// T6 ⊕ T1
// T2

// 0 // · · · .

A direct computation shows that it is acyclic. Indeed it is the 2-almost split sequence associated
with T2.
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Finally we have morphisms

(∗ ∗ ∗) (T2 → T4 → T1)
(ii)

,,YYYYYYYYYYYY(i)

rreeeeeeeeeeee

G(S2) = (T5 → T6 → T2)

��

(T5 ⊕ T2 → T4 → T1) = G(S−1S2[2])

��

0 ≃ (T2 → T5 ⊕ T4 → T1 ⊕ T6 → T2) (T5) ∈ D
b(P)

The cone of the morphism (i) is acyclic, and the cone of the morphism (ii) is T5[−2] which is
perfect. Thus in Ew = Db(Ew)/Db(P), the objects G(S2) and G(S−1S2[2]) are isomorphic.

5.2. Example which is not associated with a word. Let E be the category modΛ where Λ
is the preprojective algebra of type A3, which is one of the cases investigated by Geiss, Leclerc
and Schröer in [GLS06]. This is a Frobenius category which is stably 2-Calabi-Yau and of the
form Ew where w is the element in the Coxeter group of maximal length. Corresponding to the
word s1s2s3s1s2s1 is the canonical cluster-tilting object:

T3 =
3
2
1

$$H
HHHH

T2 = 2
1

<<yyyyyy

""E
EE

EE
EE

T5 =
2

1 3
2

oo

$$H
HHHH

T1 = 1

<<yyyyyyy
T4 = 1

2
oo

::vvvvvvv
T6 =

1
2
3

oo

The endomorphism algebra is a frozen Jacobian algebra.
Let us do the mutation of the object T2 = 2

1 . Its complement is T ∗
2 = 3 1

2 . The new
cluster-tilting object T ∗ is given by

T3 =
3
2
1

zzvvv
vvv

v

T ∗
2 = 3 1

2

zzvvvvvvvv
// T5 =

2
1 3

2

ddHHHHH

$$H
HHHH

T1 = 1

44

T4 = 1
2

ddHHHHHHHH

T6 =
1
2
3

oo

One can easily check that the endomorphism algebra is isomorphic to the frozen Jacobian
algebra B = Jac(Q, W, F ), where

3

b
0
��

����

Q := 2

c0
��

����

d
1 // 5

e
0<<

]]<<

f
0

<<

��<
<

1

a 1

11

4
h

0<<

]]<<

6g
0oo

,

W := acb + dbe + dhgf , F0 := {3, 5, 6} and F1 := {e, f}.
If we put ϕ(a) = ϕ(d) = 1 and ϕ(b) = ϕ(c) = ϕ(e) = ϕ(f) = ϕ(h) = 0, we obtain a grading

satifying hypothesis (H1)-(H5) of Theorem 3.1.
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The algebra A is then given by the quiver

3

b����
��

�

2

c����
��

�
_____ 5

e

^^=====

f

��=
==

==

1
�
�


�
u

k d

4
h

^^=====

6g
oo

with relations cb = 0 and be = hgf . The algebra Ā is the hereditary algebra with quiver

1 2c
oo 4

h
oo .

One can check that the image of S2 under the functor G : Db(Ā)
Res // Db(A)

−
L
⊗AT ∗

// Db(E)

is

(T5

( e
fg )

// T4 ⊕ T3

( b h )
// T ∗

2 ).

The object S
−1(S2)[2] is quasi-isomorphic to the complex 2

4
// 1
2
4

, thus its restriction in

Db(A) is quasi-isomorphic to the complex

· · · // 0 // e3A
b // e2A

c // e1A // 0 // · · · .

Hence the complex G(S−1S2[2]) is

· · · // 0 // T3
b // T ∗

2
c // T1

// 0 // · · · .

We have morphisms in Db(E)

(∗ ∗ ∗) (T ∗
2 → T1)

(i)tthhhhhhhhhhhhhhhhhhh
(ii)

**UUUUUUUUUUUUUUUUU

G(S2) = (T5 → T4 ⊕ T3 → T ∗
2 )

��

(T3 → T ∗
2 → T1) = G ◦ S(S2)[2]

��
0 ≃ (T ∗

2 → T1 ⊕ T5 → T3 ⊕ T4 → T ∗
2 ) (T3) ∈ D

b(P)

The cone of the morphim (i) is

T ∗
2

( c
d )
// T1 ⊕ T5

( a e
0 fg )

// T3 ⊕ T4

( b h )
// T ∗

2

which is the 2-almost-split sequence associated to T ∗
2 , hence an acyclic complex. The cone of

the morphism (ii) is T3[−2] which is perfect. Thus in Db(E)/Db(P) the objects G(S2) and
G(S−1S2[2]) are isomorphic.

This example gives some hope that Theorem 3.1 can be applied to stably 2-CY categories
other than those coming from an element of the Coxeter group.
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