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2Institut Néel, CNRS, BP 166, 38042 Grenoble Cedex 09,France

3Institut Nanosciences et Cryogénie, SCIB/LRM, CEA, 38054, Grenoble Cedex 09, France
4Kazan State University, Kazan 420008, Russian Federation

(Dated: Submitted)

Contrary to the well known spin qubits, rare-earth qubits are characterized by a strong influence
of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance
microwaves, it is the magnetic moment of the crystal-field ground-state which nutates (for several

µs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR( ~H0)

with the magnitude and direction of the static magnetic field ~H0 for the odd 167Er isotope in a
single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR( ~H0) curve into eight different
curves which are fitted numerically and described analytically. These ”spin-orbit qubits” should
allow detailed studies of decoherence mechanisms which become relevant at high temperature and
open new ways for qubit addressing using properly oriented magnetic fields.

PACS numbers: 71.70.Ej,75.10.Dg,76.30.Kg, 03.67.-a

Worldwide studies on possible implementation of a
spin-based quantum computer showed the significance
of scalable single electron spin-qubits in e.g. quantum
dots [1, 2, 3]. Are also interesting atomic and nuclear
spins 1/2 dispersed in solid state matrices with coherence
times persisting at relatively high-temperature [4, 5, 6]
or a new class of potentially scalable systems which re-
cently emerged with the observation of Rabi oscillations
[7] in the single molecular magnet V15 [8], followed by
electronic-spin coherence studies on Fe8 [9] and Fe4 [10].
Spin 1/2 qubits are isotropic or quasi-isotropic and their
Rabi frequency ΩR = gµBhmw/2h depends only on the
amplitude of the linearly polarized microwave field hmw

(h is the Planck constant, µB is the Bohr magneton and
g ∼ 2).

With rare-earths ions in crystals [11], the situation is
very different. Contrary to qubits with magnetic mo-
ments simply proportional to the spin (single electrons,
3d transition metal ions with zero or quenched orbital
moment), the orbital magnetic moment of a rare earth
ion is large and not reduced by the crystal-field, this last
being much weaker than the spin-orbit coupling. In gen-
eral case this leads to a strong magnetic anisotropy and,
as it will be shown in this paper (see preliminary results
in [11]), to a strong dependence of the Rabi frequency on
the directions of the microwave and static applied fields.
The amplitude of the total angular moment ~J = ~L + ~S
is generally much larger than 1/2 leading to magnetic
moments as large as 10µB (Ho3+) allowing spin manipu-
lations in low driving fields. For odd isotopes, hyperfine
interactions of 4f electrons with the rare earth nuclear
spin can be large enough so that nuclear spins are entan-
gled with the total angular moment [12] and modify the
Rabi frequency [8].

In this paper we concentrate on the anisotropy of the
Rabi frequency of a single crystal CaWO4:Er3+, a system

which presents an in-plane magnetic anisotropy favoring
the observation of Rabi oscillations and several Erbium
isotopes (odd and even) allowing the study of coherent
dynamics with and without nuclear spin. In the first
part we give a theoretical description (numerical and
analytical) of what we may call ”spin-orbit qubits” and
in the second one we present the experimental results
confirming quantitatively the theoretical predictions and
allowing to understand the effect of strong spin-orbit
coupling on Rabi oscillations.

The crystals of CaWO4:0.05% Er3+ used in this study,
obtained by the Chokralsky method, are characterized
by a body centered tetragonal scheelite-type structure
(I41/a space group) with the lattice constants a = b =
0.524 nm and c = 1.137 nm [13]. The Er3+ ions sub-
stitute for the Ca2+ ions inside the eight-fold oxygen
surroundings, charge excess being compensated by sup-
plementary substitutions of Na+ ions in the crystal.
The Hamiltonian operating in the space of states of the
ground 4I15/2 multiplet of a single Er3+ ion in CaWO4

(S4 point symmetry) is given by:

H = Hcf + Hhf + HZ (1)

where Hcf is the Hamiltonian of a single rare-earth ion,
reduced by the host-matrix crystal-field and 4f symme-
try:

Hcf = αJB0
2O0
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The Om
l are the Stevens equivalent operators, αJ ,

βJ , γJ the Stevens coefficients [14] and the Bm
l are the

crystal-field parameters. For CaWO4:Er3+, B0
2=231,
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B−4
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with the z-axis parallel to the c-axis. The second
term in (1), Hhf = AJ

~J.~I, is the magnetic hyperfine
interaction for the 167Er isotope (I = 7/2, 22.9%
abundance, hyperfine constant AJ = -125MHz [15]),
quadrupolar couplings are negligible. The third term
in (1), HZ = gJµB

~J. ~H0 (gJ = 6/5 is the Landé factor
of Er3+), is the static Zeeman interaction. We neglect
here dipole-dipole interactions between the highly
diluted Er3+ ions and super-hyperfine interactions
with nuclear magnetic moments of the 183W isotope.
These interactions induce negligible changes of Rabi
frequencies, but may be principal sources of decoherence
[16, 17, 18, 19]. The crystal-field of CaWO4 leads to
strong in-plane anisotropy of Er3+ (a − b plane)[15]
and effective g-factors g|| = gc=1.2, g⊥ = ga= gb= 8.4
[20]. The Rabi frequency can be calculated either in
the laboratory frame (LF) by computing the amplitude
of probability of transition induced by the microwave
field hmw perpendicular to the static field H0 or in
the rotating frame (RF) by computing the splitting at
avoided level crossing.

In the LF, we start with the Hamiltonian (1) of
a single 167Er3+ ion. By diagonalization of the 128
dimension Hilbert space electro-nuclear Hamiltonian
(J=15/2⊗I=7/2), we calculate the Rabi frequencies as

a function of the direction of the static field ~H0 us-
ing the expression ΩR =| gJµB

~Jpk.~hmw | /2h where
~Jpk = 〈φp( ~H0)| ~J |φk( ~H0)〉 is a vector varying with the

static field ~H0 and φp,k( ~H0) are the wave functions re-
sulting from the diagonalization of (1). In general, the

anisotropy of ΩR depends on both the directions of ~H0

and ~hmw. These expressions for spin-orbit qubits in
a crystal-field generalize the one of simple spin qubits,
ΩR = gαµBhα

mw/2h [21] (gα is the effective g-factor in
the direction α of the electromagnetic wave polarization
hα

mw).
In the RF, we use the time-dependent effective Hamil-

tonian of the ground states doublet :

H(t) = µB
~H0[g]~S + ~I [A]~S + µB

~hmw[g]~S cos(2πft) (3)

f is the microwave frequency, [g] the g-tensor, [A] =
[g]AJ/gJ the hyperfine tensor. The NMR paradigm ap-
plied to EPR [22, 23] allows to transform (3) into a
time independent effective Hamiltonian. The Rabi fre-
quencies are then given by avoided levels splitting. The
Rabi frequencies of the I=7/2 167Er3+ isotope are derived
from the RF energy spectrum obtained numerically for
H0||a = b, Fig.1. The effective electro-nuclear spin-states
|1/2, mI〉 and |−1/2, mI〉 coupled by the electromagnetic
wave (”dressed states”) form several avoided level cross-
ings of which splitting is hΩR (decreasing rapidly when
the microwave field rotates from the easy a − b plane to
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FIG. 1: (color online) Energy spectrum of 167Er3+ with I=7/2
calculated numerically in the rotating frame. The detuning
field is, by definition, the difference between the applied field
H0 and the resonant field of the I=0 isotope. The Rabi fre-
quencies are equal to the splittings at avoided level crossings
(dressed states). Allowed EPR transitions (∆mI = 0) are
gapped and their anisotropy for different directions of the mi-
crowave polarization is shown in the inset.

the hard c-axis). In the case of the I = 0 isotope, when
~H0 makes an angle φ with c-axis in the x-z plane and
hmw is in the same plane, the result can be analytical
and given by:

ΩR(φ) = µBhmw

g⊥g||

2hg(φ)
(4)

where g(φ) =
√

g2
|| cos2 φ + g2

⊥ sin2 φ. Much more ex-

tended analytical results will be given in a forthcoming
publication [24] showing that both LF and RF method
give, in all cases, quite the same results. In the following
we will use the LF method which is more convenient for
precise calculations.

The EPR measurements have been performed using a
conventional Bruker EPR spectrometer E580. This spec-
trometer works at both, continuous wave (CW) or time
resolved (TR) mode in the X band. All experiments were
carried out at the frequency of f = 9.7 GHz. The detec-
tion of the signal was performed using a cavity work-
ing with the TE011 mode with Q-factor of about 4000
in CW mode (perfect coupled cavity) and 200 in TR
mode (over-coupled cavity). The sample-cavity ensem-
ble is surrounded by a 4He flux cryostat and the tem-
perature was controlled by an Oxford instrument ITC
form 2.5 to 300 K. Two pulse sequences have been used
i) the usual ”spin-echo sequence” which strongly reduces
the decoherence associated with inhomogeneous CW line-
width, and ii) the Rabi oscillations technique consisting
in a spin-echo sequence preceded by an excitation pulse.
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FIG. 2: (color online) (a) Rabi oscillation recorded on the
nuclear-spin free Er3+ isotope in CaWO4 (H0 = 325.1mT ,
hmw = 0.13mT ) and (b) its Fourier transform. (c) Con-
tour plot of the Rabi frequency distribution measured in the
I = 7/2 isotope while H0 tilted by 12◦ from the c-axis is
swept from 220mT to 440mT (colored iso-magnetization scale
increases from blue to red). The eight Rabi frequencies with
smaller intensity correspond to the transitions (1/2, mI) →
(−1/2, mI) of the I=7/2 isotope (∆mI = 0) and the single one
with larger intensity to the I=0 isotope. Calculated ΩR are
represented by symbols going from black square (mI = −7/2
) to green circle ( mI = 7/2).

This technique allows to obtain the time evolution of the
averaged magnetization proportional to 〈Sz(t)〉, i.e. the
Rabi oscillations if the timescale is such that coherence
wins over relaxation (here the z−axis || ~H0).

Fig.2(a) and (b) give an example of measured Rabi os-
cillation and its Fourier transform whereas Fig.2(c) shows
the eight electro-nuclear transitions of the I = 7/2 iso-
tope, plus the single one of the nuclear-spin free isotope.
In this experiments ~H0 was tilted by φ = 12◦ from the
c-axis in order to resolve the eight electro-nuclear tran-
sitions . The symbols correspond to the ΩR= 6.61, 7.30,
7.95, 8.57, 9.14, 9.65, 10.1, 10.5MHz calculated from di-
agonalization of the electro-nuclear Hamiltonian (1) (LF
method) using the published crystal-field parameters and
hyperfine constant only [15]. The RF expression (4) gen-
eralized to the case I 6=0 and linear in AJ give the values
ΩR= 6.63, 7.22, 7.82, 8.42, 9.02, 9.6, 10.21, 10.80MHz
[24]. The small differences between the two methods are
caused by the neglect of higher terms in AJ . Both sets
of values agree very well with experimental data.

Fig. 3 shows the evolution of the Rabi frequency of
each electro-nuclear transition when the crystal rotates
from θ =0◦ ( ~H0||c

′) to θ =90◦ ( ~H0||b) (see inset). Above
θ ≈ 30◦ (not shown) all the Rabi frequencies ΩR(mI , θ)
tend asymptotically to the value ΩR ∼ 15MHz predicted
by the usual equation ΩR = gαµBhα

mw/2h [21] inde-
pendently of mI . At θ < 30◦ these quasi-degenerated
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FIG. 3: (color online) Evolution of ΩR when the static field
H0 rotates by an angle θ around the microwave field hmw .
Colored continuous lines are computed numerically. Inset:
geometry of the experiment where the sample defined by its
axes a, b, c is tilted by a small angle φ ∼ 7◦ around the b=b′-
axis. The dotted line represents the conventional equation
ΩR = gαµBhα

mw/2h [21].

frequencies ΩR(mI , θ) split off in a way strongly de-
pendent on the algebraic value of mI . It is the small
tilt angle φ which allows to resolve the transitions with
different mI (i.e. for φ =0, ΩR does not depend on
mI). Non-magnetic isotopes show a similar variation
laying between the blue and green triangles with ΛR =
ΩR(H0||c

′)/ΩR(H0 ⊥ c′) ≈ 0.77. In these experiments a

rotation of the resonance field ~H0 implies a change of its
amplitude in order to keep at resonance, and this rises
the question to know whether the observed variations
of ΩR(mI , θ) are mainly due to changes in direction or

amplitude of the vector field ~H0. In order to answer this
question, we plot in Fig. 4 the evolution of ΩR vs ‖ ~H0 ‖.

The large dispersion observed on ΩR at given ‖ ~H0 ‖
definitively confirms that it is, as expected, a directional
effect. All the measured Rabi frequencies of Fig. 3 and
Fig. 4 are very well reproduced by our crystal-field model
without any fitting parameter using only published val-
ues of parameters, as described above. In particular, the
ratio ΛR varies from 0.58 to 0.90, whereas, in absence of
orbital contribution, ΛR(mI) = 1 for any value of mI .

Interestingly, if the coordinate system is such
that the microwave field ~hmw has only one non-
zero component (hα

mw), the scalar-product equation

ΩR =| gJµB
~J.~hmw | /2h takes the simpler form :

ΩR( ~H0,~hmw) = G(α, β)µBhα
mw/2h where G(α, β) =

gJ |〈φ1(H
β
0 )|Jα|φ2(H

β
0 )〉| depends on both directions α

and β of the static and microwave fields (~α.~β = 0).

This expression traduces the fact that, when ~H0 rotates
around ~hmw the crystal-field/Zeeman competition varies
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FIG. 4: (color online) Evolution of ΩR with ΩR vs ‖ ~H0 ‖
while the resonant field is rotated. The symbols represent
the same data and the lines are calculated numerically and
analytically as in Fig. 3. The dotted line represents the con-
ventional equation ΩR = gαµBhα

mw/2h [21].

leading renormalization of wave functions entailing varia-
tions of G(α, β) , i.e. of ΩR. As mentioned above, this is

true only if the crystal is tilted so that ~hmw is not along a
crystallographic axis (φ 6=0, inset Fig.3). In the opposite

case where ~hmw is along a crystallographic axis (a-axis
in Fig.3) ΩR is isotropic and follows the usual expression
ΩR = gαµBhα

mw/2h [21] represented by a dashed line
in Fig.3 and 4. This renormalization of wave functions
appears clearly in the analytical expressions for the non-
magnetic and magnetic isotopes: ΩR depends on both g‖
and g⊥ if φ 6=0 whereas for φ =0 it depends on g⊥ only,
and ΩR(mI) associated with the different mI are clearly
different from each others unless φ =0 or π/2 [24] .

In conclusion, we have shown with the example of Er3+

ions diluted in the single-crystalline host matrix CaWO4,
that crystal-field deeply modifies the coherent quantum
dynamics of what we call ”spin-orbit qubits”. In particu-
lar, it introduces dramatically large variations of the Rabi
frequency ΩR when the static or/and dynamical field ( ~H0

or ~hmw) deviate from crystallographic axes. This effect,
directly connected with modifications of the wave func-
tions of resonant states is amplified or depressed by the
hyperfine interaction of the odd isotope (I =7/2) which
removes the eight-fold degeneracy of ΩR by increasing
or decreasing it when mI >0 or mI <0. All the ex-
perimental data, showing a rich pattern of coherent os-
cillations, are interpreted quantitatively without requir-
ing any fitting parameter giving a clear picture of this
new type of crystal-field dependent qubits. These qubits
are interesting for several reasons (i), the coherent nuta-
tion of the ground-state magnetic moment deriving from
crystal-field effects acting on ~J = ~L + ~S (and ~J + ~I with
odd isotopes) is associated with , not yet well studied,

symmetry and temperature-dependent spin-lattice deco-
herence mechanism; in particular, the transfer of quan-
tum dynamics from the spin-bath to the nutating sys-
tem is probably partial implying the existence of resid-
ual decoherence [16, 17, 18, 19]. (ii) Despite significant
spin-phonon coupling, relatively long living coherence is
observed (≈ 50µs at 2.5K in CaWO4 :Er3+) showing
that the coupling with crystal-field environment is not
redhibitory. (iii) The magnetic moment generally much
larger than 1/2 allows spin manipulations in low driving
field-vectors (amplitude and direction). (iv) RE qubits
inserted in a semi-conducting film, should be scalable
with selective addressing (application of weak local field
pulses created by nano-line current adding algebraically
to uniform static field) and couplings (controlled carrier
injection through a gate voltage).

We thank for financial support the former INTAS-99-
01839 contract in which the crystals of Er:CaWO4 were
synthesized, the CEA, and the European Network of Ex-
ellence MAGMANET.
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