
HAL Id: hal-00435757
https://hal.science/hal-00435757

Submitted on 24 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Satellite Terminal Quality of Service Management with
AQM Control

Romain Delpoux, Pascal Berthou, Frédéric Gouaisbaut, Yann Labit

To cite this version:
Romain Delpoux, Pascal Berthou, Frédéric Gouaisbaut, Yann Labit. Satellite Terminal Quality of
Service Management with AQM Control. 15th Ka Band Conference, Sep 2009, Cagliari, Italy. pp.1.
�hal-00435757�

https://hal.science/hal-00435757
https://hal.archives-ouvertes.fr

SATELLITE TERMINAL QUALITY OF SERVICE MANAGEMENT
WITH AQM CONTROL

Romain Delpoux1,3, Pascal Berthou1,2, Frédéric Gouaisbaut1,2, Yann Labit1,2

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

3 Chalmers University, Göteborg, Sweden
{rdelpoux, berthou, fgouaisb, ylabit}@laas.fr

Abstract
The standardization of a Return Channel via Satellite (DVB-RCS) and the satellite community
efforts in term of interoperability over the last few years are expected to play, in a near future, a
decisive role in Next Generation Networks (NGNs) through the integration of Satellite networks
as an alternative to terrestrial networks like DSL (Digital Subscriber Line) in low terrestrial in-
frastructure areas. Furthermore, the advance of distributed multimedia applications like voice
over IP and videoconference implies some new requirements to guarantee the Quality of Ser-
vice (QoS). It concerns a limited transmission delay, a weak jitter, a minimal loss rate and a
guaranteed bandwidth.
The recent NGN architectures prone the adaptation of the diffserv architecture to satellite sys-
tems. In this paper, we consider an architecture compliant with the SatLabs recommendation
and propose a mechanism to improve the QoS management in Return link Satellite Terminals
(ST). The goal of this work is to regulate a priori the Diffserv AF queue and avoid the over-
flood. Considering the AF queue sheared between UDP based multimedia applications and
TCP based data transfer, the main idea consists in controlling TCP streams to guarantee trans-
mission capacity of UDP packets. The most constraint application can then enjoy low buffers
time delay and very few losses.
In order to solve this problem, we design a congestion control mechanism based on Active
Queue Management (AQM) techniques by using control theory. To this end a fluid model of
TCP connexion originally designed for wire-networks is proposed for satellite networks. Then,
the design of a robust proportional integral (PI) and a robust dead time based controllers are
investigated. To avoid AF queue over flooding, TCP packets are voluntary dropped in the ST
according to regulation rules. TCP connection throughput is then controlled and limited to pro-
tect UDP streams against unnecessary drops. The different methods are then simulated on
matlab and NS2-Simulator and compared to a classical DropTail mechanism.

1. Introduction

Several commercial DVB-RCS based networks are already deployed and many efforts are
done in order to enhance interoperability. Most recent commercial deployments provide either
Internet access or mesh connectivity over a transparent geostationary satellite. Fixed band-
width contracts are generally offered to consumers thanks to a simple resource management
scheme. It simplifies admission control, reduces cost and gains experience while waiting for
the standardization of finer resource management strategies and equipment. A lot of work on
IP over satellite remains particularly in the Quality of Service (QoS) field and the next step is,
obviously, to take benefits from DVB-RCS dynamic allocation schemes and IP QoS architec-
tures to cope with the satellite delay and the scarce uplink resources.
This article deals a part of the ST, more precisely, it contributes to the QoS (Quality of Ser-
vice) management of the return link, a central problem in satellite network (compared to wire
network) due to the satellite delay and the scare uplink resources. Instead of over-sizing the
connection, which could be very expensive, we aim at reaching an optimal exploitation of uplink
resources [3].
In order to solve this problem, we design a congestion control mechanism (Active Queue Man-
agement (AQM)). This mechanism is equivalent to a controller designed by using the Automatic
methods. Two AQM are described in this article, a robust proportional integral (PI) and a robust
dead time based controllers. These mechanisms are applied to an existing model of the TCP
protocol for wire network described in [4] that we adapt to the satellite network. The different
method are simulated on NS2-Simulator and compared to the DropTail mechanism.
This paper is composed of three parts. The first part presents the context of the satellite net-
work. The second part deals with the model of TCP and the design of both controllers. Finally,
the third part presents the simulations and the results in order to show the behavior of this
method. The last part concludes on the model evaluation and the future work.

2. Context of the satellite network

2.1. Satellites networks

1

2.1.1. Satellite Access Scenario
The satellite access scenario is a typical Satellite Networks Architecture described in [3].

It consists of a geostationary satellite interconnected to terrestrial stations (Satellite Terminal)
network. Satellite Terminals (STs) provide single PC or Local Area Network (LAN) with access
to network, while Gateways (GWs) allow connection with Internet core network.The satellite
network resources are managed by a Network Control Center (NCC). The uplink access from
each ST is managed through DVB-RCS (Digital Video Broadcasting-Return Channel Satellite)
interface, whereas transmissions form GWs are implemented through DVB-S (DVB-Satellite)
interfaces.

2.1.2. QoS Architecture
The QoS is managed in the ST at two levels : MAC (Medium Access Control) and IP (Inter-

net Protocol).
Two classes of services are implemented at the MAC layer, DVB-RT (Real-Time) dedicated to
applications with high temporal constraints (VoIP) and DVB-NRT (Non Real-Time) dedicated to
more tolerant applications, or even not affected by delay. (Peer to Peer, FTP...). The QoS ar-
chitecture proposed at the IP layer divides the traffic in three class of service: BE (Best-Effort)
which guarantees nothing, AF (Assured Forwarding): ensures a relative QoS, EF (Expedite
Forwarding): guarantees low end to end delays.
Here we consider the AF (Assured Forwarding) class of service of the IP layer, which is a class
where a relative QoS should be ensuring. The transport protocols considered in this work are
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). TCP is used for
the NRT applications (Peer to Peer, FTP...), and UDP for time-sensitive applications (VoIP ...).
The data applications are stored in the BE and AF queue while multimedia applications in the
EF and AF queue. Consequently, AF queue receives data and multimedia applications which
present a problem. In other words, TCP and UDP flows come in the same queue. When con-
gestion occurs packets are lost and impact the TCP and UDP connections. TCP connections
reduce their throughput and UDP (multimedia) connections experience a lower quality.
The goal of this work is to regulate a priori the AF queue and avoid queue over-flooding. There-
fore, it is necessary to keep place in the buffer for UDP packets in priority, as TCP packets can
be retransmit contrary to UDP and reduce the buffer size, while keeping reasonable transmis-
sion capacity, i.e. having as few losses as possible (and then protect UDP packets).
So we have to model the AF queue and regulate it in order to respect the conditions above-cited.

2.2. TCP
It is a ”end-to-end” communication protocol, which means that a direct link between the

source and the destination is established. The main characteristic of this protocol is to certify
the data reception by the receiver using mechanism based on acknowledgement. If a packet
is lost, the sender should send it again. Thus TCP assures the transmission of the entire infor-
mations.
TCP is a general purpose protocol, and does not make assumption on the network used. To
find the maximum transmission throughput, TCP probes the network until reaching the limit.
This is the role of slow start and congestion avoidance mechanisms.

2.2.1. Congestion Avoidance Algorithms
Congestion avoidance algorithm have been developed to regulate the flow rate the closer

as possible to the ”transmission limit”. In order to transmit the maximum of informations and
avoid network congestion. The basic hypothesis of this algorithm is to consider that a packet
lost is synonym of congestion. The principle of the algorithm is to control the rate of each
sources function of traffic state. The principle is simple, each source increases progressively
their output flow. This increases takes place until a packet loss occurs. This means that con-
gestion is detected somewhere in the network. Thus the flow is decreased enough in order to
go out of the congestion state. The following sub-section give an outline of the Additive Incease
Multiplicative Decrease (AIMD) algorithm implemented in TCP.

2.2.2. Algorithm

• The source sends W packets.

• The receiver acquits the received segment and the source acts in consequence:

– If the flux is transmitted with success, the source increases its size: W ←W + 1

– If there is a loss, the source should retransmit its data and reduce its congestion
window. There is principally two kind of loss identification, indications by Timeout
(TO) and indications by duplicate acknowledgement (3DupAck)
∗ If the source did not receive the acknowledgement, TO: W ← 1.

2

∗ If the source receive three duplicate acknowledgement, 3DubAck: W ← W/2.

The time of one exchange correspond to a way return, i.e. one RTT (Round Trip Time).

3. TCP modeling and controllers design

Acknowledgements

data packets routed packets

lost packets

Sender Receiver

Congested Router

Figure 1: The considered system

Following the algorithm developed in the last paragraph we clearly recognize that the overall
system is an interconnected feedback system as described by figure 1. Thus feedback control
principles appear to be an appropriate tool for the analysis and the design of AQM strategies.
The main principle is to drop intentionally TCP packets before the router queue becomes full
so that the source can prevent the congestion, by reacting to the losses with the congestion
avoidance mechanism. The goal is to optimize the data transmission maintaining a high stream
at the buffer level. AQM detects network congestion, packet losses of incipient congestion,
and inform traffic sources. Sources reacts and decrease the congestion window to avoid buffer
saturation. This way to prevent router congestion is an active research subject, see for example
[1] and references therein. We propose in this paper an AQM to enhance IP QOS on the return
channel.
3.1. A fluid-flow Model of TCP congestion control mechanism

In order to use control theory, we propose to introduce a mathematic model which has been
developed in [7] and [6]. This model is based on two assumptions: the traffic is considered
fluid-flow and the losses are described by a Poisson Process. Moreover we consider N ho-
mogeneous sources. That means for example, when a loss occurs, all of the TCP connexions
react to the loss. Off course, considering a single loss, the hypothesis is improper, but consid-
ering multiple losses and because TCP as been designed to be fair, this hypothesis becomes
accptable. This is designed to guarantee the equity between TCP connections and modify the
windows size of each sources simultaneously.
The first assumption implies that the congestion window increases in a continue way instead
of step increase. It increases by one every RTT and hence the continuous increase is repre-
sented as dt/RTT . The second assumption models the packets loss occurrences. We assume
idealized behavior, i.e. we model the losses as Poisson streams represented as −W (t)

2 dN(t) .
Then the evolution of the congestion window size W can be described as follow:

dW (t) =
dt

RTT
−

W (t)

2
dN(t) (1)

by noting that dN(t) is defined as:

dN=
{

1, if losses arrivals
0, otherwise (2)

This equation reflects the ”Additive Increase Multiplicative Decrease” aspect of TCP. The first
term corresponds to the additive increase part, which states that the windows size will increase
by one every RTT. The second term corresponds to the multiplicative decrease part, which
halves the window size for each arrival of a loss. Remark that we use a simplified model, which
ignores the TCP slow start mechanism, that start at the beginning of a connection, and time-
outs. Effectively, some measures realized on Ourses-Project [8] using a DVB-S2/RCS system
using a Ka-Band link, show that timeouts barely occur, and TCP work most of the time as con-
gestion avoidance instead of a slow start at the beginning of the connection.

3.2. The system
Using stochastic differential analysis of the equation (1), and considering the simplifications

above cited, [7] have developed a dynamic model of the TCP behavior. In this model, we
consider a system in which there is a single congested router with a transmission capacity of C.
Associated with this router is an AQM that is characterized by a packet discard function p(·) that

3

takes as its argument an estimate of the average queue length at the router, and the average
congestion window size. The proposed model from [4] is then of the form:

Ẇ (t) = 1
R(t) −

W (t)
2

W (t−R(t))
R(t−R(t)) p(t−R(t))

q̇(t) = −C(t) + N(t)
R(t) W (t)

(3)

where ẋ denotes the time-derivative and
W =̇ average TCP window size (packets),
q=̇ average queue length (packets) of the AF queue in the ST,
R=̇round-trip-time = q

C
+ Tp(secs),

C=̇link capacity (packets/sec),
Tp=̇ propagation delay (secs),
N=̇ load factor (number of TCP sessions),
p=̇ probability of packet mark, which takes values only in [0, 1].

The dynamic TCP behavior is modeled by a non-linear time delay systems which can be com-
plicated to analyse from a control theory point of view. That is the reason why we are only
interested in the design of an AQM around an equilibrium point (W0, q0, p0).
To linearize model (3) we first assume that the number of TCP sessions and the link capacity
are constant i.e., N(t) ≡ N and C(t) ≡ C. Taking (W, q) as the state and p as an input, the
operating point (W0, q0, p0) is then defined by Ẇ = 0 and q̇ = 0 so that

{

Ẇ = 0 ⇒ W 2
0 p0 = 2

q̇ = 0 ⇒ W0 = R0C
N

, R0 = q0

C
+ Tp

(4)

Moreover, we ignore the dependance of the time-delay argument t− R on the queue-length q,
and assume it fixed to t−R0.
We obtain finally the linearized model (5) around equilibrium point defined by (4):

δẆ (t) = −
N

R2
0C

(

δW (t) + δW (t− h)
)

− 1
R2

0
C

(

δq(t) − δq(t− h)
)

− R0C2

2N2 δp(t− h)δq̇(t) =
N

R0
δW (t)−

1

R0
δq(t)

(5)

where δW
.
= W −W0, δq

.
= q − q0 represent the state variables and δp

.
= p− p0 the input. This

can be rewriten as (6):

[

δẆ (t)
δq̇(t)

]

=

[

− N
R2

0
C
− 1

CR2

0

N
R0

− 1
R0

]

[

δW (t)
δq(t)

]

+

[

− N
R2

0
C

1
CR2

0

0 0

]

[

δW (t− h)
δq(t− h)

]

+

[

−C2R0

2N2

0

]

δp(t− h)

(6)
In order to use the robust framework from the control theory, let modify the system (6) as

an interconnected system as Figure (2) by isolating ∆(s) = 2N2s
R2

0
C3

(1− e−sR0).

The nominal system is then described by:

[

δẆ (t)
δq̇(t)

]

=

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

[

δW (t)
δq(t)

]

+

[

−R0C2

2N2

0

]

δp(t− h) + ξ(t) (7)

Where ξ(t) = Hz(t) represent the uncertainties input.

H =

[

N
R2

0
C
− 1

R2

0
C
− N

R2

0
C

1
R2

0
C

0 0 0 0

]

and z(t) =

δW (t)
δq(t)

δW (t−R0)
δq(t−R0)

Nominal dynamic

C(s)

∆(s)

e−sR0

z(t)

ξ(t)

δp(t−R0)
[

δW (t)
δq(t)

]

Figure 2: Block diagram of a linearized AQM control system
4

Notice that in Figure (2), C(s) represents the control law implemented at the router level.
We aim at designing C(s) to ensure the closed-loop stability and the performances objectives.
To this end, we propose to use the result of [4] that gives the condition and the proof for stabi-
lization. C(s) should stabilizing the delayed nominal plant and gain-stabilizing the uncertainties
∆(s). The linearized AQM control system is stable if C(s) stabilized the delayed nominal plant,
and ∆(s) is gain stabilized, i.e., the product of ∆(s) and the closed loop transfer function of the
nominal plant with the controller is less than one (using the generalized Nyquist criterion).
We get a suitable model where we can apply Automatic feedback control in order to control
the TCP dynamic. The development of command law will be detailed in the next section . We
have to use methods which take in consideration the control delay by respecting the robustness
conditions on the uncertainties.

3.3. The Controllers
We present two different AQM strategies using automatic control law to get an anticipatory

congestion detection and control capability but also achieve satisfactory control performance
in terms of the queue length dynamics (or equivalently the queueing delay). The first method
use the well know Proportional Integral (PI) feedback control adapted to the TCP network in [4].
The second method is a predictive controller introduced in [5] for a system with control delay
that we have adapted to TCP network. For the study of both controllers, we assume that the
RTT is constant.

3.3.1. PI controller
In this section, we propose to design a classical PI controller adapted to system of the form

(7), defined in [4]. C(s) is the transfer function of the controller. L(s) is the open-loop transfer
function of the model.

C(s) = KPI

s
z

+ 1

s
L(s) =

KPIC2

2N

(

s
z

+ 1
)

e−sR0

s
(

s + 2N
R2

0
C

)(

s + 1
R0

) (8)

We define z such that the dominant pole is cancelled (z = 2N/R2
0C). The crossover frequency

is ωg = β
R0

where β is chosen to set the phase margin. Then KPI = ωgz

∣

∣

∣

∣

jωg+ 1

R0

C2

2N

∣

∣

∣

∣

in order to

meet the crossover frequency condition |L(jωg)| = 1. We then calculate the desired phase loop
by choosing β which lead to a positive phase margin.

3.3.2. Predictive controller

We consider the state space model (7) where A =

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

and B =

[

− 2N
R2

0
C

0
N
R0

− 1
R0

]

.

In order to implement a static feedback, we need to know
[

δW (t + R0)
δq(t + R0)

]

:

[

δW (t + R0)
δq(t + R0)

]

= eA.R0

[

δW (t)
δq(t)

]

+

∫ R0

0
eAθBp(t− θ) dθ. (9)

A static state feedback is then proposed as:

p(t) = F

[

δW (t + h)
δq(t + h)

]

= F

(

eAh

[

δW (t)
δq(t)

]

+

∫ R0

0
eAθBp(t− θ) dθ

)

. (10)

where F is an m× n matrix to be found
Notice that we can rewrite the controller as follow, enhancing the infinite dimensional feature of
the proposed control law.

p(t) = Fstate

[

δW (t)
δq(t)

]

+

∫ R0

0
Fp(θ)p(t− θ) dθ. (11)

Where Fstate = FeAR0 and Fp(θ) = FeAθB. This lead to the closed-loop system:
[

δẆ (t)
δq̇(t)

]

=

(A+BF)

[

δW (t)
δq(t)

]

and the characteristic equation of the closed-loop system is then: det(sI−

(A + BF))
The controller (11) is not usable for the modeling using Matlab/Simulink or NS2-simulator di-
rectly.

5

We develop the equation (11) we arrived to the following form which is implementable:

p(t) = Fstate

[

δW (t)
δq(t)

]

+ C1e
λ1t
[

∫ t
0e−λ1θp(θ) dθ −

∫ t−R0

0 e−λ1θp(θ) dθ
]

+C2e
λ2t
[

∫ t
0e−λ2θp(θ) dθ −

∫ t−R0

0 e−λ2θp(θ) dθ
]

(12)

This form of the controller is implementable with simulations software.

4. Results and applications

4.1. Network typology
We consider the network topology consisting of 6 TCP sources and 1 UDP source, with the

same propagation delay connected to a destination node through a router (see figure 3). All
this sources together arrives to the satellite connection, which has a bigger propagation delay
and a smaller link capacity, where the phenomenon of congestion collapse appears. It is then
necessary at this node to control the stream with the help of an AQM.

TCP Sources 1 to 6

Receiver

300 ms

512kbps

Router

User Network Satellite Network

50 ms

256 kbps

UDP source

15 mbps

50 ms

Figure 3: The network topology

We have adapted the parameters to the conditions of the satellite network, i.e. the link ca-
pacity C = 128 packets/sec1, the propagation delay Tp = 0.7 secs and the number of sources
N = 6 sources. The operating point is chosen such that the average queue length q0 = 35
packets. Using the equations (4) we obtain a RTT R0 = 0.9734 secs, an average TCP window
size W0 = 20.77 packets and a probability of packet mark p0 = 0.0046.
Both PI controller and Predictive controller have been previously simulated on Matlab/Simulink
and the stability checked. However, in this article we will present the simulations with NS2-
Simulator only. We will make a comparison between the DropTail, which can be considered as
the simplest AQM, the PI and the predictive controllers. For each simulation we have depicted
the congestion window, the queue size, the propagation delays, and the packets losses.
The DropTail queue management is already available in the NS library. We only need to specify
the queue management type when we create the link between 2 sources. When the queue is
filled up to its maximum capacity, the newly arriving packets are dropped until the queue has
enough room to accept incoming traffic. The probability of packet mark for the PI and the pre-
dictive controllers is computed at each packet arrival, which defines the sampling frequency by
calculating the time between each arrivals. The probability is a value between 0 and 1. We
draw a random variable v. If p is smaller than v we keep the packet, if p is bigger, we drop
the packet. With DropTail, when the queue is filled to its maximum capacity, the newly arriving
packets are dropped until the queue has enough space to accept incoming traffic.

4.2. First Experimentations: TCP behavior

AQM DT PI PC
Mean(pkts) 136.2 36.8 30.6

Stand.dev.(pkts) 45.8 28.8 27.7
Average queueing delay(secs) 1.7 0.99 0.94

AQM DT PI PC
Transmitted(pkts) 25702 25590 25513

Dropped(pkts) 225 236 286
Percentage(%) 0.88 0.92 1.1

Table 1: Statistics on the queue length for the three AQM (left) and on TCP packet losses (right

In this part, we make a simulation with TCP only. With this simulation, we observe the TCP
performances (see table 1). As expected, the DropTail AQM as a larger average queue size.

1corresponds to a 0.512 Mb/s link with an average packet size 500 bytes
6

The window size of each sources increase until a packet loss occurs. As we know that the
RTT is function of the queue size (R(t) = Tp + q(t)

C
), this method leads to bigger propagation

delays. Thanks to the Integral part of the PI controller, which cancels the static state error, the
average queue size is closed to the fixed reference (35 packets). So we have reasonable delays
because the queue size does not grow. About the predictive controller, the average queue size
in less than the reference, but the standard deviation is smaller than the PI’s standard deviation.
From the losses point of view (see figure 4) we observe that the number of losses is quiet
similar, around 1%. We can also point that with DropTail, losses occur at the moment where
the queue is full, then when congestion occurs, all the packets are dropped. This can pose
a problem to solve the congestion problem, because the router is already congested and we
will have to resend all the dropped packets. Using the two others method, the buffer is never
congested, and packets are lost continuously one by one. It will be easier to resend the lost
packet.

0 20 40 60 80 100 120 140 160 180 200
0

100

200
Queue Size of TCP behavior

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

Droptail

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

PI controller

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

Predictive controller

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300
DropTail

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300
PI controller

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300
Predictive controller

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses

Figure 4: Queue size and losses on NS with the three AQMs for TCP connection only

About the figures (4), we can also point out that thanks to the regulation the queue size
is more stable for the two automatic based AQM than for the DropTail. This behavior is thus
reflected on the propagation delay. With DropTail delays exceed two seconds, while they are
around one second for the two others. With this simulation, we can conclude that the AQM
using automatic control are much more efficient in term of delay.

4.3. Second Experimentations: TCP behavior with UDP pertur bations
In this simulations, UDP flux arrive with a flow rate of 128kbits. A first UDP connection occurs
between the 40th and the 160th seconds. As second one between the 80th and 120th seconds.

0 20 40 60 80 100 120 140 160 180 200
0

100

200
Queue Size of TCP behavior with UDP perturbation

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

Droptail

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

PI controller

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

time (s)

Q
ue

ue
 s

iz
e

(p
kt

s)

Predictive controller

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300
DropTail

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses
UDP losses

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
PI controller

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses
UDP losses

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300
Predictive controller

time (s)

D
ro

ps
 (

pk
ts

)

TCP losses

Figure 5: Queue size and losses on NS with the three AQMs for TCP and UDP connections

AQM DT PI PC
Transmitted(pkts) 5120 5120 5120

Dropped(pkts) 29 23 0
Percentage(%) 0.57 0.45 0

Table 2: Statistics on UDP packet losses for the three AQM

The Figure (5) and the Table (2) points that using DropTail, if the perturbation occurs when
congestion occurs, the buffer is full, so all the UDP packets will be lost. Using this controller,

7

the connection will be cut during the congestion phenomena. With the PI controller some UDP
packets are dropped during the connection, which will lead to a lower connection quality, but
still acceptable. Otherwise using the predictive controller, none of the UDP packets are lost,
then the UDP connection will be completely transmit.

5. Conclusion and future work
In this paper, we have exposed two different AQMs based on automatic control that we compare
to the DropTail AQM. This method is very interesting in term of delay regulation. Furthermore,
it leads to a lower delay and which oscillates less than DropTail AQM. Concerning the PI con-
troller, we obtain a zero study-state regulation error, and the method is very easy to implement
in ns. Regarding the predictive controller, the implementation is much more complex. The be-
havior is similar to the PI controller behavior, however none of the UDP packets are lost which
is one of most important goal of this work, despite that we have a study state error. Conversely,
the DropTail AQM poses a huge problem if the UDP packets arrive when the buffer is full.
In order to improve the predictive controller, it could be useful to implement an integral part,
which will cancel the study-state error. One of the next objective is to implement the two con-
trollers on a platform (Platine [2]) to make more experimentations.
Another method that could be used for this problem is to have two queue (one for UDP and
one for TCP) with different priorities. However in this scheme, we can ask the question of the
necessity of AF queue, it is like if we had in the AF queue EF and BE queues. Moreover,
some problems of TCP instability could occur, because TCP packets will be blocked when UDP
packets arrived, so the congestion phenomena will be accentuate (c.f. 4.3).

References

[1] Y. Ariba, Y. Labit, and F. Gouaisbaut. Congestion control of a single router with an active
queue management. International Journal on Advances in Internet Technology, 2(1), 2009.

[2] C. Baudoin, Mathieu Dervin, Pascal Berthou, Thierry Gayraud, Frédéric Nivor, Baptiste
Jacquemin, Didier Barvaux, and J. Nicol. PLATINE: DVB-S2/RCS enhanced testbed for
next generation satellite networks. In International Workshop on IP Networking over Next-
generation Satellite Systems (INNSS07), volume ISBN-13: 978-0387754277, page 11p.,
07 2007.

[3] T. Gayraud and P. Berthou. A qos architecture for dvb-rcs next generation satellite
networks. EURASIP Journal on Wireless Communications and Networking, ID 58484
doi:10.1155/2007/58484:200–300, 2007.

[4] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. Analysis and design of controllers for aqm
routers supporting tcp flows. IEEE Trans. on Automat. Control, 47:945–959, jun 2002.

[5] A. Z. Manitius and A. W. Olbrot. Finite spectrum assignment problem for systems with
delays. IEEE Trans. on Automat. Control, AC-24:541–553, aug 1979.

[6] V. Misra, W. Gong, and D. Towsley. Stochastic differential equation modeling and analysis
of tcp windowsize behavior. Technical report, University of Massachusetts, October 1999.

[7] V. Misra, W. Gong, and D Towsley. Fluid-based analysis of a network of aqm routers sup-
porting tcp flows with an application to red. In SIGCOMM, pages 151–160, August 2000.

[8] I. Tou, M. Gineste, T. Gayraud, and P. Berthou. Quality of service evaluation in satellite
systems. International Workshop on Satellite and Space Communications 2008 (IWSSC
2008), pages 133–137, oct 2008.

8

