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QUASI-INVARIANCE AND INTEGRATION BY PARTS

FOR DETERMINANTAL AND PERMANENTAL

PROCESSES

I. CAMILIER AND L. DECREUSEFOND

Abstract. Determinantal and permanental processes are point pro-
cesses with a correlation function given by a determinant or a perma-
nent. Their atoms exhibit mutual attraction of repulsion, thus these
processes are very far from the uncorrelated situation encountered in
Poisson models. We establish a quasi-invariance result : we show that if
atoms locations are perturbed along a vector field, the resulting process
is still a determinantal (respectively permanental) process, the law of
which is absolutely continuous with respect to the original distribution.
Based on this formula, following Bismut approach of Malliavin calculus,
we then give an integration by parts formula.

1. Motivations

Point processes are widely used to model various phenomena, such as
arrival times, arrangement of points in space, etc. It is thus necessary to
know into details as large a catalog of point processes as possible. The Pois-
son process is one example which has been widely studied for a long time.
Our motivation is to study point processes that generate a more complex
correlation structure, such as a repulsion or attraction between points, but
still remain simple enough so that their mathematical properties are analyt-
ically tractable. Determinantal and permanental point processes hopefully
belong to this category. They were introduced in [22] in order to represent
configurations of fermions and bosons. Elementary particles belong exclu-
sively to one of these two classes. Fermions are particles like electrons or
quarks; they obey the Pauli exclusion principle and hence the Fermi-Dirac
statistics. The other sort of particles are particles like photons which obey
the Bose-Einstein statistics. The interested reader can find in [27] an illumi-
nating account of the determinantal (respectively permanental) structure of
fermions (respectively bosons) ensemble. A mathematical unified presenta-
tion of determinantal/permanental point processes (DPPP for short) was for
the first time, introduced in [24]. Let χ be the space of locally finite, simple
configurations on a Polish space E and K a locally trace-class operator in
L2(E) with a Radon measure λ. For any positive, compactly supported f
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2 I. CAMILIER AND L. DECREUSEFOND

and ξ =
∑

j δxj
∈ χ, the α-DPPP is the measure, µα, K,λ, on χ such that

(1)

∫

χ
e−

R

f dξ dµα,K,λ(ξ) = Det
(

I +α
√

1 − e−f K
√

1 − e−f
)− 1

α
,

for the parameters α ∈ A = {2/m; m ∈ N}∪{−1/m, ,∈ N}, where N is the
set of positive integers. The values α = −1 and α = 1 correspond to deter-
minantal and permanental point processes respectively. Starting from (1),
existence of α-DPPP is still a challenge as explained in [26]. Actually, ex-
istence is (not easily) proved for α = ±1 and DPPP for other values of α
are constructed as superposition of these basic processes. DPPP recently
regained interest because they have strong links with the spectral theory of
random matrices [20, 26]: for instance, eigenvalues of matrices in the Gini-
bre ensemble a.s. form a determinantal configuration. DPPP also appear in
polynuclear growth [19, 18], non intersecting random walks, spanning trees,
zero set of Gaussian analytic functions (see [17] and references there in),
etc. Mathematically speaking, a few of their properties are known. The
most complete references to date are, to the best of our knowledge, [17] and
[24]. Gibbsianness of DPPP, i.e., local absolute continuity of µα,K,λ with
respect to the distribution of a Poisson process, was investigated in several
papers by Yoo [29, 16]. The conclusion of all these studies seems to be that
DPPP are rather hard to describe and analyze, their properties being highly
dependent of the kernel and its eigenvalues.

Our aim is to investigate further some of the stochastic properties of α-
DPPP. In the spirit of [30], we are interested in the differential calculus
associated to these processes. In [30], it is shown that a somewhat canonical
Dirichlet form associated to DPPP is closed. We here address the problem
within the point of view of Malliavin calculus. To date, Malliavin calculus
for point processes has been developed namely for Poisson processes ([7, 6,
10, 3, 23, 13]) and some of their extensions: Gibbs processes [4], marked
processes [2], filtered Poisson processes [13], cluster processes [9] and Lévy
processes [5, 14]. There exist three approaches to construct a Malliavin
calculus framework for point processes: one based on white noise analysis,
one based on a difference operator and chaos decomposition and one which
relies on quasi-invariance of the law of Poisson process with respect to some
perturbations. This is the last track we follow here since neither the white
noise framework nor the chaos decomposition exist so far.

We first show that the action of a diffeomorphism of E into itself onto
the atoms of a DPPP yields another DPPP, the law of which is absolutely
continuous with the distribution of the original process; a property usually
known as quasi-invariance. Then, following the lines of proof of [3, 8, 9];
we can derive an integration by parts formula for the differential gradient
as usually constructed on configuration spaces. This gives another proof of
the closability of the Dirichlet form canonically associated to a DPPP as in
[30].

This paper is organized as follows. In part 2, we give definitions con-
cerning point processes and α-determinantal point processes. In part 3, we
prove the quasi-invariance for α-DPPP. Then, in Section 4, we compute the
integration by parts formula. We begin by determinantal point processes
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and then extend to α-determinantal point processes. Permanental processes
are analyzed on the same basis.

2. Preliminaries

2.1. Point processes. We remind here some properties of point processes
we refer to [12, 21] for more details. Let E be a Polish space and λ a Radon
measure on (E, B), the Borel σ-algebra on E. By χ we denote the space of
all locally finite configurations on E:

χ = {ξ ⊂ E : |ξ ∩ Λ| <∞ for any compact Λ ⊂ E},
where |A| is the cardinality of a set A. Hereafter we identify a locally finite
configuration ξ, defined as a set, and the atomic measure

∑

x∈ξ δx. The space

χ is then endowed with the vague topology of measures and B(χ) denotes the
corresponding Borel σ-algebra. For any measurable nonnegative function f
on E, we denote equivalently:

〈f, ξ〉 =
∑

x∈ξ

f(x) =

∫

f dξ.

We also denote by χ0 = {α ∈ χ, | α(E) |<∞} the set of all finite configu-
rations in χ and χ0 is equipped with the σ-algebra B(χ0). The restriction
of a configuration ξ to a compact Λ ⊂ E, is denoted by ξΛ. We introduce
the set χΛ = {ξ ∈ χ, ξ(E\Λ) = 0}. Then for any integer n, we denote by

χ
(n)
Λ = {ξ ∈ χ, ξ(Λ) = n}, the set of all configurations in with n points in Λ.

Note that we have χΛ =
⋃∞

n=0 χ
(n)
Λ .

Definition 1. A random point process is a triplet (χ,B(χ), µ), where µ is
a probability measure on (χ,B(χ)).

Every measure µ on the configuration space χ can be characterized by its
Laplace function, that is to say for any measurable non-negative function f
on E:

f 7−→ Eµ[e−
R

f dξ] =

∫

χ
e−

R

f dξ dµ(ξ).

For instance, let πσ denote the Poisson measure on (χ,B(χ)) with intensity
measure σ. Then its Laplace transform is, for any measurable non-negative
function f :

∫

χ
e−

R

f dξ dπσ(ξ) = exp

(
∫

E
(1 − e−f(x)) dσ(x)

)

Another way to describe the distribution of a point process is to give the
probabilities P(|ξΛk

| = nk, 1 ≤ k ≤ n) for any n and any mutually disjoints
Borel subsets of Λ, Λ1, · · · , Λk, 1 ≤ k ≤ n. For instance, the Poisson
measure πσ with intensity measure σ can be defined in this way as:

P(|ξΛk
| = nk, 1 ≤ k ≤ n) =

n
∏

k=1

e−σ(Λk)σ(Λk)
nk

nk!
.

But in many cases, specifying the joint distribution of the ξ(D)’s is not that
simple. It is then easier to describe the distribution of a point process by
its correlation functions.
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Definition 2. A locally integrable function ρn : En → R+ is the n-point cor-
relation function of µ if for any disjoint bounded Borel subsets Λ1, · · · , Λm

of E and ni ∈ N,
∑m

i=1 ni = n:

Eµ

[

m
∏

i=1

|ξΛi
|!

(|ξΛi
| − ni)!

]

=

∫

Λ
n1
1

×...×Λnm
m

ρn(x1, · · · , xn) dλ(x1) . . . dλ(xn),

where Eµ denotes the expectation relatively to µ.

For example, if m = 1 and n1 = n, the formula becomes:

Eµ

[ |ξΛ|!
(|ξΛ| − n)!

]

= Eµ [|ξΛ| (|ξΛ| − 1) . . . (|ξΛ| − n+ 1)]

=

∫

Λn

ρn(x1, · · · , xn) dλ(x1) . . . dλ(xn).

We recognize here the n-th factorial moment of |ξΛ|. In particular:

Eµ [|ξΛ|] =

∫

Λ
ρ1(x) dλ(x),

i.e., ρ1 is the mean density of particles. More generally, the function ρn has
the following interpretation: ρn(x1, · · · , xn) dλ(x1) . . . dλ(xn) is approxi-
mately the probability to find a particle in each one of the [xi, xi + dλ(xi)],
i = 1, · · · , n. A third way to define a point process proceeds via the Janossy
densities. Denote by πn,Λ(x1, · · · , xn) the density (assumed to exist) with
respect to λ⊗n of the joint distribution of (x1, · · · , xn) given that there are
n points in Λ.

Definition 3. The density distributions or Janossy densities of a random
process µ are the measurable functions jnΛ such that:

jnΛ(x1, · · · , xn) = n!µ(ξ(Λ) = n)πn,Λ(x1, · · · , xn) for n ∈ N,

j0Λ(∅) = µ(ξ(Λ) = 0).

Hence, the Janossy density jnΛ(x1, · · · , xn) appears as the probability
density that there are exactly n points in Λ located around x1, · · · , xn, and
no points anywhere else. For n = 0, j0Λ(∅) is the probability that there is no
point in Λ. For n ≥ 1, the Janossy densities satisfy the following properties:

• Symmetry:

jnΛ
(

xσ(1), · · · , xσ(n)

)

= jn,Λ (x1, · · · , xn) ,

for every permutation σ of {1, · · · , n}.
• Normalization constraint. For each compact Λ:

+∞
∑

n=0

∫

Λn

1

n!
jnΛ (x1, · · · , xn) dλ(x1) . . . dλ(xn) = 1.

It is clear that the ρn’s, jn’s, µ should satisfy some relationships. We will
not dwell on that here (see the references cited above), we just mention the
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relation between µ and jnΛ, which is:

(2)

∫

χ
f (ξ) dµ(ξ) =

+∞
∑

n=0

1

n!

∫

Λn

f(x1, · · · , xn) jnΛ (x1, · · · , xn) dλ(x1) . . . dλ(xn).

2.2. Fredholm determinants. For details on this part, we refer to [15, 25].
For any compact Λ ⊂ E, we denote by L2(Λ, λ) the set of functions square
integrable with respect to the restriction of the measure λ to the set Λ. This
becomes a Hilbert space when equipped with the usual norm:

‖f‖2
L2(λ,Λ) =

∫

Λ
|f(x)|2 dλ(x).

For Λ a compact subset of E, PΛ is the projection from L2(E) onto L2(Λ),
i.e., PΛf = f1Λ. The operators we will deal with are special cases of the
general category of continuous maps from L2(E, λ) into itself.

Definition 4. A map T from L2(E) into itself is said to be an integral
operator whenever there exists a measurable function, we still denote by T ,
such that

Tf(x) =

∫

E
T (x, y)f(y) dλ(y).

The function T is called the kernel of T .

Definition 5. Let T be a bounded map from L2(E, λ) into itself. The map
T is said to be trace-class whenever for one complete orthonormal basis
(CONB for short) (hn, n ≥ 1) of L2(E, λ),

∑

n≥1

|(Thn, hn)L2 | is finite.

Then, the trace of T is defined by

trace(T ) =
∑

n≥1

(Thn, hn)L2 .

It is easily shown that the notion of trace does not depend on the choice
of the CONB. Note that if T is trace-class then T n also is trace-class for any
n ≥ 2.

Definition 6. Let T be a trace class operator. The Fredholm determinant
of (I +T ) is defined by:

Det(I +T ) = exp

(

+∞
∑

n=1

(−1)n−1

n
trace(T n)

)

,

where I stands for the identity operator.

The practical computations of fractional power of Fredholm determinants
involve the so-called α-determinants, which we introduce now.
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Definition 7. For a square matrix A = (aij)i,j=1...n of size n × n, the α-

determinant detαA is defined by:

detαA =
∑

σ∈Σn

αn−ν(σ)
n
∏

i=1

aiσ(i),

where the summation is taken over the symmetric group Σn, the set of all
permutations of {1, 2, · · · , n} and ν(σ) is the number of cycles in the per-
mutation σ.

This is actually a generalization of the well-known determinant of a ma-
trix. Indeed, when α = −1, det−1A is the usual determinant detA. When
α = 1, det1A is the so-called permanent of A and for α = 0, det0A =

∏

i aii.
We can then state the following useful theorem (see [24]):

Theorem 1. For a trace class integral operator T , if ‖ αT ‖< 1, we have:

Det(I−αT )−
1

α =

+∞
∑

n=0

1

n!

∫

Λn

detα (T (xi, xj))1≤i,j≤n dλ(x1) . . . dλ(xn).

If α ∈ {−1/m;m ∈ N}, this is true without the condition ‖ αT ‖< 1.

2.3. Determinantal-permanental point processes. The following set
of hypothesis is of constant use.

Hypothesis 1. The Polish space E is equipped with a Radon measure λ.
The map K is an Hilbert-Schmidt operator from L2(E, λ) into L2(E, λ)
which satisfies the following conditions:

i) K is a bounded symmetric integral operator on L2(E, λ), with kernel
K(., .), i.e., for any x ∈ E,

Kf(x) =

∫

E
K(x, y)f(y) dλ(y).

ii) The spectrum of K is included [0, 1[.
iii) The map K is locally of trace class, i.e., for all compact Λ ⊂ E, the

restriction KΛ = PΛKPΛ of K to L2(Λ) is of trace class.

For a real α ∈ [−1, 1] and a compact subset Λ ⊂ E, the map JΛ,α is
defined by:

JΛ,α = (I +αKΛ)−1KΛ,

so that we have:

(I +αKΛ) (I−αJΛ,α) = I .

For any compact Λ, the operator JΛ,α is also a trace class operator in
L2(Λ, λ). In the following theorem, we define α-DPPP with the three equiv-
alent characterizations: in terms of their Laplace transforms, Janossy den-
sities and correlation functions. The theorem is also a theorem of existence,
a problem which as said above is far from being trivial.

Theorem 2 (See [24]). Assume Hypothesis 1 is satisfied. Let α ∈ A. There
exists a unique probability measure µα, K,λ on the configuration space χ such
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that, for any nonnegative bounded measurable function f on E with compact
support, we have:

Eµα, K, λ

[

e−
R

f dξ
]

=

∫

χ
e−

R

f dξ dµα, K, λ(ξ)

= Det
(

I +αK[1 − e−f ]
)− 1

α
,(3)

where K[1 − e−f ] is the bounded operator on L2(E) with kernel :

(K[1 − e−f ])(x, y) =
√

1 − exp(−f(x))K(x, y)
√

1 − exp(−f(y)).

This means that for any integer n and any (x1, · · · , xn) ∈ En, the correlation
functions of µα, K, λ are given by:

ρn, α, K(x1, · · · , xn) = detα (K (xi, xj))1≤i,j≤n ,

and for n = 0, ρ0, α, K(∅) = 1. For any compact Λ ⊂ E, the operator JΛ, α

is an Hilbert-Schmidt, trace class operator, whose spectrum is included in
[0,+∞[. For any n ∈ N, any compact Λ ⊂ E, and any (x1, · · · , xn) ∈ Λn

the n-th Janossy density is given by:

(4) jnΛ,α,KΛ
(x1, · · · , xn) = Det (I +αKΛ)−1/α detα (JΛ, α(xi, xj))1≤i,j≤n .

For n = 0, we have jnΛ,α,KΛ
(∅) = Det (I + αKΛ)−1/α .

For α = −1, such a process is called a determinantal process since we
have, for any n ≥ 1:

ρn,−1,K(x1, · · · , xn) = det(K(xi, xj))1≤i,j≤n.

For α = 1, such a process is called a permanental process, since we have, for
any n ≥ 1:

ρn,1,K(x1, · · · , xn) =
∑

πǫΣ

n
∏

i=1

K(xi, xπ(i)) = per (K(xi, xj))1≤i,j≤n.

For any bounded function g : E → R+, and any integral operator T of
kernel T (x, y), we denote by T [g] the integral operator of kernel:

T [g](x, y) →
√

g(x)T (x, y)
√

g(y).

For calculations, it will be convenient to use the following lemma:

Lemma 1 (see [24]). Let Λ be a compact subset of E and f : E → [0,+∞),
measurable with supp(f) ∈ Λ:

Det
(

I +αKΛ[1 − e−f ]
)−1/α

= Det (I +αKΛ)−1/α Det
(

I−αJΛ,α[e−f ]
)−1/α

.

By differentiation into the Laplace transform, it is possible to compute
moments of

∫

f dξ for any deterministic f . We obtain, at the first order:

Theorem 3 (see [24]). For any non-negative function f defined on E, we
have

E

[
∫

Λ
f dξ

]

=

∫

Λ
f(x)K(x, x) dλ(x) = trace(KΛ[f ]).



8 I. CAMILIER AND L. DECREUSEFOND

It is worth mentioning how the existence of α-DPPP is established. For
α = −1, there is a non trivial work (see [24, 26] and references therein) to
show that the Janossy densities satisfy the positivity condition so that a
point process with these densities does exist. For α = −1/m, it is sufficient
to remark from (3) that the superposition of m independent determinantal
point processes of kernel K/m is an α-DPPP fo kernel K. The point is
that K/m satisfies Hypothesis 1, in particular that its spectrum is strictly
bounded by 1/m < 1, since m > 1. For α = 2, a 2-permanental point
process is in fact a Cox process based on a Gaussian random field. We know
for sure that there exists X a centered Gaussian random field on E such
that:

(5) EP

[∫

Λ
X2(x) dλ(x)

]

= trace(KΛ),

for any compact Λ ⊂ E and

(6) EP [X(x)X(y)] = K(x, y) λ⊗ λ a.s.,

where P is the probability measure on the probability space supporting
X. Then the Cox process of random intensity X2(x) dλ(x) has the same
distribution as µ2,K,λ. Indeed, it follows from the formula:

EP

[

exp

(

−
∫

(1 − e−f(x))X2(x) dλ(x)

)]

= Det(I + 2(1 − e−f )K)−1/2.

Thus, any 2/m-permanental point process is the superposition of m inde-
pendent 2-permanental point processes with kernel K/m.

Poisson process can be obtained formally as extreme case of 1-permanental
process with a kernel K given by K(x, y) = 1{x=y}. Of course, this kernel is
likely to be null almost surely with respect to λ⊗ λ; nonetheless, it remains
that replacing formally this expression in (3) yields the Laplace transform of
a Poisson process of intensity λ. Another way to retrieve a Poisson process
is to let α go to 0 in (3). With the above constructions, this means that a
Poisson process can be viewed as an infinite superposition of determinantal
or permanental point processes.

Theorem 4. When α tends to 0, µα,K,λ converges narrowly to a Poisson
measure of intensity K(x, x) dλ(x).

Proof. For any nonnegative f , for any n ≥ 1,

0 ≤ trace
(

(KΛ[1 − e−f ])n
)

≤ trace
(

KΛ[1 − e−f ]
)

,

hence,

(7)

∫

χ
exp

(

−
∫

f dξ

)

dµα,KΛ,λ(ξ)= Det
(

I +αKΛ[1 − e−f ]
)−1/α

= exp

(

− 1

α

+∞
∑

n=1

(−1)n−1

n
αn trace((KΛ[1 − e−f ])n)

)

α→0−−−→ exp
(

− trace(KΛ(1 − e−f ))
)

=

∫

E
(1 − e−f(x))KΛ(x, x)dλ(x).
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Thus, when α goes to 0, the measure µα,KΛ,λ tends towards a measure that
we call µ0,KΛ,λ. According to (7), µ0,KΛ,λ is a Poisson process with intensity
KΛ(x, x)dλ(x). �

3. Quasi-invariance

In this part we show the quasi-invariance property for any α-DPPP. Let
Diff0(E) be the set of all diffeomorphisms from E into itself with compact
support, i.e., for any φ ∈ Diff0(E), there exists a compact Λ outside which
φ is the identity map. For any ξ ∈ χ, we still denote by φ the map:

φ : χ −→ χ
∑

x∈ξ

δx 7−→
∑

x∈ξ

δφ(x).

For any reference measure λ on E, λφ denotes the image measure of λ by
φ. For φ ∈ Diff0(E) whose support is included in Λ, we introduce the
isometry Φ,

Φ : L2(λφ,Λ) −→ L2(λ,Λ)

f 7−→ f ◦ φ.
Its inverse, which exists since φ is a diffeomorphism, is trivially defined by
f ◦ φ−1 and denoted by Φ−1. Note that Φ and Φ−1 are isometries, i.e.,

〈Φψ1, Φψ2〉L2(λ,Λ) = 〈ψ1, ψ2〉L2(λφ,Λ),

for any ψ1 and ψ2 belonging to L2(λ,Λ). We also set:

Kφ
Λ = Φ−1KΛΦ and Jφ

Λ,α = Φ−1JΛ,αΦ.

Lemma 2. Let λ be a Radon measure on E and K a map satisfying hy-
pothesis 1. Let α ∈ A. We have the following properties.

a) Kφ
Λ and Jφ

Λ,α are continuous operators from L2(λφ,Λ) into L2(λφ,Λ).

b) Kφ
Λ is of trace class and trace(Kφ

Λ) = trace(KΛ).

c) Det(I +αKφ
Λ) = Det(I +αKΛ).

Proof. The first point is immediate according to the definition of an image
measure. Since Φ−1 is an isometry, for any (ψn, n ∈ N) a complete orthonor-
mal basis of L2(λ,Λ), the family (Φ−1ψn, ,∈ N) is a CONB of L2(λφ,Λ).
Moreover,
∑

n≥1

∣

∣

∣〈Kφ
ΛΦ−1ψn, Φ−1ψn〉L2(λφ,Λ)

∣

∣

∣ =
∑

n≥1

∣

∣

∣〈Φ−1KΦΦ−1ψn, Φ−1ψn〉L2(λφ,Λ)

∣

∣

∣

=
∑

n≥1

∣

∣

∣
〈Φ−1Kψn, Φ−1ψn〉L2(λφ,Λ)

∣

∣

∣

=
∑

n≥1

∣

∣〈Kψn, ψn〉L2(λ,Λ)

∣

∣ .

Hence, Kφ
Λ is of trace class and trace(Kφ

Λ) = trace(KΛ). Along the same

lines, we prove that trace((Kφ
Λ)n) = trace(Kn

Λ) for any n ≥ 2. According to

Definition 6, the Fredholm determinant of Kφ
Λ is well defined and point c)

follows. �
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Theorem 5. Assume that K is a kernel operator. Then Kφ
Λ, as a map from

L2(λφ,Λ) into itself is a kernel operator whose kernel is given by ((x, y) 7→
KΛ(φ−1(x), φ−1(y))). An analog formula also holds for the operator JΛ,α.

Proof. On the one hand, for any function f , the operator Kφ
Λ from L2(Λ, λφ)

into L2(Λ, λφ) is given by :

Kφ
Λf(x) =

∫

Λ
Kφ

Λ(x, z)f(z)dλφ(z).

On the other hand, using the definition Kφ
Λ = Φ−1KΛΦ

Kφ
Λf(x) = Φ−1KΛΦf(x)

=

∫

Λ
KΛ(φ−1(x), y)f ◦ φ(y)dλ(y)

=

∫

Λ
KΛ(φ−1(x), φ−1(z))f(z)dλφ(z).

The proof is thus complete. �

Lemma 3. Let ρ : E → R be non negative and assume that dλ = ρ dm
for some other Radon measure on E. Let K satisfy Hypothesis 1. Then, we
have the following properties:

(1) The map K[ρ] is continuous from L2(m) into itself.
(2) The map K[ρ] is locally trace class and trace(KΛ[ρ]) = trace(KΛ).
(3) The measure µα,K,λ is identical to the measure µα,K[ρ],m.

That is to say, in some sense, we can “transfer” a part of the reference
measure into the operator and vice-versa.

Proof. Remember that

K[ρ](x, y) =
√

ρ(x)K(x, y)
√

ρ(y).

Hence

KΛ[ρ]f(x) =
√

ρ(x)

∫

Λ
KΛ(x, y)

√

ρ(y) dλ(y),

thus
∫

Λ
|KΛ[ρ]f |2 dm =

∫

Λ
|KΛf |2 dλ,

and the first point follows. Consider (ψn, n ∈ N), a CONB of L2(λ). Then
(ψn

√
ρ, n ∈ N) is a CONB of L2(m). Furthermore, we have:
∑

n≥1

∣

∣〈KΛ[ρ]ψn, ψn〉L2(dm)

∣

∣ =
∑

n≥1

∣

∣〈KΛ
√
ρψn,

√
ρψn〉L2(dm)

∣

∣

=
∑

n≥1

∣

∣

∣〈KΛψn, ψn〉L2(λ)

∣

∣

∣ .

Therefore the operator KΛ[ρ] is of trace class and

trace(KΛ[ρ]) = trace(KΛ).

Similarly we can prove that for any n ≥ 2, we have trace(Kn
Λ[ρ]) = trace(Kn

Λ).
Then, using the definition of a Fredholm determinant, we have:

Det(I +αKΛ) = Det(I +αKΛ[ρ]).
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The third point then follows from the characterization of µα,K[ρ],m by its
Laplace transform. �

The expression detαJΛ,α(xi, xj)1≤i,j≤n is now denoted detαJΛ,α(x1, · · · , xn).
For any finite random configuration ξ = (x1, · · · , xn), we call JΛ,α(ξ) the
matrix with terms (JΛ,α(xi, xj), 1 ≤ i, j ≤ n). First, remind some results
from [3] concerning Poisson measures. For any φ ∈ Diff0(E), we define φ∗πλ

as the image of the Poisson measure πλ with intensity measure λ and λφ

denotes the image measure of λ by φ.

Theorem 6 ([3]). For any φ ∈ Diff0(E), and a Poisson measure πλ with
intensity λ:

φ∗πλ = πλφ
.

That is to say, for any f nonnegative and compactly supported on E:

(8) Eπλ

[

e−
R

f◦φ dξ
]

= exp

(

−
∫

1 − e−f dλφ

)

.

We give the corresponding formula for α-determinantal measures. For any
φ ∈ Diff0(E), we define φ∗µα,KΛ,λ as the image of the measure µα,KΛ,λ under
φ. We prove below that this image measure is an α-DPPP the parameters
of which are explicitely known.

Theorem 7. With the notations and hypothesis introduced above. For any
φ ∈ Diff0(E), for any nonnegative function f on E, for any compact Λ ⊂ E,
we have:

Eµα,KΛ,λ

[

e−
R

f◦φ dξ
]

= Eµ
α,K

φ
Λ

,λφ

[

e−
R

f dξ
]

(9)

= Det(I + αKφ
Λ[1 − e−f ])−1/α.

That is to say the image measure of µα,K,λ by φ is an α-determinantal

process with operator Kφ and reference measure λφ.

Proof. According to Theorem 2 and Lemma 1, we have for nonnegative f :

Eµα,KΛ,λ

[

e−
R

f◦φ dξ
]

= Det
(

I +αKΛ[1 − e−f◦φ]
)−1/α

= Det (I +αKΛ)−1/α Det
(

I−αJΛ,α[e−f◦φ]
)−1/α

.

According to Theorem 1, we get

Det
(

I−αJΛ,α[e−f◦φ]
)−1/α

=

+∞
∑

n=0

1

n!

∫

Λn

detα JΛ,α(x1, · · · , xn)e−
Pn

i=1
f(φ(xi)) dλ(x1) . . . dλ(xn)

=
+∞
∑

n=0

1

n!

∫

Λn

detα J
φ
Λ,α(x1, · · · , xn)e−

Pn
i=1

f(xi) dλφ(x1) . . . dλφ(xn)

= Det
(

I−αJφ
Λ,α[e−f ]

)−1/α
.



12 I. CAMILIER AND L. DECREUSEFOND

Since Det (I +αKΛ) = Det
(

I +αKφ
Λ

)

, we have:

Eµα,KΛ,λ

[

e−
R

f◦φ dξ
]

= Det
(

I +αKφ
Λ[1 − e−f ]

)−1/α

= Eµ
α, K

φ
Λ

, λφ

[

e−
R

f dξ
]

.

The proof is thus complete. �

For α = 2, Theorem 7 says that the image under φ of a Cox process is still

a Cox process of parameters Kφ
Λ and λφ. Such a process can be constructed

as follows: Let X be a centered Gaussian random field satisfying (5) and
(6) and let Y (x) = X(φ−1(x)). Then, according to Lemma 2, we have: for
any compact Λ,

EP

[∫

Λ
Y 2(x) dλφ(x)

]

= trace(Kφ
Λ)

and

EP [Y (x)Y (y)] = Kφ(x, y) = K(φ−1(x), φ−1(y)), λφ ⊗ λφ, a.s..

From Theorem 6, by conditioning with respect to X, we also have:

Eµ2, K, λ

[

e−
R

f◦φ dξ
]

= EP

[

E

[

e−
R

f◦φ dξ
∣

∣

∣
X
]]

= EP

[

exp

(

−
∫

(1 − e−f◦φ)X2 dλ

)]

= EP

[

exp

(

−
∫

(1 − e−f )Y 2 dλφ

)]

.

Thus the two approaches (fortunately) yields the same result.
We now want to prove that µα, Kφ, λφ

is absolutely continuous with respect

to µα, K, λ and compute the corresponding Radon-Nikodym derivative. For
technical reasons, we need to assume that there exists a Jacobi formula
(or change of variable formula) on the measured space (E, λ). This could
be done in full generality for E a manifold; for the sake of simplicity, we
assume hereafter that E is a domain of some Rd. We denote by ∇E the
usual gradient on Rd. We also introduce a new hypothesis.

Hypothesis 2. We suppose that the measure λ is absolutely continuous
with respect to the Lebesgue measure m on E. We denote by ρ the Radon-
Nikodym derivative of λ with respect to m. We furthermore assume that√
ρ is in H1,2

loc (K(x, x) dm(x)), i.e., ρ is weakly differentiable and for any
compact Λ in E, we have:

∞ > 2

∫

Λ
‖∇E

√

ρ(x)‖2K(x, x) dm(x)

=

∫

Λ

‖∇Eρ(x)‖2

ρ(x)
K(x, x) dm(x)

=

∫

Λ

(‖∇Eρ(x)‖
ρ(x)

)2

K(x, x) dλ(x).
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Then for any φ ∈ Diff0(E), λφ is absolutely continuous with respect to λ
and

pλ
φ(x) =

dλφ(x)

dλ(x)
=
ρ(φ−1(x))

ρ(x)
Jac(φ)(x),

where Jac(φ)(x) is the Jacobian of φ at point x.

Lemma 4. Assume (E, K, λ) satisfy Hypothesis 1 and 2. Let (un, n ≥ 0)
be a sequence of nonnegative real numbers such that for any x ∈ R,

(10)
∑

n≥0

un

n!
|x|n < +∞.

For any compact Λ ⊂ E, we have:

(11) Eµα, KΛ, λ

[

u|ξ|

detαJΛ,α(ξ)

]

< +∞.

As a consequence, detαJΛ,α(ξ) is µα, KΛ, λ almost-surely positive.

Proof. According to Theorem 2, we have:

jnΛ,α,KΛ
(x1, · · · , xn) = Det(I +αKΛ)−1/αdetαJΛ,α(x1, · · · , xn),

hence

E

[

u|ξ|

detαJΛ,α(ξ)

]

=

+∞
∑

n=0

1

n!

∫

Λn

un

detαJΛ,α(x1, · · · , xn)
jnΛ,α,KΛ

(x1, · · · , xn) ⊗n
j=1 dλ(xj)

= Det(I +αKΛ)−1/α
+∞
∑

n=0

un

n!
λ(Λ)n < +∞,

because λ is assumed to be a Radon measure and Λ is compact. �

Theorem 8. Assume (E, K, λ) satisfy Hypothesis 1 and 2. Then, the mea-
sure µα, K,λ is quasi-invariant with respect to the group Diff0(E) and for any
φ ∈ Diff0(E), we have then:

dφ∗µα, K,λ

dµα, K, λ
(ξ) =





∏

x∈ξ

pλ
φ(x)





detα J
φ
α(ξ)

detα Jα(ξ)
·

That is to say that for any measurable nonnegative, compactly supported f
on E:

(12) Eµα, K, λ

[

e−
R

f◦φ dξ
]

= Eµα, K, λ

[

e−
R

f dξe
R

ln(pλ
φ
) dξ detα J

φ
α(ξ)

detα Jα(ξ)

]

.

Proof. Since f is compactly supported and φ belongs to Diff0(E), there
exists a compact Λ which contains both the support of f and f◦φ. According
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to Theorem 7 and Lemma 5, we have:

Eµα,KΛ,λ

[

e−
R

f◦φ dξ
]

= Eµ
α,K

φ
Λ

,λφ

[

e−
R

f dξ
]

= Det
(

I +αKφ
Λ

)−1/α
(

+∞
∑

n=0

1

n!
An

)

= Det (I +αKΛ)−1/α

(

+∞
∑

n=0

1

n!
An

)

where for any n ∈ N, the An are the integrals:

An =

∫

Λn

detαJ
φ
Λ,α(x1, · · · , xn)e−

Pn
i=1

f(xi) dλφ(x1) . . . dλφ(xn)

=

∫

Λn

detαJ
φ
Λ,α(x1, · · · , xn)e−

Pn
i=1

f(xi)
n
∏

i=1

pλ
φ(xi) dλ(x1) . . . dλ(xn)

=

∫

Λn

detαJΛ,α(x1, · · · , xn)αn(x1, · · · , xn) dλ(x1) . . . dλ(xn),

where

αn(x1, · · · , xn) =
detαJ

φ
Λ,α(x1, · · · , xn)

detαJΛ,α(x1, · · · , xn)
e−

P

i f(xi)
n
∏

i=1

pλ
φ(xi).

Hence according to (4), we can write:

Det (I +αKΛ)−1/α
+∞
∑

n=0

1

n!
An

=

+∞
∑

n=0

1

n!

∫

Λn

jnΛ,α,KΛ
(x1, · · · , xn)αn(x1, · · · , xn) dλ(x1) . . . dλ(xn).

Thus, we have (12). �

Should we consider Poisson process either as a 0-DPPP or as an α-DPPP
with the singular kernel mentioned above, we see that the last fraction in
(12) reduces to 1 and we find the well known formula of quasi-invariance for
Poisson processes (see [3]). In the following, we define:

Lφ
µα, K, λ

(ξ) =





∏

x∈ξ

pλ
φ(x)





detαJ
φ
α(ξ)

detαJα(ξ)
·

Then formula (12) can be rewritten as:

Eµα, K, λ

[

e−
R

f◦φ dξ
]

= Eµα, K, λ

[

e−
R

f dξ Lφ
µα, K, λ

(ξ)
]

.

4. Integration by parts formula

In this section, we prove the integration by parts formula. The proof relies
on a differentiation within (12). We thus need to put a manifold structure
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on χ. The tangent space Tξχ at some ξ ∈ χ is given as L2(dξ), i.e., the set
of all maps V from E to R such that:

∫

|V (x)|2 dξ(x) <∞.

Note that if ξ ∈ χ0 then Tξχ can be identified as R|ξ| with the euclidean
scalar product.

We consider V0(E) the set of all C∞-vector fields on E with compact
support. For any v ∈ V0(E), we construct: φv

t : E → E, t ∈ R, where the
curve, for any x ∈ E

t ∈ R → φv
t (x)

is defined as the solution to:

d

dt
φv

t (x) = v(φv
t (x)) and φv

0(x) = x.

Because v ∈ V0(E), there is no explosion and φv
t is well-defined for each

t ∈ R. The mappings {φv
t , t ∈ R} form a one-parameter subgroup of diffeo-

morphisms with compact support, that is to say:

• ∀t ∈ R, φv
t ∈ Diff0(E).

• ∀t, s ∈ R, φv
t ◦ φv

s = φv
t+s. In particular, (φv

t )
−1 = φv

−t.
• For any T > 0, there exists a compact K such that φv

t (x) = x for
any x ∈ Kc, for any |t| ≤ T.

In the following, we fix v ∈ V0(E). For any ξ ∈ χ, we still denote by φv
t the

map:

φv
t : χ −→ χ

ξ =
∑

x∈ξ

δxi
7−→

∑

x∈ξ

δφv
t (x) ∈ χ.

Definition 8. A function F : χ → R is said to be differentiable at ξ ∈ χ
whenever for any vector field v ∈ V0(E), the directional derivative along the
vector field v

∇vF (ξ) =
d

dt
F (φv

t (ξ))

∣

∣

∣

∣

t=0

is well defined.

Since φv
t does not change the number of atoms of ξ, if ξ belongs to χ0,

this notion of differentiability coincides with the usual one in R|ξ| and

∇vF (x1, · · · , xn) =

n
∑

i=1

∂iF (x1, · · · , xn)v(xi),

if ξ = {x1, · · · , xn}.
In the general case, a set of test functions is defined as is : Following the

notations from [3], for a function F : χ→ R we say that F ∈ FC∞
b (D, χ) if:

F (ξ) = f

(
∫

h1 dξ, · · · ,
∫

hN dξ

)

,
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for some N ∈ N, h1, · · · , hN ∈ D = C∞(E), f ∈ C∞
b (RN ). Then for any

F ∈ FC∞
b (D, χ), given v ∈ V0(E), we have:

F (φv
t (ξ)) = f

(
∫

h1 ◦ φv
t dξ, · · · ,

∫

hN ◦ φv
t dξ

)

.

It is then clear that the directional derivative of such F exists and that:

∇vF (ξ) =

N
∑

i=1

∂if

(
∫

h1 dξ, · · · ,
∫

hN dξ

)
∫

∇E
v hi dξ.

The gradient ∇F of a differentiable function F is defined as a map from χ
into Tχ such that, for any v ∈ V0(E),

∫

∇xF (ξ)v(x) dξ(x) = ∇vF (ξ).

If ξ ∈ χ0 and F is differentiable at χ, then

∇xF (ξ) =

|ξ|
∑

i=1

∂iF ({x1, · · · , x|ξ|})1{x=xi}.

If ξ belongs to χ, for any F ∈ FC∞
b (D, χ),

∇xF (ξ) =
n
∑

i=1

∂if

(
∫

h1 dξ, · · · ,
∫

hN dξ

)

∇Ehi(x).

4.1. Determinantal point processes. In what follows, c and κ are posi-
tive constant which may vary from line to line.

In this part, we assume α = −1 and that Hypothesis 1 and 2 hold. We
denote by βλ(x) the logarithmic derivative of λ, given by: for any x in E,

βλ(x) =
∇ρ(x)
ρ(x)

on {ρ(x) > 0},

and βλ(x) = 0 on {ρ(x) = 0}. Then, for any vector field v on E with
compact support, we denote by Bλ

v the following function on χ:

Bλ
v : χ −→ R

ξ 7−→ Bλ
v (ξ) =

∫

E

(

βλ(x).v(x) + div(v(x))
)

dξ(x),

where x.y is the euclidean scalar product of x and y in E. If λ = m,

Bm
v (ξ) =

∫

E
div(v(x)) dξ(x)

and according to Theorem 3,

E [|Bm
v (ξ)|] ≤

∫

E
|div(v(x))|K(x, x) dλ(x)

≤ ‖v‖∞ trace(KΛ) <∞,

where Λ is a compact containing the support of v. As in [30], we now define
the potential energy of a finite configuration by

U : χ0 −→ R

ξ 7−→ − log detJ(ξ).
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Hypothesis 3. The functional U is differentiable at every configuration
ξ ∈ χ0. Moreover, for any v ∈ V0(E), there exists c > 0 such that for any
ξ ∈ χ0, we have

(13)
∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ ≤
u|ξ|

det J(ξ)
,

where (un = cnn/2, n ≥ 1) satisfy (10).

Theorem 9. Assume that the kernel J is once differentiable with continuous
derivative. Then, Hypothesis 3 is satisfied.

Proof. Let ξ = {x1, · · · , xn} ∈ χ0 and let Λ be a compact subset of E whose
interior contains ξ. Since J(., .) is differentiable

(y1, · · · , yn) 7−→ − log det (J(yi, yk), 1 ≤ i, k ≤ n)

is differentiable. The chain rule formula implies that

t 7−→ log det (J(φv
t (xi), φ

v
t (xk)), 1 ≤ i, k ≤ n)

is differentiable and its differential is equal to

1

detJ(φv
t (ξ))

trace

(

Adj(J(φv
t (xi), φ

v
t (xk)))

(

Ev
t (
∂J(ξ)

∂x
)t + (

∂J(ξ)

∂y
)tE

v
t

))

,

where (∂J(ξ)
∂x )t is the matrix with terms

(

∂JΛ

∂x (φv
t (xi), φ

v
t (xj))

)

xi, xj∈ξ
, (∂J(ξ)

∂y )t

is the matrix with terms
(

∂JΛ

∂y (φv
t (xi), φ

v
t (xj))

)

xi, xj∈ξ
, and Ev

t is the diagonal

matrix with terms (v(φv
t (xi)))xi∈ξ. For t = 0, this reduces to

∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ =

1

detJ(ξ)
trace

(

Adj(J(ξ))

(

Ev
0 (
∂J(ξ)

∂x
)0 + (

∂J(ξ)

∂y
)0E

v
0

))

.

Since J is continuous and Λ is compact,

‖∂J
∂y

(ξ)‖HS ≤ |ξ|‖J‖∞ and ‖Ev
0 (ξ)‖HS ≤ |ξ|1/2‖v‖∞.

Hence, there exists c independent of ξ such that
∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ ≤ c |ξ|2 1

detJ(ξ)
| trace(Adj(J(ξ)))|.

From [15, page 1021], we know that for any n× n matrix A, for any x and
y in Rn, we have

|(AdjA)x.y| ≤ ‖y‖‖A‖n−1
HS (n− 1)−(n−1)/2.

It follows that

| trace(AdjA)| = |
n
∑

j=1

(AdjA)ej .ej | ≤ n‖A‖n−1
HS (n− 1)−(n−1)/2,

where (ej , j = 1, · · · , n) is the canonical basis of Rn. Since J is bounded,
‖J(ξ)‖HS ≤ |ξ|‖J‖∞, hence there exists c independent of ξ such that

∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ ≤ c

det J(ξ)
|ξ||ξ|/2.

The proof is thus complete. �
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Corollary 1. Assume that hypothesis 3 holds. For any v ∈ V0(E), for any
ξ ∈ χ0, the function

t 7−→ Ht(ξ) =
det J(φv

t (ξ))

det J(ξ)

is differentiable and

sup
|t|≤T

∣

∣

∣

∣

dHt(ξ)

dt

∣

∣

∣

∣

≤ u|ξ|

det J(ξ)
,

where (un, n ≥ 0) satisfy (10).

Proof. According to Hypothesis 3, the function (t 7→ U(φv
t (ξ))) is differen-

tiable and

(14)
dU(φv

t (ξ))

dt
= 〈∇U(φv

t (ξ)), v〉L2(dφv
t (ξ)).

For any t, φv
t is a diffeomorphism hence, Theorem 8 applied to φv

t and φv
−t

implies that µ
−1, Kφv

t ,λφv
t

and µ−1, K, λ are equivalent measure. According to

Lemma 4, for any t, detJφv
t (ξ) is µ

−1, Kφv
t ,λφv

t

-a.s. positive hence it is also

µ−1, K, λ-a.s. positive. Since for any ξ ∈ χ0,

t 7→ det Jφv
t (ξ) = exp(−U(φv

t (ξ)))

is continuous, it follows that there exists a set of full µ−1, K, λ measure on

which detJφv
t (ξ) > 0 for any |t| ≤ T , for any ξ. Furthermore,

dHt(ξ)

dt
= −detJ(φv

t (ξ))

detJ(ξ)

dU(φv
t (ξ))

dt
.

In view of (14) and of Hypothesis 3, this means that

sup
|t|≤T

∣

∣

∣

∣

dHt(ξ)

dt

∣

∣

∣

∣

≤ det J(φv
t (ξ))

det J(ξ)

u|ξ|

detJ(φv
t (ξ))

=
u|ξ|

det J(ξ)
,

since φv
t (ξ) has the number of atoms as ξ. �

Lemma 5. Assume that λ = m and set

Pt(ξ) =
∏

x∈ξ

pφv
t
(x) =

∏

x∈ξ

Jacφv
t (x).

For any v ∈ Diff0(E), for any configuration ξ ∈ χ, P is differentiable with
respect to t and we have

d log Pt

dt
(ξ) =

∫
(

div v −
∫ t

0
∇E div v ◦ ηr,t. v(ηr,t) dr

)

dξ,

where for any r ≤ t, x→ ηr,t(x) is the diffeomorphism of E which satisfies:

ηr,t(x) = x−
∫ t

r
v(ηs,t(x)) ds.

In particular for t = 0, we have:

(15)
d

dt





∏

x∈ξ

pλ
φv

t
(x)





∣

∣

∣

∣

∣

∣

t=0

= Bm
v (ξ).
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Moreover, there exists c > 0 and κ > 0 such that for any ξ ∈ χ0,

(16) sup
t≤T

∣

∣

∣

∣

dPt

dt
(ξ)

∣

∣

∣

∣

≤ ceκ|ξ|.

Proof. Introduce, for any s ≤ t, x 7−→ ηs,t(x), the diffeomorphism of E
which satisfies:

ηs,t(x) = x−
∫ t

s
v(ηr,t(x)) dr.

As a comparison, we remind that φv
t (x) = x +

∫ t
0 v(φ

v
s(x)) ds. It is well-

known that the diffeomorphism x 7−→ η0,t(x) is the inverse of x 7−→ φv
t (x).

Then using [28], we have:

(17) Jacφv
t (x) =

d(φv
t )

∗m(x)

dm(x)
= exp

(∫ t

0
div v ◦ ηr,t(x) dr

)

,

and:

∏

x∈ξ

Jacφv
t (x) = exp





∑

x∈ξ

∫ t

0
div v ◦ ηr,t(x) dr



 .

Hence, we have:

∑

x∈ξ

d

dt
log Jacφv

t (x) =
∑

x∈ξ

d

dt

∫ t

0
div v ◦ ηr,t(x) dr

=
∑

x∈ξ

div v(x) −
∫ t

0
∇E div v ◦ ηr,t(x).v(ηr,t(x)) dr.

The first and second point follow easily. Now, v is assumed to have bounded
derivatives of any order, hence for any ξ ∈ χ0,

(18)

∣

∣

∣

∣

d log Pt

dt
(ξ)

∣

∣

∣

∣

≤ c|ξ|,

where c does not depend neither from t nor ξ. According to (17), there
exists κ > 0 such that for any ξ ∈ χ0, we have:

(19) |Pt(ξ)| ≤ exp(κ|ξ|).
Thus, combining (18) and (19), we get (16). �

We are now in position to prove the main result of this section.

Theorem 10. Assume (E, K, λ) satisfy Hypothesis 1, 2 and 3, let α = −1.
Let F and G belong to FC∞

b . For any compact Λ, we have:

(20)

∫

χΛ

∇vF (ξ)G(ξ) dµ−1,KΛ,λ(ξ) = −
∫

χΛ

F (ξ)∇vG(ξ) dµ−1,KΛ,λ(ξ)

+

∫

χΛ

F (ξ)G(ξ)
(

Bλ
v (ξ) + ∇vU(ξ)

)

dµ−1,KΛ,λ(ξ).

Proof. In view of Lemma 3, we can replace J by J [ρ] and assume λ = m,
i.e., λ is the Lebesgue measure. Note that

Bm
v (ξ) =

∫

div v(x) dξ(x).
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Let Λ be a fixed compact set in E, remember that χΛ ⊂ χ0. Let M be
an integer and χM = {ξ ∈ χ0, |ξ| ≤ M}. It is crucial to note that χM is
invariant by any φ ∈ Diff0(E). On the one hand, by dominated convergence,
we have:

d

dt

(∫

χM

F (φv
t (ξ))G(ξ) dµ−1,KΛ[ρ],m(ξ)

)∣

∣

∣

∣

t=0

=

∫

χM

d

dt
(F (φv

t (ξ)))

∣

∣

∣

∣

t=0

G(ξ) dµ−1,KΛ[ρ],m(ξ)

=

∫

χM

∇vF (ξ)G(ξ) dµ−1,KΛ[ρ],m(ξ).

On the other hand, we know from (12) that

(21)

∫

χM

F (φv
t (ξ))G(ξ) dµ−1,KΛ[ρ],m(ξ)

=

∫

χΛ

F (φv
t (ξ))G(ξ)1{|ξ|≤M} dµ−1,KΛ[ρ],m(ξ)

=

∫

χΛ

F (ξ)G(φv
−t(ξ))1{|φv

−t(ξ)|≤M} dµ
−1,K

φv
t

Λ
[ρ],mφv

t

(ξ)

=

∫

χΛ

F (ξ)G(φv
−t(ξ))1{|ξ|≤M}L

φv
t

−1, K[ρ], λ(ξ) dµ−1,KΛ[ρ],m(ξ).

According to Corollary 1 and Lemma 5, the function (t 7→ L
φv

t

−1, K[ρ], λ(ξ)) is

differentiable and there exists c such that:

sup
t≤T

∣

∣

∣

∣

∣

∣

dL
φv

t

−1, K[ρ], λ

dt
(ξ)

∣

∣

∣

∣

∣

∣

≤
u|ξ|

detJ(ξ)
,

where (un, n ≥ 0) satisfy (10).
Lemma 4 implies that the right-hand-side of the last inequality is integrable
with respect to µ−1, KΛ, λ, thus, we can differentiate inside the expectations
in (21) and we obtain:

∫

χΛ

∇vF (ξ)G(ξ)1{|ξ|≤M} dµ−1,KΛ,m(ξ)

=

∫

χΛ

F (ξ) (−∇vG(ξ) +G(ξ) (Bm
v (ξ) + ∇vU(ξ)))1{|ξ|≤M} dµ−1,KΛ,m(ξ).

According to Hypothesis 3 and Lemma 4, by dominated convergence, we
have:

∫

χΛ

∇vF (ξ)G(ξ) dµ−1,KΛ,m(ξ)

=

∫

χΛ

F (ξ) (−∇vG(ξ) +G(ξ) (Bm
v (ξ) + ∇vU(ξ))) dµ−1,KΛ,m(ξ).
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Now, we remark that

∇vU [ρ](ξ) = ∇v log detJ [ρ](ξ)

= ∇v log





∏

x∈ξ

ρ(x)detJ(ξ)





= ∇v

∫

log ρ(x) dξ(x) + ∇vU(ξ)

=

∫ ∇Eρ(x)

ρ(x)
.v(x) dξ(x) + ∇vU(ξ).

Moreover, we have

Bm
v (ξ) +

∫

Λ

∇Eρ(x)

ρ(x)
.v(x) dξ(x) = Bλ

v (ξ),

and in view of Theorem 3,

E

[∣

∣

∣

∣

∫

Λ

∇Eρ(x)

ρ(x)
.v(x) dξ(x)

∣

∣

∣

∣

]2

≤ E

[

∫

Λ

(‖∇Eρ(x)‖
ρ(x)

)2

dξ(x)

]

E

[
∫

Λ
|v(x)|2 dξ(x)

]

≤ ‖v‖2
∞ trace(KΛ)

∫

Λ

(‖∇Eρ(x)‖
ρ(x)

)2

K(x, x)ρ(x) dm(x).

Then, Hypothesis 2 implies that Bλ
v is integrable and we get (20) in the

general case. �

4.2. α-determinantal point processes. We now prove the integration
by parts formula for α-determinantal point processes where α = −1/s for
s integer greater than 2. In principle, we could follow the previous lines of
proof modifying the definition of U as

U(ξ) = − log detα Jα(ξ)

and assuming that Hypothesis 3 is still valid. Unfortunately, there is no
(simple) analog of Theorem 9 since there is no rule to differentiate an α-
determinant and control its derivative.

We already saw that such an α-DPPP can be obtained as the superposi-
tion of s determinantal processes of kernel K/s.

Let (E1, λ1, K1), · · · , (Es, λs, Ks) be s Polish spaces each equipped with
a Radon measure and s linear operators satisfying Hypothesis 1 on their
respective space. We set

E = ∪s
i=1{i} × Ei,

that is to say E is the disjoint union of the Ei’s, often denoted as ⊔s
i=1Ei.

An element of E is thus a couple (i, x) where x belongs to Ei for any
i ∈ {1, · · · , s}. On the Polish space E, we put the measure λ defined by

∫

E
f(i, x) dλ(i, x) =

∫

E
f(i, x) dλi(x).
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We also define K as

Kf(i, x) =

∫

Ei

Ki(x, y)f(y) dλi(y).

A compact set in E is of the form Λ = ∪s
i=1{i} × Λi where Λi is a compact

set of Ei hence

KΛf(i, x) =

∫

Λi

Ki(x, y)f(y) dλi(y).

This means that K is a kernel operator the kernel of which is given by:

(22) K((i, x), (j, y)) = Ki(x, y)1{i=j}.

In particular, for ξ = ((il, xl), l = 1, · · · , n), we have

detK(ξ) =

s
∏

j=1

detK(ξj)

where ξj = {x, (j, x) ∈ ξ}.
It is straightforward that K is symmetric and locally of trace class. More-

over, its spectrum is equal to the union of the spectra of the Ki’s. For, if ψ
is such that Kψ = αψ then ψ(i, .) is an eigenvector of Ki and thus α belongs
to the spectrum of Ki. In the reverse direction, if ψ is an eigenvector of Ki

associated to the eigenvalue α then the function

f(j, x) = ψ(x)1{i=j}

is square integrable with respect to λ and is an eigenvector of K for the
eigenvalue α. If we assume furthermore that each of the Ei’s is a subset of
Rd, we can define the gradient on E as

∇Ef(i, x) = ∇Eif(i, x).

Now χE is the set of locally finite point measures of the form

ξ =
∑

j

δ(ij , xj).

With these notations, it is clear that Hypothesis 1, 2 and 3 are satisfied
provided they are satisfied for each index i. Thus (20) is satisfied.

Now take E1 = . . . = Es, λ1 = . . . = λs and K1 = . . . = Ks. We introduce
the map Θ defined as:

Θ : E −→ E1

(i, x) 7−→ x.

Consistently with earlier defined notations, we still denote by Θ the map

Θ : χE −→ χE1

ξ 7−→
∑

(j, x)∈ξ

δx.

Then, according to what has been said above, µ−1/s, sK1, λ1
is the image

measure of µ−1, K, λ by the map Θ. Set

ξn =
∑

(i, x)∈ξ

δx1{i=n}.
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The reciprocal problem, interesting in its own sake and useful for the sequel,
is to determine the conditional distribution of ξn given Θξ.

Theorem 11. Let s be an integer strictly greater than 1, for F non-negative
or bounded, for any Λ compact subset of E,

(23) E [F (ξ1) |Θξ] =
∑

η⊂Θξ

F (η) ×
(|Θξ|

|η|

)

jβ, (s−1)K1,Λ
(Θξ\η) j−1, K1,Λ

(η)

jα,sK1,Λ
(Θξ)

,

where β = −1/(s − 1).
Note that (23) also holds for s = 1 with the convention that jβ, 0(η) = 0

for η 6= ∅ and jβ, 0(∅) = 1, which is analog to the usual convention 00 = 1.

Proof. Let ζ = ξ2 ∪ . . .∪ ξs, we known that ζ is distributed as µ−β,−K1/β, λ1
.

Consider Ξ, the map

Ξ : χE1
× χE1

−→ χE1
× χE1

(η1, η2) 7−→ (η1, η1 ∪ η2).

By construction, the joint distribution of Ξ(ξ1, ζ) is the same as the distri-
bution of (ξ1, Θξ). For any η ⊂ Θξ ∈ χ0, we set:

R(η, Θξ) =

(|Θξ|
|η|

)

jβ, (s−1)K1,Λ
(Θξ\η) j−1, K1,Λ

(η)

jα,sK1,Λ
(Θξ)

·

Hence, we have

E [F (ξ1)G(Θξ)] = E [(F ⊗G) ◦ Ξ(ξ1, ζ)]

=

∞
∑

j=0

∞
∑

k=0

1

j!

1

k!

∫

Λj×Λk

F ({x1, · · · , xj})G({x1, · · · , xj} ∪ {y1, · · · , yk})

× j−1, K1,Λ
(x1, · · · , xj) jβ, (s−1)K1,Λ

(y1, · · · , yk) dλ(x1) . . . dλ(yk)

=
∞
∑

j=0

∞
∑

k=0

1

(k + j)!

∫

Λj×Λk

F ({x1, · · · , xj})(GR)({x1, · · · , xj} ∪ {y1, · · · , yk})

× jα,sK1,Λ
(x1, · · · , xj , y1, · · · , yk) dλ(x1) . . . dλ(yk)

=
∞
∑

m=0

1

m!

∫

Λm





∑

j≤m

F ({x1, · · · , xj})R({x1, · · · , xj}, {x1, · · · , xm})





×G({x1, · · · , xm}) jα,sK1,Λ
(x1, · · · , xm) dλ(x1) . . . dλ(xm)

=

∫

χE1

(

∑

η⊂ω

F (η)R(η, ω)

)

G(ω) dµα, sK1, λ1
(ω).

The proof is thus complete. �

This formula can be understood by looking at the extreme case of Poisson
process. Assume that Θξ is distributed according to a Poisson process of
intensity λ dm. Then, ξ1 is a Poisson process of intensity s−1λ dm and ζ
also is a Poisson process of intensity (1 − s−1)λ dm. The couple (ξ1, Θξ)
can then be constructed by random thinning of Θξ: Keep each point of Θξ
independently of the others, with probability 1/s; the remaining points will
be distributed as ξ1. The conditional expectation of a functional F (ξ1) given
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Θξ is then the sum of the values of F taken for each realization of a thinning
multiplied by the probability of each thinned configuration. Since |Θξ| is
assumed to be known, the atoms of Θξ are independent and identically
dispatched along E, hence the probability to obtain a specific configuration
is binomially distributed of parameters |Θξ| and 1/s. This means that

E [F (ξ1) |Θξ] =
∑

η⊂Θξ

F (η) ×
(|Θξ|

|η|

)(

1

s

)|η|(

1 − 1

s

)|Θξ|−|η|

.

This corresponds to (23) for α = 0. As a consequence, (23) can be read as
a generalization of this procedure where the points cannot be drawn inde-
pendently and with equal probability because of the correlation structure.

For h any map from E1 into E1, we define h⊔ by

h⊔ : E −→ E

(i, x) 7−→ (i, h(x)).

With this notation at hand, for v in V0(E1), (φv
t )

⊔ is the solution of the
equations:

d(φv
t )

⊔(i, x) = v⊔((φv
t )

⊔(i, x)), 1 ≤ i ≤ m.

Note that we only consider a restricted set of perturbations of configurations
in the sense that we move atoms on each “layers” without “crossing”: By
the action of (φv

t )
⊔, an atom of the form (i, x) is moved into an atom of the

form (i, y), leaving its first coordinate untouched.

Theorem 12. Assume that (E1, K1, λ1) satisfy Hypothesis 1, 2 and 3. Let
s = −1/α be an integer greater than 1. For F and G cylindrical functions,
for v ∈ V0(E1), we have:

∫

χΛ

∇vF (ω)G(ω) dµα, sK1,Λ,λ1
(ω) = −

∫

χΛ

F (ω)∇vG(ω) dµα, K1, Λ,λ1
(ω)

+
1

|α|

∫

χΛ

F (ω)G(ω)

(

∑

η⊂ω

(Bλ1

v (η) + ∇vU(η))R(η, ω)

)

dµα, sK1,Λ,λ1
(ω).

Proof. We first apply (20) to the process ξ = (ξ1, · · · , ξs). Remember that
Θξ is equal to ξ1 ∪ . . .∪ ξs. A cylindrical function of Θξ is a function of the
form:

H(Θξ) = f(

∫

h1 dΘξ, · · · ,
∫

hN dΘξ)

where h1, · · · , hN ∈ D = C∞(E1), f ∈ C∞
b (RN ). Such a functional can

be written as F ◦ Θ(ξ) where F is a cylindrical function of ξ. Moreover, for
v ∈ V0(E1),

∇vH(Θξ) = lim
t→0

1

t
(H(φv

t (Θξ) −H(Θξ))

= lim
t→0

1

t

(

F (Θ(φv
t )

⊔(ξ) − F (Θξ)
)

= ∇v⊔F (Θξ).(24)



QUASI-INVARIANCE OF DETERMINANTAL PROCESSES 25

In view of (22),

(25) U(ξ) = − log detJ(ξ1, · · · , ξs) =
s
∑

j=1

U(ξj).

Analyzing the proof of (20), we see that the intrinsic definition of Bλ
v is

Bλ
v (ξ) =

∫

divλ(v) dξ

where

divλ(v)(x) =
d

dt

(

d(φv
t )

∗λ

dλ
(x)

)∣

∣

∣

∣

t=0

.

In view of (24), we only need to consider flows on E associated to vector
fields of the form v⊔ for v ∈ V0(E1). Hence,

(26) Bλ
v⊔(ξ) =

s
∑

j=1

B
λj
v (ξj).

It follows from the previous considerations that:
∫

χ
Λ⊔

∇v⊔F (Θξ)G(Θξ) dµ−1,KΛ,λ(ξ) = −
∫

χ
Λ⊔

F (Θξ)∇v⊔G(Θξ) dµ−1,KΛ,λ(ξ)

+

∫

χ
Λ⊔

F (Θξ)G(Θξ)
(

Bλ
v⊔(ξ) + ∇v⊔U(ξ)

)

dµ−1,KΛ,λ(ξ)

where Λ⊔ = ∪s
j=1{i} × Λ. Since the ξj’s are independent and identically

distributed, according to (25) and (26), we have

E

[

Bλ
v⊔(ξ) + ∇v⊔U(ξ)

∣

∣

∣
Θξ
]

= sE
[

Bλ1

v (ξ1) + ∇vU(ξ1)
∣

∣

∣
Θξ
]

= − 1

α

∑

η⊂Θξ

(Bλ1

v (η) + ∇vU(η))R(η, Θξ).

Thus, we obtain:
∫

χΛ

∇vF (ω)G(ω) dµα, sK1,Λ,λ1
(ω) = −

∫

χΛ

F (ω)∇vG(ω) dµα, K1, Λ,λ1
(ω)

− 1

α

∫

χΛ

F (ω)G(ω)

(

∑

η⊂ω

(Bλ1

v (η) + ∇vU(η))R(η, ω)

)

dµα, sK1,Λ,λ1
(ω).

The proof is thus complete. �

4.3. α-permanental point processes. For permanental point processes,
we begin with the situation where α = 1. In this case,

j1, KΛ, λ({x1, · · · , xn}) = Det(I +KΛ)−1per(J(xi, xj), 1 ≤ i, j ≤ n).

We aim to follow the lines of proof of Theorem 10, for, we need some pre-
liminary considerations.

For any integer n, let D[n] be the set of partitions of {1, · · · , n}. The
cardinal of D[n] is known to be the n-th Bell number (see [1]), denoted by
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Bn and which can be computed by their exponential generating function:
for any real x,

(27)
∞
∑

n=0

Bn
xn

n!
= ee

x − 1.

For an n×n matrix A = (aij , 1 ≤ i, j ≤ n) and for τ a subset of {1, · · · , n},
we denote by A[τ ] the matrix (aij , i ∈ τ, j ∈ τ). For a partition σ of
{1, · · · , n}, ι(σ) is the number of non-empty parts of σ. This means that
σ = (τ1, · · · , τι(σ)), where the τi’s are disjoint subsets of {1, · · · , n} whose
union is exactly {1, · · · , n}. Then, we set

detA[σ] =

ι(σ)
∏

j=1

det J [τj].

It is proved in [11, Corollary 1.7] that

(28) perA =
∑

σ∈D[n]

(−1)n+ι(σ) det A[σ].

We slightly change the definition of the potential energy of a finite configu-
ration as

U : χ0 −→ R

ξ 7−→ − log per J(ξ).

A new hypothesis then arises:

Hypothesis 4. The functional U is differentiable at every configuration
ξ ∈ χ0. Moreover, for any v ∈ V0(E), there exists (un, n ≥ 1) a sequence of
nonnegative real as in Lemma 4 such that for any ξ ∈ χ0, we have

(29)
∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ ≤
u|ξ|

per J(ξ)
·

An analog of Theorem 9 now becomes

Theorem 13. Assume that K is of finite rank N and that the kernel J is
once differentiable with continuous derivative. Then, Hypothesis 4 is satis-
fied.

Proof. Since K is of finite rank N there are at most N points in any con-
figuration. It is clear from (28) that (t 7→ U(φv

t (ξ))) is differentiable. Since

|detJ(ξ)[τ ]| ≤ c|τ ||τ/2| where |τ | is the cardinal of τ ∈ D[|ξ|], we get

∣

∣〈∇U(ξ), v〉L2(dξ)

∣

∣ ≤ c
B|ξ||ξ||ξ|/2

per J(ξ)
1{|ξ|≤N}.

Hence the result. �

Remark 1. The finite rank condition is rather restrictive but the sequence
(Bnn

n/2, n ≥ 1) has not a finite exponential generating function thus we
can’t avoid it. In order to circumvent this difficulty one would have to im-
prove known upper-bounds on permanents.

We can then state the main result for this subsection.
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Theorem 14. Assume that (E, K, λ) satisfy Hypothesis 1, 2 and 4. Let F
and G belong to FC∞

b . For any compact Λ, we have:
∫

χΛ

∇vF (ξ)G(ξ) dµ1,KΛ,λ(ξ) = −
∫

χΛ

F (ξ)∇vG(ξ) dµ1,KΛ,λ(ξ)

+

∫

χΛ

F (ξ)G(ξ)
(

Bλ
v (ξ) + ∇vU(ξ)

)

dµ1,KΛ,λ(ξ).

Proof. Same as the proof of Theorem 10. �

Now then, we can work as in Subsection 4.2 and we obtain the integration
by parts formula for α-permanental point processes.

Corollary 2. Assume that (E1, K1, λ1) satisfy Hypothesis 1, 2 and 4. Let
s = 1/α be an integer greater than 1. For F and G cylindrical functions,
for v ∈ V0(E1), we have:
∫

χΛ

∇vF (ω)G(ω) dµα, sK1,Λ,λ1
(ω) = −

∫

χΛ

F (ω)∇vG(ω) dµα, K1, Λ,λ1
(ω)

+
1

α

∫

χΛ

F (ω)G(ω)

(

∑

η⊂ω

(Bλ1

v (η) + ∇vU(η))R(η, ω)

)

dµα, sK1,Λ,λ1
(ω).

4.4. Consequences. We define the norm ||.||2,1 on FC∞
b (D, χ) by:

||F ||22,1 = ||F ||2L2(µ) + E
[

||∇F ||2
]

= E
[

F 2
]

+ E

[∫

|∇xF |2 dξ(x)

]

.

and we call D2,1 the closure of FC∞
b (D, χ) for the norm ||.||2,1. A trivial

consequence of the previous results is that, for any α-DPPP known to exist,
the operator ∇ is closable and can thus be extended to D2,1. With the same
lines of proof we retrieve the result of ([29]), which says that the Dirichlet
form: E(F,F ) = E [〈∇F,∇F 〉] is closable.
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