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Abstract

This paper studies the endogenous formation of alliance in conflicts offering a
survey of the recent literature and providing new results. We analyze the effect
of group sizes on conflict, study endogenous alliance formation in a general
model of conflict with linear technology and discuss recent developments of the
theory of alliance formation, involving the determination of sharing rules inside
the alliance and dynamic alliance formation in nested conflicts.
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1 Introduction

In many situations of conflict, agents pool resources and efforts to fight their ad-
versaries. Alliances have often been formed to win wars, political elections or rent-
seeking contests. The history of warfare is a succession of alliances forming and
collapsing over time, from the alliances between warlords in Ancient China to the
intricate systems of alliances in XIXth century Europe. Recent history offers a tes-
timony of the importance of alliances in international relations. The alliance formed
between the United States, the Soviet Union and Britain during the Second World
War collapsed and was followed by two different Blocs during the Cold War, only to
be succeeded by the collapse of the Soviet Bloc and the emergence of new forms of
regional alliances.

In order to understand the formation of alliances in conflict, economists and
political scientists have developed a theoretical apparatus borrowing concepts from
public economics, public choice and game theory. Following the seminal paper by
Olson and Zeckhauser (1966), an important strand of the literature, reviewed by
Sandler (1993) and Hartley and Sandler (2001) has focused on the public good problem
associated to the alliance. In an alliance, parties have an incentive to free-ride on
the efforts and resources of other members of the alliance, and small parties have a
tendency to rely on the efforts of larger parties. As a consequence, the total effort of
the alliance is suboptimal – the classical public good problem – and large parties bear
a disproportionate share of the cost of the alliance – the exploitation problem faced
for example by the United States in NATO and other international organizations.

This free-riding problem had already been emphasized in Olson (1965)’s earlier
theory of collective action. While Olson and Zeckhauser (1966) focus on the free-
riding problem in a single alliance faced with an exogenous threat, subsequent work
has considered conflict across different groups, each of them being plagued by the
free-riding problem. In this context, Olson (1965) postulated that small groups
should be more effective and more likely to win conflicts, as the free-riding problem
they face is less acute than in larger groups. This ”paradox of group size” has
generated a sizeable literature in political science and economics, which attempts to
formalize Olson (1965)’s ideas and delineate conditions under which small groups
are more effective in conflict.

Tullock (1967)’s formalization of rent-seeking contests provides the framework in
which Olson (1965)’s ideas can be expressed. However, the structure of the prob-
abilistic model of conflict of Tullock (1967) is unexpectedly complex, and the com-
parative statics results needed to establish whether small groups are more effective,
remain elusive. Early work by Chamberlin (1974), Mac Guire (1974), Sandler (1992)
and others established that, in some specific contexts, small groups are more effec-
tive when the conflict involves a rival private good, whereas large groups are more
effective when agents fight over a nonrival public good.

Tullock (1980), Katz and Tokatlidu (1996), Baik and Lee (1997) and Wärneryd
(1998) analyze two-group contests with different specifications of the prizes, and ob-
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tain partial comparative statics results on the sizes of the groups, suggesting again
that small groups are more effective, and that total expenditures on conflict are
higher when the two groups are more symmetric. Esteban and Ray (1999) and (2001)
revisit Olson (1965)’s arguments in a more general model of conflict, emphasizing
the complexity of the noncooperative game of conflict played among groups of dif-
ferent sizes. Esteban and Ray (2001) in particular show that the ”common wisdom”
according to which small groups are always more effective in conflicts over private
goods does not necessarily hold when one considers general conflict technologies.

The comparative statics analysis of the effect of group sizes in conflict is a neces-
sary building block to understand the formation of alliances. Using recent advances
in the theory of coalition formation, Skaperdas (1998), Tan and Wang (1997), Es-
teban and Sakovics (2003), Garfinkel (2004), Bloch, Sanchez-Pages and Soubeyran
(2006) and Sanchez-Pages (2007) attempt to endogenize the formation of alliances
in model of contests. While each of the papers focuses on a different specification
and different procedures of coalition formation, two general intuitions emerge from
this strand of the literature.

First, as shown by Skaperdas (1998), Tan and Wang (1997)and Esteban and
Sakovics (2003) in three-player models, parties have no incentive to form a two-player
alliance against the third unless the formation of the alliance generates synergies
which enhance the winning probability of the alliance. This negative result, labeled
by Konrad (2009) ”the paradox of alliance formation”, relies on a very basic intuition.
Inside an alliance, agents have less incentive to provide effort for two reasons: first,
they only obtain a fraction of the prize instead of its full value because they still
have to share the prize with the other alliance member (possibly having to fight in a
second contest with her), and second the choice of effort inside the alliance is subject
to free-riding. The paradox of alliance formation poses a challenge to economists, as
one observes alliances forming even in the absence of synergies.

The second message of the literature is that the grand coalition plays a special role.
In the grand coalition, the prize is peacefully shared among alliance members and no
resources are wasted on conflict. There is a significant, qualitative gap between the
payoff of players in the grand coalition and any other coalition structure. In a model
where all coalitions may possibly form, Bloch, Sanchez-Pages and Soubeyran (2006)
and Sanchez-Pages (2007) observe that the special role of the grand coalition implies
that it will often emerge as the equilibrium of the process of alliance formation. This
result poses another challenge to economists, who need to explain why universal
peace does not always prevail, and why smaller, competing alliances form.

The economic literature on alliance formation has developed along two other
themes. First, following Nitzan (1991a), attention has been focused on sharing
rules within the alliance. Nitzan (1991a) proposes a sharing rule which is a convex
combination of the egalitarian rule (a ”soft” rule which does not give high incentives
to group members) and the relative effort rule (a ”hard rule” which, as in a rat race,
induces group members to exert high effort). Nitzan (1991a) and (1991b) (amended
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by Davis and Reilly (1999) and Ueda (2002)) computes the equilibrium level of
conflict under different rules. Lee (1995), Baik and Shogren (1995), Baik and Lee
(1997), Noh (1999) and (2002) endogenize the sharing rule and the sizes of groups.
One of the most interesting outcomes of their analyses is that, in a contest among
two groups of equal size, both groups have an incentive to choose the hard relative
effort rule, even though they would both be better off with the soft egalitarian rule
– a classical instance of the prisoner’s dilemma. This result, is reminiscent of models
of strategic delegation in games: both groups have an incentive to choose a hard rule
(or a tough delegate), in order to increase their winning probability, even though
this will result in large wasteful expenditures on conflict.

The second theme is the distinction between static and dynamic group contests.
In a static group contest, the prize is shared among alliance members immediately
; in a dynamic group contest (or ”nested contest”), members of an alliance award
the prize by a succession of contests, until only two contestants remain in the end.
The dynamic model of contest has only received attention in recent years – Skaper-
das (1997), Tan and Wang (1997), Wärneryd (1998), Esteban and Sakovics (2003),
Garfinkel (2004) and Kovenock and Konrad (2008) propose different specifications
of this model – and has only been studied in very restrictive contexts.

The rest of the chapter is organized as follows. The next Section discusses the
effect of group sizes on conflict in a general model encompassing most of the existing
literature. Section 3 studies general models of endogenous alliance formation based
on recent advances in game theory. Section 4 provides a detailed analysis of sharing
rules inside the alliance. Section 5 is devoted to models of dynamic contests and
alliance formation. Finally, we conclude and provide directions for future research
in the last Section.

2 Conflict and group sizes

As a preliminary to the study of endogenous alliance formation, we need to under-
stand how levels of conflict and the utilities of the players depend on the structure
and sizes of the alliances. In this Section, we consider a fixed structure of m alliances,
A = {A1, ..., Am} and investigate (i) whether small groups or large groups are more
likely to win the conflict in the fixed alliance structure A and (ii) how changes in
the alliance structure affect the level of conflict and the utilities of the players.

2.1 A general model of group conflict among symmetric agents

In order to present Olson (1965)’s argument on the effectiveness of small groups, we
introduce a general model of conflict encompassing most studies of group contests.
We consider symmetric players i = 1, 2, ...n and let si denote each player’s investment
in conflict. We suppose that agents have an identical increasing, convex, cost function
c(si). Players form alliances, and the probability that alliance Aj wins the contest
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is given by the familiar Tullock (1980) logistic contest function:

pj =

∑
i∈Aj

si∑
i si

if
∑

i si 6= 0, and pj = 1
m otherwise. 1 We suppose that the sharing rule inside

each alliance Aj is independent of the investments of the players in the inter-alliance
conflict, s = (s1, ..., sn), and treats all agents symmetrically.2 Hence, the value of
the prize to any member of an alliance A can be expressed as a function V (a), which
only depends on the size of the alliance A. We distinguish between two cases: the
public good case, where V (a) is nondecreasing and the private good case where V (a)
is non-increasing.3

This broad specification covers both private and public goods, and situations
where members of the alliance coordinate their investments or not. Focussing on
two extreme examples, consider first a situation where alliance members coordinate
their investments to obtain a public prize. The average utility of an alliance member
can be expressed as:

Ui = max
si,i∈Aj

∑
i∈Aj

si∑
i si

V −
∑

i∈Aj
c(si)

aj
,

= max
s

ajs∑
i si

V − c(s),

Assuming that the optimal investment s is interior, it is characterized by the first
order condition:

ajV

∑
k/∈Aj

sk

(
∑

i si)2
− c′(s) = 0.

a formula yielding the same investment level as if each alliance member received a
share of the prize V (aj) = V aj . Consider by contrast another model where agents
in a group obtain a private prize, which is reallocated according to a subsequent
intra-alliance contest where agents have a linear investment technology as in Katz
and Tokatlidu (1996) and Garfinkel (2004). In the second stage contest, each agent
gets a utility:

1See Skaperdas (1996) for an axiomatization of contest success functions.
2We discuss conflict with sharing rules which depend on the investments in inter-alliance conflict

and group conflict among asymmetric agents in Section 4.
3Group competition with public goods has been introduced by Katz, Nitzan and Rosenberg

(1990).
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Ui = max si
si∑
i si

V − si,

=
1
aj
− aj − 1

a2
j

,

=
1
a2

j

.

Hence, in the first stage inter-alliance contest, an agent in an alliance of size aj

anticipates to receive a share of the prize V (aj) = V
a2

j
.4

2.2 Two-group conflict

We first analyze a situation where two groups A1 and A2 of sizes a1 and a2 compete
in the contest. The two-group model was discussed in Tullock (1980)’s original
paper has been analyzed by Katz and Tokatlidu (1996), Baik and Lee (1997) and
Wärneryd (1998)). As noted by Esteban and Ray (1999), the two-group model is a
special case, and some of the intuitions gained in the two-group model do not carry
over to structures with an arbitrary number of alliances. We denote by S1 = a1s1

the total investment of good 1, by S2 = a2s2 the total investment of good 2 and by
S = S1 + S2 the total resources spent in conflict. We first establish existence and
uniqueness of equilibrium in any two-group contest:

Proposition 1 In any two-group contest, there exists a unique interior equilibrium,
characterized by the first order conditions:

V (a1)S2 − c′(
S1

a1
)S2 = 0, (1)

V (a2)S1 − c′(
S2

a2
)S2 = 0. (2)

Existence of equilibrium relies on classical fixed-point arguments, as in Esteban
and Ray (1999). To show uniqueness of the interior equilibrium, we first compute
the derivative of the best response functions φ1(S2) and φ2(S1):

4The two sharing rules V (aj) = V aj and V (aj) = V
a2

j
represent the two polar cases for reasonable

sharing rules. Other usual sharing rules include the public good function V (aj) = V and the private
good egalitarian sharing rule V (aj) = V

aj
.
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φ′1(S2) =
V (a1)− 2c′(S1

a1
)S

(S(2c′(S1
a1

) + c′′(S1
a1

) S
a1

)
,

=
c′(S1

a1
)(S1 − S2)

S2(2c′(S1
a1

) + c′′(S1
a1

) S
a1

)
,

φ′2(S1) =
c′(S2

a2
)(S2 − S1)

S1(2c′(S2
a2

) + c′′(S2
a2

) S
a2

)
.

This computation shows that group investments are neither strategic substitutes
nor complements: the best response function φi(Sj) is increasing in Sj when Si > Sj

and decreasing in Sj when Sj > Si.5 Figure 1 illustrates the best responses and the
equilibrium, noting that φi(0) = ε > 0 for i = 1, 2.

Figure 1: Best response functions in the two-group contest

5In that respect, contests are very different from other “aggregative games” where utilities depend
on own choice and an aggregator of choices of all agents, like Cournot games and public good games
(strategic substitutes) and Bertrand games with differentiated commodities (strategic complements).
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Figure 1 also indicates why equilibrium in a two-group contest must be unique:
if an equilibrium (S∗1 , S∗2) with S∗1 > S∗2 exists, as in the graph, there cannot be any
other equilibrium in the region where S1 > S2, as the best response function φ1(S2)
is increasing, and the best response function φ2(S1) is decreasing. Furthermore, if
we let S̃1 and S̃2 denote the intersection points between the best response functions
and the 45 degree line, the existence of an equilibrium with S∗1 > S∗2 necessarily
implies that S̃1 > S̃2, precluding the existence of another equilibrium in the region
where S1 < S2.

Using equations (1) and (2), we compute:

c′(s1)s1

c′(s2)s2
=

V (a1)
a1

V (a2)
a2

. (3)

As c′(s)s is increasing we obtain:

Remark 1 If V (a)
a is non-increasing, individual investments are larger in smaller

groups.

Remark 1 does not give any indication on the winning probabilities of the large
and small groups, which depend on total group investments S1 and S2. We can
similarly write

S1

S2
=

V (a1)
c′(s1)

V (a2)
c′(s2)

. (4)

implying that

Remark 2 If V (a) is nondecreasing, group investments are larger for larger groups.

Remark 2 shows that the paradox of small groups never arises when players fight
about a public good. Following Esteban and Ray (2001), this result can actually be
extended by considering the family of iso-elastic cost functions c(s) = sα for α > 1.
For these cost functions, we obtain:

S1c(S1)
S2c(S2)

=
a−α

1 V (a1)
a−α

2 V (a2)
. (5)

so that

Remark 3 If cost functions are iso-elastic and given by c(s) = sα, and V (a)a−α is
nondecreasing, group investments are larger for larger groups.

Remark 3 illustrates a trade-off between the curvatures of the cost and sharing
rules in the determination of the effectiveness of large groups. If costs become more
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convex, there is a broader range of sharing rules for which large groups are more
effective than small groups. Notice however that while remarks 2 and 3 only provide
sufficient conditions under which large groups are more likely to win the conflict, but
do not clearly delineate when large groups or small groups are more effective.6

Alternatively, we can study which groups are more effective by considering a fixed
society of n agents divided into two groups of sizes a and n − a, and letting a vary
between 1 and n. Using the techniques of comparative statics in games introduced
by Dixit (1986), we compute in the Appendix exact conditions under which group
investment is increasing and decreasing in a.

Proposition 2 If infa
aV ′(a)
V (a) ≥ sups

−sc′′(s)
c′(s) , then, for a ≥ n

2 , group investments of

the large group, Sa are increasing in a. If supa
aV ′(a)
V (a) ≤ infs

−sc′′(s)
c′(s) , then for a ≤ n

2 ,
group investments of the small group Sa are decreasing in a.

Proposition 2 provides another illustration of the trade-off between the curva-
ture of the cost and sharing rules. For iso-elastic costs, c(s) = sα, infs

−sc′′(s)
c′(s) =

sups
−sc′′(s)

c′(s) = 1 − α, and group investments are increasing in a for large groups

whenever aV ′(a)
V (a) ≥ 1− α, while group investments of small groups are decreasing in

a whenever aV ′(a)
V (a) ≤ 1− α.

2.3 Conflict among multiple symmetric groups

With more than two groups, the analysis of conflict becomes much more complex,
and comparative statics results can only be obtained in a few special cases. We
report results in the case of conflict among k ≥ 2 symmetric groups of the same size
a = n

k .
With k symmetric groups, the unique symmetric equilibrium is characterized by

V (
n

k
)(k − 1)− c′(

Sk

n
)k2S = 0. (6)

A direct computation shows that

sign
∂S

∂k
= sign {− n

k2
V ′(

n

k
)(k − 1) + V (

n

k
)

−S

n
c′′(

Sk

n
)k2S − 2kSc′(

Sk

n
)S}.

leading to the following result:
6An exact characterization of situations where small groups are more or less effective can be

obtained in special cases, as in Esteban and Ray (2001) for quadratic costs and values which are
convex combinations of V and V

a
, in Bloch et al. (2006) for quadratic costs and the value V

a
and in

Sanchez Pages (2007) for linear cost functions.
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Proposition 3 In the case of public goods (when V (a) is nondecreasing), an in-
crease in k results in a decrease in the symmetric group investment S. In the case
of private goods, when infa

aV ′(a)
V (a) ≤ 1 − sups

sc′′(s)
c′(s) ), an increase in k results in an

increase in the symmetric group investment S.

Proposition 3 illustrates again the tension between the sharing and cost rules
in the comparative statics on group investments: with public goods, fragmentation
unambiguously results in a decrease in group investment ; with private goods, if
the curvature of the cost function with respect to the sharing rule is not too high,
an increase in fragmentation yields an increase in group investment. For example,
with an iso-elastic cost function c(s) = sα, group investment increases with k if
aV ′(a)
V (a) ≤ −α.

The study of comparative statics of group sizes on investments leads us to the
following conclusions, which form a useful starting block for the analysis of endoge-
nous alliance formation. (i) For public goods (when V (a) is nondecreasing), larger
groups invest more, and group investment is increasing in group size. As individual
investments are smaller for large groups, the utility of members of large groups is
higher, and players’ utilities are increasing in the size of the group they form. (ii)
For private goods, when the sharing rule decreases slowly with respect to the cost
function, (i.e. when infa

aV ′(a)
V (a) ≥ sups

−sc′′(s)
c′(s) ), the conflict resembles a public good

conflict, and group investments are higher for large groups. When, on the other
hand, the sharing rule decreases rapidly with respect to the cost function, small
groups invest more, fragmentation increases the level of conflict, and the utility of
members of small and large groups can no longer be compared.

3 Endogenous alliance formation

We now analyze players’ incentives to form groups prior to the conflict. The study
of endogenous alliance formation in conflict is complicated by the fact that players’
utilities depend on the entire alliance structure formed, A, and not only on the
alliance A they belong to. We need to analyze models of coalition formation with
externalities (or in partition function form), where players’ incentives depend on the
coalitions formed by other players.

3.1 Models of alliance formation with externalities

The recent literature on coalition formation with externalities (Bloch (1996), Yi
(1997), Ray and Vohra (1999)) discusses different models of endogenous coalition
formation. The open membership game is a process by which all agents simultane-
ously announce a message mi in some sufficiently rich message space M , and alliances
are formed among all agents who have announced the same address. Hart and Kurz
(1983) analyze two exclusive membership games where all agents simultaneously an-
nounce a coalition Ci to which they belong. In the γ version of the game, coalition C
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is formed if and only if Ci = C for all i ∈ C. In the δ version of the game, coalition
C is formed if and only if there exists some coalition D ⊃ C such that Ci = D for
all i ∈ C. Finally, in the sequential game of coalition formation, players are ordered
according to an exogenous protocol. The first player announces a coalition that she
wants to form. If all members agree, the coalition is formed and the next player (in
the remaining set of players) gets to make an offer. If one member of the coalition
rejects, she becomes the counter proposer next period. In this sequential game, it is
natural to focus attention to the coalition structures generated by stationary perfect
equilibria of the game. Finally, the model of farsighted coalition formation of Chwe
(1984) can be applied to define alliance structures which are immune to farsighted
deviations by the players.

3.2 Endogenous alliance formation in conflict

The analysis of endogenous alliance formation requires a full specification of the
players’ utilities, and can only be undertaken in the few instances where the model
of group conflict admits a closed form solution. In order to obtain an exact closed
form equilibrium solution, we will suppose, as Garfinkel (2004) and Sanchez-Pages
(2007) that players face a linear investment technology, c(s) = s, and that the sharing
rule is given by V (a) = aρ, with −2 ≤ ρ ≤ 1.7 With this cost specification, large
groups may be inactive in equilibrium, and we first need to characterize the set of
active players in the game. Following Hillman and Riley (1989) and Sanchez Pages
(2007), we order the alliances by increasing size, a1 ≤ a2 ≤ a3... ≤ am. If ρ > 0,
larger alliances are more likely to be active, and in equilibrium, alliances Aκ, ..., Am

are active where:

κ = min{k, aρ
k ≥ (m− k − 2)

m∑
j=k+1

a−ρ
j }.

If ρ < 0, on the contrary, small alliances are more likely to be active and in equilib-
rium, alliances A1, ..., Aκ are active where:

κ = max{k, aρ
k ≥ (k − 2)

k−1∑
j=1

a−ρ
j }.

3.3 Stability of the grand coalition and of single alliance structures

Let Ui(A) denote the equilibrium payoff of player i when the alliance structure A is
formed. Immediate computations show that:

7Bloch et al. (2006) consider an alternative specification for which closed form solutions can be
computed: they suppose a quadratic cost c(s) = 1

2
s2 and an egalitarian sharing rule, V (a) = 1

a
.

Esteban and Ray (1999) also provide exact computations when V (a) = v is independent of a, and
c(s) = sα is an iso-elastic cost function.
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Ui({N}) = nρ,

Ui({1|1|...|}) = n−2,

Ui({i|N \ i}) =
1

(1 + (n− 1)ρ)2
.

By comparing the equilibrium payoff of a player in the grand coalition with the
utility she would obtain in the alliance of singletons and when she faces an alliance
of n− 1 players, we derive conditions under which the grand coalition is stable.

Proposition 4 The grand coalition, A = {N} is always an equilibrium of the γ
game of alliance formation. If ρ log n + 2 log((1 + (n− 1)ρ)) ≥ 0, the grand coalition
is also an equilibrium of the open membership game and of the δ game of alliance
formation.

Because we assume ρ ≥ −2, players in the grand coalition can never do worse
than if they fight as singletons: the peaceful grand coalition is thus always an equilib-
rium outcome if players anticipate that the coalition collapses into singletons after
the departure of a member. If, on the other hand, players anticipate that other
coalition members stick together after they leave, the grand coalition still remains
an equilibrium if ρ is large enough. Players have no incentive to leave the grand
coalition and start a conflict as a singleton facing an alliance of n − 1 members if
ρ ≥ ρ∗(n), where ρ∗(n) is implicitly defined by: ρ log n + 2 log((1 + (n − 1)ρ)) ≥ 0.
Notice that, as 2log2 > 0, and log(n − 1) − log n < 0, we have −1 ≤ ρ∗(n) ≤ 0.
Furthermore, ρ∗

′
(n) > 0 and limn→∞ ρ∗(n) = 0, reflecting the fact that free-riding

incentives are higher in larger societies, and the grand coalition can only remain
stable if the sharing rule does not decrease too fast.

We now consider an arbitrary single alliance structure, with one alliance A of
size a and n− a singleton players. Simple computations show that the utility of an
independent player, Ui and of an alliance member, Ua are given by:

Ui =
1

(1 + kρ(n− k))2
,

Ua =
kρ−1(kρ(n− k)− (n− k − 1))(kρ+1(n− k)− n + 2k)

(kρ(n− k) + 1)2

if kρ(n−k)−(n−k−1) ≥ 0 and Ui = 1
(n−a)2

, Ua = 0 otherwise. We first compare the
utility of a member of an alliance with the utility of a player in the singleton structure,
and note that Ua is strictly increasing in ρ, whenever kρ(n− k)− (n− k− 1) ≥ 0 to
obtain the following Proposition:

12



Proposition 5 For any n and any alliance size 2 ≤ a ≤ n−1, there exists ρ∗(a, n) ∈
(−1, 0) such that the alliance structure {A|1|...|1} is an equilibrium of the γ game
of coalition formation if and only if ρ ≥ ρ∗(a, n). Furthermore, ρ∗(a, n) is not
monotonic in a.

Proposition 5 fully characterizes the set of alliances which are γ stable. If ρ < −1,
the only γ stable structure is the grand coalition. If ρ > 0, free-riding never occurs
and any alliance structure can be sustained as an equilibrium of the γ game. For
ρ ∈ (−1, 0), different alliance structures may turn out to be γ-stable. The fact that
ρ∗(a, n) is not monotonic in a is illustrated by the following example.

Example 1 Let n = 10. The threshold values of ρ are given by the following table:

a ρ∗(a)
2 −0.1563
3 −0.1221
4 −0.1179
5 −0.1267
6 −0.1521
7 −0.1957
8 −0.3112
9 −1

In order to investigate which alliances are δ stable, we need to consider a player’s
incentive to leave an alliance in the alliance structure {A|1|..|1} in order to be an
independent in the alliance structure {A \ i|1|...|1},

∆(ρ, a, n) ≡ 1
(1 + (k − 1)ρ(n− k + 1))2

−kρ−1(kρ(n− k)− (n− k − 1))(kρ+1(n− k)− n + 2k)
(kρ(n− k) + 1)2

It is easy to check that for all a and n, ∆ is decreasing in ρ (individual players have a
stronger incentive to leave the alliance when the sharing rule becomes more convex)
and 1

(1+(k−1)ρ(n−k+1))2
≥ 1

n2 (individual players have a stronger incentive to leave
the alliance when the other alliance members remain together). Hence, we obtain:

Proposition 6 For any n and any alliance size 2 ≤ a ≤ n − 1, there exists
ρ̃(a, n) ∈ (−1, 0) with ρ̃(a, n) > ρ∗(a, n) such that the alliance structure {A|1|...|1}
is an equilibrium of the δ game of coalition formation if and only if ρ ≥ ρ̃(a, n).
Furthermore, ρ̃(a, n) is not monotonic in a.
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Example 2 Let n = 10. Approximate values of the threshold level ρ̃ are given in
the following table:

a ρ̃(a)
2 −0.155
3 −0.115
4 −0.105
5 −0.11
6 −0.12
7 −0.14
8 −0.15
9 −0.16

In an open membership game, an alliance A is an equilibrium outcome if and
only if no member of A wants to leave the coalition, taking the strategies of the other
players as given, and no other player has an incentive to join the alliance. These
two conditions easily translate into: ∆(ρ, a, n) > 0 and ∆(ρ, a + 1, n) < 0. Given
Proposition 6, an alliance of size a is an equilibrium outcome of the open membership
game if and only if ρ̃(a + 1, n) ≥ ρ ≥ ρ̃(a, n). Because ρ̃(a, n) is not monotonic in a,
there exist alliance structures which are never reached as equilibrium outcomes of the
open membership game. In the example with ten players, ρ̃(a, n) is only increasing
for a = 2, 3 and 4, so that the only alliances which can be formed at the equilibrium
of the open membership game are small alliances of sizes 2 and 3.

3.4 Alliance formation with farsighted players

The open membership and γ and δ models of alliance formation assume that agents
have limited foresight, and do not consider the long term consequences of their
behavior. By contrast, the sequential game of coalition formation models players as
farsighted agents who anticipate the consequences of their decisions on subsequent
players. As a finite game with perfect information, barring non-generic indifferences,
the sequential model of coalition formation admits a unique equilibrium alliance
structure. However, this unique alliance structure is typically hard to compute,
as it requires a complete characterization of optimal strategies in all the subgames
generated by the decisions of the players. A complete characterization of equilibrium
coalition structures can only be achieved in some special cases.8

Suppose for example that ρ = 0, so that every agent obtains V (a) = 1 in any
alliance. In this case, it is easy to see that, by forming the grand coalition, players
achieve the payoff of 1, whereas in any other alliance structure they obtain a lower
payoff, as they receive the prize of 1 with probability p < 1 and must furthermore

8The following discussion is based on Sanchez-Pages (2007).
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expand resources on conflict. Hence the grand coalition is the unique subgame perfect
equilibrium outcome of the sequential game of alliance formation.

If the payoff is equally shared among all coalition members, ρ = 1, the equilibrium
utility is given by:

Ui(A) =
V

ain2
(n− ai(κ− 1))(n− (κ− 1)) if ai ≤

n

κ− 1
,

Ui(A) = 0 otherwise.

We will show that, as long as κ ≥ 1 and the number of active players satisfies
s < n − 1, the optimal strategy of every player is to announce the formation of a
singleton. The result is obviously true for the last player, n. Consider a situation
where κ ≥ 1, s < n− 1, and such that all players form singletons after any move by
player n− s + 1. The maximization problem of player n− s + 1 can thus be written:

max
a

1
a
(n− a(κ + s− a))(n− (κ + s− a)).

It is easy to check that, as long as κ ≥ 1 and s + κ < n,

(n− a(κ + s− a)) < n− (s + κ− 1),
1
a
(n− (κ + s− a)) < n− (s + κ− 1),

establishing the result. This induction argument allows us to show that all players
form singletons in any subgame following the formation of a coalition if s < n − 1.
If s = n − 1 and κ = 1, player 2 is indifferent between forming a singleton or a
coalition of size n− 1. (She would strictly prefer to form a singleton if ρ < −1, and
strictly prefer to form an alliance of size n − 1 if ρ > −1.) We conclude that there
are two subgame perfect equilibria: one where the first player forms a singleton and
the second player a coalition of size n − 1 and one where the first player forms the
grand coalition.

Finally, consider the model with ρ = −2, where players inside a coalition of
size a obtain the payoff V (a) = 1

a2 , corresponding to the equilibrium payoff of a
subsequent contest among members of the alliance. We will show again by induction
that, after the formation of κ ≥ 1 coalitions, every player’s optimal strategy is to
form a singleton. The result is obviously true for player n, so we consider the choice
of player n − s after κ coalitions are formed. By a simple computation, we check
that, if to players form singletons, any other alliance of size a ≥ 2 is inactive. We
can also check that, among active alliances, smaller alliances invest more and have
a higher probability of winning the contest.

If two players have formed singletons before n− s moves, player n− s’s optimal
strategy is thus also to form a singleton. If one player has already formed a singleton,
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player n−s has the choice between two strategies: form a singleton (and get a payoff
of 1

(s+1)2
), or form a single alliance of size s, which wins the contest with probability

p < 1
2 , resulting in a payoff smaller than 1

2s2 . As s ≥ 2, 2s2 > (s + 1)2, and player
n− s’s optimal choice is to form a singleton. Finally, suppose that no singleton has
formed before player n − s. If player n − s forms an alliance of size a < s − 2, it
will be followed by two singletons, and be inactive. If it forms an alliance of size s,
it will obtain a payoff smaller than 1

s2 . If it forms an alliance of size s − 1 > 1, it
will be followed by a singleton and obtain a payoff smaller than 1

2(s−1)2
. If it forms

a singleton, it will obtain a payoff 1
s2 . Hence, forming a singleton is an optimal

strategy for player n − s. The first player in the game will be indifferent between
forming a singleton or the grand coalition, as both will result in the same payoff of
1
n2 . However, if ρ > −2, the grand coalition dominates the partition of singletons
and the first player will choose to form the alliance N .

Summarizing the preceding findings, the following graph shows equilibrium al-
liance structures for different values of ρ.

Figure 2: Equilibrium alliance structures in the sequential game

Figure 2 displays some gaps – parameter regions where the equilibrium coalition
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structure cannot be determined.9 Interestingly, it shows that the grand coalition is
the equilibrium alliance structure both for high and low values of ρ. For high values
of ρ, this is due to the fact that the grand coalition dominates any other alliance
structure ; for low values of ρ, to the fact that any move by the first player will be
followed by the formation of singletons, so that the first player effectively chooses
between forming the grand coalition or the structure of singletons.10

Garfinkel (2004) studies the model with V (a) = 1
a2 using a different equilibrium

concept, inspired by Chwe (1994)’s notion of farsighted dominance. She finds that
any symmetric equilibrium structure, with A a collection of alliances of size n

k is
stable, as well as coalition structures comprised of coalitions which are ”almost sym-
metric”. The intuition underlying this result is as follows. If any player deviates to
form a singleton, this will trigger the formation of the coalition of singletons, where
the deviator gets a payoff 1

n2 < 1
k(n

k
)2

= k
n2 . Hence, a deviation to leave a coali-

tion is not profitable. Furthermore, in the model members of large alliances have
lower payoffs. This implies that players have no incentive to deviate by joining an
existing coalition which would be larger than the one she they leave, because in the
symmetric alliance all alliances initially have the same size.

4 Endogenous Sharing rules and Asymmetric Agents

4.1 Endogenous sharing rules

We have assumed so far that the sharing rule in each alliance is independent of the
investments of the players. Alternatively, we could have considered situations where
the effort of each player in the inter-alliance conflict affects the sharing of the prize
among alliance members. Nitzan (1991a) offered the first specification of a group
contest with a sharing rule depending on investments in conflict. In his model, the
share of the prize obtained by an agent i in alliance A is given by:

fi(s1, .., sn) = (1− α)
si∑

j∈A sj
+ α

1
a
.

The sharing rule is a convex combination of the egalitarian sharing rule, and
the relative effort rule which is proportional to every agent’s investment in conflict.
Under this sharing rule, agent i in alliance A receives an expected utility

Ui = (1− α)
si∑
j sj

+ α

∑
j∈A sj

a
∑

j sj
− c(si).

When α = 0, the contest is exactly identical to a contest where all agents are
singletons and the formation of groups is irrelevant. In the other polar case, where

9However, we conjecture that {N} remains the equilibrium structure for all ρ ∈ (−2,−1).
10The grand coalition also emerges as the unique equilibrium alliance structure in the model of

Bloch et al. (2006), where V (a) = 1
a

and players incur a quadratic cost.
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α = 1, the conflict is equivalent to a group conflict with sharing rule V (a) = 1
a , as in

Section 2. When a group of size a faces n − a independent players, denoting by sa

and si the individual efforts of group members respectively, the best response maps
are given by:

(1− α)(a− 1)s1 + (n− a)si = (asa + (n− a)si)2.
asa = (asa + (n− a)si)2.

The best response map of group members, φa(si) is decreasing in α while the
best response map of independents, φi(sa) is independent of α. When α increases,
the investment of group members decreases, while the investment of independent
players goes up. Lower values of α correspond to a more aggressive behavior of the
group, and results in higher investments for the alliance, and a higher probability to
win the conflict. This result is easily understood. By increasing the weight placed
on relative investments, the alliance induces agents to spend more on conflict, as in a
”rat race” where an agent’s payoff depends on his effort relative to the group. Hence,
as noted by Nitzan (1991a), an increase in α reduces total investment in conflict.

Nitzan (1991a)’s analysis treats the sharing rule as exogenous. Baik and Shogren
(1995), Lee (1995) and Baik and Lee (1997) consider the endogenous determination
of the weight α which maximizes the expected payoff of the group, and discuss
different models of alliance stability. In Baik and Shogren (1995), a single group of
size a faces a collection of singletons. In that case, in an interior equilibrium, the
optimal sharing rule is given by:

α∗ = 1− 2an− 2a2 − n

2(a− 1)(n− 1)
.

We observe that α∗ is decreasing in a. For larger groups, the ”rat race” results in
overspending on conflict, and the optimal investments are obtained when the group
uses an egalitarian sharing rule. Given the optimal sharing rule, one can compute the
equilibrium payoff of a member and a nonmember. The following diagram illustrates
how members and nonmember’s payoffs depend on a.

Finally, Baik and Shogren (1995) analyze the endogenous formation of the al-
liance in an open membership game. They observe that when a > n

2 , agents have
an incentive to leave the group and form singletons. When, on the other hand,
a < n

2 , group members obtain a higher payoff than independent players. Hence, the
equilibrium group size is the smallest integer higher than n

2 .
Lee (1995) and Baik and Lee (1995) analyze endogenous sharing rules chosen

strategically by two groups in a two-stage model where groups simultaneously choose
the parameter αi of the sharing rule in the first stage, and compete in an inter-
alliance conflict in the second stage.11 Consider the following simplified version of

11Nitzan (1991b) initially observed that, when the two groups choose different sharing rules,
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Figure 3: Payoff of independent and alliance members with optimal
sharing rule

Lee (1995)’s setup where two groups of equal size a1 = a2 = n
2 choose between the

relative effort (α = 0) and egalitarian (α = 1) rules. Simple computations of the
equilibrium levels of conflict and utilities following any choice (α1, α2) of the two
firms allow us to draw the following matrix to study the game played by the two
groups in the initial stage.

α2 = 0, α2 = 1
α1 = 0 ( 1

n2 , 1
n2 ) ( 4

n+2

2
, 8

n(n+2)2
)

α1 = 1 ( 8
n(n+2)2

, 4
n+2

2) ( 1
2n , 1

2n)

This game has the structure of a prisoner’s dilemma. Both groups have a domi-
nant strategy: to choose the aggressive relative effort rule, α = 0, even though they
would both be better off selecting the softer egalitarian rule, α = 1. Lee (1995) gen-
eralizes this intuition to any choice of α ∈ [0, 1] and observes that, if two alliances

interior pure strategy equilibria may not exist. Davis and Reilly (1999) later observed that an
equilibrium always exists, but may involve some groups choosing zero investment and retiring from
the contest.
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of equal size are formed, the only equilibrium is for both groups to choose the most
aggressive sharing rule, setting α to 0. On the other hand, if the groups are of dif-
ferent sizes (and negative values of α are allowed), Baik and Lee (1997) show that
the two groups are likely to adopt different sharing rules, with the smaller group
adopting a more aggressive sharing strategy (α = 0), while the larger group favors
a more balanced sharing rule (α > 0). Furthermore, if players initially engage in an
open membership alliance formation game where multiple alliances can be formed,
alliance sizes are similar to those derived by Baik and Shogren (1995) when a sin-
gle alliance forms. Two alliances of sizes approximately equal to n

2 will emerge at
equilibrium.

The initial analysis of Nitzan (1991a) and Baik and Shogren (1995) and Lee
(1995) focussed on interior equilibria and ignored the possibility that some group
optimally choose not to participate in the contest. Ueda (2002) corrects this bias by
characterizing all equilibria of Nitzan (1991a)’s contest model including corner equi-
libria. He provides exact conditions under which ”oligopolization” occurs, namely
the fact that some groups endogenously choose to retire from the contest. Ueda
(2002) also characterizes the equilibria of a two-stage model where alliances endoge-
nously choose their sharing rule in the first stage and compete in the second . When
no group has a size greater than half of the population, he shows that all groups
adopt the relative effort rule (α = 0) in equilibrium. If one large alliance groups
more than half of the population, the large alliance will use a softer rule (α > 0),
whereas all small alliances keep choosing the aggressive relative effort rule.

4.2 Asymmetric agents

In all the models considered so far, the only source of asymmetry among players is
the difference in the sizes of the alliances they belong to. Other sources of hetero-
geneity among agents could be considered: agents can differ in their effort cost, or
(equivalently) in the productivity of their efforts, or in the amount of resources that
they can spend in conflict. Noh (1999) and (2002) analyzes a model with endogenous
sharing rules among asymmetric players. Agents are endowed with heterogeneous
resources, Ri that they can either spend in conflict (si) or for productive purposes
(pi). The productive technology is assumed to be linear, and the total prize is given
by:

V =
∑

j

pj =
∑

j

Rj − sj .

The two groups compete for the prize, which is shared according to Nitzan(1991a)’s
rule. The expected utility of agent i is thus given by

Ui = ((1− α)
si∑
j sj

+ α

∑
j∈A sj

a
∑

j sj
)(

∑
j

Rj − sj).
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Noh (1999) analyzes a two-group contest and shows that, contrary to Lee (1995),
this specification of the contest either leads the two groups to choose the egalitarian
rule, or a small group to choose the relative effort rule while the large group selects
α ∈ (0, 1). The contrast between Noh (1999)’s and Lee (1995)’s result stems from
the fact that in Noh (1999)’s model, more aggressive behavior of the two groups
reduces the common pool, resulting in lower utilities for the group members.

Noh (2002) extends the analysis to a three-player contest with R1 ≥ R2 ≥ R3

and assumes that the formation of an alliance increases the effectiveness of conflict
investments for the two alliance members. The analysis distinguishes between a
number of different cases. The general message of the paper can be summarized
as follows. When alliance formation enhances the effectiveness of the members’
appropriation efforts, the two better endowed agents form an alliance, maintain the
value of the common pool at a high level and fight to prevent the poorest agent from
appropriating the resource. When alliance formation only results in moderate gains
in the effectiveness of conflict efforts, the two poorest agents form an alliance.

5 Dynamic alliance formation

5.1 Dynamic alliance formation with exogenous effort

The models analyzed so far assume that the prize is shared among alliance members
once and for all according to a sharing rule V (a) or V (a, s). Even when players
are assumed to fight inside the alliance to obtain the prize (and obtain for example
V (a) = 1

a2 when the investment cost is linear), the intra-alliance contest is supposed
to be final. There is no room for further sub-alliance formation inside the alliance,
and the conflict ends after two stages.

This specification of conflict misses an important element of alliance formation,
and introduces an asymmetry between a first stage conflict (where alliances can be
formed) and a second-stage conflict (where sub-alliances cannot be formed). By
contrast, models of continuing conflict (or equivalently ”nested contests”) analyze
alliance formation and conflict as a dynamic process, resulting in the successive
elimination of players, until the final contest is played between the last two players.

In order to understand the dynamics of conflict and alliance formation, we fo-
cus on a model with three agents i = 1, 2, 3. Each agent has a fixed, exogenous
endowment yi. The probability of winning the contest is exogenously given by

pi =
yi∑
j yj

.

At the initial stage, either the three players compete as singletons, or an alliance
of two players is formed. If the alliance wins the contest, its two members subse-
quently compete to obtain the prize.12 We compare the utility obtained by player 1

12With three players, the continuing conflict model is identical to the two-stage model with one
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in the overall contest and when she forms an alliance with player 2. In the first case,
she obtains

U1 = V
y1

y1 + y2 + y3

and in the second

U ′
1 = V

y1 + y2

y1 + y2 + y3

y1

y1 + y2
= U1.

It thus appears that players have no incentive to form an alliance. Konrad (2009)
labels this result ”the paradox of alliance formation”.

In order to allow for synergies in the investments of the two alliance members,
we consider an increasing mapping f(yi) such that the probability of winning the
contest is given by:

pi =
f(yi)∑
j f(yj)

.

In this model, an alliance between two players will be formed if and only if the
mapping f is superadditive, namely f(yi + yj) > f(yi) + f(yj) for all yi, yj . Two
frequently used functional forms are the probit and logit specifications:

fi(yi) = ym
i ,

fi(yi) = ekyi .

Skaperdas (1998) provides general conditions under which the alliance if formed
by the two stronger or weaker players. In particular, he notes that for the probit
specification, the alliance will always be formed among the two weakest players. For
the logit model, the alliance will be formed among the weakest players if and only if:

H(y1, y2, y3) = ek(y1+y2+y3) − ek(y1+y2) − ek(y1+y3) − ek(y2+y3)

≥ 0.

Tan and Wang (1997) independently analyze the formation of alliances among
free players and obtain essentially the same result, showing that the two weak players
form an alliance for the probit model and when f(y) = exp γy − 1. They note that
the strong player may not have the highest probability of winning the contest (taking
for example, f(y) = y2, y1 = 0.6, y2 = 0.5 and y3 = 0.2, the winning probabilities of
the three players are 0.42, 0.5 and 0.08 respectively.) Moving to the more complex
case of four players with y1 > y2 > y3 > y4, Tan and Wang (1997) show that if

stage of inter-alliance and one stage of intra-alliance conflict. The difference between the models
would only appear with more than three players.
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y1 > y3 +y4, the unique equilibrium coalition structure is {1|234} followed by {2|34}
if the alliance 234 wins. Hence, at each stage, the weakest players form an alliance
against the strongest player.13 If y1 < y3 + y4, the unique equilibrium coalition
structure is of the form {ij|kl}, with two alliances of two players.

5.2 Dynamic alliance formation with endogenous effort

Consider now a situation where players endogenously choose their level of effort.
The first result on hierarchical contest, due to Wärneryd (1998) shows that the total
level of resources spent on conflict is lower in a hierarchical conflict than in a single,
simultaneous conflict. Consider a conflict with linear costs among inhabitants of two
regions, labeled A and B with sizes nA and nB. In a simultaneous conflict, the total
expenditures on conflict are δS = V nA+nB−1

nA+nB
. Consider next a two-stage conflict

where the two regions fight in the first stage, and members of the winning region
subsequently fight to obtain the prize. The second stage payoff in the two regions
are 1

n2
A

and 1
n2

B
, so that the expected resources spent on conflict are

δH = V (
n2

A + n2
B

(n2
A + n2

B)2
+

n2
A

n2
A + n2

B

nB − 1
nB

+
n2

B

n2
A + n2

B

nA − 1
nA

) < δS .

establishing that total rent dissipation is lower in a hierarchical contest. This result is
easily explained. In a hierarchical contest, resources spent in the first-stage contest
are lower because players only obtain a fraction of the prize if they win. In the
second-stage contest, fewer players are involved and the amount of resources spent
on conflict is reduced accordingly.

Esteban and Sakovics (2003) analyze a similar model among three groups with a
quadratic investment cost. They obtain a negative result: free-riding incentives are
so strong that alliances of two players will never form. This new instance of ”the
paradox of alliance formation” illustrates the two forces which hinder the formation
of coalitions in models of conflict. On the one hand, even if effort was exogenous,
players would not have an incentive to form coalitions unless the effort levels of
the two partners exhibit some synergies. On the other hand, when effort choice is
endogenous, free-riding in the coalition lowers the incentives to provide effort, and
reduces the winning probability of the alliance. Both effects concur in making the
formation of an alliance unprofitable.

5.3 Dynamic alliance formation with budget constraints

Kovenock and Konrad (2008) reexamine the alliance formation puzzle, in a discrim-
inating contest without noise, as in Hillman and Riley (1989) and Baye, Kovenock
and de Vries (1996). Let the three players have budget constraints b1, b2 and b3,
with b1 > b2 = b3. In the all-pay auction, every player chooses an investment level

13This result generalizes to the case of n players when yi >
Pn

k=i+1 yk for all i.
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si ∈ [0, bi] and player i wins with probability 1 if si > max{sj , sk}, with probability
0 if si < max{sj , sk} and with probability 1

m if m players choose the same effort
level si. In this context, there is an equilibrium where the strongest player, player
1 has an expected payoff U1 = b1 − b2, while the weakest players have an expected
payoff U2 = U3 = 0.

Next, consider a situation where players 2 and 3 initially pool their efforts (and
choose a common effort level s23 in response to s1), and then compete against each
other in a second stage if they win the first stage contest. In this game, when
b2 ∈ ( b1

2 , 1−b1
2 ), Kovenock and Konrad (2008) prove existence of a subgame perfect

equilibrium with expected payoffs U1 = 0, U2 = U3 = 1−b1−2b2
2 . Hence, contrary

to Esteban and Sakovics (2003), the two weak players have an incentive to form an
alliance and obtain a higher payoff than the strong player in a contest without noise.

6 Conclusion

This paper has highlighted how recent advances in game theory (on coalition for-
mation, all-pay auctions, comparative statics in games) have helped further our
understanding of alliance formation in conflict. A number of questions remain open
for future research.

First, the analysis of sharing rules has so far been restricted to convex combina-
tions of the egalitarian and relative effort rules. While this specification of sharing
rules as a one-parameter family is useful as a first step, one wonders whether the
introduction of more general sharing rules wouldn’t help our understanding of the
interaction between group conflict and internal sharing rules. Second, the current
analysis of dynamic contests has been limited to three players, and has assumed that
players have access to the same resources in the first and second stage of the contest.
Generalizing the results to contests with an arbitrary number of players is a challeng-
ing task, but it should be undertaken in the future. Furthermore, one should also
consider nested contests where players make decisions on the way in which they share
fixed resources among successive contests. Third, while the literature has focused on
free-riding problems in alliances, it has not yet analyzed in detail incentive contracts
for alliance members. As every alliance faces a moral hazard problem, allowing a
principal to offer a contract in each alliance seems natural. This would lead to a
study of the interaction between inter-alliance conflict and intra-alliance contracts,
and how this interaction affects the endogenous choice of group sizes. Finally, the
analysis of alliance formation so far has supposed that agents live in a world of com-
plete information, and know perfectly each other’s strength in conflict. In reality,
different alliance members may have private information about their types (conflict
technology and/or payoffs), leading to the study of alliance formation as a game of
incomplete information.
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8 Appendix

Proof of Proposition 2: Define

F [a, Sa, Sb] ≡ V (a)Sb − c′(
Sa

a
)S2, (7)

G[a, Sa, Sb] ≡ V (n− a)Sa − c′(
Sb

n− a
)S2. (8)

Next compute
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∂F

∂Sa
= −1

a
c′′(

Sa

a
)S2 − 2Sc′(

Sa

a
) < 0,

∂F

∂Sb
= V (a)− 2c′(

Sa

a
)S,

∂F

∂a
= V ′(a)Sb +

Sa

a2
c′′(

Sa

a
)S2,

∂G

∂Sa
= V (n− a)− 2c′(

Sb

n− a
)S,

∂G

∂Sb
= − 1

n− a
c′′(

Sb

n− a
)S2 − 2Sc′(

Sb

n− a
) < 0,

∂G

∂a
= −V ′(n− a)− Sb

n− a

2

c′′(
Sb

n− a
)S2.

If Sa > Sb, ∂F
∂Sb

> 0 and ∂G
∂Sa

< 0. Conversely, if Sa < Sb, ∂F
∂Sb

< 0 and ∂G
∂Sa

> 0.
Hence, we have:

∂F
∂Sa

∂G
∂Sa

∂F
∂Sb

∂G
∂Sb

> 0

Furthermore, if infa
aV ′(a)
V (a) ≥ sups

−sc′′(s)
s , ∂F

∂a > 0 and ∂G
∂a < 0. Recalling that

Sa = Sn−a when a = n− a, we conclude that, for a ≥ n− a,

∂F
∂a

∂G
∂Sa

∂F
∂b

∂G
∂Sb

> 0

so that Sa is increasing in a. If, on the other hand, supa
aV ′(a)
V (a) ≤ infs

−sc′′(s)
s , ∂F

∂a < 0

and ∂G
∂a > 0, and a similar argument shows that Sa is decreasing in a for a ≤ n− a.
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