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We investigate the atom-optical analog of degenerate four-wave mixing of photons by colliding
two Bose-Einstein condensates (BECs) of metastable helium and measuring the resulting momentum
distribution of the scattered atoms with a time and space resolved detector. For the case of photons,
phase matching conditions completely define the final state of the system, and in the case of two
colliding BECs, simple analogy implies a spherical momentum distribution of scattered atoms. We
find, however, that the final momenta of the scattered atoms instead lie on an ellipsoid whose radii
are smaller than the initial collision momentum. Numerical and analytical calculations agree well
with the measurements, and reveal the interplay between many-body effects, mean-field interaction,
and the anisotropy of the source condensate.

PACS numbers: 03.75.Nt, 34.50.-s, 05.30.-d,

The field of atom optics has developed to the point
that one can now speak of the beginning of “quantum
atom optics” [1] in which atoms are manipulated in ways
similar to photons and in which quantum fluctuations
and entanglement play an important role. The demon-
stration of atom pair production [2, 3], either from the
dissociation of ultra-cold molecules, a process analogous
to parametric down-conversion [4, 5, 6], or from collisions
of BECs [7, 8, 9, 10], analogous to four-wave mixing
(FWM) [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], holds
considerable promise for generating atomic squeezed
states and demonstrating nonlocal Einstein-Podolsky-
Rosen (EPR) correlations [4, 5, 22, 23]. In both these
systems, atom-atom interactions play the role of the non-
linear medium that allows conversion processes. Atoms
are not, however, exactly like photons, and in spite of
their formal similarity, the processes of pair production
of photons and of atoms exhibit some interesting and
even surprising differences that must be understood in
order for the quantum atom optics field to advance. In
this work, we discuss one such effect.

In optical FWM or parametric down conversion [24],
energy conservation requires that the sum of the energies
of the outgoing photons be fixed by the energy of the
input photon(s). Phase matching requirements impose
constraints on the directions and values of the individual
photon momenta. A simple case is degenerate, sponta-
neous FWM (i.e. two input photons of equal energy) in
an isotropic medium, for which energy conservation and
phase matching require that the momenta of the output
photons lie on a spherical shell whose radius is that of
the momenta of the input photons.

We have performed the atom optical analog of degen-
erate FWM in colliding BECs while paying careful atten-
tion to the momenta of the outgoing atoms. We find that
unlike the optical case, the output momenta do not lie
on a sphere, but rather on an ellipsoid with short radius
smaller than that of the input momenta. This behav-
ior is due to a subtle combination of atom-atom interac-
tions, which impose an energy cost for pair production,
and the anisotropy of the condensates, which affects the
evolution of the scattered atoms as they leave the inter-
action region. Although an analogous effect could exist
in optics, optical nonlinearities are typically so small that
the effect is rendered negligible and has therefore, to our
knowledge, never been taken into account.

To fully understand the results, we have simulated the
BEC collision using a fully quantum, first-principles nu-
merical calculation based on the positive-P representa-
tion method [17, 20], and find quantitative agreement
with the experiment. We have also analyzed the prob-
lem using a stochastic implementation of the Bogoliubov
approach, which allows us to identify and illustrate the
contributions of various interaction effects in the process.

The experimental setup is similar to that described
in [3]. We start from a BEC of ∼ 105 atoms magnetically
trapped in the mx = 1 sublevel of the 23S1 metastable
state of helium-4. The trap is cylindrically symmetric
with axial and radial frequencies of 47 Hz and 1150 Hz,
respectively. The bias field of ∼ 0.25 G along the x-axis
defines the quantization axis.

To generate the two colliding BECs, we use a two-step
process. First, the atoms are transferred to the mx = 0
state by a stimulated Raman transition. Using a 4 µs
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FIG. 1: (Color online) (a) Geometry of the Bragg beams and
level scheme of the 23S1 − 23P0 transition of 4He (at 1083
nm). A Bragg pulse of two π-polarized laser beams (shown
by the two arrows) detuned by ∆/2π = 600 MHz produces
two counterpropagating BECs that separate along their ra-
dial dimension at approximately 45◦ to the vertical (z) axis
at relative velocity 2v0. (b) Schematic diagram of the colli-
sion geometry in the center-of-mass frame in which we denote
the collision axis as Z. The two disks represent the colliding
condensates in momentum space. The sphere represents the
halo of scattered atoms. The cigar shaped initial condensate
with axial direction X = x is shown in the center. We analyze
the experimental data in the XY -plane.

pulse duration, we transfer 90% of the atoms to this mag-
netically untrapped state. At a time 1 µs after the end of
the Raman pulse, the BEC is split into two counterprop-
agating condensates with a Bragg pulse driven by two
laser beams propagating at approximately 90◦, as shown
in Fig. 1 (a). The parameters of the Bragg pulse are ad-
justed to transfer half of the atoms to a state moving at
relative velocity 2v0 in the yz-plane, with v0 = 7.31 cm/s,
which is ∼ 4 times the speed of sound in the center of
the BEC. The condensates thus separate along the ra-

dial axis, unlike in the experiment of Ref. [3]. To analyze
the data we will use a center-of-mass reference frame, in
which the collision axis is defined as Z (tilted by about
45◦ from z), X ≡ x, and Y is orthogonal to Z and X
(see Fig. 1).

After the collision, the atoms fall onto a microchan-
nel plate detector placed 46.5 cm below the trap center.
A delay line anode permits reconstruction of a 3D im-
age of the cloud of atoms. The flight time to the detec-
tor (300 ms), is long enough that the 3D reconstruction
gives a 3D image of the velocity distribution after the
collision. Binary, s-wave collisions between atoms in the
BECs should (naively) result in the scattered particles
being uniformly distributed on a sphere in velocity space
with radius equal to the collision velocity v0. The col-
lision along the radial axis allows access to the entire
collision halo in a plane containing the anisotropy of the
BEC (the XY -plane) without distortion from the con-
densates. As in Ref. [3], we observe a strong correlation
between atoms with opposite velocities confirming that
the observed halo is indeed the result of binary collisions.

FIG. 2: (Color online) (a) Average momentum space density
n(kX , kY ) (in arb. units, from ∼ 1500 experimental runs)
of the experimentally observed scattering halo on the equa-
torial plane (kX , kY ); the density is averaged over a disk of
thickness [−0.1k0,+0.1k0] along kZ . (b) Same as in (a) but
from the positive-P simulation (see text) after 70 µs collision
time, in units of 10−18 m3. (c) Plot of the peak radius of the
scattering halo on the equatorial plane versus the azimuthal
angle φ. Black squares are experimental data, while the red
circles are from the simulation. The data is binned into 18
angular bins of ∆φ = 20◦, and each data point for the peak
radius is derived from a Gaussian fit to the radial distribution
n(kR, φ) ≡ n(kX = kR cosφ, kY = kR sinφ) at the respective
angle φ (the error bars show the statistical uncertainty in the
fits; in addition, there is a systematic uncertainty of ±1.5% in
the determination of the average radius of the sphere). The
smooth line is a sinusoidal fit to the experimental data.

In Fig. 2 (a) we show a slice of the scattering halo in the
XY -plane that reveals its annular structure. A dashed
circle of radius 1, indicating the momentum ~k0 = mv0,
is shown for comparison. We can see that the ring cor-
responding to the mean momentum of scattered atoms
does not lie exactly on the dashed line, but rather slightly
within it, and that the deviation is anisotropic. The
thickness and density of the ring are also anisotropic,
though in the present work we concentrate on the behav-
ior of the radius [25]. To analyze the data more quan-
titatively, we divide the ring into azimuthal sectors and
fit a Gaussian peak plus a linearly sloped background to
extract a value for the halo radius as a function of the
angle φ [20]. It is clear from Fig. 2 (c) that the radius
of the halo in momentum space varies approximately si-
nusoidally by ±2% and that it is almost always smaller
than k0.

To understand this result qualitatively, we first con-
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sider the energy balance for pair production in a homo-
geneous BEC. Removing an atom from the condensate
liberates an energy corresponding to the chemical poten-
tial, gρ, where g = 4πa~2/m, a is the s-wave scatter-
ing length, and ρ the density. Here, we have two coun-
terpropagating condensates (each having density ρ/2),
which for simplicity we model as plane waves. In the
presence of the spatial modulation due to their interfer-
ence, the energy liberated by removing one atom changes
to 3gρ/2 [26]. On the other hand, placing an atom in a
scattering mode requires an energy 2gρ since the scat-
tered atom is distinguishable from those in the conden-
sate. Energy conservation, including the mean-field con-
tributions, gives

~
2k2

0

2m
+

3

2
gρ =

~
2k2

s

2m
+ 2gρ, (1)

where we denote the absolute momentum of one scattered
atom ~ks. Thus, the scattered momentum is smaller

than the ingoing momentum, ks < k0. This effect was
observed in a numerical simulation in Ref. [14]; a sim-
ilar effect was discussed in Ref. [8]. Using plane waves
to model the BECs is of course a crude approximation,
but if we replace ρ by the central density of an inhomo-
geneous BEC, we find ks = 0.96 k0 for the experimental
parameters.

In addition to this initial energy balance analysis, a
second effect must be taken into account. Once created,
the scattered atoms escape from the condensate region
and gain energy from the mean-field interaction poten-
tial. The effect is similar to that reported in Ref. [26],
an experiment which observed the mutual repulsion of
two BECs after Bragg diffraction. In our system, the
potential also evolves in time and goes to zero in the
XY -plane on a timescale corresponding to the time for
the two condensates to separate (∼ 70 µs). The rapid
vanishing of the potential on the equatorial plane has a
very different effect on scattered atoms moving in the X
and Y directions. Atoms moving along Y , the small di-
mension of the trap, escape the condensate overlap region
on a timescale of ∼ 40 µs, faster than the condensates
can separate. As a result, these atoms are substantially
accelerated by a steep potential gradient. On the other
hand atoms moving along X , the long axis of the trap,
do not escape before the condensates separate and thus
experience much less acceleration. Accordingly the ob-
served momentum along the X direction is smaller than
along Y , and much closer to the shifted value predicted
by Eq. (1).

To describe this experiment quantitatively we perform
first-principles positive-P simulations similar to those in
Refs. [17, 20]. Here, the multimode dynamics of the
atomic field operators Ψ̂(x, t) and Ψ̂†(x, t) for themx = 0
state is fully modeled by two independent complex c-
fields, Ψ(x, t) and Ψ̃(x, t), satisfying the Îto stochastic

differential equations:

i~∂tΨ(x, t) = AGP(Ψ, Ψ̃)Ψ +
√

i~gΨζ1(x, t), (2)

−i~∂tΨ̃(x, t) = AGP(Ψ, Ψ̃)Ψ̃ +
√

−i~gΨ̃ζ2(x, t).

Here, AGP(Ψ, Ψ̃) = −~
2∇2/(2m) + gΨ̃Ψ is a deter-

ministic part similar to the mean-field Gross-Pitaevskii
(GP) equation, ζj(x, t) (j = 1, 2) are real indepen-
dent noise sources with zero mean and correlations
〈ζj(x, t)ζk(x′, t′)〉 = δjkδ

(3)(x − x
′)δ(t − t′), while g =

4π~
2a/m uses a = 5.3 nm [3] for the mx = 0 atoms.

The initial condition is a coherent state with the den-
sity profile ρ(x) of the initially trapped mx = 1 state
BEC with a = 7.51 nm [27], N0 = 105 atoms, and modu-
lated with a standing wave that imparts initial momenta
±k0 in the Z direction,

Ψ(x, 0) = 〈Ψ̂(x, 0)〉 =
√

ρ(x)/2
(

eik0Z + e−ik0Z
)

. (3)

This models a Bragg pulse at t = 0 that splits the
BEC into two equal halves, described in the center-of-
mass frame. The initial density ρ(x) is obtained as the
ground state solution to the GP equation in the trap,
and Ψ̃(x, 0) = Ψ(x, 0)∗. The results of this simulation
are shown in Fig. 2 (b) and (c) for t = 70 µs at which
time the condensates have fully separated and the col-
lision is over. The result of the simulation is in very
good agrement with the experiment. The small discrep-
ancy between the experimental data and the simulation
in the anisotropy of the peak radius could be because
the experiment, unlike the simulation, averages over a
broad distribution of initial atom numbers. Since large
condensates scatter more atoms, this fact may bias the
experimental data towards larger modulations.

In order to confirm the qualitative mean-field mech-
anisms described above, we also perform an analysis
of the collision dynamics using a time-adaptive Bogoli-
ubov approach [28], in which the atomic field operator
is split into the mean-field (ψ0) and fluctuating compo-

nents, Ψ̂(x,t) = ψ0(x, t) + δ̂(x, t). The coherent BEC
wavefunction ψ0(x, t) evolves according to the standard
time-dependent GP equation, with the initial condition
given by Eq. (3). The fluctuating component δ̂(x, t) de-
scribes incoherent scattered atoms, and is initially in the
vacuum state. In the Bogoliubov approach, δ̂ evolves as

i~∂tδ̂(x, t) = H0(x, t)δ̂ + G(x, t)δ̂†. (4)

Here, H0(x, t) = −~
2∇2/(2m) + 2g|ψ0(x, t)|2 contains

the kinetic energy and the mean-field potential energy
2g|ψ0(x, t)|2 for scattered atoms. The effective coupling
G(x, t) = g ψ0(x, t)

2 causes spontaneous pair production

of scattered atoms. The dynamics of the field δ̂ is then
formulated using the positive-P representation [28], lead-
ing to the (stochastic field) evolution equations

i~∂tδ(x, t) = H0δ + Gδ̃ +
√
iGζ1(x, t), (5)

−i~∂tδ̃(x, t) = H0δ̃ + G∗δ +
√
−iG∗ζ2(x, t).
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FIG. 3: (Color online) Predictions for the radius of the scat-
tering halo as in Fig. 2 (c) with various controlled changes.
Red–•: full positive-P calculation, Eq. (2) [same data as in
Fig. 2 (c)]; Black–�: full anisotropic Bogoliubov calculation,
Eq. (5); Blue–⊳: anisotropic Bogoliubov, but with mean-field
potentials ∝ g|ψ0|

2 removed from Eq. (5) and from the GP
equation describing the evolution of ψ0(x, t); Green–×: full
Bogoliubov, but with spherical BECs and unchanged peak
density ρ(0). Data was obtained from Gaussian fits to the
radial densities n(kR, φ) in the XY plane after the end of the
collision at 72 µs (200 µs for the spherical case).

which, unlike the full calculation (2), are stable in time
because the noise is non-multiplicative. This method
takes into account the temporal evolution and spatial
separation of the two condensates; the stochastic for-
mulation of the evolution of the field δ̂(x, t) makes ex-
plicit diagonalizations on the (enormous) Hilbert space
unnecessary. As condensate depletion is ∼ 1.5% here,
the stochastic Bogoliubov results are in excellent agree-
ment with the positive-P simulations, as seen in Fig. 3.

Figure 3 also shows simulations performed with con-
trolled changes applied to the system. They directly
confirm that: (1) The mean-field potential is essential
for both appreciable radius shift and ellipticity (Blue–⊳

data correspond to simulations without any mean-field
potential); (2) Anisotropy of the initial BEC is essential
for ellipticity in the XY -plane (Green–× data had an
initially spherical condensate and shows no ellipticity).
The fact that the blue data shows ks/k0 ≃ 0.987 and not
unity is expected. The prediction of unity comes from en-
ergy conservation. The simulation data does indeed lie
on the line ks/k0 = 1 if one extracts the peak radius ks

from the energy density ∝ k2
Rn(kR, φ), rather than from

n(kR, φ) as in the figure.
In summary, the ability to detect three dimensional

momentum vectors of individual atoms allows the identi-
fication of small, previously unseen anomalies in the scat-
tering “sphere” resulting from a simple collision between
two condensates. First-principles simulations closely re-
produce for these small anomalies and help us to iden-
tify the important physical processes. Our results high-
light the complexities of atomic scattering that must be
accounted for in future applications of ultracold atoms
in precision measurement and fundamental tests using

squeezed [29, 30] and entangled [31] atomic ensembles.
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