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Abstract. Backward symbiotic solitary waves in quadratic media with absorption
losses are generated through the nonlinear non-degenerate three-wave interaction.
We study these solitary waves in the particular case of a doubly backward quasi-
phase matching configuration. The same mechanism responsible for nanosecond
solitary wave morphogenesis in the c.w. pumped Brillouin-fiber-ring laser may act
for picosecond pulse generation in a quadratic c.w. pumped optical parametric
oscillator (OPO). The resonant condition is automatically satisfied in stimulated
Brillouin backscattering when the fiber-ring laser contains a large number of lon-
gitudinal modes beneath the gain curve. However, in order to achieve quasi-phase
matching between the three optical waves in the χ(2) medium, a nonlinear suscep-
tibility inversion grating of sub-µm period is required. Such a quadratic medium
supports solitary waves that result from energy exchanges between dispersionless
waves of different velocities. We show, by a stability analysis of the non-degenerate
backward OPO in the QPM decay interaction between a c.w. pump and backward
signal and idler waves that the inhomogeneous stationary solution exhibits a Hopf
bifurcation with a single control parameter. Above OPO threshold, the nonlinear
dynamics yields self-structuration of a backward symbiotic solitary wave, which is
stable for a finite temporal walk-off (i.e. different group velocities) between signal
and idler waves.
We also study the dynamics of singly backward mirrorless OPO’s (BMOPO’s)
pumped by an incoherent field, in line with the recent experimental demonstra-
tion of this OPO configuration. We show that this system is characterized, as a
general rule, by the generation of a highly coherent backward field, despite the
high degree of incoherence of the pump field. This remarkable property finds its
origin in two distinct phase-locking mechanisms that originate respectively in the
convection and the dispersion properties of the fields. In both cases we show that
the incoherence of the pump is transferred to the co-moving field, which thus
allows the backward field to evolve towards a highly coherent state. We propose
realistic experimental conditions that may be implemented with currently avail-
able technology and in which backward coherent wave generation from incoherent
excitation may be observed and studied.
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1 Introduction

Resonance processes in nonlinear wave systems may give rise to solitary waves resulting from
energy exchanges between dispersionless waves of different velocities. Three-wave resonant inter-
action in nonlinear optical systems [1], plasmas [2] [3] and gases [4] predict symbiotic three-wave
solitary waves in analogy to self-induced transparency [5] [6]. The structure of them is deter-
mined by a balance between the energy exchanges rates and the velocity mismatch between
the three interacting waves. The three-wave interaction problem has been the object of many
theoretical studies and numerical simulations as we refered in Refs. [7] [8]. The non-conservative
problem in the presence of a continuous pump has been integrated by the inverse scattering
transform (IST) in the non-dissipative case [6], giving rise to backscattered solitons. Our in-
terest has been to study this non-conservative problem in the presence of dissipation or cavity
losses, because this kind of backward structuration has been experimentally obtained in stimu-
lated Brillouin scattering of a c.w. pump wave into a backward red-shifted Stokes wave in long
fiber-ring cavities. It has been shown in a Brillouin fiber-ring cavity that, spontaneous struc-
turation of dissipative three-wave solitary waves takes place when the source is a c.w. pump
[9–12]. The periodic round-trip interaction in a long lossy cavity may be associated to the
non-conservative unlimited interaction [8] [11]. The nonlinear spacetime three-wave resonant
model between the two optical waves and the dissipative material acoustic wave satisfactorily
explains the generation and the dynamics of the backward-traveling solitary pulses in the fiber-
ring cavities. Stability analysis of the inhomogeneous stationary Brillouin mirror solution in
the c.w.-pumped cavity [10] exhibits a one-parameter Hopf bifurcation. Below a critical feed-
back, a time-dependent oscillatory regime occurs, and self-organization of a localized pulsed
regime takes place. Experimental results and dynamical simulations confirm this scenario. A
stable continuous family of super-luminous and sub-luminous backward-traveling dissipative
solitary pulses is obtained through a single control parameter [11] [12]. A parallel analysis in
an unbounded one-dimensional medium shows that the integrable three-wave super-luminous
symmetrical soliton is unstable for small dissipation, and that it cascades to a turbulent multi-
peak structure. The general non-symmetrical and non-integrable case is dependent only on the
exponential slope of the wave front of the backscattered Stokes wave, thus providing the stable
super- and sub-luminous dissipative solitary attractors [8]. An overview of the experimental
results for a large set of input pump powers and Stokes feedback conditions shows a remark-
able agreement with the numerical simulations of the three-wave coherent partial differential
equations model [12]. In the following, we will not consider this topic here and refer the reader
to a recent review article [13] where this kind of dissipative soliton has been discussed in details.

This review article is devoted to the resonant interaction of three optical waves (called
pump, signal and idler) in a nonlinear quadratic material. The same mechanism, responsible
for nanosecond solitary wave morphogenesis in the Brillouin-fiber-ring laser may act for picosec-
ond backward pulse generation in a quasi-phase matched (QPM) optical parametric oscillator
(OPO) [14–18]. The dissipative character will rise from the partial reinjection of one wave (in
the singly resonant OPO), of two waves (in the doubly resonant OPO), or to the absorption
losses in backward mirrorless OPO. The resonant condition for the wavevectors is automati-
cally satisfied in stimulated Brillouin backscattering when the fiber ring laser contains a large
number of longitudinal modes beneath the Brillouin gain curve. However, in order to achieve
counter-streaming QPM matching between the three optical waves in the χ(2) medium, a nonlin-
ear susceptibility inversion grating of sub-µm period is required [20–23]. In the non-degenerate
three-wave case of a backward quasi-phase matching configuration in the quadratic media where
both signal and idler fields propagate backward with respect to the direction of the pump field,
the first order quasi-phase-matching pitch is of order λp/2np where np is the refractive index at
the pump wavelength λp. This can be achieved for example by periodic poling techniques but
up to now the polarization inverted grating of sub-µm period is still a technological challenge.
Therefore higher-order Bragg condition have been suggested [22]. However, the interest of the
first order configuration is that the solitary waves can be spontaneously generated from noise
from a c.w. pump when the quadratic material is placed inside a singly resonant OPO (where
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singly stands here for only one wave reinjection).

Parametric interaction of counter-propagating waves has the unique property of automat-
ically establishing distributed feedback without external mirrors and thus realizing sources of
coherent and tunable radiation. A recent experimental demonstration of such a mirrorless opti-
cal parametric oscillator (MOPO) has been performed in a 800 nm periodically poled KTiOPO4

(PPKTP) configuration [24] with a pulse pump. The forward oscillator signal is essentially a
wavelenght-shifted replica of the pump spectrum, and the backward generated idler pulse has a
bandwidth of two orders of magnitude narrower than that of the pump. This sub-µm periodic
configuration where QPM is achieved with a pump and signal waves propagating in the forward
direction and the idler wave in the backward direction opens the way for achieving the shorter
periodicity required for a QPM configuration where both signal and idler backward propagate
with respect to the pump wave [cf. figure 1(c)]. As we say, this doubly-backward configuration
is of interest since the three-wave symbiotic solitary waves can be generated from noise in the
presence of a c.w. pump when the quadratic material is placed inside an optical parametric
oscillator [14–18]. However, with a c.w. pump the singly backward OPO yields stationarity for
the backward wave. Nevertheless when the pump is a pulse, the demonstrated MOPO experi-
mental configuration generates a coherent backward pulse in the absence of external feedback.
Note that stationarity of the singly backward configuration in a c.w. pumped short length
device is not contradictory with the theoretical existence of backward solitary solutions when
the initial condition is localized [6]. Moreover, a coherent solitary structure can be sustained
from a highly incoherent pump and a co-propagating wave [25]. This phenomenon relies on the
advection between the interacting waves and leads to the formation of a novel type of three-
wave parametric soliton composed of both coherent and incoherent fields. In section 5 we will
consider this mechanism by proposing the generation of a coherent backward pulse from an
incoherent pump pulse in three MOPO configurations, among which the first one refers to the
experimental configuration demonstrated in Ref.[24]. We thus show that the MOPO system is
characterized, as a general rule, by the generation of a highly coherent backward field, despite
the high degree of incoherence of the pump field. In substance, the incoherence of the pump is
shown to be transferred to the co-moving field, which thus allows the backward field to evolve
towards a highly coherent state. We propose realistic experimental conditions that may be im-
plemented with currently available technology and in which backward coherent wave generation
from incoherent excitation may be observed and studied.

We have already shown, by both analytical and numerical treatments of the degenerate
backward OPO in the QPM decay interaction between a c.w. pump and a backward signal
wave, that the inhomogeneous stationary solutions are always unstable, whatever the cavity
length and pump power values are above threshold of a singly resonant OPO. Starting from
any initial condition, the nonlinear dynamics exhibits self-pulsing of the backward signal with
unlimited amplification and compression. Above a critical steepening of the backward pulse,
dispersion may saturate this singular behavior leading to self-modulated solitary structures [17]
[19] as is shown in section 3.2.1.

In this paper we show, by a stability analysis of the non-degenerate backward OPO [18],
that the previous particular behavior of unconditional temporal instability of the degenerate
backward OPO is removed and that we now obtain a regular Hopf bifurcation like in the Bril-
louin fiber-ring laser [10]. We will consider self-structuration of three-wave solitary waves in
such a backward OPO with absorption losses.
For a c.w. pumped OPO near degeneracy a unique control parameter L governs the dynamical
behaviour; it is shown that at a critical interaction length Lcrit the inhomogeneous stationary
solution bifurcates towards a time-dependent oscillatory solution. This critical length is finite
if and only if we take into account a finite group velocity delay between both backward prop-
agating waves ∆v = |vs − vi| 6= 0 (or temporal walk-off), where vs and vi are the signal and
idler group velocities. Moreover, for longer interaction lengths the dynamics gives rise to the
generation of the backward three-wave soliton, whose stability is also ensured by this finite
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temporal walk-off ∆v, without requiring additional saturation mechanisms like the dispersion
effect. This scenario is confirmed by numerical simulations of the nonlinear dynamic equations,
and an excellent agreement is obtained (near the degenerate configuration) for the value of Lcrit

evaluated from the stability analysis and that one obtained from the dynamical treatment.
The general fully non-degenerate configuration involves more complicated mathematics because
a set of control parameters are required and we only show several dynamical behaviours result-
ing from the three-wave numerical model.
We will conclude this review by considering some dynamical behaviours of the backward mir-
rorless OPO pumped with an incoherent pulse, because up to now this configuration is the only
one in which backward MOPO experiments have been performed.

The paper is organized as follows. In section 2 we recall the three-wave model governing
the spatio-temporal evolution of the slowly varying envelopes of the pump and the backward
signal and idler waves. We also recall the analytical solutions in the form of propagating dissipa-
tive solitary waves propagating backward with respect the cw-pump under a QPM three-wave
interaction. In section 3 is presented the stability analysis of the nonlinear inhomogeneous sta-
tionary solutions of the non-degenerate backward OPO for finite temporal walk-off. Numerical
dynamics of the self-structuration of symbiotic three-wave solitons leading to stable self-pulsing
regimes is shown in section 4. Finally, the numerical dynamics of the pulsed MOPO under
incoherent pump excitation is discussed in section 5.

2 Three-wave model and analytical solitary-wave solutions

The spatio-temporal evolution of the slowly varying envelopes of the three resonant counter-
streaming interacting waves Aj(x, t), for a non-degenerate OPO, is given by

(∂t + vp ∂x + γp + iβp∂tt) Ap = − σpAsAi

(∂t − vs ∂x + γs + iβs∂tt) As = σsApA
∗
i (1)

(∂t − vi ∂x + γi + iβi∂tt) Ai = σiApA
∗
s

where Ap(ωp, kp) stands for the c.w. pump wave, As(ωs, ks) for the backward signal wave, and
Ai(ωi, ki) for the backward idler wave. The resonant conditions in one-dimensional configuration
realize the energy conservation,

ωp = ωs + ωi, (2)

and the momentum conservation,

kp = −ks − ki + KG, (3)

where KG = 2π/ΛQPM and ΛQPM is the grating pitch for the backward quasi-phase matching.
The group velocities vj (j = p, s, i) as well as the attenuation coefficients γj are in general
different for each wave. Equations (1) also hold for standard forward phase-matching configu-
rations in which case all the signs of the velocities vs,i are positive. For the singly backward
idler (or backward signal) configuration the momentum conservation (3) must be replaced by
(17). These configurations are shown in figure 1(a)(b). The nonlinear coupling coefficients are
σj = 2πdeffvj/(λjnj), where nj is the refractive index at frequency ωj, wavelength λj and
deff is the effective nonlinear susceptibility. The chromatic dispersion is also taken into ac-
count in equations (1); this is necessary when the generated temporal structures are sufficiently
narrow. The effects of group velocity dispersion (GVD) are represented by the second deriva-
tives with respect to time, so that the dispersion parameters are given by βj = |vj |k′′

j where

k′′
j = (∂2k/∂ω2)j , k being the wave vector modulus, k = n(ω)ω/c.
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2.1 Solitary Wave Solution

In the absence of dispersion (βj = 0) equations (1) have been extensively studied in the litera-
ture. Their solitary wave solutions have been first derived in the absence of dissipation (γj = 0)
[2,6,3]. In the context of stimulated scattering in nonlinear optics, the existence of dissipative
solitary waves when one of the velocities vs,i is zero (e.g. vi = 0) has also been shown [9,
26]. More recently, Craik et al. have proved, for the particular case of degenerate three-wave
interaction, that solitary waves still exist in the presence of dissipation [27]. On the basis of
these previous theoretical works, we have calculated from equations (1) a particular analytical
solution of the dissipative symbiotic solitary waves of the non-degenerate parametric three-wave
interaction. Looking for a solitary wave structure induced by energy transfer from the pump
wave to the signal and idler pair, we have to assume zero loss for the pump (γp = 0). It is the
only way to keep constant the energy transfer that compensates here for the signal and the idler
losses, so as to generate stationary field structures. If γp was not zero, the pump wave would
experience an exponential decay giving rise to a vanishing energy of the three-wave structure
that prevents the formation of a stationary solitary wave state.
When γp = 0 it is easy to find by substitution the following solution to equations (1):

Ap = δ − β tanh
[

Γ (x + V t)
]

As = ηΓ sech
[

Γ (x + V t)
]

(4)

Ai = κΓ sech
[

Γ (x + V t)
]

where β is the only free parameter. All other parameters depend on the material properties
and on β. One finds δ = [γsγi/σsσi]

1/2, Γ = β[σiσs/(V − vs)(V − vi)]
1/2, η = [(V + vp)(V −

vi)/σiσp]
1/2, κ = [(V + vp)(V − vs)/σsσp]

1/2, and V = (vs/γs − vi/γi)/(1/γs − 1/γi). This last
expression shows that the velocity V of the solitary wave is fixed by the material parameters,
unlike in the nondissipative case where V is undetermined [2]. Let us point out that, in order
to keep Γ real, the solitary wave must be either superluminous, V > max(vs, vi), or sublumi-
nous, V < min(vs, vi). Note that the superluminous velocity does not contradict by any means
the special theory of relativity [9] even if the velocity V becomes infinite when the signal and
idler waves undergo identical losses, γs = γi. This can be easily explained by remembering
that the velocity of this type of symbiotic solitary wave is determined by the energy transfer
rate, which depends on the shape of the envelope of each component. The infinite velocity
is here simply due to the fact that the width of the solitary wave Γ−1 also becomes infinite
for γs = γi. However, we shall see that this symmetrical solution is not the more general one
and it is not an attractor solution for a large variety of parameter values. In section 4 we will
present another self-similar structure for the near-degenerate backward interaction which does
not present a divergence for γs = γi. The free wave parameter β fixes, in combination with the
material parameters, the amplitude and the width of the solitary wave. According to the first
equation of (4), β is determined by the initial pump amplitude Ap = Ep(x = −∞) = β + δ. In
practice, this means that, for a given material, the solitary wave is completely determined by
the pump intensity at the input face of the crystal. Note that if the losses are such that δ > β
the solitary wave no longer exhibits a π-phase change [8], contrary to the nondissipative case [2].

Figure 2 shows a typical example of such a dissipative symbiotic solitary wave in a quasi-
phase-matched backward three-wave interaction with λp = 1 µm, λs = 1.5 µm, λi = 3 µm,
ΛQPM = 2π/KG = 0.233 µm, and with a pump field of amplitude Ep = 0.25 MV/m (i.e., a

pump intensity of Ip = 10 kW/cm2) propagating in a quadratic χ(2) material. It is obtained
with the following typical values of the parameters : deff = 20 pm/V, np = 2.162, ns = 2.142,
ni = 2.098, vp = 1.349 × 108 m/s, vs = 1.371 × 108 m/s, vi = 1.363 × 108 m/s, and the loss
coefficients αs = 2γs/vs = 0.23 m−1 and αi = 2γi/vi = 11.5m−1. Note that these parameters
lead to a pulse width of approximately 10 picoseconds. Therefore, with such pulse durations
one can expect that the zero pump loss approximation (γp = 0) is valid in practice in the
neighborhood of the solitary wave structure. Indeed, if the characteristic absorption length vp/γp
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is much larger than the pulse width Γ−1, one can anticipate that the solitary wave undergoes
adiabatic reshaping during propagation so as to adapt locally its profile to the exponentially
decaying pump intensity.

3 Self-pulsing in a backward doubly resonant OPO

Let us point out that the self-structuration process requires backward interaction. The mecha-
nism is similar to the Hopf bifurcation appearing in the counter-streaming Brillouin cavity [10].
Numerical simulations with the more usual forward phase-matching conditions only lead to the
steady-state regime. This shows that the distributed feedback nature of the interaction plays a
fundamental role in the pulse generation process. This observation is consistent with the con-
clusions of [23] where complex temporal pattern formation in backward-phase-matched second
harmonic generation is studied and of our previous study of the degenerate backward OPO
[19]. But in contrast to this last study, where no regular Hopf bifurcation was found by starting
from the inhomogeneous stationary solutions, since above the threshold the perturbations al-
ways grow in time, we will show hereafter that in the non-degenerate backward OPO a regular
Hopf bifurcation takes place. Below a critical parameter value, the inhomogeneous stationary
solutions are stable, and above it the bifurcation leads to an also stable self-structured solitary
wave. Our purpose in this section is to prove that in the non-degenerate configuration, the
temporal walk-off, i.e. the group velocity delay between the signal and the idler waves ensures
a regular Hopf bifurcation and leads to a stable self-structuration of the three-wave envelopes.
For the sake of simplicity, we will focus here on the near-degenerate OPO regimes [18]. However,
our results are more general and can be extended to the fully non-degenerate case in a similar
way. We present here several dynamical behaviours.

We start from the dimensionless form of equations (1) which describe the non-degenerate
backward OPO in the quasi-phase-matching decay interaction between a pump and counter-
propagating signal and idler waves. We write them near the degeneracy with temporal walk-
off on only one field. This is not a restriction but it is more convenient for mathematical
calculations. The general case can be recovered by an appropriate change of variables.
By introducing the following scalings:

up =
√

1 − d2
Ap

Ao
p

, us =
√

2(1 − d)
As

Ao
p

, ui =
√

2(1 + d)
Ai

Ao
p

, τ = t/τo, ξ =
x

Λ
, L =

ℓ

Λ
(5)

where Ao
p is the incident c.w. pump, τo = 2/(σpA

o
p) and Λ = vpτo are the characteristic time

and length and ℓ the cavity length, the dimensionless equations read:

(
∂

∂τ
+

∂

∂ξ
+ µp + iβ̃p

∂2

∂τ2
)up = −usui

(
∂

∂τ
− ∂

∂ξ
+ µs + iβ̃s

∂2

∂τ2
)us = upu

∗
i (6)

(
∂

∂τ
− α

∂

∂ξ
+ µi + iβ̃i

∂2

∂τ2
)ui = upu

∗
s

where α = vi/vp, vp = vs, µj = γjτo, and β̃j = βj/τo. The full description of the
OPO dynamics is obtained by taking into account, in addition to equations (6), the following
boundary conditions for the doubly resonant cavity

us(ξ = L, τ) = ρs us(ξ = 0, τ), ui(ξ = L, τ) = ρi ui(ξ = 0, τ), up(ξ = 0, τ) =
√

1 − d2 (7)

where ρs =
√

Rs and ρi =
√

Ri are the amplitude feedback coefficients. Note that we have in-
troduced the new coefficients 1±d by setting d = (σs −σi)/σp and assuming a near-degenerate
OPO configuration, i.e., σp ≃ σs + σi.
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3.1 Inhomogeneous stationary solutions

Without optical attenuation (µj = 0) and in the absence of dispersion (βj = 0), inhomogeneous
stationary solutions ust

j (ξ), j = {p, s, i} can be obtained from equations (6) by setting ∂/∂τ = 0.
The assumption of zero loss parameters µj is not restrictive since the main dissipation in the
OPO cavity comes from the finite feedback. In this case, the following conservation relations,
also known as Manley-Rowe relations [28], hold

{

|ust
p |2 − |ust

s |2 = ±D2
s

|ust
p |2 − α|ust

i |2 = ±D2
i

(8)

For a doubly resonant OPO with the same feedback coefficient for the signal and idler fields, we
have Ds = Di = D. This leads to two types of stationary solutions : (i) D2 = |ust

p |2 − |ust
s |2 =

|ust
p |2 − α|ust

i |2 and (ii) D2 = |ust
s |2 − |ust

p |2 = α|ust
i |2 − |ust

p |2.

In case (i), the following inhomogeneous stationary solutions are obtained

ust
p (ξ) = D tanh−1

(

arccotanh(
ust

p (0)

D
) +

Dξ√
α

)

ust
s

2
= αust

i
2

=
D2

sinh2
(

arccotanh(
ust

p (0)

D ) + Dξ√
α

) (9)

while in case (ii),

ust
p (ξ) = D

ust
p (0) − D tan( Dξ√

α
)

D + ust
p (0) tan( Dξ√

α
)

ust
s (ξ) =

√
αust

i (ξ) =
D

√

1 +
ust

p
2(0)

D2

cos( Dξ√
α
) +

ust
p (0)

D sin( Dξ√
α
)

(10)

where ust
p (0) =

√
1 − d2.

Let us consider the situation of short enough OPO cavities in order to avoid total depletion
of the pump inside the cavity and to benefit from the monotonous gain of the singly pumped
OPO; otherwise the signal and idler fields oscillate and may return part of this intensity to the
pump. This is achieved by considering Dξ ≪ 1. Thus, to the leading order, the inhomogeneous
stationary solutions (10) are

ust
p (ξ) ≃

ust
p (0) − D2 ξ√

α

1 + up(0) ξ√
α

and ust
s (ξ) =

√
αust

i (ξ) ≃
D

√

1 +
ust

p
2(0)

D2

1 +
ust

p (0)ξ
√

α

(11)

Manley-Rowe relations (8) are used at ξ = 0 and ξ = L, together with the boundary conditions
to determine the integration constants. A second order algebraic equation for D2 is obtained

aD4 + bD2 − c = 0 (12)

with

a = L2/α, b = (1−R)(1+
√

1 − d2L/
√

α)2−2
√

1 − d2L/
√

α, c = (1−d2)[1−R(1+
√

1 − d2L/
√

α)2]

Once D is determined from the above expression, us(0) and ui(0) can be calculated via the
Manley-Rowe relations (8).
Note that we will only consider the case (ii) configuration; case (i) can be analysed in a similar
way.
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3.2 Stability analysis of the inhomogeneous stationary solutions

Followinf Ref.[18] let us first perform the linear stability analysis of the inhomogeneous sta-
tionary solutions (10) with respect to space-time-dependent perturbations in the absence of
dispersion and optical attenuation, through

uj(ξ, τ) = ust
j (ξ) + δuj(ξ)e

−iωτ where j = p, s, i.

It is more convenient to introduce the new variables

P (ξ) = ust
p (ξ), S(ξ) = ust

s (ξ), I(ξ) = S(ξ)/
√

α = ust
i (ξ),

Z(ξ) = δup(ξ), Y (ξ) = δus(ξ), X(ξ) = δui(ξ),

where P (ξ), S(ξ) and I(ξ) stand for the inhomogeneous stationary solutions and Z(ξ), Y (ξ)
and X(ξ) for the space-time-dependent perturbations. Thus, the linearized problem associated
with equations (6) reads

∂Z

∂ξ
− iωZ = −S(X +

Y√
α

)

∂Y

∂ξ
+ iωY = −PX − SZ√

α
(13)

α
∂X

∂ξ
+ iωX = −PY − SZ

The stability analysis is performed by solving the perturbative equations (13) with the inhomo-
geneous stationary solutions and by taking into account the boundary conditions for the cavity.
This gives rise to an eigenvalue problem with a dispersion relation for the complex frequency
ω. Following [10], [19] and [18] we will look for the stability of the cavity modes with frequency
ℜ(ω) ≃ 2πN/L [N integer and L being the dimensionless length ℓ/Λ defined in (5)] yielding
to mode instability whenever ℑ(ω) > 0.

3.2.1 Absence of walk-off

Let us first recall the situation in the absence of temporal walk-off; the signal and idler waves
have the same group velocity leading to α = 1 in equations (13). We proceed as in the degenerate
case [19] and we obtain the following dispersion relation

ao + bo sin(ωL) + co cos(ωL) = 0 (14)

where the expressions of ao, bo and co are given in appendix A of Ref.[18]. It should be noted
that equation (14) generalizes the dispersion relation in [19] for the degenerate case because
it applies to the doubly-resonant backward OPO. The instability of each mode is determined
from equation (14) when ℑ(ω) > 0. However, in the absence of walk-off, signal and idler per-
turbation equations are decoupled from the pump perturbation equation, and again it leads to
unconditional temporal instability. We recall that this instability leads to the generation of a
localized structure exhibiting unlimited amplification and compression [17] [19], whose collapse
may be avoided by including the natural chromatic dispersion which is present in equations (1).
We show in figure 3, for the degenerate case, the dynamical behaviour where the amplification
of the solitary pulses is saturated by temporal modulation of the envelopes as shown in the
upper inset graph of the figure. The lower inset graph shows the generated pulse structure
before saturation, which takes place here at about 6000 round trips, when the pulse is so steep
that dispersion breaks the unlimited amplification by modulating the pulse. The saturation
dynamics has been obtained for a large set of dimensionless parameters (L, R) corresponding
to different pump intensities, cavity lengths and signal feedback, and the saturation level de-
pends on the dimensionless rate βs/τ0. Here, dispersion corresponds to actual Type I (e-e)
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polarization interaction in LiNbO3 at 100oC, namely βp/vp = 0.113 ps2/m for the pump at
λp = 0.775 µm, and βs/vs = 0.893 ps2/m for the backward signal wave at λs = 1.55 µm.
The power requirement for backward OPO operation depends on the ability to achieve low-
order QPM over centimeter lengths. For instance, for a first order QPM in LiNbO3 the grating
pitch is as small as ΛQPM = 2π/KG = 0.179 µm. For a c.w. pump field Ep = 0.725 MV/m

(i.e., a pump intensity of Ip = 100 kW/cm2) propagating in the quadratic χ(2) material with
the following values of the parameters: d = 20 pm/V, deff = 2d/π, np = 2.179, ns = 2.141,
vp = 1.323 × 108m/s, vs = 1.371 × 108m/s, γp = 4.6 × 108 s−1, and γs = 3.1 × 108 s−1;
the nonlinear characteristic time yields τ0 = (σpAp/2)−1 ≃ 0.28 ns. For L = ℓ/Λ = 1 the
cavity length ℓ is given by the nonlinear characteristic length Λ = vpτ0 = 3.7 cm. The soli-
tary pulses are compressed until 7.5 ps before dispersion begins the saturation process. The
dynamic solitary structure being deeply modulated by the presence of the phase defects, the
central peak has about 5 ps width, while the whole pulse spreads over some tens of picoseconds.

Since the required grating pitch for first order QPM is extremely small, we must increase
the c.w. pump intensity when using higher order gratings in order to get an actual experimen-
tal configuration. Reference [21] gives a table with the threshold pump intensities and domain
periods for the degenerate backward OPO in four periodic domain structures (KTP, LiNbO3,
GaAs/AlAs). Recently [29], it has been reported an experiment of first order QPM blue light
generation at 412.66 nm, in a 20 mm long surface-poled Ti-indiffused channel waveguide in
LiNbO3 with c.w. pumping, using periodic domain structures as short as 1 µm. The authors
have announced generation of 3.46 mW blue light for 70 mW of fundamental power. Based on
such recent progresses in the poling technology of LiNbO3 one can likely hope to experimentally
realize the backward OPO with the allowed pump power for so short grating pitch. We will see
in section 5 that a periodic domain of 800 nm has been obtained in a bulk PPKTP configuration
to achieve for the first time the pulsed mirrorless OPO. For example, if ΛQPM = 0.5 µm we
may only use a c.w. pump power ten times higher (i.e. Ip,0 = 1 MW/cm2) for the same cavity

length ℓ = 3.7 cm, same characteristic time τ0 ≃ 0.28 ns, and same low finesse ρs =
√

R = 0.46
as that given in the previous example. If we consider a pulse pump of FWHM of ∆t = 28 ns
instead of a c.w. beam we can even reach Ip,0 = 100 MW/cm2 without optical damage [30]
(yielding τ0 = 28 ps and Λ = 0.37 cm).

3.2.2 Finite temporal walk-off

When taking into account a finite temporal walk-off α 6= 1, equations (13) are more complicated
as the dynamics of the pump wave and the signal-idler pair is no longer decoupled. For the
sake of simplicity let us consider D = 0, so that P = S =

√
αI = 1/(1/

√
1 − d2 + ξ/

√
α). Note

that D = 0 requires that c = 0 in equation (12). Since d ≪ 1, it is the second factor in the

same expression of c which vanishes leading to the relation R = 1/(1 +
√

(1 − d2L/
√

α)2. The
first-order perturbed system becomes

d

dξ





Z
Y
X



 =





iω −I −S
−I −iω −P

−S/α −P/α −iω/α









Z
Y
X





This system of equations is numerically solved. Since the group velocity delay (temporal walk-
off) of the signal and idler pair is small, we set α = vi/vp ≃ 1 + ǫ. We expand the solutions
up to the second order in the small parameter ǫ. The second order is necessary to match the
critical parameter value obtained at the Hopf bifurcation point by the numerical integration
of the normalized governing equations (6); the first order in ǫ being insufficient to characterize
the bifurcation point.
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Through the boundary conditions, we obtain the dispersion relation:

ω3y2
oyL +

[

− ω3y2
oyL − iω2yoL + ωL

]

cos(ωL) +
[

iω3y2
oyL + iωyo − ω2yoL − 1

]

sin(ωL)

− iǫ

8yL(yoρo − yLe−iωL)

{

Aoe
−2iωL + Boe

−iωL + Coe
iωL + Do

}

− iǫ2

24y2
L(yoρo − yLe−iωL)

{

A1e
−2iωL + B1e

−iωL + C1e
iωL + D1

}

= 0 (15)

with yo = 1/
√

1 − d2, yL = yo+L, ρo = yo/yL is the amplitude feedback coefficient and L stands
for the dimensionless length ℓ/Λ. The expressions of the different coefficients Ao, A1, Bo, B1, Co,
and C1, which are functions of ω = ωr+iωi, yL, and yo are given in appendix B of Ref.[18]. First
we recover, as it should be, the dispersion relation (14) when ǫ = 0 and D = 0. However, the
non-degenerate backward OPO dispersion relation (15) shows that, in contrast to the degenerate
case, there exist a stability domain of the inhomogeneous stationary solutions above threshold.
Moreover, these solutions undergo a Hopf bifurcation, even near the degenerate configuration,
for a critical lenght of the cavity. Figure 4 shows a typical example of a regular Hopf bifurcation
with the parameters set to d = 0.05 and ǫ = 1/128. We have plotted ℑ(ω) from equation (15)
against the propagation length L near the first cavity mode (ℜ(ω) ≃ 2π/L). As can be seen from
the figure, Hopf bifurcation occurs at Lcrit ≃ 0.39. For L ≤ Lcrit the inhomogeneous stationary
solutions are stable (see figure 5) whereas if L > Lcrit the perturbations are amplified generating
a new oscillatory localized structure (see figures 6 and 7).

4 Nonlinear dynamics of the doubly resonant backward OPO

In the previous section we have carried out the stability analysis of the inhomogeneous station-
ary solutions of the doubly resonant backward OPO near the degenerate configuration. This
behavior may be generalized to the fully non-degenerate backward OPO provided that a finite
temporal walk-off between the counter-propagating signal and idler waves is present . In this
section we proceed as follows:
(i) we numerically check the previous analytical result in the near-degenerate OPO regime for
D = 0;
(ii) we show that a dynamically critical bifurcation for D 6= 0 can be obtained with the same
feedback parameter values (ρs = ρi) for both signal and idler waves;
(iii) we numerically investigate the self-pulsing regime for the doubly resonant backward OPO
with different feedback parameter values (ρs 6= ρi) including perturbative dispersion.

To this end we have numerically integrated equations (6) with the boundary conditions (7).
In order to better compare the dynamical behavior with the analytical one, we first neglect
dispersion (β̃j = 0, j = p, s, i) which is only a perturbative effect in the non-degenerate case,
but we include a small dissipation (µj = 10−2). In order to dynamically investigate the near-
degenerate OPO regime for D = 0, we start from the approximate stationary solutions (11)
with a group velocity difference (temporal walk-off) |vs−vi|/vp = 1/128. In the near-degenerate
OPO case, the feedback R = |ρs|2 = |ρi|2 is related to the dimensionless length L through the

relation u2
p(L) − Ru2

s(L) = D2, which is now simply reduced to R = [1 + L
√

(1 − d2)/α]−2.
Therefore, we may investigate the near-degenerate OPO dynamics by varying the control pa-
rameter L from 0.25 to 0.5. As expected from the stability analysis, we now find a regular
Hopf bifurcation of the stationary state towards a time-dependent oscillatory state for a critical
length Lcrit between 0.35 and 0.4, in contrast to the full degenerate case [19] or to the near-
degenerate case D = 0 in the absence of temporal walk-off [cf. section 3.2.1], where no Hopf
bifurcation exists. The stationary spatial profiles are shown in figure 5 after 16384 round trips
for L = 0.35. This stationary state bifurcates towards a stable oscillatory regime as illustrated
in Fig. 6 for L = 0.4. For a larger length L (and correspondingly smaller feedback R) we ob-
tain pulsed regimes as that shown in figure 7 whose stability is ensured by the finite temporal
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walk-off too, without taking into account any dispersion effect (cf. 8).

The dynamical equations (6) allow us to look further for D 6= 0, while the control parameter
L (since R is only a function of K for D = 0) splits now into two control parameters L and R
related through u2

p(L) − Ru2
s(L) = D2. For L = 0.25 we obtain the Hopf bifurcation between√

R = 0.80 and 0.81, while for L = 0.5 it happens between
√

R = 0.81 and 0.82, the pulsed
regimes corresponding to lower feedback favors the localization of the structure [11]. For a typ-

ical pulsed regime at L = 0.5 and
√

R = 0.81, we show in figure 8 the saturation of the pulse
maximum amplitude with time when starting from the stationary state, and in figure 9 a pair
of two consecutive pulses in the asymptotic stable state (the width δt is measured in tr = ℓ/vs

units). As can be seen from figure 10 the solitary structure is now composed of two embedded
pulses of nearly identical amplitudes moving together, the constant spatial shift between them
corresponds to the temporal walk-off (or different group velocities). The trapping between the
signal and idler envelopes yields the new self-similar structure moving at a characteristic ve-
locity, which is composed of the couple of embedded pulses maintaining constant spatial shift
between them in spite of the different velocities of both waves.

Let us consider a physical application. In comparison to the type I (e-e) polarization interac-
tion in LiNbO3 proposed in section 3.2.1 and Ref. [19] for the full-degenerate case, we may now
consider a type II (e-o-e) polarization interaction in order to move away from the degeneracy and
to obtain a finite group velocity delay (or temporal walk-off) between the signal and the idler
waves. For the same quadratic χ(2) material, same pump wave (e-polarized) at λp = 0.775 µm,
the same idler wave (e-polarized) at λi = 1.55 µm, but now a signal wave (o-polarized) at
λs = 1.55 µm having a different refractive index, the group velocity dispersion ensures a finite
temporal walk-off between both backward waves. For a first order QPM in LiNbO3 the grating
pitch is as small as ΛQPM = 2π/KG = 0.177 µm. For a c.w. pump field Ep = 0.725 MV/m
(i.e., a pump intensity of Ip = 100 kW/cm2) propagating in this configuration we have the
following values of the parameters [30]: deff = 6 pm/V, np = 2.181, ns = 2.212, ni = 2.140,
vp = 1.317 × 108 m/s, vs = 1.323 × 108 m/s, vi = 1.372 × 108 m/s, γp = 4.6 × 108 s−1, and
γs = γi = 3.1 × 108 s−1. The nonlinear characteristic time yields τ0 = (σpAp/2)−1 ≃ 0.94
ns, and the nonlinear characteristic length Λ = vpτ0 = 12 cm. We have taken cavity lengths
running from 3 cm (L = 0.25) to 6 cm (L = 0.5) and we obtain a temporal width of the solitary
pulses of the order of 100 ps.

Critical bifurcation parameters for doubly resonant backward OPOs with different nonlin-
ear coupling coefficients σj and different feedback parameter values (ρs 6= ρi) may be obtained
through the general dynamical equations (1) with boundary conditions (7). Figure 11 displays

a typical self-pulsing regime for σs/σp = 0.675, σi/σp = 0.350, L = 1, β̃j = 10−6, j = {p, s, i},
ρs = 0.9 and ρi = 0.6. As can be seen from this figure the predicted stability of the self-pulsing
regime is not affected by the presence of chromatic dispersion.

5 Backward coherent pulse from incoherently pumped mirrorless OPO

The numerical dynamics of a c.w. pumped singly backward OPO, experimentally adapted for
an integrated cavity or IOPO (see for exemple [31–34]), either for counter-propagating signal
or for counter-propagating idler does not generate backward solitary structures. Even for high
OPO finesses the laser output is always stationary. Note that this does not contradict the exis-
tence of backward solitons in singly counter-propagating configurations if the backward wave is
initially localized [2] [3] [25]. It simply means that such solitary waves cannot be spontaneously
generated from quantum noise and a c.w. pump. Nevertheless, we shall see in this section that
the singly backward OPO configuration is interesting from another point of view, namely the
generation of a coherent backward pulse from an incoherent pump pulse. In this section we
will show that recent experimental demonstration of a backward mirrorless optical parametric
oscillator (BMOPO) with a pump pulse in the quasi-phase-matched (QPM) periodic polarized
KTiOPO4 crystal [24] opens the way for achieving ultra-coherent output through two distinct
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phase-locking mechanisms, which originate respectively in the convection and the dispersion
properties of the three interacting waves.
(i) The incoherence of the pump is absorbed by the co-propagating wave moving at the same
group velocity of the pump through the convection-induced phase-locking mechanism [25] [35]
[36] [37].
(ii) The incoherence of the pump is absorbed by the co-propagating wave having the same
group-velocity dispersion as the pump [38].
In both cases the incoherence of the pump is transferred to the co-moving field, which permit-
sthe backward field to reach a highly coherent state.
The first mechanism (i) requires a matched group-velocity for the pump and the co-propagating
idler wave, which may be achieved in a type I OPO for a pump at 1.060 µm, a counterpropa-
gating signal at 1.534 µm and an idler at 3.422 µm. We will show that the degree of coherence
of the backward signal field turns to be more than four orders of magnitude greater than that
of the incoherent pump, with approximately the same pump power and crystal length as in the
experiment [24].
The alternative phase-locking mechanism (ii) takes place for matched group-velocity disper-
sion coefficients of the co-propagating waves. This may occur using almost the same wavelength
triplet as in [24] and a QPM grating period slightly longer, but using a type II configuration
of the KTP crystal. The (y-polarized) pump and the co-propagating (z-polarized) signal have
the same group-velocity dispersion and the numerics shows that a compensation of the group-
velocity difference may occur. In this case the coherence of the idler field is shown to increase
more than three orders of magnitude.

Parametric interaction of counterpropagating optical waves has the unique property of au-
tomatically establishing distributed feedback without external cavity mirrors; the mirrorless
optical parametric oscillator has been the object of several studies [28] [39] [21] [40]. The recent
BMOPO experiment exhibits useful spectral properties and has been performed in a configu-
ration of type I at λp = 0.8214 µm, λs = 1.1397 µm and λi = 2.9408 µm with a grating period
of ΛQPM = 0.8 µm. This singly backward configuration overcomes the extremely low sub-µm
grating periodicity required for the doubly backward OPO (cf. sections 3 and 4).

We have already proposed two experimental configurations in type II singly resonant KTP
IOPO’s [36] and in a type I {eee} singly resonant Ti:LiNbO3 IOPO [37], to show the mechanism
(i) in standard high finesse forward propagating OPO’s feeded with a c.w. pump. We will show
in this section the feasibility of coherent backward generation from an incoherent pump pulse
in different mirrorless (without external feedback) BMOPO configurations feeded with a pulse
pump.

5.1 MOPO threshold and dynamical equations

A theoretical model yields an estimate of the MOPO threshold for counterpropagating plane
waves [21], which is reached when the spatial gain exceeds π/2 :

Ipth =
ε0cnpnsniλsλi

2ℓ2d2
eff

(16)

where ε0 is the permittivity of free space, ℓ the interaction length, deff the effective quadratic
nonlinear coefficient, and ns,i, λs,i the respective signal and idler refractive index and wave-
length. For exemple, for a PPKTP crystal of deff = 8 pm/V we have:

ℓ = 1 cm =⇒ Ipth = 0.64 GW/cm
2

; ℓ = 5 mm =⇒ Ipth = 2.56 GW/cm
2
.

This threshold is somewhat higher for an incoherent pump when condition (i) is not fulfilled,
but it turns to be the same for strictly a random phase fluctuating pump [37]. The momem-
tum mismatch for the optical parametric generation process for the singly backward QPM
configuration yields now
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kp = ±ks ∓ ki + KG, (17)

where (+ks,−ki) stands for backward idler propagation and (−ks, +ki) for backward signal
propagation [cf. figure 1 respectively (a) and (b)], whith a resulting larger QPM grating period
as that of the doubly backward OPO configuration. The schematic vector diagram and period-
ically domain-inverted ferroelectric crystal of the counterpropagating interaction are shown in
figure 1, and equations (1) become:

(∂t + vp ∂x + γp + iβp∂tt) Ap = − σpAsAi

(∂t ± vs ∂x + γs + iβs∂tt) As = σsApA
∗
i (18)

(∂t ∓ vi ∂x + γi + iβi∂tt) Ai = σiApA
∗
s .

with respectively (+vs,−vi) for the backward idler propagation and (−vs, +vi) for the backward
signal propagation.

5.2 BMOPO I actual experimental realization

The QPM three-wave resonant coupling in the experimental achieved BMOPO of type I in a
bulk PPKTP crystal correspond to the following parameters [24]:

λp = 0.8214µm; np = 1.8434; vp/c = 0.5240; βp = 0.2736 ps2/m

λs = 1.1397µm; ns = 1.8270; vs/c = 0.5357; βs = 0.1613 ps2/m

λi = 2.9408µm; ni = 1.7846; vi/c = 0.5373; βi = −0.3269 ps2/m

where
ΛQPM =

[np

λp
− ns

λs
+

ni

λi

]−1
= 0.8012 µm

∆v/vs = |vp − vs|/vs = 0.02184 ≃ 1/46,

and the counter-propagation interaction corresponds to figure 1(a). The experimental point of
operation is plotted on the group-velocity dispersion curves shown in figure 12.

Let us show the dynamical behaviours for a BMOPO of 7 mm length pumped with a 60 ps
pulse duration of Ip = 1.6 GW/cm2 maximum intensity and increasing incoherence character-
ized by a frequency bandwidth ∆νp running from 220 GHz to 1.5 THz. Figures 13 to 16 show
the respective outcoming field amplitudes versus time and their corresponding power spectra.
We see that despite the fact that neither condition (i) nor condition (ii) are strictly satisfied,
the backward configuration leads to the generation of a highly coherent idler field. We will see
in the next section that this effect can be improved by satisfying condition (ii) in a type II
configuration. This configuration is characterized by a smaller nonlinear coefficient but a larger
QPM grating pitch. We will consider in the last section the case where condition (i) is fulfilled.

5.3 BMOPO II for exact dispersion mismatch

In order to improve the coherence transfer we will first use mechanism (ii) which has been
described in [38]. However, to obtain a good dispersion mismatch between the co-propagating
pump and signal waves (βp = βs) we propose the following type II configuration in PPKTP:

λp = 0.821µm; np = 1.7555; vp/c = 0.5550; βp = 0.1921 ps2/m

λs = 1.028µm; ns = 1.8314; vs/c = 0.5329; βs = 0.1921 ps2/m

λi = 4.077µm; ns = 1.6821; vi/c = 0.5556; βs = −0.8616 ps2/m
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where

ΛQPM =
[np

λp
− ns

λs
+

ni

λi

]−1
= 1.30 µm

∆v

vp
=

|vp − vs|
vp

= 0.04 ≃ 1/25.

This backward interaction is also illustrated schematically in figure 1(a). Now the y-polarized
pump and the co-propagating z-polarized signal have the same group-velocity dispersion and
the dynamics will prove compensation of the group-velocity difference between these waves.
The proposed point of operation is plotted on the group-velocity dispersion curves shown in
figure 17. We perform the numerical dynamics from equations (18), with (+vs,−vi), taking a
highly incoherent ns pump pulse duration of 25 THz bandwidth and a higher maximum pump
intensity Ip = 2.8 GW/cm2 in order to compensate the lower effective nonlinear coefficient,
namely deff = 6 pm/V. Figures 18 and 19 reveal a remarkable coherence transfer from the
pump to the signal, so that the backward idler field turns out to be highly coherent.

As we can see, the signal spectrum exhibits a significant frequency shift ∆νshift. The fre-
quency shift is such that the signal group-velocity approximately matches the pump group-
velocity, namely ∆v/vs ≃ 2π∆νshiftvsβs, as expected from [38]. However, because of the finite
pulse duration of the interaction we do not reach an asymptotic behavior. Nevertheless, let us
underline the gain of coherence in the idler field, which exceeds three orders of magnitudes.

5.4 BMOPO III for exact group velocity mismatch

Let us now consider the situation where the two co-propagating waves have the same group
velocity which relies on the convection-induced phase-locking mechanism (i.), already proposed
for c.w. pumped OPO’s [36] [37]. In order to benefit of a type I configuration in PPKTP,
the singly backward wave may be now the signal, the co-propagating pump and idler waves
satisfying vp = vi; this interaction corresponds to the counter-propagation schema shown in
figure 1(b). The proposed point of operation is plotted on the group-velocity dispersion curves
shown in figure 20 and the type I configuration may be the following:

λp = 1.060µm; np = 1.8300; vp/c = 0.5338; βp = 0.182 ps2/m

λs = 1.534µm; ns = 1.8163; vs/c = 0.5401; βs = 0.076 ps2/m

λi = 3.429µm; ni = 1.7709; vi/c = 0.5338; βi = −0.579 ps2/m

where

ΛQPM =
[np

λp
+

ns

λs
− ni

λi

]−1
= 0.4177 µm

∆v

vp
=

|vp − vi|
vp

= 0

We perform the numerical dynamics from equations (18) with (−vs, +vi) taking a similar highly
incoherent ns pump pulse duration of 25 THz bandwidth. However, we consider maximum pump
intensity of only Ip = 1.6 GW/cm2, since we take advantage of the greater effective nonlinear
coefficient, namely deff = 8 pm/V. The experimental constraint turns to be here the short
QPM grating pitch ΛQPM required for the first order interaction. Figures 21 and 22 show that,
as expected, the pump transfers its noise to the idler field, which thus leads to the generation
of a highly coherent backward signal pulse. As remarkably shown in the figures, the gain of
coherence now exceeds four orders of magnitude.
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5.5 Convection-induced phase-locking mechanism

The coherent properties of the parametric three-wave interaction driven from an incoherent
pump has been the object of an analytical study where the autocorrelation functions are math-
ematically evaluated in the presence of dispersion [35] and the convection-induced phase-locking
mechanism has been proposed for forward OPO’s configurations [36] [37]. Let us present here
some simple analytical arguments enlighting the mechanism (i) from equations (18) for the
singly backward signal configuration [case (b) of figure 1], Let us assume the dispersioless case
(βj = 0), σs = σi = σp/2 = σ, and the linear undepleted pump limit with γp = 0.
The incoherent pump may be modeled by a stationary single-variable stochastic function Ap(z)
of autocorrelation function

〈Ap(z − z′)A∗
p(z

′)〉
|Ap(0)|2 = exp(−|z|

λc
)

with a coherence length λc in the frame traveling at its group velocity vp,

z = x − vpt,

the correlation time being τc ≃ 1/π∆νp, where ∆νp is the incoherent (broad)-bandwidth of
the pump spectrum. The role of convection in the coherence of the generated waves As and
Ai may be analyzed by integrating the third equation (18) along the characteristic of the idler
wave. Then, the second equation (18) yields

DAs = σ2

∫ t

0

e−γi(t−t′)Ap(z)A∗
p(z

′)As(x
′, t′)dt′

where
D = ∂/∂t− vs∂/∂x + γs

z′ = z − (vi − vp)(t − t′) ; x′ = x − vi(t − t′)

If vi = vp we have z′ = z and we can extract the pump amplitudes from the integral

Ap(z)A∗
p(z

′) = |Ap(z)|2,

showing that the signal dynamics is independent of the pump phase fluctuations Φp(z).
This means that the rapid random phase fluctuations of the pump do not affect the signal

which undergoes slow phase variations and thus evolves towards a highly coherent state during
its parametric amplification.
Let us now consider the idler wave from the third equation (18):

Ai(x, t) = σ

∫ t

0

e−γi(t−t′)Ap(z
′)A∗

s(x
′, t′)dt′.

When vi = vp we have z′ = z and Ap(z
′) becomes independent of t′ which leads to an idler

amplitude Ai proportional to the pump amplitude Ap i.e., the idler field absorbs the noise of
the co-moving pump field. Note that this pump-idler phase-locking mechanism does not require
an exact matching of the group-velocities vi = vp. It is indeed sufficient that

|vi − vp| ≪ λcγi = vptcγi,

to remove the pump field from the integral so that the idler field follows the pump fluctuations.
This phase-locking mechanisms may be demonstarted in realistic experimental configurations
as studied in details in Ref.[35].
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6 Conclusion

We have shown by a stability analysis of the non-degenerate backward OPO where both the sig-
nal and idler fields propagate backward with respect to the direction of the pump field that the
inhomogeneous stationary solutions regularly bifurcate towards a time-dependent oscillatory
solution contrarily to the degenerate case. We obtain a regular Hopf bifurcation for a critical
interaction length Lcrit, which is finite only if a finite group velocity delay between the signal
and the idler waves is taken into account.
This result has been confirmed by numerical simulations of the nonlinear dynamic equations,
and an excellent agreement has been obtained near the degenerate configuration. Above Lcrit

self-structuration of symbiotic backward solitary waves - of some ps temporal duration - takes
place. The finite temporal walk-off between the backscattered signal and idler waves also ensures
the stability of the solitary waves. These short stable and coherent pulses could be very inter-
esting for optical telecommunication. However, the susceptibility inversion grating of sub-µm
period required for QPM in the nonlinear quadratic materials is still a technological challenge.

Finally we have shown that singly backward mirrorless OPO’s (BMOPO’s) pumped by an
incoherent field are characterized, as a general rule, by the generation of a highly coherent
backward field. This remarkable property finds its origin in two distinct phase-locking mecha-
nisms. (i) The convection-induced phase-locking mechanism, in which the incoherence of the
pump is absorbed by the co-propagating wave moving at the same group-velocity [25] [35] [36]
[37]. (ii) The dispersion-induced phase-locking mechanism, in which the incoherence of the
pump is absorbed by the co-propagating wave that exhibits the same group-velocity dispersion
as the pump [38]. In both cases the incoherence of the pump is transferred to the co-moving
field, which allows the backward field to evolve towards a highly coherent state. On the basis
of the recent experiment reported in [24], we proposed realistic experimental conditions that
may be implemented with current technology and in which backward coherent wave generation
from incoherent excitation may be observed and studied. Let us finally note that it would be
interesting to analyze theoretically these phenomena by making use of the kinetic wave the-
ory [41], in line with the recent works on optical wave thermalization [42] and condensation [43].
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Fig. 1. Wave vector diagrams (momentum conservation) for the non-degenerate three-wave interaction
in: a singly backward idler configuration (a); a singly backward signal configuration (b); and a doubly
backward (signal and idler) configuration (c). As we can see the QPM grating show a decreasing
phase-reversal period for the nonlinear susceptibilty represented by the bold broken lines under each
configuration.

Fig. 2. Envelopes of the dissipative three-wave solitary solution.
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Fig. 3. Degenerate backward OPO: Pulse maximum amplitude vs. number of round trips t/tr (where
tr = ℓ/vs is the round-trip time) at the output of the backward OPO cavity exhibiting the unstable
temporal process; numerical solution of the degenerate equations derived from equations (1) by starting
from the inhomogeneous steady solution. The lower inset graph shows the generated pulse structure
before saturation, which takes place about 6000 round trips, when the pulse is so steep that dispersion
breaks the unlimited amplification by modulating the pulse. The upper inset graph shows the time-
dependent modulated structure. Dimensionless parameters are: L = ℓ/Λ = 1; ρs =

√
R = 0.46;

βs/τ0 = 5 × 10−6.
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Fig. 4. Evolution of the imaginary part of the pulsation ω as a function of the length L close to the
first cavity mode (with Re(ω) ≃ 2π/L). The transition from stable to unstable states is obtained for
Lcrit ≃ 0.39.

Fig. 5. Doubly resonant backward OPO: asymtotic stationary spatial profiles at round trip 16384 for
L = 0.35 below critical length.
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Fig. 6. Doubly resonant backward OPO: temporal oscillatory regime for L = 0.4 above critical length.

Fig. 7. Doubly resonant backward OPO: temporal pulsed regime for a length L = 0.5.
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Fig. 8. Doubly resonant backward OPO: pulse maximum amplitude vs. number of round trips t/tr

(where tr = ℓ/vs is the round-trip time) at the output of the backward OPO cavity exhibiting stable
saturation at a constant amplitude.

Fig. 9. Doubly resonant backward OPO: temporal evolution of a pulse train at the output of the OPO
cavity. Pair of two consecutive pulses at round trip t/tr = 28608 for L = 0.5 and ρs = ρi = 0.81. The
amplitude is measured in |Ap,o|/

√
2 units.
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Fig. 10. Doubly resonant backward OPO: spatial profiles for the three wave amplitudes at round trip
28672.

Fig. 11. Doubly resonant backward OPO: temporal amplitude signal output of the backward OPO in
the stable asymptotic pulsed regime measured in cavity round trips t/tr for L = 1, ρs = 0.90 ρi = 0.60
and β̃j = 10−6, j = p, s, i.
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Fig. 12. BMOPO I: Group-velocity dispersion for KTiOPO4 at 20 oC. Experimental achieved point
of operation for the type I configuration [24].
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Fig. 13. BMOPO I: Temporal field amplitude output of pump (a), signal (b) and counterpropagating
idler (c) waves in the achieved experimental configuration [24], for a pump of ns temporal duration and
220 GHz incoherent bandwidth.

Fig. 14. BMOPO I: Respective power spectra of pump (a), signal (b) and counterpropagating idler
(c) [(d) in log scale] for the incoherent pump of 220 GHz bandwidth, showing a coherence transfer rate
∆νi/∆νp ≃ 1/30.
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Fig. 15. BMOPO I: Temporal field amplitude output of pump, signal and counterpropagating idler
waves in the achieved experimental configuration [24], for an incoherent pump of 1500 GHz bandwidth.

Fig. 16. BMOPO I: Respective power spectra of pump (a), signal (b) and counterpropagating idler
(c) [(d) in log scale] for the incoherent pump of 1500 GHz bandwidth, showing a coherence transfer
rate ∆νi/∆νp ≃ 1/600.
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Fig. 17. BMOPO II: Group-velocity dispersion for KTiOPO4 at 20 oC. Point of operation for dispersion
mismatch between pump and signal (βp = βs) as show the underneath curves.
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Fig. 18. BMOPO II: Temporal field amplitude output of pump (a), signal (b) and counterpropagating
idler (c) waves in the BMOPO II, for an incoherent pump of 25 THz bandwidth.

Fig. 19. BMOPO II: Respective power spectra of pump (a), signal (b) and counterpropagating idler
(c) [(d) in log scale] for the incoherent pump of 25 THz bandwidth, showing a coherence transfer
∆νi/∆νp ≃ 1/2000.
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Fig. 20. BMOPO III: Group-velocity dispersion for KTiOPO4 at 20 oC. Point of operation for group
velocity mismatch (vp = vi) between pump and idler shown in the upper curves.
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Fig. 21. BMOPO III: Temporal field amplitude output of pump (a), idler (b) and counterpropagating
signal (c) waves in the BMOPO III, for an incoherent pump of 25 THz bandwidth.

Fig. 22. BMOPO III: Respective power spectra of pump (a), idler (b) and counterpropagating signal
(c) [(d) in log scale] for the incoherent pump of 25 THz bandwidth, showing a high coherence transfer
rate ∆νs/∆νp ≃ 1/8000.


