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Abstract
Background: The tools that are available to draw and to manipulate the representations of
metabolism are usually restricted to metabolic pathways. This limitation becomes problematic
when studying processes that span several pathways. The various attempts that have been made to
draw genome-scale metabolic networks are confronted with two shortcomings: 1- they do not use
contextual information which leads to dense, hard to interpret drawings, 2- they impose to fit to
very constrained standards, which implies, in particular, duplicating nodes making topological
analysis considerably more difficult.

Results: We propose a method, called MetaViz, which enables to draw a genome-scale metabolic
network and that also takes into account its structuration into pathways. This method consists in
two steps: a clustering step which addresses the pathway overlapping problem and a drawing step
which consists in drawing the clustered graph and each cluster.

Conclusion: The method we propose is original and addresses new drawing issues arising from
the no-duplication constraint. We do not propose a single drawing but rather several alternative
ways of presenting metabolism depending on the pathway on which one wishes to focus. We
believe that this provides a valuable tool to explore the pathway structure of metabolism.

Background
Metabolism visualization for systems biology studies
The scale of metabolic studies varies according to the data
and to the biological questions. For instance, toxicologists
often follow the degradation of a given molecule; in that
case they focus only on a very small number of reactions.
At a larger scale, biologists studying glycolysis will focus

on this particular metabolic pathway. Most of the work on
metabolism visualization has been done at this level of
detail [1-12]. However, in order to investigate an organ-
ism's metabolic response to stress, it is relevant to study all
the pathways simultaneously. For instance, this will be
useful for treating the results of high throughput experi-
ments such as transcriptomic data where relevant gene
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products are identified in many pathways. Visualization is
a suitable and obvious solution to achieve this kind of
study, for instance by representing all the metabolic path-
ways in one drawing and by coloring relevant enzymes
and metabolites [13-15]. In [16], the authors use this
approach to analyze simultaneously transcriptomic and
metabolomic data (they used Biocyc omics viewer [14]).
Based on this representation, they managed to identify at
once perturbations in the Calvin cycle, glycolysis and TCA
cycle. Such kinds of studies emphasize the necessity to
develop methods that allow to visualize the entire meta-
bolic network in a single drawing.

Highlighting pathways according to experimental data
provides some clues on metabolic processes. However, to
integrate these conclusions in a systems biology approach,
it is necessary to understand how these pathways are
linked and how processes span over them.

The issue of analyzing biological processes spanning sev-
eral metabolic pathways appears in many contexts. As we
already mentioned, it appears when analyzing metabo-
lomic or transcriptomic experiments, which are generally
not pathway-focused. This issue also arises for topological
analyses based on motif detection [17]. A motif (defined
as a set of reaction types) may occur in different parts of
the network (which illustrates the need to visualize the
whole network in a single picture), and each occurrence
may be composed of reactions belonging to different
pathways (which examplifies the need to explicitly visual-
ize the links between the pathways).

Therefore, pathway visualization is not suitable for such
tasks but neither is network visualization without path-
way information. Indeed, to be useful for mapping exper-
iments, it is necessary to represent the entire network
structure while keeping the contextual information pro-
vided by its division into metabolic pathways. Note that
this is one of the requirements for biological network vis-
ualization proposed in [18]. Recently, in addition to the
studies that use the network as a background, great efforts
have been devoted to the analysis of the topological prop-
erties of metabolic networks [19,20]. Indeed topology
could, for instance, give clues on the evolution of the
organisms they are related to. More generally, topological
features like shortest path, connectivity, node degrees and
node/edge metrics have become common investigation
tools. To visually retrieve topological information, it is
necessary that the drawing provides a faithful image of the
network structure. This is a challenging problem which
has not been addressed by current metabolic network vis-
ualization tools [13,14] which choose to allow node
duplication and therefore do not face this issue.

In the case where nodes are not duplicated, pathways
which share reactions and compounds cannot all be
drawn equally well (a well-drawn pathway being a path-
way having all its nodes drawn next to each other). There-
fore, choices have to be made on which pathways will be
drawn well in priority. We propose both an automatic way
of making this choice and possibilities for the user to
define his own priorities. This last option adds an interest-
ing feature to the tool: depending on the choices made,
the backbone of metabolism (the set of well-drawn path-
ways) can be adjusted to the pathways one is interested in.
This backbone can either include the glycolysis and the
TCA cycle as it is traditionnally the case in most drawings
or, alternatively, it can include pathways that share com-
pounds or reactions with glycolysis and the TCA cycle and
which would, if not chosen, be drawn in the background.
Playing around with this option enables to get a grip on
the interdependence of the pathways.

The aim of this paper is to propose an algorithm to draw
the entire metabolic network. The produced representa-
tion will have to follow textbook drawing conventions
(see the following section), display information on the
metabolic pathways and keep the topology of the network
by avoiding node duplication.

Metabolic network drawing and visualization
Drawing metabolic pathways
A metabolic pathway (also called a metabolic map) is a
subnetwork of the metabolic network. The decomposi-
tion of the entire network into metabolic pathways is gen-
erally done according to biological functions: molecule
degradation (catabolism), molecule synthesis (anabo-
lism) or energy transfer [21]. Until recently, these path-
ways have been manually drawn, for instance for teaching
purposes, or to exchange results [22,23]. Then, numerical
versions of these manual drawings were proposed and
used on web servers such as KEGG [3,24].

In the last few years, automatic drawing algorithms have
been designed, mainly for two reasons. First the number
of organisms for which a metabolic network is described
is increasing quickly. Indeed, in silico methods have been
designed to reconstruct metabolic pathways from anno-
tated genomes [25] which are more and more numerous.
Second, these putative networks follow a regular curating
process implying many changes in their structures. In this
section, we describe the algorithms that have been pro-
posed for drawing metabolic pathways since they could
be extended to the entire network.

Because biologists are used to textbook representations,
most of the automatic methods consist in following the
drawing habits of these representations [22]. Even if there
is no standard for these conventions, it is possible to iden-
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tify the most commonly used ones. Some of the aesthetic
criteria are also used in graph drawing [26-28]: lowering
the number of edge crossings and lowering the number of
bends on edges. Moreover, the biological nature of path-
ways implies some conventions. The notion of reaction
cascade is central since generally metabolic pathways
describe the transformation of input metabolites into out-
put ones. Most automatic drawing algorithms have been
designed to emphasize this structure. The algorithm pro-
posed in [5] and implemented in Biominer uses a hierar-
chical drawing algorithm which embeds nodes on regular
horizontal layers [29]. Others propose adapted versions of
classical hierarchical drawing algorithms, like in [6]
(implemented in BIOPATH [30]) or in [9] (implemented
in Wilmascope).

However, these algorithms do not emphasize cyclic pat-
terns which are also relevant (see for instance the TCA
cycle). Thus, other methods were designed to take into
account these two configurations. The first one was pro-
posed in [4] where the authors introduce a compound
graph layout algorithm, that is, they first detect cycles then
treat them as metanodes creating a Directed Acyclic Graph
(DAG) and applying a hierarchical drawing algorithm on
this DAG. In [10], the authors refine the approach by
detecting nodes shared by two cycles thus providing two
cyclic representations instead of one. Finally, [11] pro-
posed the same kind of approach for signaling pathways,
adding the ability to manually constrain the drawing.
However, all these algorithms were initially designed to
draw pathways and are not well adapted to draw net-
works. For instance, we tried to use the software SimWiz
which implements the algorithm proposed in [4] to draw
the metabolic network of Escherichia coli but the program
failed because the network was too large. We were never-
theless able to draw the metabolic network of Mus muscu-
lus, which is smaller. The result is shown in figure 1. In this
case, the main problem is due to the cycle detection which
is applied on the whole network thus highlighting cycles
that span over different pathways.

Scaling to the whole metabolic network
In the Graph Drawing community, efficient drawing algo-
rithms have been designed to draw large networks.
Among them, force-based layouts [31,32] are commonly
used. Such layouts mimic physical systems, that is, nodes
are considered as masses (or particles) and edges behave
as springs (or magnetic forces). This system evolves from
a random embedding to one corresponding to an equilib-
rium, providing a suitable layout. These algorithms gener-
ate quite good drawings since they generally emphasize
dense subgraphs and spread low degree nodes on the
screen space. They are used in Cytoscape [33] or in the
online SBML viewer [34] for instance. However, as men-
tioned in [18], such drawings are not satisfying for biolo-

gists. The first reason is that they do not follow textbook
drawing conventions, and the second is that they empha-
size topological clusters which generally do not corre-
spond to a metabolic pathway decomposition. To
overcome this last problem, force-based methods could
be used in a compound graph layout as it is done in [8]
(implemented in PatikaWeb [12]). However, this tool is
not dedicated to metabolic pathway visualization and
thus does not follow all textbook drawing conventions.

The two main efforts for automatically drawing metabolic
networks while keeping metabolic pathway information
and respecting drawing conventions are: Reactome [13]
and the Pathway Tools cellular overview diagram [14]. As
it was mentioned before, in both tools nodes are dupli-
cated thus the only drawing problem is to embed meta-
bolic maps. Both achieve it by grouping maps according
to their common functions. The latter assumes that a hier-
archy on the pathways is given as input to the algorithm
and is then used to display pathways close to each other
when they are close to each other in the hierarchy. This
functionality is not included in the current implementa-
tion of our algorithm. Nevertheless, it is still possible to
circumvent this problem by redefining coarse-grained
pathways (corresponding to groups of pathways of com-
mon functions) in the input data.

In the following sections, we first describe our metabolic
network drawing algorithm. Then we discuss our
approach and compare it to other published methods
using the metabolic network of Esherichia coli (E. coli) as
benchmark.

Implementation
Using a mixed bipartite graph to model metabolic 
networks
A graph provides an intuitive way of organizing large
amounts of relational data. The general definition of a
graph G = (V, E) is simple. It consists of a set V of n vertices
(|V| = n) and a set E of m edges, each of which corresponds
to a pair-wise relationship between two of the nodes (E ⊆
V × V). Modeling the metabolic network consists in
choosing which biological objects are associated to nodes
and edges. It is necessary to do this model description
before introducing the graph drawing algorithm, since it
will constrain the representation. For instance, a model
may imply that some nodes have a high degree, thus com-
plicating a planarization process.

Bipartite graph
A metabolic network is a set of biochemical reactions (i.e.
reactions that convert one or more compounds into one
or more other compounds). Different models could be
used (for a detailed discussion, see [35]). Here, we con-
sider that there are two kinds of nodes: reactions and sub-
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Mus musculus metabolic network drawn using SimWiz software implementing [10] algorithmFigure 1
Mus musculus metabolic network drawn using SimWiz software implementing [10] algorithm. This network appears to be 
smaller than the one of E. coli. This is simply due to the fact that our knowledge of mouse metabolism is very partial.
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strates (see Figure 2) and that there is an edge between a
reaction and a substrate if the substrate is consumed or
produced by the reaction. The discussion of this choice is
out of the scope of this paper, but the main motivation is
due to the use of this model in many textbook drawings.
This graph is generally called a bipartite graph since its set
of nodes can be split into two subsets where the elements
are not linked (no link between reactions and no link
between substrates). Thus the set of vertices can be split
into two subsets R = {v ∈ V |v is a reaction} and S = {v ∈
V |v is a substrate}, and V = R ⊕ S and E ⊆ {(u, v)|u ∈ R,
v ∈ S} = R × S.

Mixed graph
Metabolic reaction can be either reversible (i.e. it can
occur in both directions) or irreversible (i.e. it can occur in
only one direction). This orientation is defined according
to the physiological properties of a reaction. SBML
descriptions of reactions provide this kind of information.
In order to model such a biological phenomenon, we use
a mixed graph. In a mixed graph, the set E of edges is split-
ted in two subsets A and E', where A is the set of arcs (i.e.
oriented edges), E' is a set of non-oriented edges and E =
A ⊕ E'.

Thus, for modeling the whole network, we use a mixed
bipartite graph G = (R, S, A, E').

Graph hierarchy

A metabolic pathway is a subnetwork of the metabolic
network. Here, it corresponds to a graph Gp = (Vp, Ep)

where Vp ⊂ V and Ep = {(u, v) ∈ E|u ∈ Vp and v ∈ Vp} ⊂ E

(i.e. Ep is the set of edges and arcs induced by Vp on E). For

a given metabolic network G, we note PG = {Gi| 1 ≤ i ≤ np}

its np metabolic pathways. One can notice that for each Gi,

Vi and Ei can be decomposed in four subsets Ri, Si, Ai and

 (i.e. Gi is a mixed bipartite graph).

Taking pathways into account leads to the following
graph hierarchy : the graph G representing the whole net-
work and np induced subgraphs Gi representing its np met-
abolic pathways.

Drawing algorithm
The algorithm we propose has two main steps: first, a
multi-scale clustering is performed creating a quotient
graph (strictly speaking, the quotient graph is built by
considering isolated nodes as singletons), and second,
clusters and quotient graph are drawn using three drawing
algorithms. In the next section, we first explain our clus-
tering algorithm and then, we present the drawing algo-
rithms we use.

Multi-scale clustering
One of the main problems is that metabolic pathways
often share nodes. For instance, in Figure 3, the yellow,
blue and purple regions respectively represent pathways
p1, p2 and p3. One can see an overlap between p1 and p2
(one node) and between p2 and p3 (four nodes). This situ-
ation is not rare in real networks: in the E. coli metabolic
network, 658 nodes (out of a total of 1140) are shared
between several pathways, and the average number of
pathways per node is more than 2.4. Since we choose not
to duplicate nodes, and since vertices of a pathway have to
be drawn next to each other, our algorithm has to decide
whether a node is embedded next to a pathway or next to
another. For example, the shared node between p1 and p2
could be drawn near p1 or near p2. This is achieved by a
two-step process. The first step consists in computing an
independent set of pathways (i. e. a set of pathways which
do not share nodes) and the second one in detecting
cycles and paths.

First pass : computation of an independent set of pathways

First of all, the algorithm searches for a subset Pind = {p1,

..., pind}, ind ≥ 1, Pind ⊆ PG such that 1. the pathways of Pind

are independent and 2.  is maximized. For

instance, in Figure 3a, {p1, p3} is the independent set that

maximizes this sum among all possible independent sets
of pathways ({p1}, {p2},{p3}, {p4}, {p5}, {p1, p3}, {p1,

p4}, {p1, p5}, {p2, p4} and {p4, p5}).

The problem of finding a maximum independent set is
known to be NP-Hard [36]. This problem can be reduced
to a coloration problem (the graph is then the depend-
ence graph, where each pathway corresponds to a node
and there is an edge between two nodes when the path-
ways share nodes in the original graph). To find a solu-
tion, we use the Welsh and Powel heuristic [37]. Then, for

each color class C,  is computed, and a maxi-

mum one is chosen as our independent set.

Let PNind = PG\Pind. Then, for all the pathways in PNind, we

exclude nodes that are shared with at least one other path-

way in PG. We denote this reduced set by .

Each element of Pind and  is a set of nodes. These sets

define a clustering on the original graph since there is no
overlapping between them. This clustering is used by
replacing each subgraph induced by an element of Pind or

′Ei

pii
i ind
=
=∑ 1

pip Ci∈∑

′PNind

′PNind
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 by a metanode representing it (see Figure 3b). We

call this first clustered graph Gclust1.

For all the pathways in Pind and in , we search for the

longest independent mixed cycles (Cycles C1 and C2 are

independent if C1 and C2 do not share any node). A mixed

cycle is a sequence of nodes v1, v2, ..., vl, l ≥ 3 such that ∀

1 <i ≤ l, (vi-1, vi) ∈ E' ∪ A and (vl, v1) ∈ E' ∪ A.

Moreover, ∀ 1 <i <l, if vi represents a reaction and vi-1 a

substrate consumed in (resp. produced by) this reaction,
then vi+1 is produced by (resp. consumed in) vi. This prob-

lem is also NP-Complete even if A = ∅ [36]. To "solve" it,
we use an exact maximum length cycle algorithm and
bound the computation time with a threshold. If the
threshold is reached, we stop the algorithm and consider
that the longest mixed cycle we have already found is a
longest one. This allows to have an exact result in the best
case and an approximation of a longest mixed cycle other-
wise. The technique computes all mixed paths using a
mixed breadth-first search (BFS). In Figure 3c, one can see
the longest independent cycles of each element of Pind and

 highlighted in red. These cycles are clustered into

metanodes yielding a multi-scale graph called Gclust2. For

all the metabolic networks on which we tested our algo-

rithm, the threshold was not reached (i.e. we found an
exact solution).

Second pass : detection of cycles and paths
The next step of the algorithm consists in computing the
longest independent mixed cycles in Gclust2, excluding
metanodes. At each iteration, we cluster a longest cycle
into a metanode and exclude it for the next search. We
then compute the longest mixed paths, i.e. the longest
sequences of nodes of degree less or equal to two v1, v2, ...,
vl, l ≥ 2, where ∀1 <i ≤ l, (vi-1, vi) ∈ E' ∪ A.

In figure 3d, one can see the two new metanodes, the left
one is a path and the other one is a cycle. The result of this
clustering is the quotient graph that will be the input of
the drawing algorithm.

Drawing algorithm
To draw the metabolic network, we use three drawing
algorithms: one for the quotient graph and two for the
metanodes.

Drawing metanodes
To draw subgraphs represented by metanodes, we use a
recursive drawing algorithm. This algorithm draws all the
subgraphs from the most nested to the least nested.
According to our clustering method, a subgraph is either a
cycle or an acyclic graph. In the first case, we use a circular
drawing algorithm (see figure 4); in the second case, we
use the hierarchical drawing algorithm presented in [38].

′PNind

′PNind

′PNind

Bipartite graph describing two biochemical reactionsFigure 2
Bipartite graph describing two biochemical reactions.
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Algorithm overviewFigure 3
Algorithm overview. (a) a network where each pathway is depicted by a color (b) clustering according to metabolic path-
ways overlapping (c) cycles detection in metanodes (d) cycles and paths detection (e) final representation
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Whole metabolic network of E. coli drawn by MetaVizFigure 4
Whole metabolic network of E. coli drawn by MetaViz. The metanodes in purple represent metabolic pathways com-
pletely drawn. The metanodes in yellow correspond to specific structural schemes (chains or cycles) found by MetaViz.
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Drawing the quotient graph
We want a drawing that optimizes the angular resolution
and the number of bends to obtain a better visibility. The
Mixed-Model algorithm of C. Gutwenger and P. Mutzel
[39] is a trade-off between all these aesthetic criteria.
Moreover, drawings produced by this algorithm are simi-
lar to manually drawn metabolic networks.

To use the Mixed-Model algorithm, we need to make
modifications on the quotient graph. Indeed, it can only
be applied to planar graphs; therefore, we have to
planarize (i.e. make it planar) the quotient graph. This
problem is well-known and is NP-Hard [40]. Many tech-
niques exist that do it either by augmentation or by dele-
tion of edges (or nodes). For a survey on this topic, one
can refer to [41]. The drawback of an augmentation based
technique is that it may add up to |V|4 nodes, thus the

drawing becomes difficult to understand. That is why we
use our own heuristic: vertices of higher degree are
removed one by one until the graph becomes planar. All
removed nodes are then re-inserted. Removed edges are
re-added one by one as long as the graph is planar.

The re-insertion of edges for each node is done with no
prior order, using a greedy approach. The edges that have
been removed and not re-inserted during the planariza-
tion step will be re-inserted after the planar subgraph is
drawn.

The obtained planar subgraph of the quotient graph is
drawn by the Mixed-Model algorithm [39]. To summa-
rize, this algorithm has two steps :

Whole metabolic network of E. coli drawn by CytoscapeFigure 5
Whole metabolic network of E. coli drawn by Cytoscape.
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• The first step builds an ordered partition of the set of
nodes. This partition is called shelling ordering. The prin-
ciple is to remove successively nodes that are on the exter-
nal face of the graph.

• The second one is the "recomposition" of the graph
according to the shelling ordering. To guarantee that there
is neither edge-edge crossing nor node-edge overlapping,
the ordering is traversed in reverse order.

As described in the background section, if a vertex is in a
pathway, it has to be drawn close to the other vertices of
the pathway. Taking into account such a constraint in the
Mixed-Model algorithm can be done during the decom-
position phase. Let SO = {V1, V2, ..., Vr} be the shelling
ordering. When a vertex n is added to a set Vi, 1 ≤ i < r, we
add in priority vertices which have a constraint with n into
the next Vj, j > i. Those nodes will be more likely to be
drawn next to each other.

The last step of our drawing algorithm is to draw edges
removed during the planarization step. These edges are
routed on the external face, using an orthogonal drawing
with three bends per edge. Figure 4 shows the drawing
obtained by our algorithm on the metabolic network of E.
coli. This is an organism which has been widely studied, its
metabolism is composed of 198 pathways, 1140 sub-
strates and reactions (i.e. nodes) and 1321 links (i.e.
edges) between them.

Parameter: focus pathways
The algorithm allows to focus on several pathways, i.e.
one can choose pathways to be entirely clustered. Users
constrain the independent set algorithm by giving an
ordered list of pathways that are clustered if possible.
Indeed, such a list may not be represented by an inde-
pendent set in the dependence graph (i.e. one or more
nodes are shared by pathways of the list). In this case, the
order of the list gives the priority associated to each path-

Whole metabolic network of E. coli drawn by the Pathway Tools cellular overview diagramFigure 6
Whole metabolic network of E. coli drawn by the Pathway Tools cellular overview diagram.
Page 10 of 19
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way and helps to extract an independent set of pathways
from the list. Nodes representing those pathways and
their neighbors are removed from the dependence graph.
An independent set is then computed in the resulting
dependence graph. The final independent set is obtained
by adding this independent set and those computed in the
list.

Results
Data
To test and validate the algorithm, we used data from the
version 10.0 of the EcoCyc database. We developed perl
scripts using the pathway tools software [42-44] to obtain
information on the reactions, compounds and metabolic
pathways involved in the metabolism of the K12 strain of
Escherichia coli. We chose this organism because it is per-
haps the most curated one and we thus avoid most of the

data artifacts caused by automatic reconstructions of
metabolism.

Several filters are applied on the original data to build our
test data. The first one is to withdraw reactions involving
large molecules such as proteins. Next, we remove reac-
tions that are involved in no identified metabolic path-
way. The last filter has for objective to avoid ubiquitous
compounds. Indeed, co-factors such as ATP and NADH
participate in many reactions and form hubs in the net-
work which lead to a very fuzzy drawing. One traditional
way around this problem is to eliminate the most con-
nected compounds but this implies that metabolic path-
ways that have these compounds as final products or as
precursors become meaningless. We therefore prefer
another solution which consists in eliminating the con-
nection between a compound and a reaction if the com-
pound is annotated in EcoCyc as "secondary" in each

The superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypassFigure 7
The superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass. (a) In MetaViz. The nodes 
corresponding to the TCA cycle are surrounded in pink. (b) In BioCyc.
Page 11 of 19
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metabolic pathway that contains the reaction. A com-
pound is defined as "primary" in a BioCyc metabolic
pathway when it is a direct chemical intermediate
between the start substrate(s) and the end product(s) and
is defined as "secondary" when it is a sub-product or a sec-
ondary substrates (e.g cofactors) of the metabolic path-
way.

It is important to note that this filter leads to a clearer
drawing but any kind of compound filter could be
applied. In the same way, the classification of the reac-
tions in the EcoCyc-defined metabolic pathways was an
easy way to test our algorithm but other classifications
could be used, for instance a decomposition into elemen-
tary modes [45] or extreme pathways [46]. A metabolic
pathway, as defined in BioCyc, can be either a linear chain

of reactions, a branched pathway, a cycle: this topological
diversity is interesting for testing our drawing algorithm.

The data is stored in a SBML file [47] and computed by
MetaViz. The information about the belonging of each
reaction is directly included in the SMBL file as shown
below in the entry of one reaction which belongs to three
different metabolic pathways:

...

<reaction id="DIHYDROFOLATEREDUCT__45__RXN"
name="DIHYDROFOLATEREDUCT-RXN" reversi-
ble="true">

<notes>

Valine Biosynthesis pathway in MetaViz, without choosing the metabolic pathway to be well drawnFigure 8
Valine Biosynthesis pathway in MetaViz, without choosing the metabolic pathway to be well drawn. The corre-
sponding nodes are surrounded in pink and we can see that they are shared by 3 metanodes.
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<html:p>SUBSYSTEM: tetrahydrofolate biosynthe-
sis</html:p>

<html:p>SUBSYSTEM: superpathway of chorismate</
html:p>

<html:p>SUBSYSTEM: formylTHF biosynthesis I</
html:p>

</notes>

<listOfReactants>

<speciesReference species="THF" stoichiometry="1"/
>

</listOfReactants>

<listOfProducts>

<speciesReference species="DIHYDROFOLATE" stoi-
chiometry="1"/>

</listOfProducts>

</reaction>

...

After the filtering, the SBML file contains :

• 553 compounds and 597 reactions (the nodes of the
network represented in Metaviz)

• 198 metabolic pathways of which 30 are superpathways,
i.e. pathways which contain other pathways.

Validation
The protocol we adopted for the validation is the follow-
ing: we systematically compared the behavior of MetaViz
to Cytoscape and to the Pathway Tools cellular overview
diagram whenever possible. This comparison was carried
out for the following tasks:

• Visualization of the whole network;

• Visualization of individual metabolic pathways;

• Visualization of a metabolic pathway in its context.

Visualization of the whole network
Figure 4 shows the whole metabolic network computed
by MetaViz from the data described in the previous sec-
tion. Unlike the drawing obtained by Cytoscape [33] with
the same data (Figure 5), the metabolic network is organ-
ized into metanodes in MetaViz. The purple metanodes
indicate the metabolic pathways selected during the clus-
tering step and which are therefore drawn well (nodes of
the pathways are close to each other). These metabolic
pathways form the backbone of the drawing, which can be
changed by choosing to draw well other metabolic path-
ways.

The drawing obtained by the Pathway Tools cellular over-
view diagram (Figure 6) with the same data represents all
metabolic pathways but in this case, the layout is fixed.
Moreover, it is not possible to zoom further into the draw-
ing.

Valine Biosynthesis pathway in BioCycFigure 10
Valine Biosynthesis pathway in BioCyc.
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Unlike the Pathway Tools cellular overview diagram,
MetaViz enables to see a metabolic pathway in its context,
keeping the same layout. For instance, Figure 7a is merely
a zoom of Figure 4.

Drawing of the TCA cycle
We do not compare the results with Cytoscape of which
the purpose is not to draw metabolic pathways but only
to draw a whole network.

In the data from BioCyc, the TCA cycle is included in the
super pathway of "glycolysis, pyruvate dehydrogenase,
TCA, and glyoxylate bypass". Because of its great number
of nodes, this pathway was chosen by the algorithm to be
particularly well drawn: all the nodes (compounds and
reactions) involved in this super pathway are grouped
together into a same metanode (Figure 7a). The drawing
obtained by MetaViz is very similar to the one obtained by
the pathway viewer of BioCyc (Figure 7c). The differences

Drawing of the nodes (colored in pink) directly connected to the Valine Biosynthesis Pathway (in the center of the figure)Figure 11
Drawing of the nodes (colored in pink) directly connected to the Valine Biosynthesis Pathway (in the center of the figure).
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between the two drawings are mostly due to the differ-
ences in the types of graph used to model the network: a
simple graph in the case of BioCyc, and a bipartite graph
in the case of MetaViz.

Drawing of the valine biosynthesis pathway
This pathway is a four-step chain which starts with pyru-
vate and ends with L-valine.

We present here two cases: 1. the clustering is not guided
and 2. the clustering is guided. If the clustering is not
guided, this pathway is not selected to be drawn well and
is actually split into three parts: one node is drawn in the
superpathway of the TCA cycle and glycolysis (because
they share the pyruvate), one node corresponds to the
superpathway of pantothenate and coenzyme A biosyn-
thesis (because they share L-valine, alpha-keto isovalerate

and the 2.6.1.42 reaction) and the third node corresponds
to the other reactions (Figure 8).

This metabolic pathway has not been efficiently drawn
because some of its elements belong to larger metabolic
pathways. Nevertheless, we do not see such a representa-
tion as a negative result but instead consider the division
of this metabolic pathway into several parts as interesting.
Indeed, it means that this metabolic pathway shares sev-
eral elements with others, showing the interdependence
between the pathways. Otherwise, if the clustering is
guided and valine biosynthesis is chosen as a focus path-
way, MetaViz efficiently represents it (Figure 9). Obvi-
ously, this choice leads to the disconnection of the
metabolic pathways sharing the same nodes. As men-
tioned above, we can see here one of the main interests of
MetaViz: it is possible to change the backbone of the
drawing to center it on specific metabolic pathways. If we

Connections from the valine biosyntheisis pathway in the Pathway Tools cellular overview diagramFigure 12
Connections from the valine biosyntheisis pathway in the Pathway Tools cellular overview diagram.
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compare this drawing with the one obtained by the path-
way viewer of BioCyc (Figure 10), we observe that the
order of the nodes is reversed. That is pyruvate is on the
left of BioCyc drawing while it is at the bottom of the
MetaViz one. Hence pyruvate appears as the input of the
pathway. But in BioCyc SBML description these reactions
are annotated as reversible. So it is not, in that case, possi-
ble to automatically identified pyruvate as the input of the
pathway.

Visualization of a metabolic pathway in its context
MetaViz represents explicitly the links between metabolic
pathways. These links are ignored when metabolic path-
ways are separately drawn (as in BioCyc) or when no
information about the belonging of the nodes to a meta-
bolic pathway is displayed (as in Cytoscape). The Pathway
Tools Cellular Overview diagram proposes to optionally
draw these links in superposition to the main drawing.
The limit of this approach is that, since these links are not
incorporated in the original layout, the final drawing may
become very dense and hard to read.

It is possible with MetaViz to highlight the nodes that are
neighbors of a selected node. Figure 11 shows the direct
neighbors (colored in pink) of the valine biosynthesis
pathway. One can then more easily follow each edge to
see to which nodes in the network this metabolic pathway
is connected.

Figure 12 shows the connections from the valine biosyn-
thesis pathway computed in the Pathway Tools cellular
diagram overview. However, because nodes are dupli-
cated and the layout is fixed, a lot of edges are displayed
and it is difficult to follow one edge.

Conclusion
In this paper, we present an algorithm to compute the rep-
resentation of a metabolic network. This method
addresses a challenging problem which consists in repre-
senting simultaneously the topology and the metabolic
pathway information. Indeed, metabolic pathways often
share metabolites and reactions, thus to represent them in
a single view, previous approaches duplicated these
shared elements. However, duplication produces draw-
ings where the depicted connectivity does not fit the real
topology of the network. To overcome the problem of
shared nodes, we propose a clustering step based both on
topology and a metabolic pathway decomposition. Dur-
ing this step, we deal with pathway overlapping by detect-
ing a largest set of independent pathways and sub-
pathways. The resulting graph clustering shows the overall
organization of the pathways. To follow common draw-
ing conventions, it is drawn using a planar graph drawing
algorithm. Finally, each pathway or sub-pathway is drawn
using specific drawing algorithms (hierarchical and circu-

lar ones). In our collaboration with physiologists, we
noticed that they often consider some pathways as being
central in their global studies. To respect their habits, the
physiologists can provide a set of focus pathways that will
be considered as a parameter of the clustering step. Thus
our algorithm will generate a drawing where these path-
ways are entirely and carefully drawn.

This global representation allows the visualization of
processes that span over different metabolic pathways. For
instance, this approach was successfully used to highlight
metabolic processes, especially those traversing different
metabolic pathways.

One of the future directions we would like to consider
concerns the improvement of the global aspect of our
drawing. The drawing conventions that we identified for
metabolism are mostly local (emphasizing cycles and
reaction cascades). Following them does not ensure to
have a global picture that will look like the Boehringer
map [23] which may be closer to what biochemists are
used to. Indeed, the global picture that we obtain with our
method can be puzzling at first glance, and it is only when
navigating in the drawing that the user will find more
familiar patterns. We believe that we can improve the
aspect of the global drawing in considering alternative
ways of drawing the quotient graph.

In this paper, we focused on the drawing part of metabolic
network visualization. As it was mentioned, drawings are
used as a background for high throughput data visualiza-
tion. Since this algorithm is already implemented in a
graph drawing software [38], we plan to develop an input
module for omic data. Another issue will be to add more
relational information such as signaling processes. We
plan to use the third dimension to incorporate the addi-
tional edges.

Availability and requirements
Project name: MetaViz

Project home page: http://www.labri.fr/perso/bourqui/
software.php

Operating system(s): Currently Linux and Windows. Mac
OSX ports is possible.

Programming language: C++

Other requirements: Tulip [38], Qt from Trolltech.

License: GPL
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