
HAL Id: hal-00434566
https://hal.science/hal-00434566

Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The solution space of sorting by reversals
Marília D.V. Braga, Marie-France Sagot, Celine Scornavacca, Eric Tannier

To cite this version:
Marília D.V. Braga, Marie-France Sagot, Celine Scornavacca, Eric Tannier. The solution space of
sorting by reversals. 3rd International Symposium on Bioinformatics Research and Applications (IS-
BRA 2007), May 2007, Atlanta, GA, United States. pp.293-304, �10.1007/978-3-540-72031-7_27�.
�hal-00434566�

https://hal.science/hal-00434566
https://hal.archives-ouvertes.fr

The Solution Space of Sorting by Reversals

Maŕılia D.V. Braga1, Marie-France Sagot1, Celine Scornavacca2,
and Eric Tannier1

1 INRIA Rhône-Alpes, Laboratoire de Biométrie et Biologie Évolutive (UMR 5558),
CNRS, Univ. Lyon 1

43 bd 11 Nov, 69622, Villeurbanne Cedex, France
marilia@biomserv.univ-lyon1.fr,

{Marie-France.Sagot,Eric.Tannier}@inrialpes.fr
2 Laboratoire d’Informatique, de Robotique et de Microélectronique

de Montpellier, 34392 Montpellier Cedex 5 - France
Celine.Scornavacca@lirmm.fr

Abstract. In comparative genomics, algorithms that sort permutations
by reversals are often used to propose evolutionary scenarios of large
scale genomic mutations between species. One of the main problems of
such methods is that they give one solution while the number of optimal
solutions is huge, with no criteria to discriminate among them. Bergeron
et al. [4] started to give some structure to the set of optimal solutions,
in order to be able to deliver more presentable results than only one so-
lution or a complete list of all solutions. The structure is a way to group
solutions into equivalence classes, and to identify in each class one par-
ticular representative. However, no algorithm exists so far to compute
this set of representatives except through the enumeration of all solu-
tions, which takes too much time even for small permutations. Bergeron
et al. [4] state as an open problem the design of such an algorithm. We
propose in this paper an answer to this problem, that is, an algorithm
which gives one representative for each class of solutions and counts the
number of solutions in each class, with a better theoretical and practical
complexity than the complete enumeration method. We give several bio-
logical examples where the result is more relevant than a unique optimal
solution or the list of all solutions1.

1 Introduction

The combinatorics of genome rearrangements is a very prolific domain of com-
putational biology. It consists in, given a set of actual genomes, inferring the
large-scale evolutionary mutations that explain the differences in the organisa-
tion of those genomes. For a general survey of the algorithmic aspects of genome
rearrangements, see [13].

One of the most used mathematical models for representing and manipulating
such genome rearrangements is given by signed permutations, where the elements
1 An implementation of the algorithm is available online, as part of the BaobabLuna

package, at www.geocities.com/mdvbraga/baobabLuna.html

I. M ndoiu and A. Zelikovsky (Eds.): ISBRA 2007, LNBI 4463, pp. 293–304, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

ă

www.geocities.com/mdvbraga/baobabLuna.html

294 M.D.V. Braga et al.

are unique homologous markers, and reversals as the main events that may alter
the order of the markers along the genomes. The combinatorial problem consists
then in giving a shortest sequence of reversals that transforms one permutation
into another. The problem of sorting signed permutations by reversals has been
the subject of a huge literature (among others, [2,5,17,12,8,11]), but all algorithms
propose one optimal solution, whereas the solutions can be very numerous. This
kind of delivery may be useless for biological purposes, and the algorithms are
therefore mainly useful to compute a distance between genomes.

One study by Siepel [14] resulted in a method to enumerate all solutions. This
is however almost as useless as providing only one solution, because often the
solutions are so many that the whole set can not be presented (when it can be
computed). A few studies tried to decrease the size of the set of optimal solutions
by introducing some biological constraints, such as favouring small inversions [1],
or inversions that do not cut some clusters of co-localised genes [8,3]. The number
of solutions is decreased, but the whole set of solutions is never handled.

Bergeron et al. [4] then provided a way to group the solutions into equivalence
classes. However, no algorithmic study was performed, and in particular the prob-
lem of giving one element in each class without enumerating all the solutions was
mentioned open. In this paper, we introduce a solution to this problem. Our solu-
tion gives one representative element per class of solutions, and counts the number
of solutions in each class. The complete enumeration of the solutions is not needed,
and the theoretical complexity, as well as the practical execution time are lower
than in any other current method for the enumeration of the solutions.

The paper is organised as follows. We present the usual model for dealing with
gene order and orientation in Section 2. In Section 3, we describe the algorithm.
Section 4 is dedicated to practical experiments on simulated and biological data,
and on an analysis of the performances of our implementation.

2 Sorting by Reversals and Its Solution Space

Signed permutations. Genome rearrangements such as reversals may change the
order of some segments in a genome, and also the DNA strand the segment is on.
We identify homologous genomic markers with the integers 1, . . . , n, with a plus
or minus sign to indicate the strand they lie on. The order and orientation of
genomic markers of one species in relation to another is represented by a signed
permutation of size n, that is, by a permutation of the set {1, . . . , n}, where each
number is, in addition, given a sign ’+’ or ’-’ (the sign ’+’ is usually omitted).
The identity permutation (1, . . . , n) is denoted by Id.

A subset of numbers ρ ⊆ {1, . . . , n} is said to be an interval if there exist
i, j ∈ {1, . . . , n}, 1 ≤ i ≤ j ≤ n, such that ρ = {|πi|, . . . , |πj |}. Two intervals are
said to overlap if they intersect but none is contained in the other.
Sorting by reversals. Given a permutation π and an interval ρ, we can apply a
reversal on π, that is, the operation which reverses the order and flips the signs
of the elements of ρ: if ρ = {|πi|, . . . , |πj |},

π · ρ = (π1, . . . , πi−1, −πj, . . . , −πi, πj+1, . . . , πn+1).

The Solution Space of Sorting by Reversals 295

Due to this, an interval ρ can also be used to denote a reversal. We may always
represent an interval or reversal ρ as the sorted set of its values.

If ρ1, . . . , ρk is a sequence of intervals or reversals, we say that it sorts a
permutation π if π ·ρ1 · · · ρk = Id. The length of a shortest sequence of reversals
sorting a permutation π is called the reversal distance of π, and is denoted
by d(π). A shortest sequence of reversals sorting π is called an optimal sorting
sequence. For example, if the permutation π is (4, −3, −1, 2), one optimal sorting
sequence is {1}, {1, 2}, {4}, {1, 2, 3, 4}.

Computing the reversal distance and finding an optimal sorting sequence has
been the topic of a huge literature. The first polynomial algorithm appeared
in [12], while the fastest algorithm to compute the distance was given in [2],
and the one to find an optimal sequence can be retrieved from a compilation
of [5,11,17].

However, all these studies give one sequence among possibly many. For exam-
ple, for the permutation (−12, 11, −10, 6, 13, −5, 2, 7, 8,−9, 3, 4, 1), the number
of solutions is 8278540, and it can be useless when attempting a biological in-
terpretation to know only one among them.

The set of all solutions may be retrieved thanks to an algorithm by Siepel [14],
that, given a permutation, computes all the reversals that are the first step of
an optimal sequence, but in the aforementioned example, listing the 8278540
sequences is almost as useless as giving only one of them.

Traces. More interesting for our study is the representation of the set of solu-
tions that is given in [4]. Recall a reversal is written as a subset of {1, . . . , n},
where the elements are ordered increasingly, so that they can be compared by
a lexicographic order. Identifying a sequence of reversals with a word on the al-
phabet A of reversals, the authors of [4] define an equivalence relation on these
words: if ρ and θ are reversals (intervals) and do not overlap, then the words ρθ
and θρ are equivalent. We say that ρ and θ commute. Under this relation, any
two words containing ρθ as a subword are equivalent to the same word, replacing
the subword ρθ by θρ.

For example, if the permutation π is (4, −3, −1, 2), consider the solution given
by the sequence of reversals {1}{1, 2}{4}{1, 2, 3, 4}. Here, {4} and {1, 2} com-
mute, so {1}{1, 2}{4}{1, 2, 3, 4} is equivalent to {1}{4}{1, 2}{1, 2, 3, 4}, and as
every pair of reversals also commute, every permutation of these four reversals
is a solution.

Now if the solution {1, 3, 4}{2, 4}{2, 3}{3} is considered, then it is equivalent
to {1, 3, 4}{2, 4}{3}{2, 3}, {1, 3, 4}{3}{2, 4}{2, 3} and {3}{1, 3, 4}{2, 4}{2, 3} by
commutation of {3} with all the other reversals, which do not commute among
themselves.

An equivalence class of optimal sequences of reversals over this equivalence
relation is called a trace. The concept of traces is well studied in combinatorics,
see for example [7]. It is particularly relevant in our study because of the following
result proven in [4].

296 M.D.V. Braga et al.

Proposition 1. [4] Let π be a signed permutation. The set of all optimal
sequences of reversals sorting π is a union of traces.

As a consequence, if the set of solutions is too big to be enumerated, the set of
traces may be a more relevant result for the problem of sorting by reversals. It
remains to find a good way to represent the traces in a compact manner.

Normal form of a trace. A trace T is thus a set of equivalent words over an al-
phabet A. An element s of T is said to be in normal form if it can be decomposed
into subwords s = u1| . . . |um such that:

– every pair of elements of a subword ui commute;
– for every element ρ of a subword ui (i > 1), there is at least one element θ

of the subword ui−1 such that ρ and θ do not commute;
– every subword ui is a nonempty increasing word under the lexicographic

order induced by A

A theorem by Cartier and Foata (cited in [4]) states that, for any trace, there
is a unique word that is in the normal form. We may therefore represent a trace
by its element in the normal form.

For example, the permutation (4, −3, −1, 2) has two traces of optimal se-
quences, one is {1}{1, 2}{1, 2, 3, 4}{4}, and the other is {1, 3, 4}{3}|{2, 4}|{2, 3}.
In this example, giving the two normal forms of the traces allows to describe the
whole set of 28 solutions in a compact way.

The algorithmics of traces. Bergeron et al. [4] provide no algorithmic insight for
this way of representing the solutions of sorting by reversals. They state as an
open problem the complexity of giving one element in each trace. The best algo-
rithm so far to enumerate the traces is therefore to do a complete enumeration
of all the solutions, and from each solution, to compute the associated trace and
add it to the list of found traces if it is not already in.

We give in this paper an algorithm that enumerates the normal form of all
the traces of solutions given a signed permutation, and counts the number of
solutions in each trace, without enumerating all the solutions.

3 The Algorithm and Its Complexity

It will be useful to describe first the only available algorithm that is up to now
able to enumerate all the traces of the solution space of sorting by reversals, and
to examine its theoretical complexity. We then present our algorithm, and make
a comparison between the two.

3.1 The Enumeration of the Solutions

A sequence of reversals s = ρ1ρ2 . . . ρi is called an optimal i-sequence if d(π ·
ρ1 · · · ρi) = d(π)− i. Note that if i = d(π), then s is an optimal sorting sequence.

The Solution Space of Sorting by Reversals 297

The set of all optimal 1-sequences of a permutation can be computed with
the help of an algorithm by Siepel [14]. It has time complexity O(n3), and the
number of possible optimal 1-sequences is bounded by n(n+1)

2 ≤ n2.
The set of all optimal i-sequences can then be computed from the set of (i−1)-

sequences by iterating the same algorithm for finding all 1-sequences. The set
of i-sequences has therefore size at most O(n2i), and the algorithm has time
complexity at most O(n3 ∗

∑i
k=1 n2k). In this way, we can enumerate the set of

all optimal sorting sequences in time O(n2n+3).
There remains to construct the normal form of the trace for each sorting

sequence, and then to group the sorting sequences by trace.
For any optimal i-sequence s of reversals, and under the equivalence relation

deduced from the commutation of reversals, is defined the trace that contains s,
that we call an i-trace.

Given an optimal sorting sequence s = ρ1ρ2 . . . ρd for a permutation π with
reversal distance d, the normal form of the trace T that contains s is constructed
by iterating an integer i from 1 to d and, at each step i, adding the element ρi,
represented as the sorted set of its values, to the normal form of the (i−1)-trace
containing ρ1 . . . ρi−1 (the initial 0-trace is an empty trace). This procedure is
described by Algorithm 1.

Algorithm 1. Adding an element to a normal form of a trace
Require: An (i − 1)-trace u1|u2| . . . |uk and the next element ρi

Ensure: The normal form of the i-trace containing the element u1u2 . . . ukρi

Let j be the maximum index such that uj contains an element that does not commute
with ρi, or 0 if such a uj does not exist
if j = k then

Add a new subword uk+1 ← ρi

else
Add ρi to the subword uj+1, according to the lexicographic order

end if

As the reversal distance and the interval size are bounded by n, the procedure
has complexity O(n2 log n), considering that each reversal or interval has to be
sorted and comparing reversals may be done in O(n).

The constructed solution is compared to a list of already constructed normal
forms of traces, so that one trace is not written several times. This may take
O(n log N) operations, where N is the number of represented traces. As N is
bounded by the number of solutions, we have n logN ≤ n log(n2n) = 2n2 log n.

Eventually, the total time complexity for enumerating all the normal forms of
the traces is bounded by O(n2n+3) + O(n2n(n2 log n + 2n2 log n)) = O(n2n+3).

This upper bound on the theoretical complexity does not give hope that this
method can be applied to big permutations. We shall actually see in practice
that it is intractable for permutations π above around d(π) = 10.

298 M.D.V. Braga et al.

This method is implemented, for example, in the GRAPPA software2, and it
is the only one that, among all available applications about sorting by reversals,
is able to give more than one unique solution.

3.2 The Enumeration of the Traces

A k-trace T ′ is a prefix of an i-trace T (k ≤ i) if T ′ contains a k-sequence which is
a prefix of an i-sequence of T . It is equivalent [7] to saying that each k-sequence
of T ′ is a prefix of an i-sequence of T .

The idea of the algorithm to enumerate the traces is almost naturally con-
tained in this notion. It is easy to remark that every prefix of size k of an optimal
i-sequence is in a k-trace of optimal k-sequences. So instead of enumerating all
the i-sequences and then computing and comparing the traces, it is therefore
more valuable to enumerate and compare directly all the i-traces.

We have seen in Algorithm 1 a way to construct the normal form of an (i+1)-
trace from the one of an i-trace. We may use this method to construct all i-traces
simultaneously in an incremental way, without computing all the solutions. With
no additive cost, we also compute the number of sequences in each i-trace.

The method is detailed in Algorithm 2.

Theorem 1. At the end of Algorithm 2, T contains, for every trace T of so-
lutions for sorting π, one element of T (the normal form) and the number of
solutions in T .

Proof
The proof is by induction. We prove that at the end of the step i of the main
loop of Algorithm 2, the set T contains all the normal forms and the size of the
i-traces of optimal sequences for π.

For i = 1, each 1-trace is generated by the algorithm of Siepel [14] and the
size of a 1-trace is 1.

For an arbitrary 2 ≤ i ≤ d(π), by hypothesis, T contains all the normal forms
and the size of the optimal (i − 1)-traces. Every i-trace has a prefix in this set,
since a prefix of size i−1 of an optimal i-sequence is an optimal (i−1)-sequence.
So every i-trace is found from an (i − 1)-trace by the algorithm of Siepel [14].

Now it remains to prove that the cardinality of an i-trace T is the sum of
the cardinalities of its (i − 1)-prefixes, so that the right size of all traces are
computed. Let ρ1, . . . , ρk be the reversals that are in the last position of at least
one element in T . Let xj be the number of elements of T which have ρj as their
last position. Then the number of elements of T is

∑
j xj . Now, for all j, as ρj

is the last reversal of an optimal i-sequence x1 . . . xi−1ρj of T , x1 . . . xi−1 is an
optimal (i − 1)-sequence of reversals, so it belongs to an (i − 1)-trace T ′ of size
xj . So by the induction hypothesis, the size of the trace T is the sum of the sizes

2 http://www.cs.unm.edu/∼moret/GRAPPA/. We re-implemented the algorithm in
Java in order to include it in the package BaobabLuna, that implements all the
methods that we describe here, in order to compare the running times on the same
basis.

http://www.cs.unm.edu/~moret/GRAPPA/

The Solution Space of Sorting by Reversals 299

Algorithm 2. Enumerating all the traces of a signed permutation
Require: A signed permutation π
Ensure: The normal form and size (norm(T), size(T)) of each trace T of optimal

sequences of reversals for sorting π

d ← reversal distance of π
S ← {ρ | ρ is an optimal 1-sequence for π}/* Algorithm of Siepel [14] */
T ← ∅
for each reversal ρ ∈ S do

norm(T) ← ρ /* T is a 1-trace */
size(T) ← 1
Insert {(norm(T), size(T))} in T

end for
for each integer i from 2 to d do

Tnext ← ∅ /* contains the normal forms of all the i-traces */
for each (norm(T), size(T)) in T /* T is a (i − 1)-trace */ do

Let πT be the resulting permutation after applying the (i−1)-sequence norm(T)
to π
S ← {ρ | ρ is an optimal 1-sequence for πT }/* Algorithm of Siepel [14] */
for each reversal ρ ∈ S do

norm(T+ρ) ← norm(T) + ρ /* Algorithm 1 */
size(T+ρ) ← size(T)
if there is (norm(T+), size(T+)) ∈ Tnext such that norm(T+) = norm(T+ρ)
then

size(T+) ← size(T+ρ) + size(T+)
else

Insert (norm(T+ρ), size(t+ρ)) in Tnext

end if
end for

end for
T ← Tnext

end for
return T /* T is the final set of d-traces */

of all (i−1)-prefixes of T , and the algorithm provides this size, since it generates
all prefixes. �

3.3 Theoretical Complexity

The complexity of the algorithm depends on the number
∑d(π)

i=1 n(i), where n(i)
is the number of i-traces of optimal i-sequences. As every i-trace is a prefix of
a d-trace, where d = d(π), this number is bounded by the number of d-traces
times the number of prefixes of each trace.

To give an estimation of the number of prefixes of a trace, we need to adopt
a representation of the traces as partially ordered sets (posets). It is possible
to represent a trace T that contains an optimal sequence ρ1 . . . ρn by a partial
ordering of the set PT = {(ρi, ki)}i, where ρi is an element of A appearing in

300 M.D.V. Braga et al.

ρ1 . . . ρn and ki is the number of occurrences of ρi in the subword ρ1 . . . ρi. The
relation <T is defined as the transitive closure of the relation � itself defined by
(ρi, ki) � (ρj , kj) if and only if i < j and ρi and ρj do not commute.

In other words, (ρi, ki) <T (ρj , kj) if and only if the kth
i ρi is always before

the kth
j ρj in the elements of T (see [7]).

For example, T = {1, 3, 4}{3}|{2, 4}|{2, 3} is a trace of optimal sequences
for the permutation (4, −3, −1, 2). The elements of PT are ({1, 3, 4}, 1), ({3}, 1)
({2, 4}, 1) and ({2, 3}, 1), and the relations are ({1, 3, 4}, 1) <T ({2, 4}, 1),
({2, 4}, 1) <T ({2, 3}, 1) and ({1, 3, 4}, 1) <T ({2, 3}, 1). The poset is represented
in Figure 1.

({2,4},1)({1,3,4},1)

({3},1)

({2,3},1)

Fig. 1. The poset constructed from the normal form T = {1, 3, 4}{3}|{2, 4}|{2, 3}. All
the linear extensions of this poset are the optimal sequences of reversals belonging to
the trace represented by T .

The set PT with the relation <T is a partially ordered set (poset). A linear
extension of a poset is a total order <tot which verifies ρ <T θ ⇒ ρ <tot θ. The
set of all linear extensions of PT , <T is exactly the set of elements of the trace
T (see [7]). We may therefore identify the trace T and the poset PT , <T , and
simply speak about the poset T .

The height of a trace (or poset) is the cardinality of the maximum set of
elements of PT that is totally ordered by the relation <T . It is also the number
of subwords ui in the normal form of a trace.

The width of a trace (or poset) is a maximum cardinality set of elements of
PT that are not comparable by the relation <T . It is at least (but in general not
equal to) the maximum size of a subword ui in the normal form of a trace. The
width of a poset can be computed in polynomial time thanks to a reduction of
Fulkerson [10] to a bipartite matching problem.

The representation of a trace as a poset allows to use the parameters of the
poset in the computations of the complexity of the algorithms, and it is also a nice
way to present the solution of sorting by reversals. Indeed, a poset corresponds
to a set of reversals that may have occurred during evolution and that could
therefore help explain the difference between the organisation of two genomes.
It indicates what we know and what we do not know about the order in which
these potential reversals occurred. Instead of giving a list of sequences, or a
unique sequence representing an equivalence class, the poset therefore gives one
possible solution, with uncertainties as concerns the exact shape of the solution.

The Solution Space of Sorting by Reversals 301

An ideal of a poset PT , <T is a subset U of PT such that if ρ ∈ U and θ <T ρ,
then θ ∈ U .

It is very easy to see that ideals of posets and prefixes of traces correspond to
the same notions, and that in particular, the number of prefixes of a trace T is
exactly the number of ideals of the poset PT , <T .

The advantage of this notation is that the number of ideals of a poset can be
estimated. It is bounded by nk, where n is the size of PT and k is the width of
the poset [15].

The number of i-traces that we generate is therefore bounded by Nnkmax ,
where N is the number of d-traces and kmax is the maximum width of a d-trace.

Given this estimation, we may give a bound for the complexity of our algo-
rithm. Indeed, for every i-trace, 1 ≤ i ≤ d − 1, we apply an O(n3) algorithm
to find all the 1-sequences. For all these 1-sequences (there are at most n2 of
them), we then apply Algorithm 1 to construct the normal form of the following
(i + 1)-trace, and compare the constructed normal form to the current list of
normal forms of (i + 1)-traces.

This gives a final complexity of O(Nnkmax(n3 + n2(n2 + n log Nnkmax))) =
O(Nnkmax+4).

Observe that computing the number of linear extensions of a poset is #P -
complete [6], and the best known algorithms run in O(nk), where n is the size of
the poset and k is its width [16]. Our algorithm counts the number of elements in
each d-trace, that is the number of linear extensions of the associated posets. Our
time complexity thus nearly reaches the best known complexity for the counting
part.

If in general the width of a poset may be as large as its number of elements,
we have made some experiments on simulated permutations (see Figure 2) which
show that in practice, this parameter is often lower, which explains the speed-up
of our algorithm compared to a total enumeration procedure.

permutation with n=20 and d=12;
41515 traces and 16955181 sol

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 9 10 11 12

 width

n
u

m
b

er
 o

f
o

cc
u

re
n

ce
s

o
f

w
id

th

permutation with n=20 and d=10;
1042 traces and 131596 sol

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

width

n
u

m
b

er
 o

f
o

cc
u

re
n

ce
s

o
f

w
id

th

permutation with n=20 and d=8;
8 traces and 8848 sol

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

width

n
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

o
f

w
id

th

Fig. 2. Distribution of the width of posets on random permutations

302 M.D.V. Braga et al.

4 Experimental Results and Applications

We implemented our algorithm and tested it on randomly simulated permuta-
tions, as well as on biological data3. Some results are recorded in Figure 3. These
numbers may be useful to give an idea of the quantities that we are dealing with,
numbers of solutions and number of traces.

Even if we are quickly limited in the size of permutations that are possible to
treat, there is a solid gain in relation to the existing methods. Observe that the
main limit concerns the amount of memory that needs to be used, more than
the time.

5 Conclusions, Limitations and Perspectives

We devised an algorithm that gives a representation of all the solutions of sorting
signed permutations by reversals, without enumerating each solution. It is the
first algorithm that achieves this, to our knowledge, and it performs better than
the complete enumeration on all the data on which we tested it.

PERMUTATION Ns Nt Enum. sol. Enum. + traces BaobabLUNA
rat/human chr X

n =16 2419750 418 � 10 min � 13 min � 10 s

d=10

mouse/human chr X

n =16 3362310 218 � 12 min � 18 min � 10 s

d=10

random

n =17 57019369 18255 � 4 h � 4.5 h � 5 min

d=11

random

n =18 327905046 34317 � 24 h � 43 h � 18 min

d=12

Chr X/Chr Y human

n =30 207600628 115512 > 24 h > 48 h � 28 min

d=12

Fig. 3. Computation results. Columns from left to right contain: 1- the origin of the
permutation, its number of elements and reversal distance; 2- the number of solutions
of sorting this permutation by reversals; 3- the number of traces; 4- the execution time
of an algorithm that enumerates all the solutions; 5- the execution time of the same
program, adding the computation of all the traces from the solutions; 6- the execution
time of the enumeration of the traces, according to Algorithm 2.

3 The first two permutations, that model the organisation of the X chromosomes
of human, mouse and rat, are taken from [3]; the permutation Chr X/Chr Y human,
modelling the comparison of the human X and Y chromosomes, is a simplified version
of a set of markers coming from an ongoing study at the LBBE laboratory, University
of Lyon 1, France.

The Solution Space of Sorting by Reversals 303

The implementation of the algorithm is online, integrated to a package for the
manipulation of signed permutations.

Although this program is faster than the previously published methods, it
is still limited (mainly because of memory) to small permutations, with d(π)
inferior to 20, on a personal computer that has 1Gb random access memory4. It
is sufficient for some biological applications, as we show it here on the data from
X chromosomes of mammalian species, or on the comparison of the human X and
Y chromosomes (see Figure 3). For many datasets however, it is still insufficient
because of the size of the output.

Indeed, if the solution space is dramatically reduced when dealing with traces
of solutions, it is often still too big to be handled by biologists on large permu-
tations. The algorithmic limit coincides therefore with the limit of the utility
of the solution. Probably another structure remains to be invented in order to
solve a similar problem for large permutations.

References

1. Ajana Y., Lefebvre J.F., Tillier E., El-Mabrouk N., “Exploring the set of all min-
imal sequences of reversals - An application to test the replication-directed re-
versal hypothesis”. Second International Workshop, Algorithms in Bioinformatics
(WABI’02), LNCS 2452, R. Guigo and D. Gusfield eds., pp. 300-315, September
2002.

2. Bader, D.A., Moret, B.M.E., and Yan, M., “A linear-time algorithm for computing
inversion distances between signed permutations with an experimental study”, J.
Comput. Biol. 8, 5 (2001), 483-491.

3. Berard S., Bergeron A., Chauve C. and Paul C. “Perfect sorting by reversals is not
always difficult”, to appear in IEEE transactions on cioinformatics and computa-
tional biology, 2006.

4. Bergeron A., Chauve C., Hartmann T., St-Onge K., “On the properties of sequences
of reversals that sort a signed permutation”. JOBIM 2002, 99-108.

5. Bergeron A., Mixtacki J. and Stoye J., “The inversion distance problem”, in Mathe-
matics of evolution and phylogeny (O. Gascuel Ed.) Oxford University Press, 2005.

6. Brightwell G. and Winkler P., “Counting linear extensions is #P-complete”, STOC
’91: Proceedings of the twenty-third annual ACM symposium on Theory of comput-
ing, 1991, ACM Press.

7. Diekert V. Rozenberg G. (eds) The book of traces, World Scientific, 1995.
8. Diekmann Y., Sagot M.F. and Tannier E., “Evolution under reversals: parsimony

and preservation of common intervals”, to appear in IEEE/ACM transactions in
computational biology and bioinformatics, 2006 (A preliminary version appeared in
COCOON 2005, Lecture Notes in Computer Science 3595, 42-51, 2005).

9. Dilworth R.P., “A Decomposition Theorem for Partially Ordered Sets”, Annuals
of Mathematics 51 (1950) pp. 161-166.

10. Fulkerson D.R., “Note on Dilworth’s decomposition theorem for partially ordered
sets”, Proc. Amer. Math. Soc. 7 (1956), 701–702

4 This extensive use of memory is due to the fact that, in order to create the i−traces,
we have to store all the (i − 1)−traces.

304 M.D.V. Braga et al.

11. Han Y, “Improving the Efficiency of Sorting by Reversals”, Proceedings of The 2006
International Conference on Bioinformatics and Computational Biology, CSREA
Press, Las Vegas, Nevada, USA, 2006.

12. Hannenhalli S. and Pevzner P. , “Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals)”, Journal of the ACM,
46:1– 27, 1999.

13. Li Z., Wang L. and Zhang K., “Algorithmic approaches for genome rearrangement:
a review”, IEEE transactions on systems, man and cybernetics, 36:636–648, 2006.

14. Siepel A. “An algorithm to enumerate sorting reversals for signed permutations”.
J Comput Biol 10:575-597, 2003.

15. Steiner G., “An algorithm to generate the ideals of a partial order” Operations
Research Letters, 5(6):317 – 320, 1986.

16. Steiner G., “Polynomial algorithms to count linear extensions in certain posets”.
Congressus Numerantium, 75, 71-90, 1990

17. Tannier E., Bergeron A. and Sagot M.-F., “Advances on Sorting by Reversals”, to
appear in Discrete Applied Mathematics, 2006 (A preliminary version appeared in
CPM 2004, Lecture Notes in Computer Science 3595, 42-51).

	The Solution Space of Sorting by Reversals
	Introduction
	Sorting by Reversals and Its Solution Space
	The Algorithm and Its Complexity
	The Enumeration of the Solutions
	The Enumeration of the Traces
	Theoretical Complexity

	Experimental Results and Applications
	Conclusions, Limitations and Perspectives

