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Experimental predictive control of theinfrared cure of a powder
coating: a non-linear distributed parameter model based approach

|. Bombard, B. Da Silva, P. Dufodmand P. Laurent
Université de Lyon, F-69622, Lyon, France;
Université Lyon 1, Villeurbanne;
CNRS, UMR 5007, LAGEP.
43 bd du 11 novembre, 69100 Villeurbanne, France

This paper deals with the experimental model basedictive control of the infrared cure
cycle of a powder coating. It is based on a dynanfinite dimensional model of the cure in
one spatial domain, which aims to represent théuévo of the temperature and the degree
of cure during the cure under infrared flow. Thassevity of this model with respect to the
main radiative property is experimentally highligtitunder open loop conditions. This partial
differential equation model is then approximatedinite dimension in order to be used by the
predictive controller. Since the sampling time mma#l (one second), a special model
predictive control formulation is used here, whams to decrease the on-line computational
time required by the control algorithm. Experimémtzaluation of this controller that is based
on the MPC@CB software is then presented. For ackwhite paintings, the robustness of
this control algorithm is shown during an experitaériemperature constrained trajectory
tracking, even under a strong modeling uncertaifibe conclusion of this study is that this
controller may be used for advanced control of pemaibating cure.

Keywords: Process control, powder coating, optitozra radiative curing, model predictive
control, heat transfer.

1. Introduction to powder coatings

Powder coatings used in coating techniques ardyfigg@und plastic particles consisting of
resin, cross linker (in thermoset powders), pigméatxtenders, and various flow additives
and fillers to achieve specific properties. Theg arincipally based on epoxy, polyester,
hybrid (combinations of acid polyester and epoxyyl @olyurethane resins. Generally they
are either thermoset or thermoplastic coatingsghite recently ultra-violet curable coatings
(where the reaction is initiated by ultra-violetJradiation) and low-temperature coatings
designed for heat sensitive substrates have agpearthe coatings market. During the cure,
most generally realized under infrared emittersrrtioset powder coatings are present with a
broad variety of morphologies (Lee et al., 1999¢cN&i et al., 2006):
= at the powder state, they are applied on the §aeél (the substrate) by electrostatic
means; the packing of the grains as well as thekrnless of the powder layer can be
variable and each powder can present differenigadize distributions;
» the curing begins with the melting of the powdeatorg, which is (at this state) like a
viscous liquid;
= after a viscosity decay due to the temperaturesas® during the cure, the polymerization
reaction begins and the surface structure buildsntipthe end of the reaction.
The advantages associated with powder coatinggdadqWeiss, 1997): durable finishes, high
application efficiency, easy clean-up and recyclilRpwder coatings also represent a
technological solution that is environmentally frity since these paintings are almost 100%
solids (i.e., near zero VOC (Volatile Organic Compd) content). Due to VOC regulations,
powder coatings (as waterborne coatings) couldetbes replace organic solvents in coating



techniques. Although they can be a mean to deci@sz pollution, they have yet not found
the success they deserve and their application isnr@main unchanged: architecture
(outdoor and indoor), furniture, domestic appliasdeeaters, cars accessories (Véchot et al.,
2006). The main issue is dealing with the curdecyt the powder coatings. Indeed, during
the cure of powder coatings (also known as thenguar curing cycle), the quality of the
cured product is strongly influenced by the tempee path together with the maximum
temperature to which the powder coating is hedbeiation from specified optimum cure
conditions can therefore lead to coatings whichelgwface defects and/or coatings which do
not adhere to the substrate. The curing cycle opdition generally depends primarily on the
know how of the operator and on the use of tempexairofiling software (Wood, 2007).

The PhD thesis of Bombard was a global researdgegiron the infrared (IR) curing process
of powder coatings (Bombard, 2007) aimed at briggiome technical knowledge about the
experimental cure cycle of powder coating to paoténtsers. It tackled both modeling and
control aspects. The first complete model of thatiog radiative properties and of the
spectral emissivities of the infrared emitters nisy found in (Véchot et al.,, 2006) and
(Bombard et al, 2008). However, in this model ubede, the reflectance and the emitter
emissivity are not measured on-line during thergyrialthough they vary with the type of
infrared flow emitted: any model based controllsed for this process has therefore to be
robust with respect to this modeling uncertainthisTmodel has previously been used in
simulation in a closed loop control approach (Abtdal., 2007) to tune on-line the infrared
flow applied during the cure cycle, such that of¢he curing characteristics (the measured
temperature at the bottom surface) tracks as lmegioasible a specified time dependant
trajectory. These simulations have shown that a él&dedictive Control (MPC) based on
this model gives better results than a proportiongdgral derivative (PID) controller when
robustness with respect to model parameter unogyts needed. In this paper, the next step
is tackled: evaluation of the robustness of thiddehdased controller with respect to real
uncertainties due to experimental conditions.

This paper is structured as follows: first, the mloty principles of the powder coating cure
under IR flow are detailed. It is a non-linear rdifferential equation (PDE) model in one
spatial dimension. The influence of the main mquebameters during the cure is underlined.
Then, the model based predictive control approachviewed, where any constrained control
objective may be specified in the control softwdmajectory tracking, processing time
minimization). Experimental results then help tcowhhow the proposed special MPC
algorithm may be useful and robust to experimepntadintrol this kind of process, even if
uncertainties dealing with the material used exist.

2. Modeling of powder coatings

Model based control techniques would be very hélgfget a better control of the cure (and
hence get a final product of better quality) angrtomote the use of powder coatings in more
application domains. Meanwhile, very few modelstioé curing process have yet been
developed in the literature:

» The first study (Degnan, 1982) dealt with the modgbf electron beam cured coatings
based on an ordinary differential equation (ODEYirmy model coupled with the
temperature profile obtained in 2-D by non dynamadel.

= Much later, in (Deans and Kdgl, 2000), a Monte €anlodel of the heat transfer process
was used for the curing of powder coatings usingegas infrared heaters, but without
modeling the degree of cure.

» In (Chattopadhyay et al., 2005), an ODE model ajrele of cure of moisture-cured
polyurethane/polyurea coatings under a softwaredasire cycle was presented, and



combined with the measurement of a mechanical prpp&here was no heat transfer
modeling.

Vergnaud's team was the first to use PDE modelgPbBrou and Vergnaud, 1997) a
coupled PDE model of heat and mass transfers amdveas built to study the resistance
of coil coatings to liquids.

In (Salagnac et al., 2004), a PDE model of heatcamd of composite material parts in a
small diameter autoclave was developed and vatidatperimentally.

(Véchot et al., 2006) and (Bombard et al, 2008)etlped the basis of the model used in
this paper: it was a coupled heat transfer and BIE model of powder coating during

infrared curing.

2.1. Parametersinfluencing theradiative properties

Numerous reports in the literature show how thensbal composition and physical state of
materials affect the intensity and the shape ofréflectance spectra, which is an important
parameter in the IR curing process:

The cure cycle has a strong impact over the ragigiroperties (Carr et al., 1999); the
effect of the cure is though variable, dependingtio® chemical composition of the
powder coating. When comparing the spectral abstips of uncured and cured powder
coatings; (Carr et al., 1999) found the largestosgiis/ity differences with the
unpigmented coatings; for the white coatings thiéeidince was smaller whereas the
difference was insignificant for the black onesefidiore, the knowledge of the radiative
properties enables to determine their dependenitetiré physical and chemical state of
the material and, as a consequence, is usefulnreraus applications involving radiative
heat transfer (Carr et al., 1999; Deans and K&@D02 such as the radiative curing of
powder coatings. This knowledge is yet insufficjeag the absorption of infrared energy
by a material depends not only on the spectralratisa characteristics of the material
being heated but also on the spectral output ofrifnared source (Bombard et al., 2005;
Véchot et al., 2006). This will be underlined irr astudy.

The spectral output of the infrared source indedldences the (heated) material radiative
properties (Papini, 1996, 1997; Tongsuo et al.,2200entura and Papini, 1999). This
phenomenon is particularly more difficult to studiythe infrared flow emitted is time
dependant, for example if it is applied as a cldse@ control action like in this work.
Radiative properties are also influenced by thespiay state of the painting: the particle
size, the patrticle shape, the granular packingthadhickness (for powders). For films,
they are function of the surface roughness andhic&ness. Moreover, pigments greatly
affect the infrared absorption by scattering an@losorbing IR radiation. For example
carbon black absorbs IR energy almost completetutifhout the IR spectrum.

The substrate nature and its surface state canirdlsence the reflectance values; the
effect can be more or less important, dependinthercoating thickness and the pigment
nature (Tongsuo et al., 2002).

Although the efficiency of IR curing depends mostly both the spectral emissions of the
infrared source and on the coating radiative charatics during the cure, we have not found
any reference dealing with the measurement of pleetsal reflectance during the cure cycle:
Spectral reflectances are measured either befereutte (at the powder state) or after the cure
(the cure state) (Bombard et al., 2008, Carr ¢t1l@99, Deans and Kégl, 2000). Reflectance
values vary with the chemical composition, the pginature, and are influenced by the
powder coatings cure. Cure cycle depends both enctfating radiative properties of the
powder coating and on the kind of IR emitter us@dbetter knowledge of the spectral
emissivities of infrared heaters and of the paranseinfluencing the radiative absorption of



the powder coating is therefore first needed tonaupe the curing process through a model
based approach.

2.2. Experimental setup

2.2.1. Material

The powder coatings selected for this work are lyidesed commercial thermosetting
powders in the metal coating industry and are segdy DuPont Powder Coatings France
SAS. The paint used here (named paint A) is a ptdyebased system containing
Triglycidylisocyanurate (TGIC). It is supplied inlask (B) and white (W); their
characteristics and ideal curing conditions obthifieom technical recommendations of
Dupont powder coating France are summarizebaiple 1. The substrates used for this study
are steel standard test panels with dull and nietitsh. They are produced by the Q. Panel
Co. and supplied by Labomat. The application of gbevder on the steel panel is realized
with a GEMA PGC1 corona spray gun. Quasi-uniformwger layers are realized
(approximate thickness is 7n). Thickness is measured on cured samples usjagige and
the gloss is measured after the curing with ansénqgico-glossmeter.

2.2.2. EqQuipment
2.2.2.1. Reflectance Measurement

The measurement of the total hemispherical spectfédctance (defined as the ratio of
hemispherical reflected flow from a surface anddent flow) is not performed from zero to
infinite for the real spectrum, but from 1.4 pme(thear visible) to 12.5 pum (where the sensor
becomes less efficient). It is based on a Bruk& &Bvs Fourier Transform Infrared (FTIR)
spectrophotometer, equipped with a Globar sourdeaalkkBr beam splitter and coupled with
liquid nitrogen cooled mercury cadmium telluride@W)) external detector:
= For dynamic reflectance measurements, resolutisetisit 4 crit and 1250 scans are co-
added to improve the signal-to-noise ratio of egméctrum.
= For static reflectance measurements, resoluticetsat 4 crif and 10000 scans are co-
added to improve the signal-to-noise ratio of egméctrum.
The spectrophotometer is fitted with a substitutiategrating sphere, for collecting the
specularly and diffusely reflected radiations. ‘Stitiition’ means that there is only one port
for the sample and the reference standard, andthiatwo samples have to be measured
subsequently. Conversely, comparison spheres hagepbrts for sample and reference
standard. The inside wall of the integrating sphemated with a diffuse gold coating with a
nearly constant reflectance (0.9865, data from phése).
The relative reflectance is defined as the ratiohefintensity reflected by the sample to the
intensity reflected by the standard. The sampleolabes reflectance equals the relative
reflectance multiplied by 0.98§8ue to the non perfect integrating sphere).
Painting samples are placed under the sample dedemee port of the sphere, and the
incident radiant beam is nearly normal to the pawatating surface. The total near-normal
hemispherical spectral reflectance contains boéhgpecular and diffuse components. For
dynamical measurements, samples are placed orsa tmredium equipped with two heating
cartridges, which enables at the same time to medbke reflectance during the cure of the
powder coatings and to follow the temperature inedoBy the brass medium. Reflectance
measurements are made on powder coatings alregubgitkrl on steel panels, so that the
reflectance measurements are made in conditiongasito those used when curing the



samples in our experimental infrared oven. Painsagiples used in this work are first
studied before curing (powder state), during cufmhgnamic measurementahd after curing
(cure state) at 190°C latter and at ambient tentyera

2.2.2.2. Experimental curing process, actuatorsamgor

To evaluate the performances obtained with the ggegp MPC algorithm, powder samples

are cured in an experimental infrared oven (FiglireThe upper surface of the radiator is

painted in black, which enables to absorb the ctdtk infrared emissions; the radiator is

maintained isotherm thanks to water circulatione Tole of the shutter is to protect the user
from dangerous radiations (only near infrared ramlig are dangerous because they may
contain some UV radiations). The sample holder lesathe user to always put the sample at
the same place thanks to a guiding rail.

Computer/Manual control

Temperature

infrared flow
_— / measurement

Interchangeable Aluminium
infrared emitter 00 0j00O0 wall

HHH

— \\\\\\\\\\\l\\\\\\\\\\\\\\\\\\\\\\\\\\\‘

|
Radiator : Aluminium Shutter
sheet cooled down with
water circulation

Sample Sample holder

Figure 1. Experimental infrared oven.

In term of actuator, the infrared oven is fittedt omith an infrared emitter having 9
interchangeable lamps. The different types of nefllasources are listed Trable 2. The value
of the infrared flow applied during the cure maytbeed:

=  manually;

= or kept constant in open loop;

= or computed by the controller (closed loop control)

An electronic power device provided by Eurothermtoknatiort (TC3040), principally
composed of 3 thyristors that connect the 3 phaSepdwer grid (ranging from 0 VAC to
230 VAC) to the lamps, controls the voltage at ¢tbanection of the lamps and hence the



value of the infrared flow emitted. The infraredvil emittedg, (t) is controlled by the phase

angle triggered gates of the AC-AC converters tghothe manipulated control voltage of the
thyristors gate (ranging from OV DC to 10V DC).this study, even if the real control action
is the thyristors gate voltage, the infrared flawitted ¢4, () is considered as the manipulated

control variableu(t).

In term of sensor available during the curing fonttol purpose, a temperature is measured
by a type K thermocouple placed under the subsfeatthe lower surface of the sample). Its
sensitivity is 40uV/ K and the uncertainty on the measure is 1K. Taimperature is used as
the controlled variablg,(t) in our study.

The actuator and the sensor are connected to théal®dgh an input/output device: It is a
digital/analogical MOD-MUX module of Procorellt requires a RS485 connection with a
conversion to the RS232 Modbus protocol, followihg Modicon format

2.3. Mathematic model and main parameter study

2.3.1 Modé
The 1D thermal model used here was previously dgeel in (Bombard et al, 2008). It is
based on the Fourier law of heat conduction and~tgere 2 shows the boundary conditions

applied at the top surface of the powder (subsgript the model) and at the bottom of the
metallic substrate (subscriptn the model).

(babs hp (Tp_Tex[) 0-6:0 (Tp4_ Texf4)

N

Powder film

hs(T.s“_ T ext) & (TS . Texf g

Figure 2. Schematic drawing of the “substrate andder” sample (Bombard et al, 2008).



The thermal balance uses both the temperaturebl@aifiigz,t) varying during the timé across
the thicknesgz of the powder coated metal sampte({ is the top surface), and the degree of
cure conversiorx(zt) (which ranges from at the beginning to 1 at the end). Inside the
powder, it leads to the following equation (thendiigation of the model parameters may be
found in table 3):

Mp(zt) _ Agp 02Tp(z,t)_epAH0
ot PpCpp 022 Cpp

-E,
( a
kge o (ZD mg_yn 020 0gp[ > 0 (1)

whereTy(zt) is the temperature across the powder layer, whittkitess isg,. The thermal
balance inside the metallic substrate leads tdalh@ving equation for the temperatufgzt)
inside the substrate, which thicknesssis

AMy(zt) _ Aos 0°To(z1)
ot PLCps  02°

IZIzIZI]ep,ep +es[, Ot>0 (2)

The first boundary condition is at the top of tlaénping film:

0Ty (zt
ey %(ZZ )=%bs(t)—aep(Tp(Z,t))-(ré(z,t)—Téq)—hp(rp(z,t)—Tm) atz= 00 & 0 (3)

where g,.t) IS the infrared flow absorbed at the surface leyshmple, which depends on the
manipulated variable considered: the emitted iefiteffow ¢, (1) (more details are given in the
following).

The second boundary condition expresses the catytioithe thermal flow at the interfa@g
of the powder and the substrate:

0Tp(z,t) aTs(z,t)
p - v —
Ae,p > =-Acs Saz atz=g 0t 0 4)

The third boundary condition, at the lower surf@ebere the temperature sensor is located),
Is:

) 0Ts(z,t)
0z

= -0g5(Ts (2.0)- (T @1) ~To) - hs (T (2)~Tex) atz= g+ g 0 ¢ C )

The initial conditions for the dynamic equation} &hd (2) are:
Tp(z.t) =Ts(z.t) = TeqOz0[0,ep + 651t = 0 (6)

Concerning the degree of curdzt) of the powder, the polymerization reaction is
characterized by the Sestak-Berggren law (Sesfiq)1

-E
(o
X2 _y o RTp(20) ymg _ nzofoefat>0  (7)

ot

koe
with the initial condition:

X(zt)=0"0z0[0,e,],t =0 (8)

2.3.2 Evaluation of the IR flow absorbed by the paint

The state of the system described by this non4liR€2E model depends on boundary limits
and, more especially on the floyy(t) absorbed on the surface of the painting:



Pos(t) =ap Tyt (1) (1), t>0
Tsurf (1) =Tp(z1), z=0£> 0

9)

with ;
aprra,rf):“ E() @01 p(A Taurs )dA}Dw; (10)
0 E(1)dA
{
and :

@ ) = FFIE(A)dA =fue) (11)
0
where a,T4,) is the absorption coefficient of the painting bé ttop surfaceg,(t) is the

thermal radiative flow arriving on the top of paimthich is the manipulated variable of this
study.e(1) is the spectral irradiance of the IR emittefs,(1. 7o) iS the spectral absorption

coefficient of the painting at the surface as acfiom of the wavelength of the emitter lamps,
and FF is the form factor used between the samulelae emitter which depends mainly on
the distance between them.

2.3.3 Model parameters study

We should yet keep in mind that high temperaturétera are better to convert electrical
energy in IR radiation (Carr et al., 1999), as diehighlighted on the experimental spectral
curves (Figure 3). NIR lamps are said to be hgghgerature emitters £h=2950 K for a
230V lamp voltage) whereas MWIR lamps are said & lbw temperature emitters
(Tlam=1750 K for a 230V lamp voltage). For one type wfitéer, this experimental spectral
curve is used to calculate the integral terms @) (11). It may be noted on these curves
(Figure 3) thats, () fully depends on the type of the emitter (NIR, &Adr MWIR) but

also on the input voltage of the emitter lamps thatlulates the IR flow emitted, as it can be
seen from the 2 curves obtained with 140 V and\230~or the MWIR emitter, we can also
remark on (Figure 3) the difference between thetsgebehavior of the real emitters and the
black body at the same temperature.
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Figure 3. Emitter spectral irradiance as a functibn
the emitter wave length, emitter type and emitienp temperature.

For the terma,,(4,7,) , if we assume the paint opaque, the radiativegotms are:
@) p(A ot ) =1- P p U Tt ) (12)

with the spectral reflectancs,(1,7,¢) Obtained experimentally. If we observe the dynaic

reflectance spectra of the painting during the céigure 4), the reflectance spectra do not
evolve regularly between the spectrum of the urctcw@Emple to the spectrum of the cured
sample. The evolution is more complicated. As #salit of the integration of the absorptivity
(weighted by the irradiance of emitter), the absorpcoefficient of the painting at the top
surfacea,(ts) Iis time dependant during the cure (Figure 5), ating to both the type of

emitter and the cure cycle obtained by manipulatireglamps voltage.

These results show that the absorptivities are ddarethe high temperature emitters because
their emissions are mostly in the near infraredaregvhere the spectral reflectances of the
coatings are higher. This suggests that for a Jaméent heat flow on the coating surface,
low temperature emitters are more effective forr@uA-W thermoset coatings (Vechot et al.,
2006). For this reason, in this study, we have ehoBIWIR type lamps. Nevertheless,
optimizing the choice of the lamps based on th@ephergy efficiency (from the electrical
energy absorbed from the electrical network by eéhetter, to the energy absorbed at the
surface) is still to be done.

Concerning the sensitivity of the controlled tengtere with respect to the model parameters,
and as it can be seen from Table 4, the absorptefficient of the painting:, is clearly the

most important parameter of the model. In this w@nstudy, one wants to show the



robustness of the closed loop control of the cuith wespect to the most important
uncertainties of this model parameters. From atjpaooint of view for the control, there
are two essential questions that are to be answdtbdhis study: is it possible not to use in
the model based controller the equations (9), @) (11) needed to model the powder
coating spectral reflectance at the top surfacethacemitter spectral irradiance? Also, is it
possible not to use sensors needed to evaluateethkese two properties? In the proposed
control approachg, is kept constant according to the color of thefiag (0.95 with a black

painting, 0.55 with the white painting) and sincel@sed loop control strategy will be used,
ap, must still be seen as an unmeasured (but rattily leatimated) disturbance. The other

parameterse,and & (used in the boundary conditions (3) and (5)) als® complex to

evaluate during any curing cycle since they depemdshe infrared flow applied. But they
have less impact tha#, and are therefore also assumed as constant \adesiust also be

seen as an unmeasured (or rather badly estimaistliytédince. These properties are not
measured on-line.
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Figure 4. Dynamic spectral reflectance duringdinee as a function of
the MWIR emitter wave length and the coating terapee.

10



0.7

0.6- u.,n”,,”nu,;:”n ] ]
o aoe ¢ 092 ¢”
\I>\/05 oopoBooOog, a o S.?00(4?'.' oof 22 g
= el nunu +* L ++ ° =
=
§ oi’oo *
(@) L . + + _
204 00000°0%0, o s MWIR emitters
<C el + oo

0.3l Taat o SWIR emitters |

. + NIR emitters

02 | | | |

0 50 100 150 200 250

Temperature (°C)
Figure 5. Absorptivity at the surface of the paigtas a function of
the emitter type and of the coating temperaturee(ander 230 V lamps voltage)

Some values of the model parameters are known aasiyy: the thermo physical properties
of the paint were provided by our paint supplieheTthermo physical properties of the
substrate are found in the literature. For the gbaintonversion, the model is validated and
more details about it may be found in (Bombard.e2806; Vechot et al., 2006).

This model belongs to a general class of one dimeak non-linear parabolic PDE with
boundary control with some uncertain model pararagéand is summarized as follows:

W: Fqg(xp(Z,t)) ,00Q ,t>0
(Syp )4 Fo(Xm (€. 1),u(t)) =0 0¢00Q ,t> 0

Xm (¢ ,0) = X ncoQooeq ,t= 03

Ym (1) =Cxp(d,t) ,000Q08Q,t>0

where( is the independent space varialde, is the spatial domain andl) is its boundaryt
is the independent time variablg, is the model state belonging to an adequate tefini
dimensional state spaagis the one dimensional control signal (or manipdatariable)y,,

is the model outputy ande are non-linear operators a@@ds a linear operator.

3. Control of the painting coating process
3.1. Control objectives

The objective of this part is to show how a MPC niyuseful to control on-line such a
painting curing process modeled by a PDE systend laow the uncertainty on the
unmeasured absorption coefficient at the top sariacwell handled by such closed-loop
controller. The aim of the experimental study iset@luate the robustness of the proposed
model based controller with respect to model uagaties; in other words: is it possible to
have a simple tuning of both the model and therotiat such that the control objectives are

11



satisfied in spite of the possible change of calbithe painting from one experiment to
another ? In term of control objective, a presdib@jectory tracking problem under input
and output constraints is specified. This allowmparing the process output obtained with
the model based controller with the known presctiteference behavigyes.

3.2. Control of PDE systems

In control theory, due to the complexity of the lpieam, relatively few studies are devoted to
the control of processes explicitly characterizgdalPDE model, especially in the non-linear
case. Indeed, a balance has to be found betweeimfihige dimensional representation of
such model and the possibilities to implement &didimensional controller (in order to be
technically feasible). Usually, theoretical studkegping the initial infinite dimensional PDE
model are focusing on the existence and unicityhhefmodel solution and also on the solution
of a control problem based on this model (Guo ¢t28I08; Zong, 2008). Here, since we are
interested in the real time control of a non-linP&E model based process, we are focusing
on finite dimensional approaches. There are twosw@ayimplement a finite dimensional
controller for an infinite dimensional system: ftiirst one is to keep the infinite dimensional
representation of the PDE model, synthesize amitafidimensional controller, and find a
finite approximation of this controller. But sincgre control tools exist in finite dimension,
the second way is most of the time used; it comastirst constructing a finite approximation
of the model and synthesizing a finite dimensiooahtroller. Even if variousfinite
dimensional methods are proposed to control sustnilalited parameter systems, there is no
general framework yet. The original PDE model isally simplified into an ODE model
based on: finite differences method, finite volumethod, orthogonal collocation method,
Galerkin's method, or on modal decomposition. Megsults exist with these approximation
techniques. In (Christofides and Daoutidis, 199@pnlinear finite-dimensional output
feedback controllers are given for systems of gliasar parabolic PDEs with distributed
control, for which the eigenspectrum of the spatifferential operator can be partitioned into
a finite-dimensional slow one and an infinite-diremal stable fast complement. In (Baker
and Christofides, 2000), a 3 step finite dimendi@@proximation was used for nonlinear
parabolic PDEs with distributed control. More nettg in (Dubljevic et al., 2006), a number
of MPC formulations was shown for the distributezhtrol of linear parabolic PDEs with
state and input constraints. In (Dubljevic and €Glofides, 2006), a modal decomposition
technique was used to decompose the system inioita fimensional (slow) subsystem
coupled with an infinite dimensional (fast) subsyst Various state feedback predictive
controllers were then designed. In (Damak, 20@%yas shown how it was possible to design
an asymptotic estimator of state and time-varyiagameters in the case of a non-linear
distributed parameter bioreactor. The structurthefestimator was based on an approximated
model of the bioreactor behavior by orthogonaladtion. In (Ravindran, 2007), the optimal
boundary feedback stabilization of Navier—Stokegagigns using model reduction has been
presented. The model reduction was carried outguairtombination of proper orthogonal
decomposition (POD) and Galerkin projection, aneédusor the optimal linear quadratic
regulator (LQR) synthesis. In (Li and Christofidé&908), two computationally efficient
approaches were presented for the optimal contrdifinision-convection reaction processes
described by parabolic PDEs subject to Danckweotsnary conditions. It was based on
reduced-order models combined with a LQR. In (Gbfides et al., 2008), an overview of
recently developed control methods for PDE basedeisovas presented, with examples on
crystallization, aerosol and thermal spray. In (@lat al., 2009), a PDE model combined
with differential geometry has been applied to careptwo boundary control strategies for
the temperature of the liquid fluid at the outleadeat exchanger. In (Padhiyar and Bhartiya,
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2009), the control of the spatial property profitas discussed, since the endpoint itself is a
manifestation of the reaction path and a particpth adopted may offer advantages over
others. Based on a MPC formulation, a lexicograpipitmization was used to prioritize the
different sections of the profile when an unachidedarget profile was specified. Cascaded
continuous stirred tank reactors were used to aqpiade the model of a pulp digester. In
(Aggelogiannaki and Sarimveis, 2008), a radial $dgnction neural network architecture
was used to model the dynamics of distributed patansystems and was combined with a
singular value decomposition to decrease the murdielr.

3.3. Moded Predictive Control

Among the finite dimensional controllers, modeldiotive control is one of the most popular
(Qin and Badgwell, 2003). Model-based predictivetoad (MBPC) is also nhamed Model
Predictive Control, or Receding Horizon Control @H It is a particular class of optimal
controller. The idea of model predictive controghge in the 1960s (Propoi, 1963). However,
a real interest started to emerge in the 19803 a@itdlication of the first papers on
identification-command (IDCOM) by (Richalet et &978) and on dynamic matrix control
(DMC) (Cutler and Ramaker, 1980). Quadratic DMC {(@D) by (Cutler et al, 1983) was
later able to handle constrained optimization peotd. Generalized predictive control (GPC)
by (Clarke et al., 1987a, Clarke et al., 1987b) w#snded to offer a new adaptive control
alternative. Thousands of industrial applicatiorisMiPC exist today, for example in the
chemical and petrochemical industries: MPC has maecthe second control paradigm in the
history of control after the PID. The first mainvadtage is that constraints (due to:
manipulated variables physical limitations, opemgtprocedures or safety reasons...) may be
explicitly specified into this formulation. The s main advantage of MPC is its ability to
address long time delays, inverse responses, is@nif non-linearities, multivariable
interactions. In order to control a process witlmadel, an experimental response of the
process may be enough, but for complex systemis, litetter to model the process at a
fundamental level. The widespread use and sucdeMP& applications described in the
literature attests the improved performance of M&Qcontrol of difficult process dynamics.
Many MPC approaches have therefore been proposed &he past three decades, most of
them based on a receding-horizon strategy, i.eeaah current sampling instaktthe
following actions are taken:
» the plant measurements are updated for use ireduback/feedforward control loop;
= the plant model is used to predict the output respoto a hypothetical set of future
control sequence;
» a function including the cost of future control ians and future deviations from a
reference behavior is optimized to give the betriicontrol sequence;
» the first movement of the optimal control sequeiscapplied on the process.
These operations are repeated at kme.
However, if the model exhibits a non-linear behaveéonumerical solution technique must be
used to solve this optimal problem. The computatiaifort varies somewhat because some
solution methods require only that a feasible (aodnecessarily optimal) solution should be
found or that only an improvement should be acldev®m time step to time step.
Nevertheless, compared to the linear case, the meatheffort is usually important and the
algorithm may have some difficulties to find a fié#es solution. It may lead to unpredictable
consequences for the closed loop performances.cohgutational effort can be greatly
reduced when the system is linearized first in samaener and then the techniques developed
for linear systems are employed on-line subsequentévistic (Nevistic, 1997) showed
excellent simulation results when a linear timeyirag (LTV) system approximation is used,
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which was calculated at each time step over thdigiexl system trajectory (Lee and Ricker,
1994). In Zheng works (Zheng, 1997, Zheng, 19983, non-linear MPC control law was
approximated by a linear controller which lineadzbée non-linear model but assumed that
no constraints exist. Therefore, a linear appraaely be an interesting solution to have an
acceptable computational effort, especially if Hanpling period is short. A linearization of
the model is used in our study. In (De Temmerm&082, the strategy adopted was to use a
linearized model instead of a non-linear PDE moikela MPC approach: the control
performances were quite similar, while the compaitet time was decreased by a factor 5.
What is more, whereas the non-linear approach wagmplementable, the linearized model
based control approach was implementable for andrprocess featuring a 60 s sampling
time.

3.4. Proposed Model Predictive Control formulation for a PDE system

A time-varying linearized PDE model based pred&tbontrol algorithm detailed in (Dufour
et al., 2003) is used for this research. In previenperimental control of PDE systems
(painting drying in (Dufour et al., 2004); pastyidg in (De Temmerman et al., 2009)), it has
been shown how this special MPC framework may ke Udsr the control of such PDE
system, in spite of the infinite dimensional aspgdhe initial model and the non-linearity of
the model state. In (De Temmerman et al., 2009)as shown how MPC led to better
performances than PID. In (De Temmerman, 2008),ctbsed loop control performances
using either a off-line non-linear model and a dedpn-line linearized model, or an on-line
non-linear PDE model in the MPC approach were gsiteilar. Whereas the non-linear
approach was not implementable, the linearized indmesed control approach was
implementable for a drying process featuring a &ampling time: the computational time
was indeed decreased by a factor 5 in the linegase.

The main ideas of this control algorithm are byieféminded in this palt To provide an
insight into the process, it is necessary to stteePDE model in finite dimension, and then
synthesize a MPC. This controller is designed ghahthe calculation time is smaller that the
small sampling time (a few seconds). This contrakebuilt as a compromise between the
small calculation time allowed, and the accuracthefmodel used in the on-line model based
optimization problem to solve, and the accuracytltég solution found in the iterative
procedure. Moreover, unfeasibility of the outpuhstaint is also handled, such that the less
bad solution is found.

In this framework, the initial general optimizatiproblem is formulated into the future over a
receding horizoMNp, where the cost functiohaims to reflect any control problem (trajectory
tracking, processing time minimization, energy aonption minimization, ...):

j=k+Np

min JW)= Zk:1 (Porer (2¥p (D)) (14)
] =K+

wherek is the actual discrete timet£k*Te), Te is the sampling timg,is the future discrete
time index.y, is the process controlled output that has to ¥olls best as possible the
prescribed reference behavigg. This optimization problem can not yet be solvaidgce it
requires the process measuygsnto the future, which is not possible. This isssidnandled
through an approximation based on the used of miternal model closed loop control
structure, where the contralis applied on both the process and the model,vamnete the
feedback term is:
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e(k) = yp(k) - ym(k) , Ok>0 (5

Assumption 1:
In order to forecast the process outgytinto the futurej, it is assumed that the error

€(J)=Yp(i)-ym() is constant into the futurex(j)= e(k) is obtained after each update of the
measure at timk.

Based on the assumption 1 and on the introductigdheointernal model control closed loop
structure, the optimization problem is now compotally solvable, since it is based on the
feedback terme(k) and on the model response in the futys§) obtained with the model
(13):

Yp(i) = ym(i)+e(k), Ok>0, OjO[k+1k+ Np] (16)

The optimization problem can now be numericallywedl

j=k+Np
min J@= D" (mOrer (Dem(uG) (17)

u .
j=k+1

Concerning then general output constrainggrelated to operating conditions, safety, quality,
they are formulated as inequality constraints an riteasured or estimated output (and the
input if needed):

gi (yp(i)u(i))s0, OjO[k+1k+Np],0i0I"={L,..,n} (18)

Based on the assumption 1 and on the internal momlglol closed loop structure, tme
general output constraints are reformulated, based on the feedback tefknand on the
model response in the futuyg(j) obtained with the model (13):

gi(e(k),ym(i)u(j)<0, OjOk+1k+Np], 0i01" ={1,...,n} (19)

The idea of the proposed approach is to transfovemirtitial PDE model based constrained
problem into a ODE model based unconstrained pnobseich that the time needed to solve
the on-line optimization problem is less than thenpling time. Based on this approach, the
output constraintg; are handled in the optimization problem through plenalty ternde ,
based on the exterior penalty method (Fletcher7198

j=K+Np(i=n
Jea)= > | (wimax? (0,0 € )ym ()0 ()))| (20)
j=k+1 i=1

wherewi Is an adaptive positive defined weight. The adagets that case where a constraint

is not satisfied can be handled. The cost funcliand the penalty terid are then combined
into Jiot to formulate the constrained penalized optimizapooblem:
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min - Jyot (U) = (U)+ Jext (U) (27

where the manipulated varialleof the process is the constrained optimizatiorugnt in
the optimization task:

Umnin SU(k)<Uupax » Ok >0
Augin Su(k)-u(k-1)< Aupax - Dk>1(22)

The constrained optimization argumentis transformed into the unconstrained optimization
argumentd: it is obtained from a simple hyperbolic transfation of the magnitude and
velocity constraints specified for the manipulatadiableu (Dufour et al., 2003):

d(k) -
u(k) = hp(d(k) = hp mean *+ N2mmagn tanh[MJ , d K)OR k> 0(23)
magn
where hy mean @and honagn are updated at each tinkeaccording to the control actiomk-1)
found at the previous discrete tirkd.

h _ % maxth2.min
2.mean 2
h - 2. max~N2.min
magn 2 (24)

ho. max = Min(U maxU (K =1D)+Au ypa) , k> 1

ho.min = Max(Umin U € = D+ Aupin) k> 1

The drawback is that this transformation introdugestrong decrease of the sensitivity of the
cost function with respect to the optimization angut wheru tends to its limits. One of the
advantage of such transformation is that the fondt (22.) is linear whemi(k) tends tou(k-

1), i.e. when small changes in the control action eeded. The optimizer argumedhtis
finally used in an on-line penalized unconstrainptimization problem:

min ot (@)= yrer (1.8, ¥m (10,0 () + I (€0) Ym ()0 ) (25

Moreover, in order to decrease again the on-linmprdational time, the argument of the
optimization is assumed to be the same into thedut

d(j)=d(k), 0jO[k+1k+ Np] (26)

Widely known and used for its robustness and cayersre properties, the Levenberg-
Marquardt’'s algorithm is used here and the optittonaargument is determined iteratively at
each sample timk using the process measurement (or estimation)ntheel prediction and
the cost functiod,,. The drawback is that it allows finding a local g@u, which may not be
a global solution. Moreover, the hessian requirgdhiis method is approximated at the first
order.

From a practical point of view, the next step irstproblem is to reduce the computational
time needed to solve the unconstrained optimizgtiaiblem during the sampling period. A
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linearization method of the non-linear PDE modeuaid a similar non-linear PDE model
chosen and computed off-line is used. The sys(&m) is first solved off-line with a
particular choice of its inpui(t)=uo(t), which leads to the solutidis). The relation between
the small input variationdu, the small state variationts, and small output variationgym
about this particular solutiofs) of the (Sy.) may be described by the time varying linearized
model (Sn). More details about the relations between the @bation of (Sn) and (Su)
may be found in (Dufour et al., 2003). Accordingtih@ hyperbolic transformation and the
linearization, the inputfu of the on-line mode{Sn,.) is also replaced by the unconstrained
parameterdd (more details may be found in Dufour et al., 200hally, the off-line solved
non-linear PDE model and the on-line solved timeg/ivg linearized PDE model replace the
non-linear model that is initially to be solved lome.

In order to be able to calculagg into the future as required by the cost functiof.2these
PDE models are approximated in finite dimensioralgiscretization technique. Furthermore,
the discretization in finite dimension is an esggrdtep for the simulation of the model into
the future. In order to decrease the time needsdlt@ the model used on-line, the number of
points in the discretization scheme {&n.) and(S) is also decreased, such that the finite
approximation of the solution of the PDE model ésd accurate (in open loop). In the
meantime, this approximation is compensated byclbsed loop control approach that is still
able to reach the specified closed loop performsrides in (Dufour and Touré, 2004).

The final internal model structure with MPC (IMC-I@ structure is given in Figure 6. The
control objective is then to find on-line the véaioa 4d (hencedu) of the variabled (hence
the manipulated variabl® about a well chosen trajectady (hence up) that improves at each
sample time the on line optimization result. Theafi unconstrained penalized control
problem to solve is, at each discrete tkne

j=k+Np
”;idn Jiot (Ad) = .Zk:l ha(Yrer (i).(k),yp (K).8ym (j,Ad K)u @d k)) (27)
J=K+
with the iterative modified Levenberg Marquardtdhslgorithm:

pd' k) = ad! (k) - (023h(k)+ A1) 03l (k) (28)

where 0 J/,, (k) and 0 23/, (k) are the criteria gradient and criteria hessiarn wit
respect tald at the iteration at the timek.

Au(k) u(k) yplk)
Optimization - i -
algorithm
uo(k) Nonlinear | ¥0() +] e(k)
Model (.S,
(S0) -
Time Varying + ym (k)
- Linearized Model
{STVL} &yﬂlik]

Figure 6. Control structure (Dufour et al., 2003).
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Therefore, various approximations or assumptiomsiatroduced at different levels of the
control approach (either for the modeling part,far the search method of the optimal
solution) to tune on-line the control action:

1. during the modeling: first, a model is never petrfekdditional assumptions may be
specified to obtain an usable model for the modskld control approach;

2. during the modeling, some assumed constant paresmegy be uncertain, and/or in fact
time varying;

3. in order to decrease the on-line computational tithe initial non-linear PDE model is
approximated in 2 steps: an non-linear solutiosolsed off-line, which is the base of the
time varying linearized PDE model computed durimg ¢n-line optimization task;

4. in order to have an implementable finite dimensiat@ntroller, the PDE models are
approximated in finite dimension;

5. in order to decrease the on-line computational titiee number of points in the
discretization grid used for the resolution(8f, ) and(S) is decreased,;

6. in the predictive approach, the error between tloegss output and the model output is
assumed constant (but update at each kit the last process measurements). It is used
as the feedback term;

7. in the iterative optimization, the optimization angent is assumed constant into the
future: a step function is sought.

8. in the iterative optimization, the Levenberg-Margiicbased algorithm does not allow to
find a global solution, but only a local solution.

9. in the iterative optimization, in the Levenberg-Maardt based algorithm, the second
order term is approximated at the first order.

Since the closed loop model based control appréadiased on several assumptions and

approximations, it has to present good robustnegsepties, which must be underlined under

simulations first, and under experimental validatio

3.5. Simulation results and discussion

3.5.1 Control software; main features of MPC@CB

A software developed with Matlalis used: MPC@CB It allows realizing the MPC under
constraints of a continuous process. The origyalitthese codes is first the ease of their use
for any continuous SISO process (Single Input ®ir@utput), through the user files (where
model equations have to be specified) that arelsgnized by few main standards files
(where the user has to make few (or no) changés) nfodel has to be given under the form:

s = f(s,u)
y=9(s
I.e., there are any number of state variablesim3tSO model, it may be linear or not linear,
time variant or time invariant, based on ODE an@&DE.
Another original feature of the software is theagjhtforward resolution of various model
based control problems through different choices:
= MPC for a trajectory tracking problem, with or wotlt the output constraint. The user
may specify any reference trajectory;

(29)

= MPC to solve an operating time minimization problewith or without the output
constraint;

18



in order to study the robustness of the control, liaws easy to introduce, for any model
parameter, different values in the model (usedhm ¢ontroller) and in the simulated
process. The simulated process and the model magekeribed by the same (or
different) set of equations and by the same (dewht) set of parameters;

possibility to introduce a cascaded process (wimplt is the output controlled by the
software);

possibility to specify any condition to stop the oefore the final time.

The other originality is the method used to develapcodes: it is very easy to introduce new
parts in the code, such as:

MPC with a user defined problem.

handle SIMO, MISO or MIMO model.
introduce a software sensor (observer).
apply the software for a real time application.

Until now, other applications have used MPC@CBphjibisation of vials (Daraoui et al.,
2008), polymer reactor (Da Silva et al., 2008)npiag curing (Flila et al., 2008) and a pasta
dryer (De Temmerman, 2008, De Temmerman et al§200

3.5.2. Experimental conditions

Three parameters have been selected to run sexgaiiments in the experimental IR oven:

the color of the real painting: black or white gaig may be used;

the tuning of the absorption coefficiem (Table 6): t is used as a model parameter inside
the controller. This will introduce the main modgicertainty. The mean value is not the
value of the absorption coefficient for a given npig, but is just the mean value
calculated between the value of the absorptionficteits of the black painting and the
white painting. According to one of these 3 tuniwg, will later refer to the black painting
model, the white painting model or the mean model,

the tuning of the control horizoNp in the MPC, since it is the classical main tuning
parameter of this kind of controller.
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The sampling time is 1s.

3.5.3. Control objectives

In term of control objectives, a prescribed trapegttracking problem under input and output
constraints is specified. This allows comparing pinecess output obtained with the model
based controller with the known prescribed refeggmehaviory,e. The control objectives are
defined as:

The temperature measure available is considerdtegsrocess outputi,t)=Ty(e, + e t). It
has to track as best as possible a specified tepertlant reference temperature
trajectoryYref (t) . Any trajectory may be specified, but since itusually specified in

industrial use, it is defined by a ramp, a constargshold, a second ramp, and a second
constant threshold. Therefore, the cost functimolved in the optimization problem (14)
is defined as:

j=k+Np

1= (v D-vp(0)” 30
j=k+1

In order to evaluate the ability of the controlterhandle output constraints defined as

(18), the process output shall not exceed a maximaluwe, which is arbitrary chosen
equal to less than the second constant value gefaeence temperature trajectory:

Yp() =Tp(0,t)< yp?*=450K  (31)

In some sense, the controller has to tune on-heeirtfrared flow such that the process
output tracks the specified solution: the consedireference cons

Yref _const (t) = Min(Yref (t),yg'ax) (32)

The infrared flowg, (t), acting as the maniputed variahi¢g) which is computed by the

controller, has to be physically applicable. Tisi©andled by input constraints (22) on the
magnitude and velocity of the infrared flow:

0<u(t) < 23500V mi 2

~10000Vm 2s 1< ? < 10000/ 2s. 1 (33)

3.5.4. Experimental results

Several analyses are detailed in this part: fitet, impact of the 2 model based controller
tuning parameters (the horizon prediction and tloeleted absorption coefficient at the top
surface) on the closed loop control objectivesrssented for the white and for the black
painting. Then, the results between white and bfsiktings are globally compared. In order
to compare the experiments, we use two root meaarscrrors (RMSE):

the RMSE for the tracking (RMSET) which represeéhtss RMSE between the constrained
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reference and the process output, and

» the RMSE for the modeling (RMSEM) which represahts RMSE between the process
output and the model output.

They are defined as:

RMSET = o \/(Yref _const (K) ~ )’p(k))2
Nk
k=1
S - 7 34
RMSEM = \/(yp(k) ym(K)) (34)
k=1 Nk

wherek is the discrete timeat the current sampled time, aNdis the number of samples of
the considered experiment.

3.5.4.1. Experiments on white paintings

The first set of experiments deals with the whisnpng. In terms of trajectory tracking, the
best experiment is obtained with the white model arprediction horizon of 12, which leads
to the RMSET=3K (Figure 7). The worst experimenlisained with the black model and for
a prediction horizon of 18, which leads to the RMSEK (Figure 8). The importance of the
modeling for MPC is clearly underlined in thesexp&iments: let us have a look on a time
interval where there is no discontinuity in theiopzation problem defined on the control
horizon. In Figure 7, the tracking is efficient Wween 40s and 70s; the modeling error e(k) is
indeed almost constant and assumption (1) is liedfil The modeling into the future is
therefore accurate which leads to an efficientkiray: For the same interval, increasing the
control horizon from 12 to 18 and choosing the blamdel makes the tracking less efficient.
Indeed, the modeling error e(k) is no more condiiaigure 8) and assumption (1) is no more
fulfilled. The modeling is therefore not accurateieh leads to a bad tracking.

Concerning the prediction horizon, there is alnfosthe three models (white, black, mean) a
convexity in the tuningNp=8 or 12) to get the best tracking results (tog-iglure 9): if the
horizon is too small, the dynamic behavior is noffisiently presented in the optimizer,
whereas a large horizon prediction introduces taoyyimodeling errors into the optimizer.
Concerning the tuning of the painting absorptioeficient in the model used in the MPC,
for the same prediction horizon tuning larger tltarthe RMSET with the white model is
always better than the one with the mean modelchvim turn is better than the RMSET
obtained with the black painting model (bottom @ju¥e 9): the more the color assumed in
the model deviates from the real color, the moeetthcking error is. Therefore, the structure
of the closed loop control impacts the real valtithe absorption coefficient of the painting:
Indeed, due to this uncertainty, the differenceneen the process output and the model
output (used in the MPC) increases from around RMSE~20K (for the white model) to
around RMSEM=70~80K (for the black model) as it banseen at the bottom of Figure 9. In
the meantime, the RMSET increases from the ordebiBKfor the white model) to 5K-10K
(for the black model) as it can be seen at theofdfigure 9. The conclusion is that the use of
the white model, based on a constant value fop#ieting absorption coefficient, leads to a
robust closed loop control of the white paintingieg in spite of the time dependency of the
real painting absorption coefficient.
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Top: Trajectory tracking: reference (--), maximuhowed (+), measure (-), model (-.)
Bottom: Control action: minimum allowed (--), cooitapplied (-), maximum allowed (+).
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model: o (black), diamond (mean), + (white).

3.5.4.2. Experiments on black paintings

The second set of experiments deals with the lpaakting. In term of trajectory tracking, the
best experiment is obtained with the mean modelvétida prediction horizon of 14, which
leads to the RMSET=3K. The worst experiment is iole with the black model and with a
prediction horizon of 8, which leads to the RMSEKR=3-or the three models, there is a
convexity in the tuning of the prediction horizdwpE12 or 14) to get the best tracking results
(top of Figure 10).

Concerning the tuning of the painting absorptiorftoent in the model, for the same
prediction horizon tuning, the results obtainedhwiite black model are always the worst,
although this is the real color of the paintinglalis a real unexpected behavior. Therefore,
like for the white painting, the structure of thesed loop control impacts the real value of
the absorption coefficient of the painting, wher#as value is still assumed constant in the
model. Due to this uncertainty, the difference lestv the process output and the model
output (used in the MPC) increases from around &BRM=15~20K (for the mean or white
model) to a RMSEM=40~45K (for the black model) asan be seen at the bottom of Figure
10. In the meantime, the RMSET increases from at@kr4K (for the mean or white model)
to 4K-5K (for the black model). The conclusion It the black model (based on a constant
value for the painting absorption coefficient) ieitefore not the best model to use to control
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the black painting sample.

3.5.4.3. Global comparison of the experiments

Let us now compare globally the set of experiments:

According to the RMSET, the MPC is more robust thoe black painting than for the
white painting, since the uncertainty of the modgbaintingabsorption coefficient has
less impact in closed loop for the black paintihgrt for the white painting. Indeed, for
the white painting, from the worst model to thetbasdel, the RMSEM ranges between
80K and 10K, whereas the RMSET ranges from 10KKoFRr the black painting, from
the worst model to the best model, the RMSEM rargaieen 45K and 15K, whereas
the RMSET ranges from 5K to 3Rhe mean of all RMSETs for the white painting is
around 6K, whereas the mean of all RMSETSs for thelkb painting is around 4K.

On one side, the closed loop controller can be asdahe source of the disturbance in the
computation of the model into the future time wingosince the RMSEM increases
between the open loop validation made with a congmitter infrared flow (Bombard et
al, 2008) and the current closed loop resihs.the other side, in spite of the RMSEM
obtained in closed loop, the controller is agaifigently robust to tune the infrared flow
such that the process output tracks efficiently phescribed time dependant reference,
thus leading to good RMSETSs. According to the irddaflow trajectory applied (bottom
of Figures 7 and 8), it is obvious that such tragkis not possible manually without
automatic feedback.

Best closed loop control results could be obtasiade the best RMSET is always around
3K and since the uncertainty on the measure isAtiording to the results obtained with
the black painting, the tuning of the painting apsion coefficient in the model can not
be done a priori based on the constant valuesrautanff-line and on the choice of the
color of the real painting. Since the infrared flapplied in the closed loop control
strategy is time-dependant, it impacts a lot thuevaof the real painting absorption
coefficient. This is less obvious for the whitergaig, since the best results are obtained
with the white model. If another color was usea pmoblem would have to be stated. In
order to improve the tracking, it would therefore bf great interest to use observer
techniques to estimate on-line the value of theetidependant painting absorption
coefficient. This estimate could then be fed or-lin the MPC to decrease the RMSEM
and hence improve the control results in terms MSET, like in (Edouard et al., 2005).
This on-line estimation would be of great interiesbrder to use this control for a painting
of any color, without the need to experimentallgntfy a priori a constant value for the
painting absorption coefficient in the model.

4. Conclusions and per spectives

The experimental model based predictive controthef infrared cure cycle of a powder
coating under parameter uncertainty has been @cklesed a dynamic infinite dimensional
model (previously described) aimed at forecastirggtemperature during the cure cycle. This
partial differential equation model has been appnaxed in finite dimension to be used in the
predictive controller. It has been shown how thsoaption coefficient at the surface of the
painting sample changes during the cure cycle #iedta the radiative behavior of the cure.
Experimental closed loop control results of theecaf black and white painting have been
shown. According to the results obtained with theck painting, the tuning of the painting
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absorption coefficient at a constant value in thedeh, based on off-line open loop
experiments with the real painting, is not easyiarp Indeed, since the infrared flow applied
in this model based closed loop control strategysisally time-dependant, it impacted a lot
the value of the real painting absorption coeffitievhich in turn introduced a important
modeling uncertainty. This on-line uncertainty Hads impact for the cure of the white
painting, since the best results have been obtawt#dthe white model. Nevertheless, for
both paintings, the specified closed loop perforoesrhave been relatively well achieved due
to the control structure and the controller robastn In the control point of view, there is
therefore no absolute need of sensor and modelatuae on-line the powder coating
spectral reflectance at the top surface and théerspectral irradiance.

Perspectives are first dealing with the use ofinea-kstimations based on a model based
observer to improve the accuracy of the contrahefcure for a painting of any color: there
would be no need to experimentally identify a priar constant value for the painting
absorption coefficient in the model. This observesuld be added into the MPC@CB
software, such that the on-line estimate of theogdi®n coefficient would be fed into the
controller as a measured disturbance term. It wbeldlso possible with MPC@CB to use
the estimate of the temperature and degree of pnafde to better control the final state of
cure, by formulating new constraints on the curdeyased on these parameters. The second
step of future works would be to couple in the MIR€ model of cure with a model of other
interesting end use properties, such that the ghas®n-line sensor or estimation of the such
property would also be required in the feedbackineabf the controller. Thirdly, it would be
interesting to do the same control study with otm@itter types (NIR and SWIR). With this
knowledge, it would be possible to optimize theicbmf the emitter type based on the entire
energy efficiency (from the electrical energy absaor from the electrical network by the
emitter, to the energy absorbed at the surfacapboted with the on-line tuning of the
infrared flow emitted by the lamps.
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