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Vibration of sub-millimetric supported droplets

Franck Celestini* and Richard Kofman
Laboratoire de Physique de la Matiére Condensée ,UMR 6622, CNRS,
Université de Nice Sophia-Antipolis, Parc Valrose 06108 Nice Cedex 2, France
(Dated: February 11, 2010)

We study the fundamental vibration mode of supported sub-millimetric droplets. Using an anal-
ogy with a simple oscillator we derive a semi-analytical expression for the eigen frequency and the
scaling law of the energy dissipation within the droplet. The experimental results obtained for mer-
cury drops deposited on glass are compared with the model. The agreement is satisfactory for the
eigen frequencies on the whole range of size we considered ( from 0.04 to 0.9 mm). The scaling law
for the dissipation is recovered for radii larger than 0.1 mm but fails for smaller droplets. We finally
discuss possible applications related to the use of vibrations to effectively reduce the hysteresis of
wetting angle and therefore increase the mobility of supported droplets.

PACS numbers: 47.55.Dz,68.35.Ja,68.08.Bc

I. INTRODUCTION :

The vibrations of free liquid drops have been first in-
vestigated more than one century ago by Kelvin [1] and
Rayleigh [2]. Later, Lamb [3] found a general expression
for the different vibration modes of a free liquid drop
surrounded by an outer fluid :

W = nn—1)(n+1)(n+2) v )
"o (n+1)p+np’ R3

In this expression, p and pf are the densities of the liquid
and outer fluid respectively, n refers to the mode number
and R is the liquid drop radius. The surface tension 7 is
the driving force for the oscillations and is at the origin
of the —3/2 exponent in the scaling of frequency with
the drop size. These pionneering studies have been used
and extended in different fields, for example in the case
of nonlinear oscillations of pendant drops [4]. However,
the case of a liquid drop in partial contact with a sub-
strate has not been so fully investigated. In the eighties,
the microgravity experiments have motivated both ex-
perimental and theoretical studies leading to new results
in the case of axisymmetric vibrations [5-7]. Neverthe-
less, the singularity of the drop shape at the triple line
has prevented analytical results. The fundamental mode
associated to a longitudinal vibration of the substrate
has not been described and the dependence of the eigen-
frequencies in the wetting angle has never been fully ex-
amined.

If it is well known [8] that vibrations can help in prob-
ing energy barriers responsible for the wetting angle hys-
teresis, the effect of vibrations on the mobility of sup-
ported drops has just been recently demonstrated [9, 10].
These new studies are motivated by the numerous ap-
plications in microfluidics [11] and microelectronics [12].
They could also be of importance in understanding fun-
damental questions associated to the contact line motion.
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The driving force for the drop mobility can be achieved in
different ways. For example with substrates with surface
tension gradient [13-15] or using the electrowetting effect
[16]. Nevertheless, in both cases the drop mobility is re-
duced because of the wetting angle hysteresis [17]. The
main idea is therefore to use vibrations of the substrate
or an other oscillating external force acting on the drop,
in order to effectively reduce the hysteresis. Promising
results have been obtained very recently [18] and possible
applications are currently under study.

The aim of this paper is to fully characterize the funda-
mental vibration mode of a supported drop. It is associ-
ated to vibrations of the substrate parallel to the surface.
This mode is the one that should have the most impor-
tant influence on the drop mobility because the vibra-
tions induce an increase and a decrease of the advancing
and receding wetting angle respectively (Fig. 1). For a
sufficiently large vibration we expect to reach the wetting
angle hysteresis threshold and, under the influence of an
external force, eventually move the droplet. We will not
consider the second mode corresponding to perpendic-
ular vibrations of the substrate but a similar approach
to the one presented in this paper can also be used for
its characterization. An analogy with a simple oscilla-
tor will be presented in the model section from which we
will propose a semi-analytical expression for the eigen
frequency and a scaling law of the dissipation term with
the drop size. We will present the chosen system and
the measurement techniques in the experimental section.
The experimental results obtained for a mercury drop
deposited on glass will be compared to the model in a
third part. We will finally discuss our results and some
prospects in the conclusion.

II. MODEL :

We first concentrate on the eigen-frequency wgy of a
supported droplet vibrated in the direction parallel to
the substrate. For a sufficiently weak external force the
triple line remains fixed and the surface is deformed. The



FIG. 1: Schematic representation of the droplet shape under
the influence of an external force. The deformation induces a
displacement dz of the center of mass and a variation 66 of
the advancing and receding wetting angles.

deformation is characterized by the displacement dx of
the center of mass and by the variation §6 of the advanc-
ing and receding wetting angles 6, and 6, (Fig. 1.). We
call 0 the equilibrium wetting angle and assume a sym-
metric variation of the wetting angles : 6, = 6 + d6 and
0, =60 —60. We note AS =5 — Sj the surface variation
associated to the deformation where Sy is the surface of
the droplet at equilibrium and S its surface under the
influence of an external force. We can write AS as :

AS = Sof(6)56 2)

where we include the linear relations between AS and
So and between AS and §6%. The function f(6) takes
into account the fact that the precise relation between
these quantities depends on the equilibrium wetting an-
gle value. The limiting case where 6 tends to m helps
understand the role of f(6). In this case the droplet has
a small contact area with the substrate, for # = 7 the
contact reduces to a point and the droplet can freely ro-
tate around it without any deformation. The limit value
of f(0) when 6 tends to 7 is therefore 0. One can easily
see that this is no longer the case when 6 < w. We can
also write for the displacement of the center of mass :

dx = g(0)R40 (3)

In this expression R is the radius of the truncated
sphere (Fig. 1.) and g(#) a second function depending
on the system geometry.

Combining the two previous expressions we obtain :

Soh(0)

where h(0) = f(0)/g(0)?>. A restoring force FF =
—~vAS/dz is associated to the deformation. It reads :

AS dz? (4)

_ 1Soh(6)

F= T2

dz (5)
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FIG. 2: Numerical values obtained for h(6).

FIG. 3: Schematic representation of the effective wetting an-
gle associated to the Stoke length.

where 7 is the surface tension between the liquid and
the vapor. The restoring force is linear in the displace-
ment of the center of mass so that we can define an ef-
fective spring constant k. and the eigen-frequency of the
droplet wg = +/k./pV. Using the expressions for the
surface Sy and the volume V of a truncated sphere we
finally write :

_ 6vh(0) —3/2
wo= \/p(l — c0s0)(2 + cosh) R

where p is the liquid density. In this expression the
dependence in the geometry is included on h(f). We
compute h(6) under the hypothesis that the deformation
is the one obtained at equilibrium, i.e. that the defor-
mation is the one that minimises the free energy of the
droplet under the influence of a constant external force.
This hypothesis can be checked looking at the capillary
number C, = nV/7y that measures the relative impor-
tance of viscous and capillary pressures. For the system
considered experimentally the values of C, are well below
unity justifying the assumption of an equilibrium defor-
mation due to the predominance of capillary effects.

We use the program Surface Evolver (SE) [19] to nu-
merically compute the function h(6). We first simulate a
drop wetting a substrate parallel to the (Oz, Oz) plane.
The wetting angle is given as an input parameter and we
fix the triple line position. We therefore use the GRAV-
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ITY constant of the SE to apply an external force to the
droplet. Under the influence of this external force, par-
allel to the substrate and applied to the overall droplet
volume, the drop reaches the equilibrium shape that min-
imises its free energy. For different values of the GRAV-
ITY constant we record the different quantities we are
interested in : the advancing and receding wetting an-
gles 0, and 6,., the position of the center of mass dz,
the surface variation AS and the ghost radius variation
dR that will be discussed and used in the experimen-
tal section. For what concerns the numerical estimate of
h(6), we first plot AS versus dz to verify the expected
quadratic relation. Since Sy and R are known quanti-
ties, a best fit to equation 4. permits to obtain h(6). The
same procedure is used for different values of the wetting
angle. Calculated values of h(6) for wetting angles rang-
ing between 90 and 170 degree are represented in Fig. 2.
Note that we recover the limiting case discussed above
for which h(6) tends to zero when 6 tends to w. This
function is not material dependent and could therefore
be used in the future for different systems. It should
also permit, for example, to determine the angle of a
tilted plane above which the gravity force becomes larger
than the sticking one due the wetting angle hysteresis
[20]. More generally this function permits to obtain the
characteristic capillary time of a supported droplet as a
function of its wetting angle.

In the experiments presented below an inertial force
is applied to the droplet through the vibration of the
substrate. The substrate momentum diffuses within the
liquid over a distance § = y/2u/w known as the Stokes
length where i is the kinematic viscosity. Above this dis-
tance the droplet therefore experiences the inertial force.
This situation is different of the simulated one using the
SE. Indeed in the numerical analysis the external force is
applied to the overall droplet volume. A first order cor-
rection consists in defining an effective equilibrium wet-
ting angle .75 (Fig. 3). In the limit of a small Stokes
length as compared to the droplet radius (% << 1)
we have :

)
Rsinf (7)

Finally, the corrected eigen frequency can be calcu-
lated using equation 6 but replacing the true equilibrium
wetting angle 6 by the effective wetting angle value 0.y;.

In the limit of weak vibrations the position of the
droplet center of mass (in the vibrating frame) satisfies
the differential equation :

Ocsr =0—

#+ ai + wiz = agcos(wt) (8)

where ag is the acceleration due to the substrate vi-
bration and wq the eigen frequency discussed just above.
We now need to identify the dissipation term « to fully
characterize the oscillating drop. Since we here describe
the regime with a fixed triple line, the dissipation is due
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FIG. 4: Schematic representation of the experimental appa-
ratus.

to the diffusion of the substrate momentum within the
liquid and therefore to the associated shear stress. This
occurs on a distance of the order of the Stokes length §.
The associated viscous force Fy therefore scales as :

& 9)

where S, is the contact area with the substrate and
n the liquid viscosity. Since a@ o« F,R™3, S, o« R? and
§ x w /2 with w = wy x R~3/2 at the resonance, we
therefore expect the scaling :

ax R7* and Q o« RY* (10)

respectively for the inverse of the characteristic dissi-
pation time v and @) = wy/« the quality factor of the os-
cillating droplet. It is important to note the weak size de-
pendence of () meaning that the resonance effect should
be present even for very small droplets.

III. EXPERIMENTAL SECTION :

We choose to study mercury drops deposited on glass
slides. The liquid drop has a wetting angle of 140°. The
glass slides are first cleaned with a detergent after what
they are put into a freshly prepared piranha solution
(30% H205 and 70% H2S0,) for twenty minutes. They
are finally rinsed with an ultra-distilled water and dried
under pure nitrogen. Mercury drops with radius ranging
roughly between 0.05 and 1mm have been studied. For
the larger drops a micro seringue is used for the deposi-
tion while the smallest ones are producted using a thin
capilar tube with an outer diameter of 70 pum. Once the
drop is deposited, the glass slide is inserted in the vi-
brating apparatus presented in Fig. 4. A nitrogen flow
is necessary to prevent the oxydation of mercury. A low



FIG. 5: Image of a vibrating R = 0.192mm mercury drop.
The measure of the ghost radius variation dR permits to cal-
culate both 60 and dzx.

frequency signal is sent to the vibrator through an am-
plificator and the oscillation amplitudes of the plate are
optically measured with a photodiode. A video camera
is used to visualize the drop and the image is formed
through a mirror attached to the vibrating plate. We
therefore just visualise the vibration induced to the drop
by the substrate. The time exposure of the camera being
larger than the applied vibration period we record ghost
images of the drop. This is illustrated in Fig. 5 for a drop
with radius 0.192mm vibrated at a frequency of 252H z.
In the same manner that we found the relation be-
tween the surface variation and the center of mass dis-
placement, we use the SE to obtain the relation between
the ghost radius variation dR and the associated wetting
angle variation 66 (Fig. 5). For a wetting equilibrium
angle of 140° we found §6 ~ 96.5dR/R. To fully and
quantitatively describe the drop oscillations we also need
the relation between §6 and the associated displacement
of the center of mass dx (Fig. 5) as expressed in equa-
tion 3. Once again we use the SE to numerically evaluate
g(0 = 140°) and obtain the relation : 66 = 102.7 dz/R.

IV. RESULTS:

We first concentrate on the eigen-frequency of the
drops. A simpler manner to determine it is to find the fre-
quency for which dR is maximum. This is what we do for
mercury drops with radius raging between roughly 0.04
and 0.9 mm. We present in Fig. 6 the eigen-frequency as
a function of the drop size. The dotted line corresponds
to the Equ. 6 with a value of § = 140° corresponding to
the true wetting angle of mercury on glass. We can see
that the —3/2 exponent is recovered but that the model
seems to underestimate the eigen frequency value. We
therefore use the correction to 6 due to the Stokes length
(Equ. 7). For the drop size considered in this study the
correction is roughly 10°. The full line in Fig. 6 there-
fore represents Equ. 6 with 0 = 6.5y = 130°. Even if
the agreement is better we still underestimate the eigen
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FIG. 6: Eigen frequency as a function of the drop size. The
dotted and full lines are calculated using Equ. 6 respectively
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FIG. 7: Amplitude of the wetting angle variation J0 as a
function of the frequency vibration. The circles and diamonds
respectively correspond to substrate accelerations ag = 0.48
and 0.63 ms~2. In inset §0 is normalised by ao to verify the
linear response of the drop oscillator.

frequency. This means that the correction has to fully
take into account the deformation within the region near
the substrate. Nevertheless the model gives a reasonable
prediction ( the underestimation is roughly 15%) with-
out any adjustable parameter. A similar agreement has
been found looking at the eigen frequency of the second
mode, correponding to a vibration perpendicular to the
substrate. The same approach has been used to obtain
a semi-analytical expression and the results will be pre-
sented elsewhere [21]. We also verified that the model
gives a good agreement with the experimental data re-
cently obtained [10, 18] for water droplets.

We now turn to the characterization of the energy dis-
sipation. The resonance effect can be illustrated by mea-
suring the amplitude of the wetting angle variation as a
function of the applied frequency f. This can be achieved
for different values of the substrate acceleration. We rep-
resent in Fig. 7 §6 as a function of f for the two accelera-
tions ag = 0.48 and 0.63 ms—2 and for a droplet of radius



R =0.176 mm. As expected §6 passes through a maxi-
mum at the eigen frequency fo and we recover a typical
resonance plot. It is also not surprising to see that the
larger the substrate accelerations, the larger the 66 values
get. In inset we represent the same quantity but normal-
ized by the substrate acceleration. In this case the two
data sets lie on the same curve. This means that, for the
acceleration considered here, the response of the oscilla-
tor is linear and that the hypothesis of a fixed triple line
is valid. One could extract from this curve the bandwidth
Af = a/4w and therefore characterize the energy dissi-
pation. For example from Fig. 7 we found Af ~ 6Hz
for the considered droplet. Nevertheless the procedure is
rather complicated because we have to measure several
resonance curves in order to verify the linear response of
the system. We therefore choose a different procedure
to characterize the dissipation. It consists, for different
fixed substrate accelerations, to measure the maximum
wetting angle variation i.e. to measure d6 at the eigen
frequency wg. For the simple oscillator considered here,
we know that, at the resonace, dr = ag/woa. Using the
relation between dx and 46 given in the experimental sec-
tion we expect a linear relation 00 = p ag. A measure
of the slope p therefore permits to extract the value of «
and the associated bandwidth Af :

96.5

Al = dTtwoR p

(11)

We represent in figure 8 §6 as a function of ag for two
droplets with radius 0.177 and 0.149 mm. We recover
a linear relation for the weaker accelerations which con-
firms the observation from the inset of Fig. 7. For larger
ap values, the curve deviates from linearity and tends
to saturate. We interpret this behavior in the following
manner : when 06 reaches the value of the wetting angle
hysteresis, the triple line starts to moves and part of the
substrate acceleration is used for this motion. As a con-
sequence the angle amplitude variation saturates. The
same qualitative behavior is observed for the two parti-
cles. More quantitatively, we can remark that the value
of 60 at which we reach the saturation is the same for
the two droplets and roughly equal to 10°. As stressed
just above this gives us an estimate of the wetting angle
hysteresis which, as expected, is not size dependant. A
similar transition from a pinned to a mobile triple line has
been recently obsverved for a sessile drop of water [22].
In this work the large radius droplets permit to directly
measure both the triple line position and the droplet de-
formation. This is not possible in our case and we detect
the contact line motion through the non-linearity of the
00 versus ag curve. Another way of detecting the con-
tact line motion is to look at the frequency at which
00 is found to be maximum for different substrate ac-
celerations. In the linear regime the eigen frequency is a
constant as expected for an oscillator with a constant dis-
sipation factor. Conversely, when we reach the nonlinear
regime, the contact line motion induces a supplementary
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FIG. 9: Inverse of the relaxation time « as a function of
the droplet radius. The full line represent the best fit to the
expected scaling law (Equ. 9) for the larger droplet sizes.

dissipation source that lowers the eigen frequency.

In the linear regime the slope is higher for the larger
droplet. Since p is inversely proportional to a we recover
here the prediction of a larger dissipation for the smaller
droplets. To quantitatively test the scaling law given by
Equ. 10 we measure Af for different droplet sizes. We
plot in Fig. 9 Af as a function of R in a log-log represen-
tation. We first verify that we obtain values of Af that
are in good agreement with the ones directly obtained
from the 46 versus f plot (Fig. 7). The full line repre-
sents the best fit to the expected scaling law for the larger
droplet sizes. The agreement between the model and the
experiment is satisfactory for drops with radius roughly
above 0.1 mm. Conversely, below this size the dissipa-
tion is found to be well larger than expected. We have
performed a lot of measurements in this region to confirm
this apparent crossover and found that the dispersion in
the experimental data increases as the droplet size de-
creases. We have also verified that the disagreement is
not due to the way we prepare and deposit the drop on
the substrate. It is important to note that for the same



drop the scaling law for the eigen-frequency is respected
while we found a large disagreement for the dissipation
term. Since the eigen frequency is governed by the liquid-
vapor interface deformation it is therefore reasonable to
think that a phenomenom is occuring at the contact area
between the liquid and the substrate. The most probable
explanation is that for the lower sizes the hypothesis of
a fixed triple line is no longer valid. We therefore think
that the substrate acceleration induces both a surface de-
formation and a triple line motion. At present we cannot
definitely explain why such a behavior is obtained for the
smallest droplet sizes and plan to perform similar experi-
ment on different substrates. The crossover could be due
to the presence of impurity on the surface but also to the
onset of slip at the liquid-solid interface.

V. CONCLUSIONS AND PERSPECTIVES :

To summarize, we have used an analogy with a sim-
ple oscillator to extract a semi analytical expression for
the eigen frequency of a supported droplet and a scal-
ing law for the energy dissipation. We concentrate here

on the fundamental vibration mode coreesponding to a
parallel vibration of the substrate (rocking mode). The
agreement found between the model and the experiment
is rather good for the eigen frequency without any free
parameter. The expression given by equation 6 together
with the numerical values of h(6) (Fig. 2) could therefore
be used in the future to obtain a reasonable prediction
of the eigen frequency whatever system (i.e. the wetting
angle) considered.

If the scaling law for the dissipation is verified for the
largest considered droplets, a large discrepancy is found
for radius roughly below 0.1 mm. We cannot give a defi-
nite explanation for this crossover. We nevertheless think
that it is related to the fact that for such drops substrate
accelerations, even weak, induce both a drop deformation
and a contact line motion. This behavior is qualitatively
different of the one predicted and verified for the larger
droplets. In this case, for the weaker accelerations the
drop is simply deformed with a fixed triple line. Its mo-
tion appears when the amplitude of the wetting angle
variations is larger than the hysteresis. We plan future
experiments to understand why this scenario is not re-
covered for the smaller droplets.
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