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and other conditional product measures1
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November 23rd 2009

Abstract

Through a Metropolis-like algorithm with single step computational
cost of order one, we build a Markov chain that relaxes to the canoni-
cal Fermi statistics for k non-interacting particles among m energy levels.
Uniformly over the temperature as well as the energy values and degen-
eracies of the energy levels we give an explicit upper bound with leading
term km ln k for the mixing time of the dynamics. We obtain such con-
struction and upper bound as a special case of a general result on (non-
homogeneous) products of ultra log-concave measures (like binomial or
Poisson laws) with a global constraint. As a consequence of this general
result we also obtain a disorder-independent upper bound on the mixing
time of a simple exclusion process on the complete graph with site disor-
der. This general result is based on an elementary coupling argument and
extended to (non-homogeneous) products of log-concave measures.
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1 From the Fermi statistics to general condi-

tional products of log-concave measures

1.1 Sampling the Fermi statistics

Given two positive integers k and m, given a non-negative real number β, given
m real numbers v1, . . . , vm and given m integers n1, . . . , nm such that

n :=
m

∑

j=1

nj ≥ k, (1.1)

the canonical Fermi statistics at inverse temperature β for k non-interacting
particles among the m energy levels 1, . . . , m, with energy values v1, . . . , vm

and degeneracies n1, . . . , nm is the conditional probability measure on

Xk,m := {(k1, . . . , km) ∈ N
m : k1 + · · · + km = k} (1.2)

given by
ν := µ(·|Xk,m) (1.3)

with µ the product measure on N
m such that

µ(k1, . . . , km) :=
1

Z

m
∏

j=1

(

nj

kj

)

exp{−βkjvj}, (1.4)

Z :=
∑

k1,...,km

m
∏

j=1

(

nj

kj

)

exp{−βkjvj}. (1.5)

In other words, ν is a (non-homogeneous) product of binomial laws in k1, . . . ,
km with the global constraint

k1 + · · · + km = k (1.6)

and we can write

ν(k1, . . . , km) =
1

Q

m
∏

i=1

eφj(kj), (k1, . . . , km) ∈ Xk,m (1.7)

where the φj are defined by

φj : kj ∈ N 7→ −βkjvj + ln

(

nj

kj

)

∈ R ∪ {−∞} (1.8)

and Q is such that ν is a probability measure.
The first aim of this paper is to describe an algorithm that simulates a

sampling according to ν in a time that can be bounded from above by an
explicit polynomial in k and m, uniformly over β, (vj)1≤j≤m and (nj)1≤j≤m.
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The reason why we prefer a bound in k and m rather than in the ‘volume’ of
the system n =

∑

j nj , will be clarified later.
A first naive (and wrong) idea to do so consists in choosing the position (the

energy level) of a first, second, . . . and eventually kth particle in the following
way. First choose randomly the position of the first particle according to the
exponential weights associated with the ‘free entropies’ of the empty sites, that
is choose level j with a probability proportional to exp{−βvj + lnnj}. Then
decrease by 1 the degeneracy of the chosen energy level and repeat the procedure
to choose the position of the second, third, . . . and eventually kth particle. It
is easy to check that, doing so, the final distribution of the occupation numbers
k1, . . . , km associated with the different energy levels, that is of the numbers
of particles placed in each level, is in general not given by ν as soon as k
is larger than one. But it turns out that this naive idea can be adapted to
build an efficient algorithm to perform approximate samplings under the Fermi
statistics.

Very classically, the fast sampling performed by the algorithm we will build
will be obtained by running a Markov chain X with transition matrix p on
Xk,m and with equilibrium measure ν. The efficiency of the algorithm will be
measured through the bounds that we will be able to give on the mixing time tǫ,
defined for any positive ǫ < 1 by

tǫ := inf{t ≥ 0 : d(t) ≤ ǫ} (1.9)

d(t) := max
η∈Xk,m

‖pt(η, ·) − ν‖TV (1.10)

where ‖ · ‖TV stands for the total variation distance defined for any probability
measures ν1 and ν2 on Xk,m by

‖ν1 − ν2‖TV := max
A⊂Xk,m

|ν1(A) − ν2(A)| =
1

2

∑

η∈Xk,m

|ν1(η) − ν2(η)|. (1.11)

As a consequence, estimating mixing times is not the only one issue of this
paper, building a ‘good’ Markov chain is part of the problem.

As far as that part of the problem is concerned, we propose to build a
Metropolis-like algorithm that uses the ‘free energies’ of the naive approach to
define a conservative dynamics. Assuming that at time t ∈ N the system is
in some configuration Xt = η in Xk,m with ν(η) > 0, and defining for any
η = (k1, . . . , km) and any distinct i and j in {1; · · · ;m}

ηij := (k′1, . . . , k
′
m) with k′s =







ks for s ∈ {1; · · · ;m} \ {i; j}
ki − 1 if s = i
kj + 1 if s = j

,

(1.12)
the configuration at time t+ 1 will be decided as follows:

• choose a particle with uniform probability (it will stand in a given level i
with probability ki/k),
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• choose an energy level with uniform probability (a given level j will be
chosen with probability 1/m),

• with i the level where stood the chosen particle and j the chosen energy
level, extract a uniform variable U on [0; 1) and set Xt+1 = ηij if i 6= j
and

U < exp{−βvj + ln(nj − kj) + βvi − ln(ni − (ki − 1))}, (1.13)

Xt+1 = η if not.

In other words, denoting by [a]+ = (a + |a|)/2 the positive part of any real
number a and with

ψj : kj ∈ {0; · · · ;nj} 7→ −βvj + ln(nj − kj) ∈ R ∪ {−∞}, j ∈ {1; · · · ;m},
(1.14)

for any distinct i and j in {1; · · · ;m}

P (Xt+1 = ηij |Xt = η) = p(η, ηij) =
ki

k

1

m
exp{−[ψi(ki−1)−ψj(kj)]

+}, (1.15)

and
P (Xt+1 = η|Xt = η) = p(η, η) = 1 −

∑

i6=j

p(η, ηij). (1.16)

Remark: In order to avoid any ambiguity in (1.15) in the case ki = 0, we set
ψi(−1) = +∞ (even though the algorithm we described does not require any
convention for ψi(−1)).

This Markov chain is certainly irreducible and aperiodic. To prove that it
relaxes to ν we will check the reversibility of the process with respect to ν. Then
we will have to estimate the mixing time of the process. We will carry out both
the tasks in a more general setup.

1.2 A general result

For any function f : N → R we define

∇+
x f := f(x+ 1) − f(x), x ∈ N, (1.17)

∇−
x f := f(x− 1) − f(x), x ∈ N \ {0}, (1.18)

∆xf := ∇+
x f + ∇−

x f = −∇−
x ∇

+f, x ∈ N \ {0}, (1.19)

and we say that a measure γ on the integers

γ : x ∈ N 7→ eφ(x) ∈ R+, (1.20)

with φ : N → R ∪ {−∞}, is log-concave if N \ γ−1({0}) is an interval of the
integers and

γ(x)2 ≥ γ(x− 1)γ(x+ 1), x ∈ N \ {0}, (1.21)
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i.e., if ∇+φ is non-increasing, or, equivalently, −∆φ is non-negative (with the
obvious extension of the previous definitions to such a possibly non-finite φ).
The measure µ defined in (1.4) is a product of log-concave measures and the
canonical Fermi statistics is such a product measure normalized over the condi-
tion (1.6).

N.B. From now on, and except for explicit mentioning of additional hypotheses,
we will only assume that the probability measure ν we want to sample is a product
of log-concave measures normalized over the global constraint (1.6), i.e., that ν
is a probability on Xk,m that can be written in the form (1.7) with non-increasing
∇+φj’s.

In this more general setup we will often refer to the indices j in {1; · · · ;m} as
sites rather than energy levels of the system.

Actually the eφj ’s of the Fermi statistics are much more than log-concave
measures. They are ultra log-concave measures according to the following defi-
nition by Pemantle [1] and Liggett [2].

Definition 1.2.1 A measure γ : N → R+ is ultra log-concave if x 7→ x!γ(x) is
log-concave.

In other words eφj is ultra log-concave if and only if

ψj := ∇+φj + ln(1 + ·) (1.22)

is non-increasing (for the Fermi statistics observe that so are the φj ’s and that
(1.22) is consistent with (1.14)).

For birth and death processes that are reversible with respect to ultra log-
concave measures, Caputo, Dai Pra and Posta [6] proved modified log-Sobolev
inequalities and stronger convex entropy decays, both giving good upper bounds
on the mixing time of the processes. Johnson [9] proved also easier Poincaré
inequalities that give weaker bounds on the mixing times. Our main result
directly bounds from above the mixing time of a Markov chain that is reversible
with respect to a conditional product of ultra log-concave measures:

Theorem 1 If ν derives from a product of ultra log-concave measures, then the
Markov chain with transition matrix p defined by

p(η, ηij) =
ki

k

1

m
exp{−[ψi(ki − 1) − ψj(kj)]

+},

η = (k1, . . . , km) ∈ Xk,m \ ν−1{0},

i 6= j ∈ {1; · · · ;m}, (1.23)

p(η, η) = 1 −
∑

i6=j

p(η, ηij) (1.24)

is reversible with respect to ν and, for any positive ǫ < 1, its mixing time tǫ
satisfies

tǫ ≤ km ln(k/ǫ). (1.25)

5



Proof: see Section 2.
The most relevant point of Theorem 1 with respect to the previous results

we know stands in the uniformity of the upper bound above the disorder of
the system (except for the ultra log-concavity hypothesis on eφj in each j). In
particular and as far as the Fermi statistics is concerned, our estimate does
not depend on the temperature, and, more generally it is independent from the
energy values as well as the level degeneracies.

To illustrate this fact let us start with the case nj = 1 for all j. In this
case our dynamic is a simple exclusion process with site disorder. Caputo ([3],
[8]) proved Poincaré inequalities for such processes, in their continuous time
version, assuming a uniform lower (and upper) bound on general transition
rates. Caputo, Dai Pra and Posta [6], looking at particular rates for the process
and still assuming moderate disorder, that is, uniform lower and upper bounds
on these rates, then proved a modified log-Sobolev inequality giving an upper
bound of the same order as that of Theorem 1. It is worth to note that for the
particular choice of rates made in [6] such an upper bound on the mixing time
could not hold in a strong disorder context (for example with k = 1, m = 3,
v1 = v2 = 0, v3 > 0 and β ≫ 1). Our uniformity over the disorder of the system
depends then strongly on our particular choice for the transition probabilities.
As it is often the case with Markov processes on discrete state space, the details
of the dynamics are not less important than the properties of its equilibrium
measure.

As far as more general conditional non-homogeneous product log-concave
measures are concerned, these can be equilibrium measures of zero-range pro-
cesses. Under a few technical hypotheses implying ultra log-concavity as well
as moderate disorder [6] showed modified log-Sobolev inequalities for such pro-
cesses. Boudou, Caputo, Dai Pra and Posta [5] proved also Poincaré inequalities
under an assumption of uniformly increasing rates. Such an assumption still
imply moderate disorder (but it only implies log-concavity rather than ultra
log-concavity). For our Markov chain we will not prove Poincaré or log-Sobolev
inequalities that are the main objects of [3], [5], [6], [8], [9]: we will see in Sec-
tion 2 that our uniform bound on the mixing time comes from an elementary
coupling argument.

1.3 Interpolating between sites and particles

It seems that today available techniques are such that the less log-concavity
we have, the more homogeneity we need to control the convergence to equi-
librium. Staying to the papers mentioned above, without ultra log-concavity
we only have Poincaré inequalities for non-homogeneous product of log-concave
measures, and without log-concavity we have modified log-Sobolev inequalities
for homogeneous product measures only (see [6]). In addition, the only result
we know for a conservative dynamics in (weakly) disordered context and with
an equilibrium measure that is a product of measures that are not log-concave
is that of Landim and Noronha Neto [4] for the (continuous) Ginzburg-Landau
process.
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We will see that all the ideas of the proof of Theorem 1 can be extended to
deal with a large class of conditional product of log-concave measures that are
not ultra log-concave. To do so, let us define

δ := max

{

λ ∈ [0; 1] : ∀j ∈ {1; · · · ;m}, ∀kj > 0, −∆kj
φj ≥ λ ln

1 + kj

kj

}

.

(1.26)
In other words, δ is the largest real number in [0; 1] for which all the

ψ
[δ]
j := ∇+φj + δ ln(1 + ·), j ∈ {1; · · · ;m}, (1.27)

are non-increasing. Denoting by a ∧ b the minimum of two real numbers a, b
and defining

lδ := kδ(k ∧m)1−δ (1.28)

we will prove:

Theorem 2 If δ > 0 then the Markov chain with transition matrix p defined
by

p(η, ηij) =
kδ

i

lδ

1

m
exp{−[ψ

[δ]
i (ki − 1) − ψ

[δ]
j (kj)]

+},

η = (k1, . . . , km) ∈ Xk,m \ ν−1{0},

i 6= j ∈ {1; · · · ;m}, (1.29)

p(η, η) = 1 −
∑

i6=j

p(η, ηij) (1.30)

is reversible with respect to ν and, for any positive ǫ < 1, its mixing time tǫ
satisfies

tǫ ≤
(k ∧m)1−δ

δ
km ln(k/ǫ). (1.31)

Remark 1: By Hölder’s inequality, if δ > 0 then

m
∑

i=1

kδ
i =

m
∑

i=1

kδ
i 1l

1−δ
{ki 6=0} ≤

( m
∑

i=1

ki

)δ( m
∑

i=1

1l{ki 6=0}

)1−δ

≤ lδ (1.32)

and this ensures that (1.29)-(1.30) define a probability matrix.
Remark 2: As far as this can make sense in our discrete setup, we note that
the hypothesis δ > 0 is slightly weaker than a “uniform strict log-concavity
hypothesis” (see (1.26)).
Proof of Theorem 2: see Section 3.

For δ = 1 the transition matrix represents an algorithm starting with a
uniform choice of a particle. For δ = 0 Theorem 2 is empty but (1.29)-(1.30)
still define a Markov chain X that can be seen as a particular version of a
discrete state space non-homogeneous Ginzburg-Landau process. In this case
the transition matrix represents an algorithm that starts with a uniform choice
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of a (non-empty) site. The case 0 < δ < 1 can be seen as an interpolation
between uniform choices of site and particle. More precisely, assuming that
at time t ∈ N the system is in some configuration Xt = η = (k1, . . . , km) in
Xk,m \ ν−1{0}, the configuration at time t+ 1 can be decided as follows.

• Choose a site i or no site at all with probabilities proportional to kδ
i and

lδ −
∑

i k
δ
i .

• If some site i was chosen then proceed as in the previously described

algorithm using the functions ψ
[δ]
j instead of the ψj ’s, if not then set

Xt+1 = η.

1.4 Last remarks and original motivation

With our definitions p(η, η) can often be close to one, especially in strong disor-
der situations or when the right and left hand sides in (1.32) are far from each
other. If one would like to use these results to perform practical simulations,
then it could be useful to note that the computational time would still be im-
proved by implementing an algorithm that at each step simulates, for a given
configuration η on the trajectory of the Markov chain, the elapsed time before
the particle reach a different configuration (this is a geometric time) and choose
this configuration η′ 6= η according to the (easy to compute) associated law.
It would then be enough to stop the algorithm as soon as the total simulated
time goes beyond the mixing time (and then return the last configuration, that
occupied by the system at the mixing time) rather than waiting for the original
algorithm to make a step number equal to the mixing time.

Turning back to the first naive and wrong idea, it is interesting to note that
it can easily be modified to determine the most probable states of the system,
i.e., the configurations η∗ = (k∗1 , . . . , k

∗
m) in Xk,m such that

m
∑

j=1

φj(k
∗
j ) = max

k1+···+km=k

m
∑

j=1

φj(kj). (1.33)

One can prove, using the concavity of the φj ’s, that the most probable configu-
rations for the system with k particles can be obtained from the most probable
configurations (k′1, . . . , k

′
m) for the system with k − 1 particles simply adding

one particle where the corresponding gain in ‘free energy’ is the highest, that is
in j∗ such that

∇+
k′

j∗
φj∗ = max

j
∇+

k′

j

φj . (1.34)

As a consequence one can place the particles one by one, each time maximizing
this free energy gain, to build the most probable configuration.

Finally, turning back to the Fermi statistics we now explain why we were
interested in bounds in k andm rather than in the volume n. Iovanella, Scoppola
and Scoppola defined in [7] an algorithm to individuate cliques (i.e., complete
subgraphs) with k vertices inside a large Erdös-Reyni random graph with n
vertices. Their algorithm requires to perform repeated approximate samplings
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of Fermi statistics in volume n, with k particles and m = 2k + 1 energy levels.
Now, the key observation is that the largest cliques in Erdös-Reyni graphs with
n vertices are of order lnn, so that k and m in this problem are logarithmically
small with respect to n. Before Theorem 1 the samplings for their algorithm
were done by running simple exclusion processes with k particles on the complete
graph (with site disorder) of size n. Such processes converge to equilibrium
in a time of order kn lnk. Now the samplings are done in a time of order
km lnk ∼ 2k2 ln k, and that was the original motivation of the present work.

2 Proof of Theorem 1

In this section we assume that ν is a measure on Xk,m deriving from a product
of ultra log-concave measures, which means that we can write ν(k1, . . . , km) =
(1/Q)

∏

j e
φj(kj) and, for all j ∈ {1; · · · ;m}, ψj defined by (1.22) is non-

increasing.

2.1 Reversibility

We first prove that the transition matrix p defined by (1.23) and (1.24) is re-
versible with respect to the measure ν. Let η = (k1, . . . , km) ∈ Xk,m \ ν−1{0}
and let i 6= j ∈ {1; · · · ;m}. We have p(η, ηij) 6= 0 if and only if ν(ηij) 6= 0 and,
in that case,

ν(ηij)

ν(η)
=
eφi(ki−1)+φj(kj+1)

eφi(ki)+φj(kj)
= exp{∇−

ki
φi + ∇+

kj
φj} (2.1)

while

p(ηij , η)

p(η, ηij)
=

kj + 1

ki

exp{−[ψj(kj) − ψi(ki − 1)]+

+[ψi(ki − 1) − ψj(kj)]
+} (2.2)

= exp{ψi(ki − 1) − ψj(kj) + ln(kj + 1) − ln(ki)} (2.3)

= exp{∇+
ki−1φi −∇+

kj
φj} (2.4)

= exp{−∇−
ki
φi −∇+

kj
φj} (2.5)

so that
ν(η)p(η, ηij) = ν(ηij)p(ηij , η). (2.6)

2.2 A few words about the coupling method

In order to upper bound the mixing time of the Markov chain with transition
matrix p, we will use the coupling method. Given a Markov chain (X1, X2) on
Xk,m × Xk,m, we say it is a coupling for the dynamics if both X1 and X2 are
Markov chains with transition matrix p. Given such a coupling, we define the
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coupling time τcouple as the first (random) time for which the chains meet, that
is

τcouple := inf{t ≥ 0 : X1
t = X2

t }. (2.7)

In this work, every coupling will also satisfy the condition

t ≥ τcouple ⇒ X1
t = X2

t . (2.8)

Then, it is a well-known fact that for all t ≥ 0,

d(t) ≤ max
η,θ∈Xk,m

P (τcouple > t|X1
0 = η,X2

0 = θ) (2.9)

where d(t) is defined by (1.10). A proof of this fact as well as an exhaustive
introduction to mixing time theory can be found in [10].

In the proof of both 1 and 2 we will build a coupling for which there exists
a function ρ that measures in some sense a ‘distance’ between X1

t and X2
t and

from which we will get a bound on the mixing time thanks to the following
proposition.

Proposition 2.2.1 Let (X1, X2) be a coupling for a Markov chain with tran-
sition matrix p. We assume that the coupling satisfies the property (2.8). Let
ρ : Xk,m × Xk,m → N such that ρ(η, θ) = 0 if and only if η = θ. If M is the
maximum of ρ and if there exists α > 1 such that, for all t ≥ 0,

E
(

ρ(X1
t+1, X

2
t+1)|X

1
t , X

2
t

)

≤

(

1 −
1

α

)

ρ(X1
t , X

2
t ), (2.10)

then for all ǫ > 0 the mixing time tǫ of the dynamics is upper bounded by
α ln(M/ǫ).

Proof: Taking the expectation in (2.10) we get

E(ρ(X1
t+1, X

2
t+1)) ≤

(

1 −
1

α

)

E(ρ(X1
t , X

2
t )) (2.11)

i.e., (ρ(X1
t , X

2
t )(1 − 1/α)−t)t∈N is a supermartingale. As a consequence

E(ρ(X1
t , X

2
t )) ≤

(

1 −
1

α

)t

E(ρ(X1
0 , X

2
0 )) ≤Me−

t
α . (2.12)

Since we assume ρ(η, θ) = 0 if and only if η = θ and (2.8),

P (τcouple > t) = P (ρ(X1
t , X

2
t ) > 0) = P (ρ(X1

t , X
2
t ) ≥ 1). (2.13)

From Markov’s inequality and (2.12) we deduce

P (τcouple > t) ≤ E(ρ(X1
t , X

2
t )) ≤Me−

t
α . (2.14)

Since the upper bound in (2.14) is uniform in X1
0 and X2

0 , according to (2.9) we
get

d(t) ≤Me−
t
α . (2.15)

Thus, given ǫ > 0, if t ≥ α ln(M/ǫ) then d(t) ≤ ǫ, so that tǫ ≤ α ln(M/ǫ). �
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2.3 A colored coupling

In order to prove Theorem 1, we introduce a dynamics on the set of the possible
distributions of the k particles in the m energy levels. Therefore we define the
set

Ω := {ω : {1; . . . ; k} → {1; . . . ;m}} (2.16)

and for every such distribution ω, we define ξ(ω) = (k1, . . . , km) ∈ Xk,m by

∀i ∈ {1; . . . ;m}, ki :=

k
∑

x=1

1l{ω(x)=i}. (2.17)

We will couple two dynamics ω1 and ω2 on Ω, then we will work with the cou-
pling (ξ(ω1), ξ(ω2)). We will build the coupling (ω1, ω2) thanks to the coloring
we now introduce.

At step t, a red-blue coloring of (ω1
t , ω

2
t ) is a couple of functions C1, C2 :

{1; . . . ; k} → {blue; red} such that for all energy level i ∈ {1; . . . ;m}, the number
of blue particles in the level i is the same in both distributions, i.e., if |A| refers
to the cardinality of the set A,

|{x : C1(x) = blue, ω1
t (x) = i}| = |{x : C2(x) = blue, ω2

t (x) = i}| (2.18)

and an energy level cannot contain red particles in both distributions

C1(x) = red ⇒ ∀y, (ω2
t (y) = ω1

t (x) ⇒ C2(y) = blue), (2.19)

C2(x) = red ⇒ ∀y, (ω1
t (y) = ω2

t (x) ⇒ C1(y) = blue). (2.20)

As a consequence of (2.18), there exists a one-to-one correspondence

Φ : {x : C1(x) = blue} → {x : C2(x) = blue} (2.21)

such that for all x, ω2
t (Φ(x)) = ω1

t (x). Since the number of blue particles
is the same in both distributions, so is the number of red particles. Moreover,
ξ(ω1

t ) = ξ(ω2
t ) if and only if all particles are blue. Then we are willing to provide

a coupling (ω1, ω2) for which the number of red particles is non-increasing. This
number does not depend on the red-blue coloring and at any time t we will call
it ρt. Writing ξ(ω1

t ) = (k1
1 , . . . , k

1
m) and ξ(ω2

t ) = (k2
1 , . . . , k

2
m) we have the

identities

ρt =
1

2

m
∑

i=1

|k1
i − k2

i | =

m
∑

i=1

[k1
i − k2

i ]+ =

m
∑

i=1

[k2
i − k1

i ]+. (2.22)

We are now ready to build our coupling (ω1, ω2). Given (ω1
t , ω

2
t ) and a red-

blue coloring (C1, C2) at step t (such a coloring certainly exists for any couple
of distributions (ω1

t , ω
2
t )), let x1 be a uniform random integer in {1; . . . ; k}.

• If C1(x1) = blue: then we set x2 = Φ(x1) where Φ is provided by (2.21).

• If C1(x1) = red: let x2 be a uniform random integer in {x : C2(x) = red}.
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Lemma 2.3.1 The random integer x2 has a uniform distribution on the set
{1; . . . ; k}.

Proof: We write

P (x2 = y) =

k
∑

x=1

P (x2 = y|x1 = x)P (x1 = x) (2.23)

=
∑

x:C1(x)=blue

1l{y=Φ(x)}
1

k

+
∑

x:C1(x)=red

1l{C2(y)=red}

ρt

1

k
(2.24)

=
1l{C2(y)=blue}

k
+

1l{C2(y)=red}

ρt

ρt

k
(2.25)

=
1

k
. (2.26)

�

We then choose an energy level j uniformly in {1; . . . ;m} and we write ξ(ω1
t ) =

(k1
1 , . . . , k

1
m) and ξ(ω2

t ) = (k2
1 , . . . , k

2
m).

• If C1(x1) = blue: then C2(x2) = blue, and x1, x2 are in the same energy
level i := ω1

t (x1) = ω2
t (x2). Let a 6= b ∈ {1; 2} such that ψi(k

a
i − 1) −

ψj(k
a
j ) ≤ ψi(k

b
i − 1) − ψj(k

b
j). Then,

pa := exp{−[ψi(k
a
i − 1) − ψj(k

a
j )]+} (2.27)

≥ exp{−[ψi(k
b
i − 1) − ψj(k

b
j)]

+} =: pb. (2.28)

Let U be a uniform random variable on [0; 1).

– If U < pb: then we set ωa
t+1(x) = ωa

t (x) for all x 6= xa, ωa
t+1(x

a) = j,
ωb

t+1(x) = ωb
t (x) for all x 6= xb and ωb

t+1(x
b) = j. Then ξ(ωa

t+1) =
(ξ(ωa

t ))ij and ξ(ωb
t+1) = (ξ(ωb

t ))
ij , and for any red-blue coloring of

(ω1
t+1, ω

2
t+1) the number of red particles ρt+1 remains the same (since

both particles x1 and x2 have moved together).

– If pb ≤ U < pa: then we set ωa
t+1(x) = ωa

t (x) for all x 6= xa,
ωa

t+1(x
a) = j and ωb

t+1(x) = ωb
t (x) for all x. Then ξ(ωa

t+1) =
(ξ(ωa

t ))ij and ξ(ωb
t+1) = ξ(ωb

t ). The only situation in which the
number of red particles could increase is the following: ka

j ≥ kb
j

and ka
i ≤ kb

i . Since ψi and ψj are non-increasing, this would imply
pa ≤ pb that contradicts pb ≤ U < pa. Then, ρt+1 ≤ ρt for any
red-blue coloring of (ω1

t+1, ω
2
t+1).

– If U ≥ pa: then we set ωa
t+1 = ωa

t and ωb
t+1 = ωb

t . Then ξ(ωa
t+1) =

ξ(ωa
t ), ξ(ωb

t+1) = ξ(ωb
t ) and ρt+1 = ρt.

12



• If C1(x1) = red: then C2(x2) = red, and we define i1 := ω1
t (x1) and

i2 := ω2
t (x2). Note that according to (2.19), i1 6= i2. Let then V 1, V 2 be

two independent uniform random variables on [0; 1).

– If V 1 < exp{−[ψi1(k
1
i1
− 1)−ψj(k

1
j )]+} then we set ω1

t+1(x) = ω1
t (x)

for all x 6= x1 and ω1
t+1(x

1) = j and then ξ(ω1
t+1) = (ξ(ω1

t ))ij ;
otherwise we leave ω1

t+1 = ω1
t .

– If V 2 < exp{−[ψi2(k
2
i2 − 1)−ψj(k

2
j )]+} then we set ω2

t+1(x) = ω2
t (x)

for all x 6= x2 and ω2
t+1(x

2) = j and then ξ(ω2
t+1) = (ξ(ω2

t ))ij ;
otherwise we leave ω2

t+1 = ω2
t .

Whether red particles move or not, the number of red particles cannot
increase, so it is clear that ρt+1 ≤ ρt.

We conclude

Proposition 2.3.2 (ρt)t∈N is a non-increasing process.

and claim

Proposition 2.3.3 The process (ξ(ω1), ξ(ω2)) is a coupling for the Markov
chain with transition matrix p.

Proof: Writing ξ(ω1
t ) = η and given i, j ∈ {1; . . . ;m},

P (ξ(ω1
t+1) = ηij)

= P (ξ(ω1
t+1) = ηij |C1(x1) = blue)P (C1(x1) = blue)

+ P (ξ(ω1
t+1) = ηij |C1(x1) = red)P (C1(x1) = red). (2.29)

We have
P (C1(x1) = red) = 1 − P (C1(x1) = blue) =

ρt

k
(2.30)

and

P (ξ(ω1
t+1) = ηij |C1(x1) = blue)

= P (ω1
t (x1) = i|C1(x1) = blue) ×

1

m
× P (U < p1) (2.31)

=
k1

i ∧ k2
i

(1 − ρt)m
exp{−[ψi(k

1
i − 1) − ψj(k

1
j )]+} (2.32)

P (ξ(ω1
t+1) = ηij |C1(x1) = red)

= P (ω1
t (x1) = i|C1(x1) = red) ×

1

m
× P (V 1 < p1) (2.33)

=
[k1

i − k2
i ]+

ρtm
exp{−[ψi(k

1
i − 1) − ψj(k

1
j )]+} (2.34)

which finally leads to

P (ξ(ω1
t+1) = ηij) =

k1
i

km
exp{−[ψi(k

1
i − 1) − ψj(k

1
j )]+} = p(η, ηij). (2.35)

13



Then, P (ξ(ω1
t+1) = ηij |ω1

t , ω
2
t ) depends on ξ(ω1

t ) only, which means that ξ(ω1) is
a Markov chain. Besides, according to (2.35) its transition matrix is p. Finally,
by Lemma 2.3.1, the same is true for ξ(ω2). �

From now on, we will write X1
t := ξ(ω1

t ) and X2
t := ξ(ω2

t ). The previous
proposition ensures that (X1, X2) is a coupling for the dynamics with transition
matrix p.

2.4 Estimating the coupling time

We will use Proposition 2.2.1. Since (ρt)t∈N is non increasing and ρt = 0 if and
only if X1

t = X2
t , all we have to do is to estimate from below the probability of

the event {ρt+1 < ρt}.

Proposition 2.4.1 If at step t of the coupled dynamics (ω1, ω2) we assume
that red particles have been chosen, i.e., C1(x1) = red = C2(x2), then there
is a choice of j ∈ {i1; i2} for which the number of red particles decreases with
probability 1.

Proof: If the inequalities

exp{−[ψi1(k
1
i1 − 1) − ψi2(k

1
i2 )]

+} < 1 (2.36)

exp{−[ψi2(k
2
i2 − 1) − ψi1(k

2
i1 )]

+} < 1 (2.37)

holds together, then ψi1 (k
1
i1
−1) > ψi2(k

1
i2

) and ψi2(k
2
i2
−1) > ψi1 (k

2
i1

). Besides,
since C1(x1) = red, according to (2.19) k1

i1 > k2
i1 from which we get k1

i1 − 1 ≥
k2

i1 and, since ψi1 is non-increasing, ψi1 (k
1
i1 − 1) ≤ ψi1(k

2
i1). Likewise, since

C2(x2) = red we have ψi2(k
2
i2
− 1) ≤ ψi2(k

1
i2

). We finally may write

ψi1(k
1
i1 − 1) > ψi2(k

1
i2) ≥ ψi2(k

2
i2 − 1) > ψi1(k

2
i1 ) ≥ ψi1(k

1
i1 − 1) (2.38)

which is absurd. As a result, either (2.36) or (2.37) is false. For instance
let us assume that (2.36) is false, then if j = i2, with probability 1 we have
ω1

t+1(x) = ω1
t (x) for all x 6= x1, ω1

t+1(x
1) = i2 6= ω1

t (x1) and ω2
t+1 = ω2

t . Then,
the number of red particles for any red-blue coloring of (ω1

t+1, ω
2
t+1) is exactly

ρt+1 = ρt − 1. �

It follows

Corollary 2.4.2 At step t, if ρt > 0, the probability for ρt+1 to be ρt − 1 is at
least ρt/km.

Consequently, and owing to the fact ρt cannot increase, we have the inequal-
ity E(ρt+1 − ρt|X

1
t , X

2
t ) ≤ −P (ρt+1 = ρt − 1|X1

t , X
2
t ) from which we deduce

E(ρt+1|X
1
t , X

2
t ) ≤

(

1 −
1

km

)

ρt. (2.39)

Then we can apply Proposition 2.2.1 to ρ(X1
t , X

2
t ) = ρt with M = k and

α = km, which finally proves Theorem 1.
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3 Proof of Theorem 2

We now work with the dynamics defined by (1.29)-(1.30) and we assume δ > 0.
First, the reversibility of this dynamics with respect to ν still holds, with exactly
the same computation as in Subsection 2.1. However, it is no longer possible to
work with an underlying process ωt ∈ Ω since the factor kδ

i cannot stand for a
number of particles as soon as δ < 1. Therefore we need to adapt the coupling
(X1, X2) directly on Xk,m.

3.1 Generalizing the previous coupling

At step t, let us assume X1
t = (k1

1 , . . . , k
1
m) ∈ Xk,m and X2

t = (k2
1 , . . . , k

2
m) ∈

Xk,m. We define the following sets:

R1 := {i ∈ {1; . . . ;m} : k1
i > k2

i }, (3.1)

R2 := {i ∈ {1; . . . ;m} : k2
i > k1

i }, (3.2)

B := {i ∈ {1; . . . ;m} : k1
i = k2

i }, (3.3)

and the following quantities:

w1 :=
∑

i∈R1

(k1
i )δ, w′

1 :=
∑

i∈R2

(k1
i )δ, (3.4)

w2 :=
∑

i∈R2

(k2
i )δ, w′

2 :=
∑

i∈R1

(k2
i )δ, (3.5)

wB :=
∑

i∈B

(k1
i )δ =

∑

i∈B

(k2
i )δ. (3.6)

Finally we define

ρt :=
1

2

m
∑

i=1

|k1
i − k2

i | =
m

∑

i=1

[k1
i − k2

i ]+ =
m

∑

i=1

[k2
i − k1

i ]+. (3.7)

Keeping in mind the previous coloring, R1 (resp. R2) is the set of sites in
which there are red particles for the first (resp. the second) configuration, B is
the set of sites in which there are only blue particles or no particles for both
configurations, w1 (resp. w2) is proportional to the probability to choose a site
for the first (resp. the second) configuration in which there are red particles, w′

1

(resp. w′
2) is proportional to the probability to choose a site for the first (resp.

the second) configuration in which there are only blue particles while there are
red particles in the second (resp. the first) configuration, wB is proportional
to the probability to choose a site in which there are only blue particles for
both configurations, and lδ − (wB + w1 + w′

1) (resp. lδ − (wB + w2 + w′
2)) is

proportional to the probability not to choose any site for the first (resp. the
second) configuration, and it can be positive as soon as δ < 1. Finally, ρt still
stands for the number of red particles and it is clear that ρt = 0 if and only if
X1

t = X2
t .
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N.B. In the remaining part of this subsection, we assume w1 + w′
1 ≥ w2 + w′

2

in order to not overload the notations and not increase the number of cases to
investigate. Obviously, the case w1 + w′

1 ≤ w2 + w′
2 is exactly symmetric.

Let I be a uniform random variable on [0; lδ).

(i) If I < wB : then there exists a unique i ∈ B such that

∑

i′∈B;i′<i

(k1
i′ )

δ ≤ I <
∑

i′∈B;i′≤i

(k1
i′)

δ (3.8)

and we set i1 = i2 = i.

Remark: We then have, for all i ∈ {1; . . . ;m},

P (i1 = i|(i)) = 1l{i∈B}
(k1

i )δ

wB

, (3.9)

P (i2 = i|(i)) = 1l{i∈B}
(k1

i )δ

wB

= 1l{i∈B}
(k2

i )δ

wB

. (3.10)

(ii) If wB ≤ I < wB + w′
1: then there exists a unique i ∈ R2 such that

∑

i′∈R2;i′<i

(k1
i′ )

δ ≤ I − wB <
∑

i′∈R2;i′≤i

(k1
i′ )

δ (3.11)

and we set i1 = i2 = i.

Remark: We then have, for all i ∈ {1; . . . ;m},

P (i1 = i|(ii)) = 1l{i∈R2}
(k1

i )δ

w′
1

, (3.12)

P (i2 = i|(ii)) = 1l{i∈R2}
(k1

i )δ

w′
1

. (3.13)

(iii) If wB + w′
1 ≤ I < wB + w′

1 + w1: then there exists a unique i ∈ R1 such
that

∑

i′∈R1;i′<i

(k1
i′ )

δ ≤ I − wB − w′
1 <

∑

i′∈R1;i′≤i

(k1
i′)

δ. (3.14)

We set i1 = i and we define u := I −wB −w′
1 −

∑

i′∈R1;i′<i(k
1
i′ )

δ, so that

0 ≤ u < (k1
i )δ. Notice that since i ∈ R1, k

1
i > k2

i . If u < (k2
i )δ then we

set i2 = i. Otherwise, for all i′ ∈ R2 we write vi′ :=
∑

ℓ∈R2;ℓ<i′(k
1
ℓ )δ and

we denote by T the disjoint union of intervals

T :=

{

⋃

i′∈R2

[

vi′ + (k1
i′)

δ; vi′ + (k2
i′)

δ
)

}

∪ [w2 + w′
2;w1 + w′

1). (3.15)

Let I ′ be a uniform random variable on T . If there exists i′ ∈ R2 such
that I ′ ∈

[

vi′ + (k1
i′)

δ; vi′ + (k2
i′)

δ
)

then we set i2 = i′. Else we do not
define i2.
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Remark: We then have, for all i ∈ {1; . . . ;m},

P (i1 = i|(iii)) = 1l{i∈R1}
(k1

i )δ

w1
(3.16)

and for all i′ ∈ {1; . . . ;m},

P (i2 = i′|(iii))

= 1l{i′∈R1}
(k2

i′ )
δ

w1

+ 1l{i′∈R2}

∑

i∈R1

(k1
i )δ − (k2

i )δ

w1
×

(k2
i′)

δ − (k1
i′ )

δ

λ(T )
(3.17)

where

λ(T ) :=
∑

i′∈R2

(

(k2
i′)

δ − (k1
i′ )

δ
)

+ (w1 + w′
1) − (w2 + w′

2) (3.18)

= w1 − w′
2 (3.19)

so that

P (i2 = i′|(iii)) = 1l{i′∈R1}
(k2

i′)
δ

w1
+ 1l{i′∈R2}

(k2
i′ )

δ − (k1
i′ )

δ

w1
. (3.20)

(iv) If I ≥ wB +w1 +w′
1 (this case cannot occur when δ = 1): then we do not

define i1 and i2.

Before going ahead with the definition of our coupling we note, as a direct
consequence of our remarks in (i), (ii), (iii) and of of the fact that I has a
uniform distribution:

Proposition 3.1.1 For all i ∈ {1; . . . ;m}, P (i1 = i|X1
t , X

2
t ) = (k1

i )δ/lδ and
P (i2 = i|X1

t , X
2
t ) = (k2

i )δ/lδ.

We then choose an integer j ∈ {1; . . . ;m} with uniform law and we distinguish
once again between our four previous cases.

(i) If i1 ∈ B: then i2 = i1, we just write i1 = i2 = i. Then k1
i = k2

i . Thus,

let a, b ∈ {1; 2} such that a 6= b and ka
j ≤ kb

j . Since both ψ
[δ]
i and ψ

[δ]
j are

non-increasing,

pa := exp{−[ψ
[δ]
i (ka

i − 1) − ψ
[δ]
j (ka

j )]+} (3.21)

≥ exp{−[ψ
[δ]
i (kb

i − 1) − ψ
[δ]
j (kb

j)]
+} =: pb. (3.22)

Let U be a uniform random variable on [0; 1).

– If U < pb: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = (Xb

t )ij .
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– If pb ≤ U < pa: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = Xb

t .

– If pa ≤ U : we set Xa
t+1 = Xa

t and Xb
t+1 = Xb

t .

In any of these cases, we certainly have ρt+1 = ρt.

(ii) If i1 ∈ R2: then i2 = i1, we just write i1 = i2 = i. Let a, b ∈ {1; 2} such

that a 6= b and ψ
[δ]
i (ka

i − 1) − ψ
[δ]
j (ka

j ) ≤ ψ
[δ]
i (kb

i − 1) − ψ
[δ]
j (kb

j), so that

pa := exp{−[ψ
[δ]
i (ka

i − 1) − ψ
[δ]
j (ka

j )]+} (3.23)

≥ exp{−[ψ
[δ]
i (kb

i − 1) − ψ
[δ]
j (kb

j)]
+} =: pb. (3.24)

Let U be a uniform random variable on [0; 1).

– If U < pb: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = (Xb

t )ij .

– If pb ≤ U < pa: we set Xa
t+1 = (Xa

t )ij and Xb
t+1 = Xb

t .

– If pa ≤ U : we set Xa
t+1 = Xa

t and Xb
t+1 = Xb

t .

In the last case we obviously have ρt+1 = ρt. In the first case the particles
move together and ρt+1 = ρt. In the second case the number of red

particles could increase only if ka
i ≤ kb

i and ka
j ≥ kb

j , but, since ψ
[δ]
i and

ψ
[δ]
j are non increasing, this would contradict pa > pb. As a consequence

we have ρt+1 ≤ ρt in all the three cases.

(iii) If i1 ∈ R1: there are three cases for i2. Either i2 = i1 = i and this case is
the symmetric of (ii). Or i2 is randomly chosen in R2, and we define

p1 := exp{−[ψ
[δ]
i1

(k1
i1 − 1) − ψ

[δ]
j (k1

j )]+}, (3.25)

p2 := exp{−[ψ
[δ]
i2

(k2
i2 − 1) − ψ

[δ]
j (k2

j )]+}. (3.26)

Or else i2 is not defined, and we set p2 := 0 still defining p1 by (3.25). Let
then V 1, V 2 be independent uniform random variables on [0; 1).

– If V 1 < p1: we set X1
t+1 = (X1

t )i1j , else we set X1
t+1 = X1

t .

– If V 2 < p2: we set X2
t+1 = (X2

t )i2j , else we set X2
t+1 = X2

t .

In the first case we have ρt+1 ≤ ρt as previously. In the last two cases we
also have ρt+1 ≤ ρt since only particles from R1 in the first configuration
and from R2 in the second configuration can move.

(iv) If i1 and i2 are not defined: then we simply set (X1
t+1, X

2
t+1) = (X1

t , X
2
t )

and we have ρt+1 = ρt.

In any of the previous cases, once i1, i2 and j have been defined, the prob-

ability for X1
t+1 (resp. X2

t+1) to be (X1
t )i1j (resp. (X2

t )i2j) is exp{−[ψ
[δ]
i1

(k1
i1 −

1) − ψ
[δ]
j (k1

j )]+} (resp. exp{−[ψ
[δ]
i2

(k2
i2 − 1) − ψ

[δ]
j (k2

j )]+}). Thus, according to
Proposition 3.1.1, the fact that j is uniformly chosen in {1; . . . ;m} and our
study on the variation of ρ we conclude:
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Proposition 3.1.2 The process (X1, X2) is a coupling for the dynamics defined
by (1.29)-(1.30) and such that (ρt)t∈N is non-increasing.

3.2 Estimating the coupling time

Similarly to the proof of Theorem 1 we will use Proposition 2.2.1: since (ρt)t∈N

is non-increasing it will be enough to give a lower bound for the probability of
{ρt+1 < ρt}.

Proposition 3.2.1 If at step t of the coupled dynamics (X1, X2), we assume
that “red particles have been chosen”, i.e., i1 ∈ R1 and i2 ∈ R2, then, there
is a choice of j ∈ {i1; i2} for which the number of red particles decreases with
probability 1.

Proof: Assuming i1 ∈ R1 and i2 ∈ R2 yields k1
i1 > k2

i1 and k1
i2 < k2

i2 . Us-
ing exactly the same argument as for Proposition 2.4.1 we prove that either

exp{−[ψ
[δ]
i1

(k1
i1 − 1)−ψ

[δ]
i2

(k1
i2 )]

+} = 1 or exp{−[ψ
[δ]
i2

(k2
i2 − 1)−ψ

[δ]
i1

(k2
i1 )]

+} = 1.
Eventually, if one red particle in some configuration moves to a site with a red
particle in the other configuration, then both particles turn blue and the number
of red particles decreases by one. �

Corollary 3.2.2 At step t, the probability for ρt+1 to be ρt − 1 is at least
δkδ−1ρt/mlδ.

Proof: The probability to choose i1 ∈ R1 and i2 ∈ R2 is

P (i1 ∈ R1, i
2 ∈ R2)

=
∑

i′∈R2

∑

i∈R1

P (i2 = i′|i1 = i) × P (i1 = i) (3.27)

=
∑

i′∈R2

∑

i∈R1

(k1
i )δ − (k2

i )δ

(k1
i )δ

(k2
i′ )

δ − (k1
i′ )

δ

λ(T )
×

(k1
i )δ

lδ
(3.28)

=
1

lδ

∑

i′∈R2

(k2
i′)

δ − (k1
i′ )

δ. (3.29)

Since, for any concave function f : R+ → R and any s ∈ N \ {0}, (z1, . . . , zs) ∈
R

s
+ 7→ f(

∑

i zi) −
∑

i f(zi) is non-increasing in all its s variables (as a conse-
quence of the slope inequalities), by concavity of z 7→ zδ and using the fact that,
for all i′ ∈ R2, k

2
i′ > k1

i′ we get

P (i1 ∈ R1, i
2 ∈ R2) ≥

1

lδ

[(

∑

i′∈R2

k2
i′

)δ

−

(

∑

i′∈R2

k1
i′

)δ]

(3.30)

=
1

lδ

[(

ρt +
∑

i′∈R2

k1
i′

)δ

−

(

∑

i′∈R2

k1
i′

)δ]

. (3.31)
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Using the same property of concave functions on R
+ (with s = 2) and the fact

that
∑

i′∈R2
k1

i′ ≤ k − ρt, then using once again the concavity of z 7→ zδ, we
write

P (i1 ∈ R1, i
2 ∈ R2) ≥

1

lδ

[

kδ − (k − ρt)
δ
]

≥
δkδ−1ρt

lδ
(3.32)

so that, by the previous proposition,

P (ρt+1 = ρt − 1|X1
t , X

2
t ) ≥

δkδ−1ρt

mlδ
. (3.33)

�

As a consequence

E(ρt+1|X
1
t , X

2
t ) ≤

(

1 −
δ

km(k ∧m)1−δ

)

ρt (3.34)

and, by Proposition 2.2.1, this finally proves Theorem 2.
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