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Abstract. El Nifio Southern Oscillation (ENSO) is the changes in mean state and nonlinearity (skewness) is further
dominant mode of climate variability in the Pacific, having investigated both in the Zebiak and Cane (1987)'s model
socio-economic impacts on surrounding regions. ENSO exand the models of the Intergovernmental Panel for Climate
hibits significant modulation on decadal to inter-decadal timeChange (IPCC). Whereas there is a clear relationship in all
scales which is related to changes in its characteristics (onmodels between ENSO asymmetry (as measured by skew-
set, amplitude, frequency, propagation, and predictability).ness or nonlinear advection) and changes in mean state, they
Some of these characteristics tend to be overlooked in ENS@xhibit a variety of behaviour with regard destability. This
studies, such as its asymmetry (the number and amplitudsuggests that the dynamics associated with climate shifts and
of warm and cold events are not equal) and the deviation othe occurrence of extreme events involve higher-order statis-
its statistics from those of the Gaussian distribution. Thesedical moments that cannot be accounted for solely by nonlin-
properties could be related to the ability of the current gener-ear advection.
ation of coupled models to predict ENSO and its modulation.
Here, ENSO’s non-Gaussian nature and asymmetry are di-
agnosed from in situ data and a variety of models (from inter-
mediate complexity models to full-physics coupled general1

circulation models (CGCMSs)) using robust statistical tools " .

initially designed for financial mathematics studies. In par-El Nifto Southern Oscillation (ENSO, see the glossary for

ticular a-stable laws are used as theoretical background matn€ acronyms list) is the dominant mode of climate variabil-
ity in the Pacific (MacPhaden et al., 1998). It impacts many

terial to measure (and quantify) the non-Gaussian charactéy ! | . ’ ’
of ENSO time series and to estimate the skill of it sta- ~ surrounding regions and has major socio-economic conse-

tistical models in producing deviation from Gaussian laws 9uénces. Although our knowledge of the phenomenon has

and asymmetry. The former are based on non-stationary prd/'créased considerably in the last two decades, ENSO re-
cesses dominated by abrupt changes in mean state and efpains difficult to predict and its characteristics change in
pirical variance. It is shown that the-stable character of Ways that are not yet understood by the scientific commu-

ENSO may result from the presence of climate shifts in theMty: In particular, ENSO’s characteristics (frequency, am-
time series. Also, cool (warm) periods are associated withP!itUde, propagating features and predictability) vary with
ENSO statistics having a stronger (weaker) tendency toward§"anges in the mean state of the tropical Pacific (Fedorov
Gaussianity and lower (greater) asymmetry. This supports"’,md Ph.|lander.2(_)00; Moon et al.., 2004; A.n, 2(,)04)' The (_j'f'
the hypothesis of ENSO being rectified by changes in meapiiculty in predicting ENSO and its evolution lies partly in

state through nonlinear processes. The relationship betwedh® limited ability of Gaussian statistics to account for Ex-
treme Events (EEs). In fact most studies of ENSO implic-

ity assume that the Probability Density Function (PDF) of

Correspondence to: J. Boucharel ENSO indices is undistinguishable from a Gaussian distribu-
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(julien.boucharel@legos.obs-mip.fr) tion, which basically leads to the representation of EEs being
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Fig. 1. K98 Dataset histogram constructed with a bin equal _ ) o ) o
toMaXXninod) —Min(Xnined) _ () 3062C. A Gaussian curve that Fig. 2. Graphical statistical tests used to diagnose the deviation

corresponds to the best fit to the PDF is overlapped in dashed thiclfé'or.n Gaussianity of time seriega) Ful Kaplan.NinOS SST.time
line. The bins for SST anomalies larger (lower) th&€I—2°C) series. (b) Smoothed histogram of the data with a Gaussian PDF

are represented on a scale with a 1/10 ratio (right scale) to highligh _verlapped (K_98 data_ fitted)c) Empirical_varignce (.)f K.98 _(solid
the asymmetry between the “negative” and “positive” tails of the ine) and empirical variance of the Gaussian fitted distribution (dash
PDF (red shading) line). (d) Asymptotical test£(7) as in Sect. 2.2.1) for K98 data

(solid line) and for the Gaussian fitted distribution (dash line) (see

their description in Sect. 2.2.1.).
underestimated. In addition, recent studies have pointed out
that Sea Surface Temperature Anomalies (SSTAs) over the
eastern Pacific are positively skewed due to the nonlineariPlan et al., 1998). Figure 1 shows that the PDF had a small
ties of the tropica| Pacific Ocean-atmosphere System (Burgbut Significant deviation from GaUSSianity. As an indica-
ers and Stephenson' 1999; Hannachi et al., 2004; An and \]iﬁipn, the PDF of the Gaussian law fitted to the data is also
2004). Thus ENSO has been depicted as a non-stationar’9|0tt9d in Fig. 1. Note that in terms of information theory,
and asymmetrica| phenomenon (An and Jin, 2004; An et a|_!lhe less Gaussian the PDF the more information it contains.
2005) that can be rectified by changes in mean state (Rodgerhe underlying question is then: within a simple theoreti-
et al., 2004; Dewitte et al., 2007a). The latter vary within cal framework, what causes ENSO'’s non-Gaussian and non-
decadal to inter-decadal time scales, partly reflecting the ocstationary character? More specifically, to what extent can
currence of abrupt transitions, named “climate shifts” (Tren-climate shifts account for this particular ENSO property and
berth and Hurrel, 1994; Zhang et al., 1997; Guilderson ancare they part of the process of rectification of ENSO variabil-
Schrag, 1998; Urban et al., 2000). The source of these cliity through the slowly varying mean state identified in earlier
mate shifts remains unclear. Whereas some authors argugudies?
that extra-tropical variability can produce changes in tropi- In a recent study, Hannachi et al. (2004) addressed a simi-
cal mean state through atmospheric teleconnections (Pierd@r issue. Their approach was based on a nonlinear stochastic
et al., 2000) or oceanic “tunnels” (Gu and Philander, 1997),model to derive the nonlinearity associated with the NINO3
others suggest the importance of nonlinear processes withithdex. In their Fig. 15, the authors compared different “L-
the tropics, in producing decadal variability and ENSO mod-moments” (equivalent to normalized statistical moments) of
ulation (Timmermann and Jin, 2002; Timmermann, 2003;the NINO3 index. The different scatter plots displayed in
Timmerman et al., 2003; An and Jin, 2004; Dewitte et al., the figure demonstrate that they found no significant relation-
2007a). ship between the mean state and the interannual spread of the

In this study, the focus was on ENSO statistics and theirNINO3 SSTAs in the 24 models of ENSIP (the Elffdi Sim-

relationship with changes in mean state. However, unlike theulation Intercomparison Project). Furthermore, it turned out
aforementioned studies, the non-Gaussian nature of ENS@hat the majority of the models tended to concentrate in a
was explicitly taken into account. This property was diag- cluster around the Normal distribution. Unlike recent phys-
nosed using relevant mathematical tools. Figure 1 repreical studies (such as Rodgers et al., 2004 and Dewitte et al.,
sents the histogram of the NINO3 sea surface temperatur@007a for instance), these diagnostics do not show any ev-
(SST) index (SST averaged in the following region?® 90~ idence of ENSO variability rectification through changes in
150 W; 5° S-5 N) as derived from the Kaplan data set (Ka- mean state. It is however interesting to note that the observed

Nonlin. Processes Geophys., 16, 453-473, 2009 www.nonlin-processes-geophys.net/16/453/2009/



J. Boucharel et al.: Non-stationary and non-Gaussian character of ENSO 455

values (from NCEP reanalyses) distance themselves from ththe time, the reason given for switching from Gaussiaga-to
simulated ones and display strong nonlinearity. In addition,stable statistics is the desire to take into account “outliers” or
most of the ENSIP coupled models (used in Hannachi etEEs whose presence in the series leads to empirical variance
al., 2004) tend to underestimate the nonlinearity seen in théursts and weighs the distribution tails. Moreover, a salient
NINO3 index, which could be due to significant biases in feature of this particular law is that among infinite variance
the simulated mean state and to the limited skills of this firstdistributions, only stable distributions can be the limiting dis-
generation of coupled models (Latif et al., 2002). tribution of sums of independent identically distributed (iid)
In the light of Hannachi et al. (2004), this study aimed to random variables. In other words, this characteristic of stable
examine the role of climate shifts and EEs (with the hypoth-distribution can be regarded as the equivalent of the central
esis that they emerge from nonlinear processes within théimit theorem in the Gaussian framework. In addition, esti-
tropics) in controlling ENSO variability. It took advantage matinge will document and reliably quantify the presence
of newly designed statistical tools that diagnose the charof EEs. This parameter can be viewed as a “proxy” for high
acteristics of the specific distribution law introduced below. order statistical moments (higher than the 4th order moment—
As in Hannachi et al. (2004), we made use of CGCM sim- kurtosis—studied in Hannachi et al., 2004).
ulations that provided long-term time series of ENSO vari- In this paper, based on robust statistical tests, we be-
ability, namely the simulations provided by the World Cli- gin by demonstrating that ENSO can be accounted for by
mate Research Programme Coupled Model Intercomparisonon-Gaussian statistics and non-stationary processes domi-
Project phase 3 (CMIP3) multi-model data set that was col-nated by time-mean state and empirical variance shifts. We
lected for the needs of the Fourth Assessment Report of théhen hypothesise that these ruptures manifesting as abrupt
Intergovernmental Panel on Climate Change (IPCC-AR4).switches from a cool to warm (warm to cool) ocean back-
To complement Hannachi et al. (2004)’s approach, indicegground tend to enhance (diminish) feedback processes allow-
of the nonlinearity of the tropical Pacific system were used,ing the burst of EEs. From models of various complexities,
namely the nonlinear advection within the mixed-layer (alsothe nonlinearity is diagnosed and analysed along withvthe
called Nonlinear Dynamical Heating, cf. Timmerman and stable character of relevant parameters of climate variability
Jin, 2002) and the skewness of the NINO3 SST index accordin the tropical Pacific (SST and thermocline depth anoma-
ing to An and Jin (2004). Lastly, the focus was on the rolelies). The results indicate that the models having the most
of climate shifts (decadal to multi-decadal variability) and consistent relationship between changes in mean state and
EEs in producing departures from normality and the asym-nonlinearity are generally the ones exhibiting the largest de-
metry of the observed ENSO indices, which extended theviation from Gaussianity in concordance with greater skill in
study by Hannachi et al. (2004). In summary, the main ob-accounting for EEs.
jective of this paper is to document the statistical properties The paper is organized as follows: Sect. 2 presents ob-
of ENSO indices from data and different model outputs, in servations and model outputs that were used. distable
particular those from the new generation of IPCC models,law and the statistical methods used to diagnose the devia-
and to corroborate (from a statistical point of view) the re- tion from a Gaussian distribution of the series, as well as the
cent modelling studies (mentioned above) that emphasize theo-called “néve” statistical ENSO models that are proposed
role of nonlinearity in modulating ENSO properties through for interpreting the results are also presented in this section.
variability time scale interactions. Section 3 presents the results of the statistical analyses on
Two main features of the PDF were then explicitly consid- the data and the models. In the light of the results from the
ered in this study: (1) the asymmetry and (2) the “weight” dynamic model simulations, Sect. 4 proposes a definition for
of the tail associated with warm events. In this context, wea model’s skill in simulating EEs based on the comparison
proposed the use of a specific parametric law as an altefwith the “ndve” statistical models. Section 5 is a discussion
native to Gaussian statistics (a more general framework infollowed by concluding remarks.
cluding Normal distribution) to investigate these features. In
particular, thex-stable law was proposed, as it better rep-
resents the processes exhibiting the ENSO properties of in2 Data and methods
terest in this paper. In brief, non-Gaussiarstable laws,
also known as “heavy tailed laws” or “infinite variance laws”, 2.1 Data
which were first introduced byévy (1924) and then gener-
alized by Mandelbrot (1960), are characterized by four main2.1.1 Observations
parameters. The main ones areand 8. The parameter
O<a <2 allows the “non-Gaussian degree” of the set to beln situ and reconstructed data were first used in order to val-
measured. The parameterl<pg<1 represents the asym- idate our statistical tests and analyse the SSTA patterns with
metry of the law which matches the skewness of Gaussiamegard to the characteristics of the tropical Pacific mean state
statistics. Such a law has been used in previous studies to a@nd statistics. The monthly SSTAs (referenced to the mean
dress issues related to financial time series analysis. Most aeasonal cycle) in the tropical Pacific region {RB-29 S;
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120 E-60 W) from the Kaplan optimal analysis of the The CGCMs used in the study came from the so-called
MOHSST5 data set were calculated for the period JanuaryPCC data base (see Table 1). The pre-industrial control ex-
1870-November 2007 (Kaplan et al., 1998). Note that beperiment, in which the concentration of greenhouse gases is
cause of the limited reliability of the reconstructed data (es-fixed at estimates from 1850, was chosen in order to eval-
sentially due to a lack of data, see the time series in Fig. 2a)uate the performance of the models under past/present cli-
the first fifteen years (1855-1869) were not taken into ac-mate conditions for two main reasons: (1) this experiment
count. Hereafter, we will refer to this data set as K98. K98 is the one that provides the longest time series and thus has
has been used extensively over the past years, for example the greatest statistical confidence, (2) the fixed external forc-
assess El Nio modelling forecasts (Chen et al., 2004) or to ing for long time series makes the analyses at interannual to
validate other long reconstructed fields (Rayner et al., 2003)decadal scales much easier to conduct (no need to remove
the trend as in the “20c3m” climate of the 20th century ex-
2.1.2 Model outputs periment for instance). Monthly outputs were used since we
were focusing on low-frequency mechanisms.
Analyses were algo performed on model outputs. Models of As a reference and for comparison with the CMIP3 mod-
different complexity were used. First of all, we used two els, the SODA ocean Reanalysis (Carton and Giese, 2008)

intermediate ocean-atmosphere coupled models of the trops . sed (1.4.2. version) although it only spans the period
ical Pacific; the so-called Zebiak and Cane model (Zebiakgsg 2001.

and Cane, 1987) and the model by Dewitte (2000), hereafter .. hoth observations and model outputs, the average

respectively referred to as the “ZC” and “LODCA" models. ggTAs in the NINO3 area. the NINO1.2 area{¥0-70° W:
They are based on similar physics, namely shallow watergy_1 S) and the average SSTAs over the tropical Pacific
for both components, the ocean component including eithehzoo E-60W: 29 S—29 N for K98 and 130 E—8C W:

one baroclinic mode (for ZC) or three baroclinic modes (for 1> N_17 fo,r ZCILODCA) were retained as ENSO pr,ox-
LODCA). Whereas the first one was used as a reference foj.q 1, perform our tests; monthly climatology was removed

the comparison of the full-physics models, the second ong.,, the SST at each grid point to derive anomalies.
was only used as tool to diagnose the nonlinearities in the

full-physics models, as will be explained later. ZC was inte-2 2 Methods

grated for 1200 years, with only the 1000 years after the 200-

year spin-up being analysed. This model has been used exA number of statistical tests were used in this study, in order
tensively for ENSO studies (see Karspeck et al., 2004, amongp: (1) characterize and quantify the deviation from a Gaus-
others) because it comprehends the basic dynamics of ENS@ian law and show some evidence of éhetable character of

It also simulates an irregular ENSO cycle with chaotic be-the ENSO indices; (2) detect climate shifts in the time series.
haviour (Tziperman et al., 1994), which resembles the obserThese tests are presented below.

vations (Karspeck et al., 2004). On the other hand, in a cou- When assessing model performance, itis common to think
pled mode, LODCA simulates a quasi-regular ENSO cyclein terms of relative skill, or skill compared to some reference
but is more realistic in simulating ocean surface variability run. We have chosen four empirical strategies, which we
due to the consideration of the higher-order baroclinic modesalled our “ndve models”. They are also presented in this
(see Dewitte, 2000 for details). For this reason, LODCA wassection.

used in a forced configuration to assess to what extent the

variability of the CGCMs (see below) could be explained by 2.2.1  Statistical tests

equatorial wave dynamics and to infer Nonlinear Dynami- i . _ o

cal Heating (NDH, see An and Jin (2004) for a definition), We shall begin by giving a shqrt mathema_ncal descrlptlon of_
which is difficult to infer from direct model outputs. LODCA «-Stable processes. As previously mentioned, stable distri-
was therefore forced by monthly wind stress anomalies afutions were first characterized bty (1924) in a study of
derived from the CGCMs after being tuned with the clima- normalized sums of independent and |d¢nt|cal!y dlgtrlbuted
tology and wave parameters as derived from the CGCM out{€MS. The distributiorF’y of a random variable( is said to
puts. Such methodology was used in Dewitte et al. (2007aj)e stable if the distributiott’s,, of the random variable,

and the reader is invited to refer to this study for more de- n
tails. For all the CGCMs used in this study, LODCA was S, = ZXk, Q)
able to simulate a NINO3 index that correlated at the 75% k=1

level at least with the _NII\_IOS index inferred from the _d_iret_:t where theX; are independent copies o, is such that
CGCM outputs. This indicates that the ENSO variability in {hare is an>0 and b, such that for every real number

the CGCMs can to a large extent be accounted for by equas. Fs, (x)=Fx (anx + by). Standard references for the theory

torial processes. NDH was then diagnosed from the LODCAq giape distributions are Gnedenko and Kolmogorov (1954

outputs for all the CGCMs. Chapter VII), Feller (1966: Chapters VI, IX and XVII),
Samorodnitsky and Taqqu (1994) and Zolotarev (1986).

Nonlin. Processes Geophys., 16, 453473, 2009 www.nonlin-processes-geophys.net/16/453/2009/
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Table 1. Description of the CGCM simulations considered in this study.

Model Model Modelling Length of
Number Name Group Simulation (years)
1 BCCR-BCM2.0 BCCR/NERSC/GFI (Norway) 155
2 CCCMA-CGCM3.1 CCCMA (Canada) 155
3 CCCMA-CGCM3.1-t63 CCCMA (Canada) 155
4 CNRM-CM3 Méteo France/CNRM (France) 151
5 CSIRO-MK3.0 (runl) CSIRO (Australia) 134
6 CSIRO-MK3.5 CSIRO (Australia) 134

7 GFDL-CM2.0 NOAA GFDL (USA) 150

8 GFDL-CM2.1 NOAA GFDL (USA) 150

9 GISS-AOM (runi) NASA/GISS (USA) 155
10 GISS-AOM (run2) NASA/GISS (USA) 155
11 GISS-MODEL-E-H NASA/GISS (USA) 125
12 GISS-MODEL-E-R NASA/GISS (USA) 104
13 IAP-FGOALS1.0-g (runl) LASG/IAP (China) 155
14 INGV-ECHAM4 INGV (ltaly) 100

15 INM-CM3.0 INM (Russia) 134
16 IPSL-CM4 IPSL (France) 147
17 MIROC3.2-HIRES CCSR/NIES/FRCGC (Japan) 100
18 MIROC3.2-MEDRES CCSR/NIES/FRCGC (Japan) 150
19 MIUB-ECHO-G MIUB (Germany) 147
20 MPI-ECHAM5 MPI (Germany) 123
21 MRI-CGCM2.3.2A MRI (Japan) 154
22 NCAR-CCSM3.0 (run2)  NCAR (USA) 150
23 UKMO-HadCM3 (runl)  Met Office (UK) 148
24 UKMO-HadGEM1 Met Office (UK) 147

The coefficientsa,, above are necessarily of the form and
ap=nt?, 0<a<2, with « being called the characteristic ex-

ponent or index of stability. A parameterization of all stable lift>0
distributions in term of their characteristic functiopss well sign(t) =4 0if =0
known, see Gnedenko and Kolmogorov (1954, Sect. 34). It —~1ift<0

may be written:
In Eq. (2) the parametex is the index of stability in-

Forareat : (1) d=efE[eXpitX] @ _troduced abover-l<g<lis a measure of skewness>0
M o . is a scale parameter, and the réails a location parame-
= exp{ —y® [t|* [1+if sign(w(t, @)] + i8 1}, ter. Wheng=5=0, X is said to be symmetrie-stable (&S
where, which means thak and— X have the same distribution) and
its characteristic function takes the particular simple form:
—tan®Fifa#l
w(t,a)= 2 K o
2In|t|ifa=1 o(t) = exp{ —y* I1|*} 3)

www.nonlin-processes-geophys.net/16/453/2009/ Nonlin. Processes Geophys., 16, 453-473, 2009
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Remark: Whena=2, the charagtgristic function (2_) t_)ecomes where 7,1:} 2": X;
p(t)=exp{ —y?2+is t}. This is the characteristic func- n =~
tion of a Gaussian random variable with mé&aand variance
2y2. Note that in this case, the value gfis not specified andne[1; N], whereN is the number of points in the time
sincep tanr=0. However one typically associates the Gaus- series. If all th@(j come from the same distribution, thﬁf]
sian distribution with the choic=0. Then the parameters should converge to a finite value, if the population distribu-
a, B, y ands are unigue. tion F(x) has a finite variance. Otherwis&? will diverge.

All stable distributions are absolutely continuous, uni- We call it: convergence variance test GT2. Note that the
modal with an eventually bell-shaped density function. How- Non-convergence o2 does not imply infinite variance, if
ever the density is known in closed form in three casesthe hypothetical range of possibilities is expanded to include

only: the normal distribution corresponding #6=2 with non-stationary series, with the population variance increas-
1 —aeom? _ ing over the time for instance.
the PDFf (x)=—5-0e -* , M35, o=+2y ; the Cauchy Another test, initiated by Mandelbrot (1963) and called
distribution corresponding ta=1 and=0 (with the PDF:  thelog-tail test or GT3 hereafter in this paper, is to plot the
f(X)=ﬂ(1—_1Hz)) and the reciprocal of &? variable corre-  estimate of logP[X>T] against logl’ whereX is the random
spondingx=1/2, =1, y=1, ands=0 (with the PDF: forx >0, variable being estimated. This test examines the shape of
: the tails of the empirical cumulative distribution function and
provides information on the behaviour of the distribution for
high temperaturg’. If the true distribution is stable, with
the characteristic exponeat Eq. (4) suggests that the plot

lim T*[P|X|>T]=C. (4) should be a straight line with a slopex. Basically, we plot:
T—o0

J

fo)= %i%) For a<2, these distributions are heavy-

tailed. The heavy tails are asymptotically Pareto-like, which
means that fow < 2:

N
The non-normal stable distributions have been given less atg(7) = log i Z 1|x.|>T
tention than the normal distribution probably because the N i=1 !
no_rmal dISFI’IbutIOH is the (_Jnl_y_stable.d|str|bgt|o_n wh|ch has where 1, r=1 if 1x;|>T and 0 otherwise, against Iag
a finite variance. Among infinite-variance distributions, the j . . I

L2 ) for T>0. If the plot is linear, it is a strong indication that a
non-normal stable distributions play an important role, not - : ) : .

. : . __stable distribution will provide an excellent fit to the available
only because of their closure properties under convolution, . . : .

..~ data. All these tests are only judgmental visual inspections

%t a graph. They are not precise enough to infer real values
of stable parameters.
The above tests make it possible to highlight a small

distribution of sums of independent, identically distributed
random variables. In this paper we implicitly consider that

the SST is the sum of many small terms for which the only but significant deviation from a Gaussian distribution of ob-

possible limit 'S a stable_ d'_St.”bUtlon' _Then Fh.e proble_m 'S served ENSO indices as already noticed from the inspection
to answer the first question: is the variance finite, leading to

s . P . of Fig. 1, namely the heavy tails of the NINO3 SSTA dis-
a normal distribution, or asymptotically infinite, leadingtoa ., : . . )
. S tribution. The empirical variance test (GT2) does not stabi-
stable non Gaussian distribution?

Mandelbrot (1963), Granger and Orr (1972) and othersIIze (see Fig. 2¢, GT2 panel). GT3 (see Fig. 2d, GT3 panel)

such as Nikias and Shao (1995) or Nolan (1999) have pro_provu_jes an estimate far of aroungl 1.80 for _the N”\.IO3
. : SST index of K98. Nevertheless this method is quite impre-

posed a number of graphical procedures in order to choose. L : -
. e . Cise for estimating the index of stability. Several methods

between a Gaussian distribution and another non-Gaussian

stable distribution. Of course, a more general and difficult ave been proposed in order to estimate the parameters of a

problem would be to test whether a set of data comes fro stable law: graphical methods, quantile methods, maximum

o L Mikelihood ratio methods for example. We used a regression-
a stable distribution or a non-stable distribution. For the rea- e method (TL1A for Telecom Lille I Algorithm) initiated

. o typ
sons given above, we assume that the distribution is Stablg/y Koutrouvelis (1980) and classically used by practitioners

glr:addlg?rli(bittigrnocedures for distinguishing non-Gaussian Staf‘nainly to infer the value of and mainly because the amount

First from the inspection of the PDF, one can visually infer of computation involved is minimal. We briefly describe the

the deviation from Gaussianity (hereafter referred to as GTlmemOd below. Firstitis easy to see that Bq. (2) implies:

for Graphical Test 1, see Fig. 2b). log (_ log |¢)(T)|2) — log(2y®) + a log|T| (5)
Another method of analysing the infinite variance feature
is to plot the sample variance estimafebased on the first We denote by the sample characteristic function which is

observations, against i.e. obtained from the random samplg x>, ..., Xy by
52 = f (X — Xn)? oN(T) 1 §N exp(iTx;) (6)
— — o n = 11 X;
n n j:l J N N j=1 J
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Equation (5) depends only anandy and suggests estimat-
ing « andy by regressing=log(-log|¢,(T)|%) onw=log |T|
in the model:

459

nave strategies. Theoretical ENSO series (hereafter referred
to as TGS for Theoretical Generated Series) were therefore
generated that built upon the aforementioned properties of

ENSO time series distribution.

Yk = 1+ owg+eg, k=1,2, ..., K, (7)

where(t; k=1, 2, ..., K) is an appropriate set of real num-
bers,u=log(2y%), ande; denotes an error term.

Once estimates af andy have been obtained andand
y have been fixed to these values so that they are no longer
unknown, estimates gf and§ may be obtained, foww#1
using the following equation:

Arctan(Ime, (T)/Red,(T)) = 8T — By*tan(ma/2)sgn(T)|T|* (8)

Then, we can estimate the parameters by regressonmg
sgn(u)|u|® in the model:

2= 81— By“tan(mwa/2)sgn(uy)|u|“+n;,1=1,2, ..., L (9)

wheren; denotes an error term and;(/=1, 2, ...,L) is an
appropriate set of real numbers. Then, the set of four param-
eters governing the stable distribution obtained by the pre-
viously described two-step procedure is refined in the next
step by introducing certain “standardization” to the data and
by appropriately choosing the poimisandu;. This regres-
sion method also allows the confidence interval around the
estimated values of the stable distribution parameters to be
derived, as we do have asymptotic variances of the estima-
tors and can thus put confidence limits on the parameters.
They are given in Tables 3 and 5.

2.2.2 Shift Detection Test (SDT)

In order to detect shifts in the time series, the method de-
scribed in Potter (1981) was used. It is based on a bivariate
test developed by Maronna and Yohai (1978). The main im-
provement over other well known tests is the introduction of
another correlated series, assumed to be unchanged. Unlike
earlier procedures for detecting a shift in mean out of an in-
dependent time series, this method is statistically rigorous
and provides estimates of the time and amount of change in
the mean. For more details, readers are invited to refer to
Potter (1981) and to Appendix A.

Performing this test on the empirical variance series in or-
der to detect ruptures in SST variability also provides signif-
icant information on statistical characteristics. On the one
hand, we can distinguish different regimes, in terms of vari-

First of all, x—stable sets were considered. Chambers
et al. (1976) developed an algorithm allowing the simu-
lation of a symmetricak-stable set. It was widened to
generalx-stable sets by d’Estampes (2003). The gen-
eration method is described in Appendix B. The objec-
tive was to simulate a set which follows coherent sta-
ble statistics with parameters related to in situ data. We
chosex=1.80 andB=1 to match the estimates from the
K98 data (see above).

— Secondly, a classical Gaussian process was considered

and an associated time series was generated. The aim
was to simulate a typical Gaussian process which could
also be seen as a “pseudo stable” processawith The
Gaussian TGS parameters were chosen to fit with those
of the K98 NINOS index, i.e. 0.004C for the mean

and 0.8082C for the standard deviation.

Thirdly, a statistical model that highlights the influence
of climate shifts on ENSO statistics was proposed. It
considered a non-stationary Gaussian process charac-
terized by a threshold in its mean and standard devi-
ation. These ruptures in the process parameters were
concomitant with climate shifts evidenced in K98 (1903
and 1976, see Appendix A and Fig. A1) with the charac-
teristics of the observed shifts (mean difference between
one period and the next and standard deviation of each
period being imposed) being prescribed in this TGS.

Finally, we combined the above to generate a non-
stationary stable set. The aim of such a generation was
to simulate a process able to rectify its high-frequency
variability (i.e. EE probability occurrence) according to
its low-frequency modulation (changes in mean state).
The generation was performed in the same way as that
of the previous TGS. However, warm periods were char-
acterized byx-stable statistics consistent with the ob-
served inter-shift periods whereas cold period statistics
remained Gaussian€2). This TGS can also be viewed
as a purely stable process whose intrinsic main parame-
ters (i.e« andp) experienced a low frequency modula-
tion.

To compare statistical distributions of TGS against obser-
vations and model outputs, the quantile-quantile (percentile
in that case) plots were used according to Hannachi et
al. (2004). The g—q plot approach and their relevance in
evaluating model performance are discussed in Hannachi et
al. (2004) and Hannachi (2006). In brief, we plot the per-
In order to assess model performance and the sensitivity ofentiles of the data or models outputs versus the percentiles
ENSO statistics to changes in mean state and EE occumf the TGS, to assess if the 2 series come from the same sta-

rence, simple statistical models were proposed, based ofistical distribution (the g—q plot is the bisector of the plot in

ability features, within a time set. On the other hand, we
can clearly identify EEs (responsible for isolated bursts in
the empirical variance time series).

2.2.3 “Naive” statistical models
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Table 2. Description of the mathematical tests used in this study.

Test name Parameter to be derived Reference Use in this paper

Graphical tests  Non-Gaussianity D’Estampes (2003) detect the deviation from Gaussianity of a set f a set
TL1A o andp Koutrouvelis (1980) estimate-stable law parameters

DT Shifts (date and amplitude) Potter (1981) detect and quantify abrupt ruptures of a set

qg-plot EE representation statistical representativity ~Hannachi et al. (2004) compare statistical representations of 2 series

Table 3. Main detected mean shifts from K98 (tests performed with K98 NINO3 SSTA index and Gaussian reference set) and estimation of

stable parameters on each inter-shift periods with two different metiNaodlan(on line estimation and TL1A in bold).

Shift date [year] 1903 1975.6 1997.8

Shift amplitude fC degree] -0.14 0.45 —0.28

Shift significance level 96 406 42

Pacific Mean state Warm to Cool Cool to warm Warm to Cool

SSTA nio3 1875-2007 (whole)  SSTAfM3 1875-1903 (warm)  SSTAf®3 1903-1976 (cool) SSTAM3 1976-2007 (warm)
«=1.83;1.91+0.0281 «=1.80;1.79+0.1204 a=2;2.01+-0.0088 «=1.70;1.73+0.0833
p=1,0.99+0.0020 p=1,;0.91+0.0050 p=0.16;0.20+0.0666 =11

that case) or at least to evaluate if the statistical properties obf 8 agrees strongly with the pattern for SSTA skewness (see

the sets are close. the contours of SST skewnéssverplotted in Fig. 3b).
Table 2 summarizes and briefly describes the statistical These statistics are sensitive to the period under investi-
tests used in this study. gation. In order to illustrate such sensitivity, the most ro-

bust shifts in the time series at each grid point are estimated
according to the SDT method (see Sect. 2.2.2. and Ap-
pendix A). A minimum inter-shift period of ten years was
3 «a-stable character of ENSO in data and models arbitrarily chosen. Note that the dates of shifts that were de-
tected are quite consistent while performing the SDT method
This section presents the results of the estimation ofuthe on SSTA or on empirical variance SSTA series. Actually,
and 8 parameters and documents the relationships betweemean shifts are often followed by shifts in variance which
changes in mean state (as revealed by the shift detectioagrees strongly with Sardeshmukh et al. (2000). The statis-

method) and ENSO statistics. tical properties of the detected inter-shift periods, assumed
to be stationary, were then investigated. We only retained
3.1 Observations: K98 data the most relevant shifts, i.e. those with a statistical test sig-

nificance level greater than 7.90, which corresponds to a
90% significance level for a 100-occurrences set (see Potter
(1981) and Appendix A). The results are presented in Fig. 4
and summarized in Table 3. The values ®f §) in Table 3
were inferred from the TL1A algorithm. Consistently with
ormer studies, the detected shifts took place around 1903
r%Karspeck etal., 2004), 1976 (Guilderson and Schrag, 1998)
nd 1998 (Overland et al., 2008) (cf. Table 3). Nonetheless,
e did not take into account the last detected shift (1998)

Figure 3 presents the map®fand parameters in the trop-
ical Pacific for the K98 data set using the TL1A method.
It clearly highlights the non-Gaussianstable nature of the
SSTAs in most regions of the tropical Pacific sinacis lower
than 2 over most of the basin (except in the south easter
tropical Pacific, around-15° N in the central-eastern Pacific
and the far western equatorial Pacific, see Fig. 3 upper panel).
Regions of strong stability are found around the eastern edge
of the warm pool (180W) and along the equator in the far 1 The skewness is a normalized third statistical moment (White,
eastern Pacific. The statistical tests described in Sect. 2 an_(_bgo) Thus, a small standard deviation may cause large skewness.
applied to the SSTA time series in these regions corroborateo avoid this, rather than the normalized skewness, the weighted
the significant deviation from Gaussianity (not shown). An- , ) , N .

other interesting feature is evidenced in the map ¢Fig. 3 S<eWNness is used. Itis defined ag/m, wherem; = El (i =)

lower panel) which exhibits a zonal see-saw pattern with posy; is thei’” observationsy the mean an@v the number of obser-
itive values in the NINO3 region and negative values in thevations.

western Pacific and off the equatorial wave guide. The map
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Fig. 3. « (upper panel) ang (lower panel) maps of SSTA in the tropical Pacific from K98. The TL1A method was used over the 1870-2007
period. The isotherm 2&, for the mean SST, is overplotted on #enap to locate the Warm Pool region. On thenap, the contours

for skewness-{0.2 and 0.2 iso-contours) are overlapped to highlight the consistency bepvaed asymmetry as measured by the 3rd
statistical moment.

as the following period was too short relative to our crite- as observed for the 1976-shifts is concurrent with a flatten-
rion. The SDT also provided a value for the change in mearing mean thermocline (Moon et al., 2004), which impacts
state (Fig. 4, lower panel) which was also consistent, thoughENSO towards larger amplitude modulation (Dewitte et al.,
slightly overestimated, with earlier works previously men- 2007a). This also favours the amplification of ENSO non-
tioned. Over the inter-shift periods, the results of Fig. 4 indi- linearity (Timmerman and Jin, 2002) and thereby is likely to
cate that the ENSO statistics experienced significant changesyodify the statistical characteristics considered in this study.
consistent with the study by Karspeck et al. (2004). In par-We will come back to this issue in the last section of the pa-
ticular, warm periods were characterised by stronger asymper.

metry and a greater deviation from Gaussianity (smailer  additional tests were performed on the K98 data set in
andg around 1 Fig. 4a, b, e, f) whereas the cool period ex-order to investigate further the sensitivity of the statistics to
hibited a Gaussian symmetrical pattern on average over thghe ruptures in tropical Pacific mean background.

tropical Pacific ¢~2 andf arounql 0, Fig. 4c and d, see also For instance, TL1A is applied to the SSTA series over the
Table 3). Note that over the period 1998-2007, there was 3950 . . : _
significant reduction in the stable nature of the NINO3 SST 950 2007_per|od from which the 1976 shift had been re
index and its asymmetry€2 and$=0.04, estimated using mpved. This was achieved by keepl_ng the same SST sets
TL1A), which is consistent with the at'>ov’e prior to the detected date and removing from the data after
' ' the shift, the mean SST amplitude change measured by the
Figure 4 also highlights spatial pattern differences for theSDT at each grid point (for example 0@ for the averaged
mean SST change for the 1903 and 1976 shifts with theNINO3 index). The results are presented in Fig. 5. They in-
1976-shift mean SST change having a ERdlilike struc-  dicate that removing the 1976 shift from the series led to a
ture (Fig. 4h) whereas the 1903-shift mean SST change coreduction in stability in the eastern tropical Pacific. In par-
responded to a reduction in the mean zonal SST gradient nedicular, thea parameter increased up to 1.9 instead of 1.7 for
the eastern edge of the warm pool (Fig. 4g). Such changethe “unchanged” series in the region of the Humboldt Cur-
are likely to be associated with distinct impacts on ENSO dy-rent System. Actually, an parameter close to the Gaussian
namics and are consistent with the changes in ENSO statissalue of 2 was observed over most of the rest of the domain
tics. In particular, a decrease in mean zonal SST gradientexcept for the eastern side of the warm pool (not shown).
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Fig. 4. « (left) andg (right) maps in the tropical Pacific computed from K98 with TL1A over the periods 1870-5#&1p) 1903-1976¢
andd) and 1976-2007e(andf). Inter-shift periods and the amplituded of the shifts for the 1903 shifgy) and the 1976 shifth). Bottom
panel: NINOS3 index (thin line) with its means over the inter-shift periods overlapped (thick horizontal lines).

In summary, the above results obtained from observed3d.2 Models
data suggest that deviation from Gaussianity and asymme-
try of SSTA distribution are associated with time-mean stateTwo model types are considered below: 1) An intermedi-
changes. This is consistent with recent studies based oate complexity model, the ZC model, that has been widely
physical model and observations which put forward thatused for ENSO studies and 2) full-physics coupled general
changes in ENSO properties are linked to changes in meanirculation models (CGCM) whose outputs are available to
state through the nonlinearities of the tropical Pacific (An, the scientific community within the Program for Climate
2004; Dewitte et al., 2007a). In the light of the above resultsModel Diagnosis and Intercomparison (see Sect. 2.1.2. and
with the K98 data set, the following section investigates suchTable 1).

an issue from various model outputs.
3.2.1 The ZC model

The ZC model was run over 1200 years and the last 1000
years were analysed. Although based on linear dynamics for
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Fig. 5. Differences in statistics for the (upper panel) ang (lower panel) parameters between the “non-filtered” K98 SST and the “filtered”
(i.e. with the 1976 shift removed, see text) K98 SST.

SSTA[°C)

035

030 [

020

0l1s

01

0.05

005 H

-0.01

O 200

500

GO0

1000

Fig. 6. Running mean (30 years window) of the NINO1.2. index as simulated by the ZC model. The inter-shift periods are indicated (the
shifts were detected from the non-filter series) with a shading (blue shading indicates cool periods, red shading indicates warm periods).
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the ocean and atmospheric parts, the nonlinearity of the syswas less pronounced during cool periods (extended symmet-
tem is considered through the ocean thermodynamics and acal patterns, wherg~0). In contrast with K98, the spatial
moisture feedback process for the atmosphere. Due to itsariability of « for the ZC model remains difficult to inter-

formulation, NDH, pret. Nevertheless, periods for which tropical Pacific mean
state is warm were characterized by higher values of NDH
,or" 91" 9T’ mean than cold periods which were associated with a lower

NDH =~ (” ox Uy TV 8_z> (10) " NDH mean (Fig. 7i and ).

These results can be interpreted in the light of recent model
can easily be diagnosed from the model outputs. Thresstudies which attribute to nonlinear advection a role in rec-
model fields are analysed below: SST, Thermocline Depthifying ENSO variability (An and Jin, 2004; Timmermann
Anomaly (TDA), and NDH. Monthly anomalies were calcu- et al., 2003; Jin et al., 2003). For instance, Timmermann
lated relative to the mean seasonal cycle calculated over thet al. (2002) suggested that Elfidi bursting was associated
1000-year period. with an increased NDH whereas Lafidi events had a lower

Similar statistical tests to those applied to the K98 data sevalue of NDH. Consistent with our results, warm periods re-
were performed on the model outputs. The SDT detectedyarded as “nonlinear active” manifested more stable statis-
20 main shifts over the 1000-year period (see Fig. 6 and Tatics in terms of deviation from Gaussianity and asymmetry,
ble 4 which summarize the results for the NINO1.2 index for whereas cool periods experienced more Gaussian statistics.
the first 200 years of simulation, for clarity only). The re- It is hypothesized that during the periods when NDH con-
sults are robust since the detected shift dates are comparabigbutes to enhanced ENSO amplitude, the growth of warm
for both the mean and the empirical variance and for eacleEs is favoured. Conversely, during cool periods, NDH
proxy: SSTA, TDA and NDH. Nonetheless, the differences (asymmetry) is reduced along with the occurrence of EEs.
in the results of the SDT are smaller between NDH and TDAStill, isolated extreme warm events can take place during
than between NDH and SSTA (especially in the eastern partool “pseudo linear” periods but with fewer occurrences than
of the basin) supposedly because SSTA is influenced by botver warm periods. We will examine this hypothesis further
the direct ENSO asymmetric forcing and the NDH, whereasin the discussion section.

TDA results directly from the linear response of the wind
forcing. 3.2.2 |IPCC models

In order to infer the statistical properties of the inter-shift
periods, &, B) were estimated for the “cool” and “warm” pe- The IPCC data base offers the opportunity to investigate how
riods. The latter periods were detected by applying the SDTmore complex models behave regarding the relationship be-
to the NINO1.2 index. Fig. 6 presents the 30-years runningtween ENSO statistics and changes in mean state. Note
mean of NINO1.2 averaged SSTAs; vertical lines indicatethat, despite being full-physics, the IPCC models exhibit nu-
the shift dates, as estimated by the test. Note that the SDmerous biases, especially in the mean states which drasti-
was performed on both the raw and the filtered series and ledally impacts ENSO variability. Knowing the characteris-
to similar results. Negative shifts were followed by a cooler tics of these biases may help interpret the ENSO statistics.
period (characterized by blue shading in Fig. 6) whereas posFor instance, in some models, the ENSO dynamic is dom-
itive shifts led to a warmer tropical Pacific (see overlappinginated by thermocline feedback processes, which overesti-
red shading in Fig. 6). In a second step, TL1A was performedmnates the control of SST by the thermocline depth anomaly
on each inter-shift period. Statistics for each warm (cool) pe-and thus ENSO asymmetry in the eastern tropical Pacific.
riod were then averaged to derive a mean valuexfgg and  Some others favour the dominance of the zonal advective
NDH characterizing a warm (cool) background. The resultsfeedback generally leading to faster and more regular ENSO
are displayed in Fig. 7. In order to highlight the deviation of variability (Van Oldenborgh et al., 2005; Guilyardi, 2006;

« from 2, the value obxp(4-«) instead ofx was considered Dewitte et al., 2007b). Despite these biases, interestingly,
(Fig. 7a, b, e, f). Blue shading is synonymous of Gaussianitythere was a clear relationship in all these models between
whereas red accounts for non-Gaussian stable statistics. Thehanges in mean state and nonlinearities (as measured by
average value af over the domain (130E-80 W; 10° N— NDH). As a demonstration of this latter statement, a singu-
10 S) is indicated at the top of each map. The results in-lar value decomposition (SVD) analysis was carried out be-
dicate that the simulated SSTAs and TDAs tend to be mordween the 11-year running skewness and mean of SST over
non-Gaussian during warm periods than during cold periodsthe tropical Pacific domain (2G—-10C N) for all models, fol-

The contrast is even more striking when looking at the dif- lowing similar methodology to An (2004) (his Fig. 1). The
ferences between the spatial patterns for the different periresults of the SVD analysis are reported in Table 5 for the
ods, particularly visible on thg maps (Fig. 7c, d, g and h). first dominant mode, which indicates a significant percent-
Indeed a warm ocean background emphasizes the contrast &ge of covariance between skewness and mean SST for all
asymmetry between the western/eastern Pacific, particularlfhe models, along with a high correlation between associ-
clear on the SST field (Fig. 7g and h), whereas asymmetnated time series. Differences between models were mostly
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Fig. 7. Mean value for warm (left) and cool (right) periods for TDA and SSTA and NDH mean. a a#fti#:for TDA; ¢ and d: for TDA,
e and f:e4~¢ for SSTA g and hj8 for SSTA, i and j: mean value for NDH.

Table 4. Detected mean and variance shifts for SSTA, TDA and NDH over 200 years of NINO1.2 index from a 1000-year ZC model
simulation (mean are indicated in black whereas variance is written in italic).

TDA [m] SSTA[°C] NDHA [ °C/month]

Shift date [year]  Shift amplitude Shift [year] Shift amplitude Shift [year] Shift amplitude
Mean,Variance Mean,Variance Mean,Variance Mean,Variance Mean,Variance Mean,Variance

33.3 385 33 30 31 385 0.1 03 322 348 —-0.03 3
48 58 9 —-26 47 45 0.7 03 46.9 55.5 0.01 -15
68 108 -9 10 60 5 -05 -015 70 66.8 0.04 1

107 131 13 —6 100 108 0.4 02 1075 1027 -0.005 3.7
142 134 0.3 -01 1375 1314 -0.01 -18

found in the percentage of variance explained by skewnessarying mean state is related to the nonlinearity of the equa-
and/or mean, with some models having a low explained varitorial Pacific system in all the models. Below, we investi-
ance for the skewness (such as MIROC3.2-MEDRES) andjate how this translates to the ENSO statistics in terms of
others having a high explained variance for the mean (suclstability and asymmetry. Applying the tests described in
as IPSL-CM4). These results convey the fact that the slowlySect. 2.2.1. (TL1A), the andg parameters were calculated
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vs. deviation from Gaussianity; bottom right pa(®@l| nonlinear terms vs. deviation from asymmetry. Each number represents a model, as
referenced in Table 1. No. 25 is for SODA. Red overlapped curve is the best fitted power law to all IPCC models (Group 1), blue one is the
best fitted power law to only “good” (see text) models (Group 2). “Bad” models are represented by black filled triangles.

for all models (NINO3 SST index) and reported in Table 5 try (NDH variability) (Fig. 8d and e). In order to quantify the
along with the number of detected shifts. The results indi-nonlinear dependency between statistical moments, power
cated that there was a great diversity of behaviour regardindaws (i.e.f(x)=a+b.x* Stanley, 1995) were used and fitted to
a-stability and asymmetry. This is in contrast with the re- the model ensemble for the various scattered plots in Fig. 8.
sults of the above SVD analysis. In order to visualize theThe power laws were fitted by minimizing the rms residu-
differences between models, Fig. 8 is presented, which disals for two different groups of models: (1) for all the IPCC
plays various scatter plots representing the relationships bemodels listed in Table 5, hereafter referred to as Group 1 (red
tween the different orders of ENSO statistical moments and aurves in Fig. 8) and for a selected smaller group, hereafter
proxy of nonlinearity, namely the root mean square (rms) ofreferred to as Group 2 (blue curves in Fig. 8). The latter is
NDH (nonlinear advection) as diagnosed from LODCA (seecomposed of the most ‘realistic’ models according to recent
Sect. 2.1.2.) (NDH was normalized by the rms of the NINO3 works (Van Oldenborgh et al., 2005; Guilyardi, 2006; Capo-
index). Here, the shift number (brought back to a 100-yeartondi et al., 2006; Belmadani et al., 2009). The models that
period) quantifies the variability of the abrupt changes inwere excluded from this group (BCCR-BCM2-0, CCCMA-
ocean mean state, and is thus equivalent to thertler sta- CGCM3.1, GISS-AOM, GISS-E-H) were shown to simulate
tistical moment. 8 represents the asymmetry of ENSO and a biased ENSO variability (see aforementioned studies for
consequently can be assimilated to a 3rd order statistical momore details). Note that these models are not considered ei-
ment; whereaa gives information on EEs or in other words ther in most analyses of the multi-model studies by van Old-
on the abundance of rare values, i.e. higher order statisticaénborg et al. (2005) and Guilyardi (2006). Three other mod-
moments. For an-stable distribution, remind that fer>«, els (IPSL-CM4, NCAR-CCSM3.0 and CSIRO-MK3.0) were
E(X]")=+00 arbitrarily removed from this group as they exhibited “ex-

A detailed examination of Fig. 8 indicates that there is aOtic” Statistical behaviour (namely no EE occurrence despite
highly nonlinear relationship between statistical moments.2 réalistic/marked positive asymmetry). The “eliminated”
Note for instance, the significant number of models beingModels are represented by black triangles in Fig. 8.
Gaussian Ax=0), while also exhibiting a marked asymme-
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Table 5. Statistical properties of the ENSO variability as simulated by the IPCC models. The last column presents the values of the criterion
C and the corresponding standard errors computed following Hannachi (2006)’'s methodology. The four other rightmost columns provide the
results of the SVD between change in mean state and skewness based on SSTA (a 11-year running window is used), namely the percentac
of covariance of the first SVD mode, the percentage of the variance for the mean and skewness for the first SVD mode and the correlation
between the associated time series. Results of SODA are given as a reference for some parameters (bottom line). Non-Gaussian stabl
models & <2) are written in bolde andg are estimated using TL1A.

Model Name Number of warm shifts ~ Number of cool shiftsr B rms(NDHY/) % of covariance ) % of variance Correlation Criterion
and amplitude mean and amplitude mean rms(NINO3)  (SVD(mean-skewness) (mean/skewness) between PC18C)C (
BCCR-BCM2.0 2(0.65) 3 ¢0.50) 1.86:0.0647 -1 0.63 96 80/39 0.80 0.130.09
CCCMA-CGCM3.1 3(0.17) 2(-0.20) 1.92-0.0118 0.36-8.5215e-05 0.36 72 73/14 0.78 1:86.00
CCCMA-CGCM3.1-t63 1 (0.1) 2(-0.23) 1.98:0.0112 -1 0.38 83 69/22 0.71 1.460.01
CNRM-CM3 1(0.80) 0 2.00 —0.08+0.0072 1.18 97 81/21 0.68 —1.20+0.13
CSIRO-MK3.0 (runl) 2(0.10) 1+0.20) 2.00 —0.18+0.0150 0.63 60 61/13 0.87 0.340.00
CSIRO-MK3.5 2(0.17) 1(0.10) 1.99:0.0032 —0.22+0.0010 0.56 75 24136 0.91 05£0.03
GFDL-CM2.0 1(0.15) 2(0.09) 1.950.0334 0.8759.4424e-04  0.49 83 72125 0.62 0:23.04
GFDL-CM2.1 2(0.17) 2(0.13) 1.76:0.1125 1.00 0.85 58 20/41 0.70 —1.96+0.05
GISS-AOM (runl) 1(0.15) 240.11) 2.00 —0.09+0.0046 0.21 64 57/11 0.74 1.880.00
GISS-AOM (run2) 1(0.10) 30.12) 1.99:0.0015 —1.00 0.34 92 80/30 0.89 1.890.00
GISS-MODEL-E-H 2(0.14) 2(-0.20) 1.97+0.0137 -1.00 0.33 84 76/16 0.74 0.99.02
GISS-MODEL-E-R 1(0.05) 1¢0.1) 1.92£0.0287 —1.00 0.26 81 67/28 0.92 1.86.00
IAP-FGOALS1.0-g (runl) O 0 2.00 —0.08+0.0033 0.93 81 62/19 0.77 —1.04+0.09
INGV-ECHAM4 1(0.15) 1¢0.47) 2.00 —0.06+0.0059 0.57 99 98/40 0.81 0.370.01
INM-CM3.0 3(0.24) 2 (-0.10) 1.94:0.0410 1.00 0.73 86 78/18 0.76 0-08.07
IPSL-CM4 2(0.15) 240.13) 2.00 0.053:0.0014 0.62 94 80/43 0.70 —0.08+ 0.05
MIROC3.2-HIRES 1(0.08) 1(-0.04) 1.92:0.0289 0.22:5.0092e-04 0.28 95 80/41 0.85 140
MIROC3.2-MEDRES 2(0.11) 20.17) 1.98:7.6580e-04 0.987.6580e-04 0.32 82 80/10 0.71 146.00
MIUB-ECHO-G 1(0.15) 2 ¢0.25) 2.00 —0.17+0.0138 0.78 50 49/12 0.81 —0.40+0.08
MPI-ECHAMS 1(0.1) 2¢0.16) 2.00 —0.08+0.0066 0.55 60 20/34 0.89 —0.30+0.03
MRI-CGCM2.3.2A 2(0.1) 1(-0.04) 1.96:0.0118 1.00 0.48 54 52/17 0.61 0:86.01
NCAR-CCSM3.0 (run2) 2(0.14) 2-0.09) 2.00 —0.06+0.0043 0.52 68 47112 0.85 040.08
UKMO-HadCM3 (runl) 1 (0.15) 1(-0.3) 1.94+0.0137 1.00 0.83 64 34/27 0.65 —0.13+0.14
UKMO-HadGEM1 1(0.15) 140.2) 2.00 0.08:0.0065 0.56 61 58/14 0.77 0.60.03
SODA.1.4.2 1(0.3) 0 1.880.0724 1.00 0.82 —0.92+0.00

The bottom panels in Fig. 8 corroborate the previous re-Residual=8.70 for Group 2). In the same way, although dis-
sults from the ZC model, namely the existence in the IPCCplaying similar exponents in the power law fit, no clear re-
models of a power law-type relationship between nonlinearationship was observed between ENSO asymmetry and the
activity and EE occurrence (Fig. 8e) as well as a quasi-lineanumber of shifts (Fig. 8¢:=0.19, Residual=3.32 for Group
relationship between NDH and asymmetry (Fig. 8f), consis-2) , and neither between the number of shifts and EE occur-
tent with earlier studies (An and Jin, 2004; An et al., 2005). rence (Fig. 8k4=0.20, Residual=8.75 for Group 2). On the
Indeed, these two curves fitted the power laws relatively well,other hand, EE occurrence and ENSO asymmetry are clearly
having a coefficienjx equal to 0.38 and 0.05, respectively. related as there was a strong agreement with the fit (Fig. 8d,
These curve fits were consistent as the residual of the rmg=0.30, Residual=1.2010-% for Group 2).
was quite low, respectively 0.09 and 0.01. The residuals The fact that the power law can be used to fit the rela-
fell respectively to 0.07 and 0.005 when fitted to the mod-tionship between statistical moments emphasizes the com-
els of Group 2. In that case, has values equal to 0.25 and plex scaling relationships associated with the ENSO modu-
0.03) for the above-mentioned scattered plots (Fig. 8e and f)lation from low-frequency mean state change to EE occur-
Nonetheless, despite the low value of residuals in the powerence. Interestingly, NDH relates to intermediate statistical
law regression method, one can note that for the relationshipnoments (i.e. variability and asymmetry) with low values of
between EEs and NDH (Fig. 8e), no satisfactory visual fittingresiduals (which is consistent with the aforementioned stud-
was obtained (due to the significant spread of the models)ies). However it does not seem to be the main nonlinear term
suggesting that NDH cannot fully account for the dynamicsgoverning interaction between “extreme” statistical moments
of the EE occurrences. Similarly, an absence of any rela{1st and high orders, i.e. slowly varying mean state and trig-
tionship (according to the power law) is evidenced betweengering of EEs). This clearly highlights the variability time
the number of shift and NDH, suggesting again that non-scale interactions associated with ENSO that are evidenced
linearities associated with nonlinear advection cannot alonéhere through the various statistical moments. It also suggests
explain how climate shifts are triggered (Fig. §a50.21, that other sources of nonlinearity than NDH are involved in
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the processes leading to climate shifts and EE occurrencet.2 Gaussian TGS

Due to the complexity of the tropical Pacific system, these

sources are numerous (see An, 2009 for a review) and ar&he results from GT (not shown) indicate that this simple

more or less well represented in the current generation oftatistical model cannot account for the ENSO asymmetry.

global coupled models. However, g—q plots (cf. Fig. 9b) show that it leads to a bet-
To summarize, we find that the IPCC models, althoughter statistical distribution of the generated series than alpha-

all exhibiting a relationship between asymmetry and slowly Stable TGS. Still, warm EEs remain underestimated (Fig. 9b

varying mean state, behave differently with regard to nonlin-upper quadrant). It is noteworthy that cold events are well

earity as measured hyand slowly varying mean state. Only represented by this generation method.

a few models have a value far that is comparable to ob- )

servations. Interestingly, these models simulate a relatively#-3 Non-stationary TGS

large number of climate shifts, consistent with the observa-_l_h_ i h h ati
tions (K98, see Sect. 2.1.1.). This suggests that the nonlin- IS hon-stationary process ennances the representativeness

ear processes involved in the generation of climate shifts ar@f cold events (see_F|g. 9¢). Actually g—q plot matches quast-
somewhat different to the ones leading to the rectiﬁcationperfectly for negatlve. SSTAs whereas warm events remain
of ENSO variability by the slowly varying changes in mean under-represented (Fig. 9¢ upper quadrant).

state. The physical processes responsible for the occurrencg
of climate shifts remain unclear. The results reported here"”

suggest that they may not have a signature in the third starig process clearly enhances the representation of warm
_“St'cal mpment (asymmgtry) of the dynamic fields but mgy events, but without altering the probability of the occurrence
involve higher-order statistical moments and related nonlln-of cold events as a purely stationary stable TGS described
earities. _ o _ ~in the first part of this section (cf. Fig. 9d). This is par-

The following section is dedicated to the statistical in- ticularly true when observing g—q plot of the TGS versus
terpretation of the above results proposingied models  gg. Although there is strong agreement between observa-
of ENSO, and the definition of a measure of “model skill" {jons and this TGS, the latter does not statistically fit with the
for simulating extreme ENSO events based on q—q plot estizc model results. It is believed that this is due to the fact that
mates. the ZC model cannot account for all the nonlinear dynamics

leading to EEs.
o o The results of the proposed “iva” models illustrate the
4 Statistical parameterisation of ENSO complexity of ENSO with regard to its statistical properties.
_ , , o It indicates that ENSO cannot be accounted for by a single

In this section, four simple or e Sta_t'St'Cal models are _ statistical law, or at least by a law whose intrinsic parame-
proposed (see Sect. 2.2.3.) in order to interpret ENSO statisga s are permanent over time. Unlike a purelgtable dis-
tics with regard to their relationships with changes in meanyintion. a Gaussian law fails to represent positive SSTAs
state and EE occurrence. while cold events have a perfect Gaussian distribution. Fi-
nally, the results of this “rige” parameterisation of ENSO
further suggest that ENSO experiences various types of be-
haviour, which combines Gaussian distribution for cold sym-
metrical periods¢=2) anda-stable for warm active periods
a<2). Such a parameterisation (a non-stationary stable pro-

4 Non-stationary stable TGS

4.1 Alpha-stable TGS

The first type of model is based on stable TGS (see Ap-
pendix B and Sect. 2.2.3.). This model's results indicate tha

suchtpalrzgmgtelr Ization Iegds tto ar:j under—estlmatlonto{ col ess with the main parameter values following the slowly
ﬁyer? fs( 9. 9a owertquall_| rant) an than overI;refp rese(r;:zmn arying Tropical Pacific mean state) could account for the
'gh frequency events. However, the TESUILs trom AN%ectified effect leading to the occurrence of EEs.
GT3 applied to the generated series match with those for in . . .
situ data (not shown). The lot bresented in the left-hand In the following paragraphs, in the light of the above, we
I . wn). g-qplotp redl investigate the statistics of the full-physics models based on
panels of Fig. 9 highlights the lack of statistical representa—q_q plot analyses
tiveness of a purely stable process (over-representation of ex= ayses.
. : To quantify the ability of the IPCC models to represent
treme warm events certainly due to the too high asymmetry . ; :
) . " . strong warm episodes, we then propose the following crite-
that is prescribeds=1, see Fig. 9e upper quadrant), notably fion C-
on the NINO3 index. The too high probability of EE occur- ’
rence is certainly dug to the too high variability of the TGS, ¢ = Toagr = 99%) — Tmode(gr = 99%) (11)
especially on short time scales. Actually, the TGS is essen-
tially based on an initial random set generation, unable tolt consists in measuring the difference between models and
account for the observed persistence (inertia) in large-scaldata (K98) in the value of the NINO3 SST index below which
ocean circulation. 99% of the values of the observed NINO3 SST index are
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a) Alpha stable TGS b) Gaussian TGS ¢) Non stationary TGS d) Non stationary stable TGS
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Fig. 9. Quantiles of an asymmetrical alpha stable TGS (witf1.8 andS=1) versus quantiles of data/model outpyts; quantiles of a

Gaussian TGS (with m=0.0040 and-0.8082) versus quantiles of data/model outp(li¥, quantiles of an non-stationary Gaussian TGS

(with m=—0.0639 andr>=0.7464 on the first homogeneous period,A8=1241 and>=0.7738 on the 2nd and m=0.3696 an€0.8338 on

the 3rd) versus quantiles of data/model outp(d},quantiles of stable, asymmetrical, non-stationary TGS (with.85 and8=0.99 on the

first homogeneous period=2 andp=—0.17 on the 2nd and=1.66 and8=0.99 on the 3rd) versus quantiles of data/model outgd)s,

Upper quadrants are associated with warm anomalies whereas lower quadrants are related to cold anomalies. Red colour is associated wif
the NINOS3 index computed from K98, purple colour with the NINO1.2 index computed from K98, green colour with the NINO3 index
computed from ZC and blue colour with the NINO1.2 index computed from ZC. On each panel, the ideal g—q plot (NINO3 gquantiles from
K98 vs. NINO3 quantiles from K98) is indicated in black solid line. The black arrow represented on the upper quadrant of (d) indicates the
measurement of th€ criterion (see Sect. 4.4.).

H E Nonlinearities and asymmetry

i| Shifis >0 :> Warm tropical Pacific backround j::é strengthened (NDH 1 ) i} ENSO bursting through NDH
+| Shifts <0 Cool tropical Pacific background ™| Nonlinearities and asymmetry ENSO weakening

E E weakened (NDH |)

Change in mean state / 1st order statistical moment __ Change in variability and skewness /
. --~. > 2nd and 3rd order statistical moment
Direct energy cascade’™, ™,

Inverse energy cascade : ;% from large to small
EE feedbacks \ '\ timescales
on decadal variability

\‘~::'_:'_‘; Change in EE burst/ higher order statistical moment

Change in statistics: a <2, ~ 1 More Extreme Events
Change in statistics: a.~2, B ~0 <: Extreme events inhibited

Fig. 10. Schematic of the mechanism of interaction between ENSO time scales variability and change in mean state and its relationship with
ENSO statistics.

found (2.25C in K98). Simply put,Tmode(qr=99%) rep-  ulates ENSO statistics in term of representativeness of
resents the minimum SSTA for an EI to be considered EEs. Negative values fof indicate that the model over-
as an EE in each IPCC model. Graphically,represents estimates strong warm events, or in other words gives
the distance between the g—q plot of the model and the bitoo much weight to the positive tail of the distribution.
sector at thelya(gr= 99%) (= 2.25C) abscissa (see black We can also point out that the majority of “good” mod-
vertical arrow on the upper quadrant of Fig. 9d). Accordingels according to this criterion (BCCR-BCM2, CSIRO-
to Hannachi (2006)’'s methodology, we are able to computeMK3.5, GFDL.CM2.0, INM-CM3.0, MRI.CGCMZ2.3.2A,
error estimates on quantile calculation and can thus providdJKMO-HadCM3) exhibit stable statistics. Interest-
confidence intervals o€ ingly, these “good” models (including MIUECHO.G,

MPI_ECHAMS5) also match models simulating realistic
The results of the classification are shown in Table 5.inter-decadal variability as shown in Lin (2007). In

The lower the value forC, the better the model sim-
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particular, Lin (2007) proposes a list of ‘realistic’ models ENSO could be accounted for by a non-stationary stable pro-
in a so-called third group: GFDCM2.0, GFDLCM2_1, cess with the typical exponent of the law experiencing vari-
MPI_ECHAMS5, INM-CM3.0, MIUB_.ECHO.G... Itis note-  ations that mimic the changes in the tropical Pacific Ocean
worthy that, except for 10 model€; does not exceed 0.36 background. Asy contains information on EE abundance
(Table 5), which is the mean value @f. For this group but also on the decay rate of the ENSO PDF tail, this corrob-
of models, the simulated number of shifts is comparable toorated the existence of interactions between statistical mo-
SODA (2.32 for a 100 year simulation). Nonetheless, otherments of ENSO time series. The results of g—q plot (see Han-
models displaying large values far are also characterized nachi et al., 2004) applied to the IPCC model simulations,
by heavy tail statistics (for example GISS models, CCCMA- and of the comparison between the various quantities studied
CGCM3.1-t631; see Table 5). However, unlike K98, thesein this paper (NDHg, 8, number of shifts) through power
models tend to simulate more numerous cold EEs than warntaws suggest that the interaction between statistical moments
EEs due to the negative asymmetry of their NINO3 SST in-(variability time scales) does not solely operate through non-
dex. linear advection or the nonlinearities associated with ENSO
asymmetry. It is then likely that other nonlinear processes
come into play to explain EE occurrences. Investigating the
5 Discussion and conclusions sources of these nonlinearities is beyond the scope of this pa-
per. At this stage it is interesting to note that, although cur-
In this paper, ENSO statistics which are accounted for byrent measures of ENSO nonlinearities (through either skew-
a-stable distribution are related to some aspects of ENSO’siess or NDH) have provided meaningful information on the
observed characteristics, namely its modulation, its asymmerectification of ENSO variability by changes in mean state
try and its tendency to produce EEs. As the PDF associate@an, 2004; An et al., 2005; Dewitte et al., 2007a), they may
with the NINO3 SST index deviates significantly from the not fully account for the complexity of the rectified effect.
Gaussian distribution, the heavy taileestable distribution  |n the light of the results, we can hypothesize that EE oc-
is proposed because it better accounts for the occurrence @urrences are part of the feedback loop linking changes in
EEs. Although it is impossible to have access to its PDF inmean state and ENSO asymmetry (An, 2004; Dewitte et al.,
a closed form (except in particular cases), the distribution is2007a). The schematic diagram in Fig. 10 summarizes the
characterized by two main parametersandg, that provide  parallel that has been made in this paper between ENSO sta-
meaningful information on the ENSO statistics, namely EE tistical moments and the physical processes involved in the
abundance and asymmetry, respectively. A shift detectionrectification of ENSO variability through changes in mean
method initially developed by Potter (1981) was also usedstate. It suggests that higher statistical moments contribute
to diagnose the change in mean state of the tropical Pacifigo the rectified effect by controlling the triggering of EEs,
and select warm and cool periods in the time series. The oband supposedly some feedback between EEs and climate
servations were first investigated based on the K98 SST datshifts. Non-linear regressions between statistical moments
set. Consistent with former studies (Burgers and Stephensorisom IPCC model time series give similar exponents, which
1999; Hannachi et al., 2004; An and Jin, 2004), the resultscould suggest ENSO chaotic behaviour. This still requires
indicate that ENSO hag-stable non-Gaussian features and further study.
is asymmetrical. Interestingly, cool and warm periods ex-
hibit different statistical behaviour, with cool periods being
more Gaussian and having lower asymmetry than warm pefppendix A
riods. A comparable tendency was found in the ZC model.
In particular the ZC model had increased (reduced) nonlin-Detection of a systematic change
earity quantified through NDH (Timmerman and Jin, 2002)
during warm (cool) periods.
The full-physics models of the IPCC data base were

The relevant procedure relies on Maronna and Yohai (1978)’s
test for the detection of a systematic change in mean. This

then investigated. Interestingly, all the models exhibited amethod can be applied for a couple of normal random vector

clear relationship between changes in mean state and ENSE- ¥) such that the mean af is known to be constant and

asymmetry (skewness), in agreement with observations (Anth€ mean ofy might change at a timgy. It was applied by

2004). They did however have contrasting statistics in termg>0tter (1981) in this context; but Maronna and Yohai (1978)
of their propensity to simulate EEs. In particular, in the light provide a brogder method which stays valid in the stabile case.
of the results of the SDT applied to the IPCC models (Ta- If (xj; yj); j=1; ... N denotes asequence of two dimen-
ble 5) and a recent study (Lin, 2007), it was shown that Omysmnal random vectors, the following model is assumed:
the models simulating a realistic decadal variability also ex-
hibited markedx-stable statistics.

Naive statistical models were then proposed to interpretwherey; are observations, thg are independent and identi-
these results. The “iiee” model simulations indicated that cally distributed (iid) random variables, with densftyvhich

yj=bj+ X tu;
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N —— of performing the test, we were able to evidence the 1903—

o ‘ ‘ ‘ ' ‘ ' ‘ 1905 cold shift, the 1943 neutral shift (Karspeck et al., 2004)
and the 1958, 1983 and 1998 EEs (see Fig. 4 and Fig. Al).
Nonetheless, the SDT applied to empirical variance sets did
not permit the 1976 shift to be located as this rupture took
T T place in the mean rather than in the variance. In this study,

‘ | 1oosshit ‘ ‘ 1976 shift] ‘ we assumed a minimum inter-shift period of 10 years in order
T e 00 B0 a0 s 00 to parallel the occurrence of ruptures with decadal to inter-

decadal variability.

1998 shift |

SSTA [degree]
)

Empirical variance Nino12 computed from KRef
T T T T

o
o

1998 EE

Variance

o
ES

1943 shift 1958 EE 1983 EE

1903 shift | Appendix B

880 1900 1920 1040 1960 1980 2000 Generation of alpha stable distributions

Time [year]

ol
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Fig. Al. 15-years running mean of the NINO3 index (upper panel) In order to test the relevance of the fue” models of ENSO,

and empirical variance of the NINO1.2. Index (lower panel) from ,_stable series were generated that fit with the proposed

K98. Mean shifts and EE detected by the SDT are reported on thgnqdels. The Chambers et al. (1976)’s algorithm permits the

plot. generation of two uniform random real variables on] 0; 1 [,
Ui and W, respectively. Then, a simple transformation al-
lows to get a uniform law on}-/2; /2 [and an exponential

can have unknown parameters, and which are independent @dw (with parameter 1).

the unobservable noisg. Theu; are iid normal with mean

0 and variancer2. Maronna and Yohai called it Model I1.

Under these assumptionsis an ancillary statistic for tests

s

p=nU1—3

concerningy; andc. The null hypothesis Hlis thatb;=b; W = —log(1 — Uy) (B1)

j=1; ...; N for some unknowrb; against the alternative H

thatb;=b for j <jo andb;=b+d for j> jo whereb; d and

Jo<N are unknown. Finally, from those simple laws, we can generate a symmet-
The percentile points are extremely difficult to calculate rical alpha stable law:

either analytically or numerically and depend lonThat is

why; instead of trying to compute p-values we chose a level

far larger than all the published quantiles for these tests and ) 1

decided to reject bif the computed value of the test statistic y _ _SIN(@%) (cos((l - “)¢)) ¢ (B2)

exceeded this level. (cosp)Y/e w

We performed the test on the NINO3 index computed from
K98 using various reference seri®& SSTAs in the whole
troplcal Pacific (120E-60' W; 29° N-29° S). and NINO1.2 lowing the generation of asymmetriealstable law. It writes
regions, and a random-generated Gaussian set whose meal toiows:
and standard deviation are the same as the NINO3 index. Y
Consistent with earlier studies (cf. Karspeck et al., 2004, or por ¢£1, y = Sinae—vo (coswfa(wwo)))T Where
Guilderson et al., 1998 among others), a shift in April 1976, cogp) e w
estimated amplitude: 0.2€@ was detected in each of these ¥0 =
experiments. We also evidenced the cold 1903 and 1998 for ¢=1,
shifts (Overland et al., 2008).

On the other hand, we performed the test on empirical
variance series. An example is given for the NINO1.2. in- 2 (/m W cosgp
dex. This way of running the method is not only able to iso- ¥ = - ((E + ﬂ‘”) tang — glog <m)) - (B3
late ruptures in variance (making it possible to identify ho-
mogeneous periods in terms of variability) but also to high-
light isolated extreme bursts in the empirical variance set (al\We used this broadened method of generation to elaborate
lowing EEs to be identified). Following a dichotomic way our TGS.

d’Estampes (2003) proposed a more general algorithm al-

78 1-|1—¢].
2 o !
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Appendix C
GLOSSARY:

CGCM:
CMIPS3:

EE(s):
ENSIP:
ENSO:
GT:
IPCC:

IPCC-ARA4:

iid:
K98:

NDH:
PDF:
g—q plot:
rms:
SDT:
SSTAs:
SVD:
TDA:
TGS:
TL1A:
ZC:
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