
HAL Id: hal-00434374
https://hal.science/hal-00434374

Submitted on 23 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are events fast?
Gabriel Kerneis, Juliusz Chroboczek

To cite this version:

Gabriel Kerneis, Juliusz Chroboczek. Are events fast?. 2009. �hal-00434374�

https://hal.science/hal-00434374
https://hal.archives-ouvertes.fr


Are events fast?

Gabriel Kerneis and Juliusz Chroboczek

PPS, Université de Paris 7, Paris, France

kerneis@pps.jussieu.fr

12 January 2009

Abstract

We compare a set of web servers on a simple synthetic

workload. We show that, on this particular bench-

mark, event-driven code is as fast or faster than the

fastest implementations using thread libraries.

1 Introduction

Increasingly, the programs we write are concurrent :

they simultaneously communicate with their environ-

ment over multiple channels, and need to react to in-

put events as they arrive in a nondeterministic order.

The most obvious examples of such programs are net-

work daemons, that need to simultaneously service

multiple clients or peers, programs with a graphical

user interface (GUI), that need to simultaneously ser-

vice multiple input devices, and networked GUI pro-

grams such as web browsers, that need to do both.

There are two main paradigms for writing such pro-

grams: threads and event loops.

Threads When using threads, a concurrent pro-

gram is described as a set of sequential threads

of control, communicating through shared memory.

Threads may be created and destroyed dynamically,

or there may be a thread pool, a statically sized set of

threads that compete for the work to be performed.

Threads can be implemented in an operating sys-

tem kernel, in which case we speak of kernel threads;

they can also be implemented by a user-space li-

brary, in which case we speak of user threads. Kernel

and user threads have different performance tradeoffs:

kernel threads require a relatively expensive kernel in-

tervention at context-switch time, but they allow the

use of multiple CPUs or CPU cores. Additionally,

kernel threads allow the direct use of native system

services, while with user threads, precautions must

be taken to avoid blocking the whole program when

invoking a blocking system call.

Event-driven programs In an event-driven style,

the concurrent program is described as a set of event

handlers that handle the situations that can occur,

such as receiving a request for a new connection, re-

ceiving a client request, or a client timeout.

The set of events, and the set of associated event

handlers, can change over time; for example, after

a new connection has been established, a new event

handler is established for handling requests arriving

on that particular connection.

Performance issues Event-driven programming

is rumoured [8] to have a number of advantages

over threads. First, event-handlers are tiny, heap-

allocated data structures, unlike thread contexts,

which include a large, statically allocated stack. A

highly concurrent event-driven program will there-

fore likely use less memory than a threaded program.

Second, switching between event handlers involves a

mere (indirect) function call; a thread switch, on the

other hand, may involve one or more system calls

with the associated mode-switching penalty. Finally,

since event handlers are scheduled within user code,

an event-driven program is likely to provide more de-

terministic response than a threaded one.

The performance advantage of event-driven pro-

grams, however, is not as obvious as might appear

1



from the above description. A thread’s state is split

between a number of locations: the processor’s regis-

ters (including the program counter), stack-allocated

variables and heap-allocated structures. An event

handler, on the other hand, receives much of its state

in the form of a single heap-allocated data struc-

ture; this structure must be unpacked and its contents

“spread”into the processor’s registers before the event

handler can be run, which involves at least one indi-

rect load per register. Thus, event-driven program-

ming avoids the localised cost associated to thread

contexts, but pays a price that is spread throughout

the program and hence difficult to quantify.

Automatic generation of threaded programs

In a threaded program, the flow of control of every

single thread is explicit. In an event-driven program,

on the other hand, the flow of control is broken into a

possibly large number of possibly tiny event handlers.

Because of that, event-driven programming is diffi-

cult and error-prone, and most programmers choose

to avoid it.

The authors are currently experimenting with au-

tomatic generation of event-driven programs from a

threaded description [4]. Our software, called CPC,

takes a threaded description of a program, and pro-

duces an event-driven program that is equivalent, in

a suitable sense, to the original description. Since

the main import of this work is to combine the ru-

moured efficiency of event-driven programs with the

convenience and intuitiveness of thread-based pro-

gramming, it is of the utmost importance for us to un-

derstand the effective efficiency of event-driven pro-

grams.

Experimental approach The aim of this work is

to precisely quantify the relative performance of ker-

nel threads, user-space threads, hand-written event-

driven programs, and automatically generated event-

driven programs.

Our goal being to compare implementations of con-

currency, rather than to provide realistic benchmarks

of concurrent programs, we have chosen to use a

simple, well-understood and repeatable benchmark

rather than a realistic one. We have benchmarked

a number of HTTP servers written in different pro-

gramming styles, serving a single short (305 bytes)

page to varying numbers of simultaneous clients. The

servers measured include on the one hand a number

of high-quality production servers, and on the other

hand a number of “toy” servers written for this exer-

cice.

2 Experimental approach

As noted above, we have used a simple, easily repro-

ducible setup which would show how well a number

of web server implementations handle multiple con-

current requests.

We have used the ApacheBench client which is de-

signed to generate a constant load on a web server.

Given a parameter l known as the concurrency level

or simply load, ApacheBench tries to generate a self-

clocking stream of requests timed so that the number

of open connections at any given time is exactly l.

In practice, however, we have found that

ApacheBench needs a period of time to “ramp up”;

for this reason, we have discarded the first and last

1,000 samples from our measurements.

Tuning We were very much surprised by our first

batch of experimental data. Below 128 simultaneous

clients, the median and the average latency coincided

and were linear in the number of simultaneous clients,

just as expected. Above that threshold, however, the

median latency remained at a constant value of 50 ms,

while the average value became irregular and irrepro-

ducible. These results were caused by a small number

of extreme outliers — requests that were being served

in 200ms or more.

In order to understand the phenomenon, we came

up with the notion of measured load of a benchmark

run. Consider an ideal run, in which there is no idle

time: the number of in-flight requests at any given

time is exactly l. Writing t for the total run time

of the test, n the total number of requests serviced,

and tr the average servicing time for a request, we

would then have t = n · tr/l. We therefore define the

measured load lm as lm = n · tr/t; this value is always

lower than the desired load l, and we would hope that

2



(a) somaxconn = 128 (b) somaxconn = 1024

Figure 1: Measured load against offered load, before and after tuning

it is very close to l in a run in which the client is able

to saturate the server.

Plotting the measured load against the offered load

(Fig. 1(a)) showed us that, however large the offered

load, the effective load never exceeded roughly 130;

obviously, something in our setup was limiting the

number of connections to 130.

It turned out that the bottleneck was the kernel

variable somaxconn, the value of which defaults to

128 [3]. The listen system call, which is used to es-

tablish a passive (“listening”) socket, takes a parame-

ter that indicates the length of the associated “accept

queue”; when this queue becomes full, e.g. because

the server doesn’t accept connections fast enough,

new requests are discarded, and will be resent by the

client after a timeout. The variable somaxconn limits

the size of this queue: the parameter to listen is

silently limited to the value of somaxconn. Raising

somaxconn to 1024 solves the problem (Fig 1(b)).

Other potential bottlenecks In order to ensure

that our results apply more generally and are not spe-

cific to our particular setup, we repeated our bench-

marks while varying other parameters, and found

that they had no significant impact on the results.

In particular, using different network cards and re-

moving the switch between the client and the server

yielded no measurable difference — hence, no hard-

ware queues were being overflown. Using different

computers (a faster client, a slower server) yielded

slightly different figures, but didn’t change the gen-

eral conclusions. Finally, preloading the served file

into memory only caused a slight additive difference.

Tests with differently sized files (up to 100 kB) con-

firmed the general thrust of our results.

3 Implementations

We benchmarked four production web servers, and

a set of “toy” web servers that were written for this

particular purpose.

Full-fledged web servers Apache [2] is the most

widely deployed web server in the Internet today;

hence, a benchmark of web servers must include it as

a comparison point. One of the claimed advantages

of Apache 2 is its ability to run with different con-

currency models; we measured two of Apache’s con-

currency models, the process-pool model (“prefork”)

and the thread-pool model (“worker”).

Thttpd [1] is a small event-driven server which

was considered as one of the fastest open-source web

servers in the late 1990s. It uses a standard event-

driven model, with one minor twist: connections are

accepted eagerly, and kept in a user-space queue of

accepted connections until they are serviced.

Polipo [5] is an HTTP proxy written by the second

author that can also act as a web server. It uses a

fairly standard event-driven model.

Lighttpd [7] is a recent, highly optimised event-

driven web server.

3



Toy servers We have written a set of toy web

servers (less than 200 lines each) that share the ex-

act same structure: a single thread or process waits

for incoming connections, and spawns a new thread

or process as soon as one is accepted; our servers do

not use any clever implementation techniques, such

as thread pools. Because of this simple structure,

these servers can be directly compared, and we are

able to benchmark the underlying implementation of

concurrency rather than the implementation of the

web server.

One of these web servers uses heavy-weight Unix

processes, created using the fork system call. One is

written using NPTL, the native thread library used

in Linux version 2.6. Two are written using standard

user-space thread libraries, called respectively Pth [6]

and ST [9].

Finally, one uses CPC [4], our experimental source-

to-source translator that converts programs written

in a threaded style into event-driven programs. While

CPC is at a very early stage, and doesn’t yet contain

many of the optimisations that are possible, we be-

lieve that the code that it generates is representative

of näıve event-driven programming.

4 Experimental results

Fig. 2 presents the results of our experiment. It plots

the average serving time per request against the de-

sired load; a smaller slope indicates a faster server.

With the exception of Apache, the curves are ex-

tremely regular (in each case, the correlation coeffi-

cient between the mean reponse time and the offered

load is above 0.999).

Discussion Apache artificially limits the size of

the accept queue to 512; hence, its results for more

than 512 simultaneous requests should not be taken

into account. Apache turned out to be the slowest

amongst the production servers that we considered;

moreover, we found that the process-pool (prefork)

and the thread-pool (worker) implementations per-

formed equally poorly.

All three event-driven production servers were sig-

nificantly faster than Apache, and their performance

was roughly similar. Thttpd was somewhat slower

than Polipo, and Lighttpd very slightly faster; we

believe that the difference is due to different micro-

optimisations rather than to any fundamental dif-

ference between the three servers. Incidentally, re-

sults when the accept queue did overflow (not shown)

were much more regular for thttpd than for the other

servers, which shows the effect of a user-space accept

queue.

The production servers were generally slower than

the toy servers, as the former need to perform addi-

tional activities such as security checks, monitoring

user files for changes, etc.

The implementation using full-fledged processes,

created using the fork system call, was slower than

any other of the implementations that we bench-

marked, while the version implemented using NPTL,

the library based on the native (kernel) threads of

the Linux operating system, turned out to be surpris-

ingly fast. The good showing of NPTL indicates that,

even on a modern virtual-memory system, fork’s over-

head is due to manipulating virtual memory struc-

tures rather than to kernel-side scheduling; in fact,

NPTL’s performance is close to that of the poorer

user-space libraries.

The user-space threading libraries, Pth and ST,

behaved quite differently. Pth yielded results simi-

lar to those of NPTL, while ST yielded excellent re-

sults; a cursory examination of ST’s sources indicates

that it uses some rather clever data structures (e.g.

heaps for storing timeouts) and a number of micro-

optimisations, some of which could easily be reused

in other user-space implementations of threads.

Finally, the version implemented using CPC, our

source-to-source transformation framework that con-

verts threaded programs to event-driven ones, gave

results that were better than all of the other imple-

mentations save the one using ST. Since CPC’s sched-

uler is not as clever as the one in ST, and that many

of the optimisations used by the latter can be used

in the former, we believe that this is an encouraging

result.

4



(a) Full-fledged web servers (b) Toy web servers

Figure 2: Web servers comparison

5 Conclusion

Our results indicate that, for one particular class

of realistic programs, event-driven programs are as

fast as the fastest user-space thread libraries. Since

events have much smaller memory requirements than

threads, this indicates that they are an interesting

technique for a certain class of environments. This

encourages us to continue our research about au-

tomatic generation of event-driven programs from

threaded descriptions.

References

[1] The thttpd man page, v. 2.25b. December 2003.

[2] Apache HTTP Server Version 2.2 Documenta-

tion, v. 2.2.9. June 2006.

[3] Gaurav Banga and Peter Druschel. Measuring the

capacity of a web server. In Proc. USITS’97, pp.

61–71, Berkeley, CA, USA, 1997. USENIX Asso-

ciation.

[4] Juliusz Chroboczek. The CPC manual, prelim-

inary edition. June 2008. Available online at

http://www.pps.jussieu.fr/~jch/software/

cpc/cpc-manual.pdf.

[5] Juliusz Chroboczek. The Polipo manual, v. 1.0.4.

January 2008.

[6] Ralf S. Engelschall. The GNU Portable Threads

manual, v. 2.0.7. June 2006.

[7] The Lighttpd manual, v. 1.4.19. March 2008.

[8] John Ousterhout. Why threads are a bad idea

(for most purposes). January 1996.

[9] Gene Shekhtman and Mike Abbott. The State

Threads Library Documentation, v. 1.7. June

2006.

A Experimental setup

The server is a Pentium-M laptop, downclocked to

600 MHz to ensure that it is slower than the client;

CPU usage was close to 100 % during all of the tests.

The client is a standard workstation using an AMD

Athlon 64 at 2.2GHz, with power-saving features

turned off; in none of our tests did its CPU usage rise

above 20 %. Both machines have Gigabit Ethernet

interfaces, and were connected through a dedicated

Gigabit Ethernet switch. We used the standard Eth-

ernet MTU of 1500 bytes.

The server and the client were both running Linux

kernel 2.6.24. We used Apache 2.2, Thttpd 2.25b,

Polipo 1.0.4 and Lighttpd 1.4.19, and the version of

ApacheBench included with Apache 2.2; the libraries

used were ST 1.7 and Pth 2.0.7.

5


