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We consider a one dimensional mesoscopic capacitor in thgepce of strong electron interactions and
compute its admittance in order to probe the universal raitithe relaxation resistance. We use a combination
of perturbation theory, renormalization group argumeats] quantum Monte Carlo calculation to treat the
whole parameter range of dot-lead coupling. The relaxatgsistance is universal even in the presence of
strong Coulomb blockade when the interactions in the wieesafficiently weak. We predict and observe a
guantum phase transition to an incoherent regime for angsti parameteK < 1/2. Results could be tested
using a quantum dot coupled to an edge state in the fractipraaltum Hall &ect.

PACS numbers: 85.35.Gv, 73.21.La, 73.23.Hk, 73.43.Jn

The dynamical response of mesoscopic conductors consttarbon nanotube quantum wires as well as dots defined in the
tutes a mostly unexplored area of coherent quantum trafspofractional quantum Hallféect (FQHE).
which has recently led to groundbreaking experimets [1]. The starting pointis the Hamiltonian for a non-chiral, semi
The mesoscopic capacittﬂ [2] is one of its elementary buildinfinite Luttinger liquid B] where the dot region corresptn
ing blocks: a quantum dot influenced by an AC gate voltageto the interval [QL]:
which is put in contact with an electron reservoir. It hasrbee L g ” 5 3012
studied so far at the single electron level, with possiblame _ X | VF _
field generalizations [3]. Both the capacitar@gand the re- _f_ [ ( ) Ve (5() ] ~ Veos[2(x = 0]
laxation resistanc&;, obtained from the low frequency ex- 1 <CV. 2
pansion of the admittan®(w) ~ —iwC, + w?C3R,, are fun- + SEc [¢(x =0)- ( 4 ke L)} : 1)
damentally &ected by the quantum coherence of the device. T el
At zero temperature, a single spin polarized channel yi@lds the first part is the kinetic part, followed by the backscat-

relaxation resistancBy = h/(2€?), which is independent of tering term atx = O (strengthV), and finally the contri-
the dot-reservoir connection. Ref] [1] has confirmed this rey, tion from the charging energy withc = €/(2C) (C is

sult for a quantum dot with weak charging energy. the geometrical capacitance). The canonically conjugated
However, quantum dots with reduced size exhibit strongields ¢ andé satisfy the commutation relatiog(x), 6(x')] =
Coulomb blockade, and there is also a clear need to analyZgr/2)sgnk — x’). V is the backscattering strength on the
whether electron-electron interactions in the lead aewegit.  point contact. Ec = €?/(2C) denotes the charging energy
Here, taking rigorously these aspects into account, weeprovThe time dependent gate voltage oscillates arodgnd Us-
that there is quantum phase transition from a coherent to aing the Matsubara imaginary time path integral formulation
incoherent regime, where a relaxation resistance cannot ie quadratic degrees of freedom away fram= 0 can be
defined. For weak interactions, the universal behavior-s reintegrated out. The kinetic part of theéfective action then
covered even in the presence of strong Coulomb blockade. readsSyi, = (7KB)™ 3, lwnl/(1 — & Z™®wnl/2)|¢(wp)12, where

We consider a quantum dot (FIg. 1) connected to a resek(wn) is the Fourier transform a@f() (now specified ak = 0),
voir modelled by a Luttinger liquid lead, which allows to ac- andA = nve/L is the level spacing. The same action can
count exactly for Coulomb blockad&ects. We discuss sepa- be derived alternatively starting from a single chiral inger
rately the absence (Luttinger paramees 1) or the presence liquid “loop”, hence the relevance for the FQHE regime [6].
(K < 1) of interaction in the adjacent lead. This setup and the
underlying physics is similar to that studied in REf. [4],eve
attention was solely focused on the static occupation ofa re s, 0
onant level. Here we show that beldv= 1/2 the Kosterlitz : L Vet SV :

L . H Incoherent /:
Thouless type phase transition driven by the dot-lead tunne —i :
ing strength triggers a transition of dynamical transpaotrf , R + Coherent
a coherent to an incoherent regime, hence provoking a devia- s o
tion from the universaR, = h/(2€?). We use a combination
of analytical (perturbation theory, renormalization ggpand  FIG. 1: Left: schematic view of the mesoscopic capacitor:Da 1
numerical (quantum Monte Carlo) approaches to monitor thguantum dot, capacitively coupled to a gate with time-delpen
capacitance and the relaxation resistance over the whaogera VoltageVy + 6V(t). Right: schematic phase diagram in the degener-
of dot-lead connection. The present results can be appied fte caseV. denotes the critical backscattering strengthior 1/3.
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Within linear response in the oscillating gate voltage, the

(imaginary frequency) admittance can be expressed as:

wnl (® :
Glon) = 5220 [Maropone. @

The dynamical conductance is obtained by analytic continua

tion G(w) = G(iwn — w + i), while the capacitance reads:

C= 5o -1 (=5 [ o). @

We start with a discussion of the weak barrier case, using

perturbation theory iV/D (bandwidthD). The capacitance
and relaxation resistance are derived as an expansionénsord

of vV, C, =C;(10)+C;(11)+Cf,2)+...andRq= O L R L R 4
Introducing
1 |cwn EcK
an—@ 1_ e 2Klnl/A p ), (4)
one obtains to zeroth, first and second order:
. € |wn 1
GO bt Ll 5
(on) = 1= 5o (5)
. 62 |a) |
GWiwy) = —2v «/F+(O) 2 cos(zN)  (6)
e2 lw |
G@iwn) = -~ —=2V?F,(0) 2 zl(wn), (7
where we defined:
+2
F.(v) = exp[— Z T coseunv)} (8)

I(wn) = fu /Zdv[cos(4rN)V+(wn,v)+V,(a)n,v)] 9)
0

Vi(wn, V) = 1 - F.(V) (1 £ cos@nV)) (10)
kel lelVg A
N=T+—T W|th ET:EC+ﬁ- (11)

TheY, in F. is limited by D. From Egs.[(b)E(7), the capaci-
tance at low temperature becomes:

€

0 _
cY =+ ET (12)
ch = c<°> 2v \JF.(0) cos(zN) (13)
c = c<°>E 2V2F, (0l (wn — 0) cos(4N). (14)

Itis clear from these expressions that the total capac#@pc
is a periodic function oN, with period 1. Below we focus on
the interval 0O< N < 1. The results for the relaxation resis-
tance, at low temperature, are simple since the computation
the first and second order contribution shows that they anis

RO+ RY + RY = RO =

2e2 K (15)
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FIG. 2: (color online) Capacitandg, as a function of the backscat-
tering strengthV, obtained at temperature = 0.04 with Monte
Carlo computations (dashed lines). The solid lines showptiee
dictions of the perturbative calculations up to second ordé take
Ec/n? as the unit of energy and use the parameees 2rJ/8 = 8r
andA/(2K?) = #?. Temperature dependence is shown in the bot-
tom right panel, where the vertical axis is measured on aitbgaic
scale.

The charging energy thus does not modify the value of relax-
ation resistance, while electron interactions in the lewbt
duce a trivial factor 1K. At zero temperature, the sums and
integration of Eqs[{5){7) can be done analytically in aiert
cases. For example, wh&a = 0 andK = 1, one ha$,(0) =
(A/(27D))? (D > A), and one can show that the result for the
capacitance i€, = (€/A)(1 - 2r cos(ZN) + 2r2 cos(4N)),
with r = 7V/D. This coincides with the development of the
non-interacting formula found in Ref] [1] in powers of the re
flection codficientr: C, = (€2/A)(1-r?)/(1 - 2r cos(ZN) +

r?). In the more general case of non-z&g, andK # 1, one
hasF,(0) ~ (ErK/(xD))?, and the integration of EQ.](7) has
to be computed numerically.

The perturbation theory thus proves the universality of the
charge relaxation resistance in the weak barrier limit éaen
the presence of interactions. To study the non-perturbativ
regime, the path-integral Monte Carlo method is applieti¢o t
action for the discretized path(r = jB/J) (] = -, J-

1). We estimate thermal average by generating discretized
paths using local update in the Fourier space and the clus-
ter updateﬁ7ﬂ8]. The top (bottom) row of F[d. 2 shows the
calculated capacitancg, as a function o/ atT = 0.04 and

K =1 (K = 1/3). The left and right columns correspond to
the non-degenerate cade & 0) and the charge degenerate
case N = 1/2), respectively. With increasing the Coulomb
staircase becomes sharper, which results in the decrense (i
crease) irC, = 9(Q)/0Vgy in the case oN = 0 (N = 1/2).

The second-order perturbation theory, shown as solid lines
displays an excellent agreement for smallEspecially, it is
remarkable that only for the caself= 1/3 andN = 1/2 (the
right bottom panel of Fid.]2)C, exhibits an abruptincrease at
afiniteV, signaling a possible transition. One can see @at
grows asx 1/T in the large barrier region.



To reveal the origin of the transition behavior, we next 6 [ K= 1/5
examine the strong barrier limit using an instanton method 5L 13—
which was developed for the Kondo model [9]. Near the de- N UL
generacy poinN = 1/2, the configuration of the bosonic field % 4r /]
¢ can be represented in the dilute instanton gas approximatio = 3 i ]

o

2n 1l I v

bis 5 2F i
$(0) =7 ) §0(r—1))+ 519, (16) s | ~

=1 1+ ; -
H * K= * * K

. 1 1 1 1 1
wheres; = s(-1)I71, ands ~ 1 denotes the separation be- 0 1 5 3 4 5 6 .

tween the well minimad is the step function). Inserting Eq.

Vv
(18) in the full dfective action, the partition function becomes:

FIG. 3: (color online) Extrapolated vall&(iw, — 0) as a function
0 3 o - of V at temperaturd = 0.04 in the degenerate case. Horand
Z= Z t2n f dTan dron_1 - f dry A/(2K?), we use the same parameters as in[Hig. 2. IiR{@&ti, — 0)
=0 0 0 0 forK = 1/3 atT = 0.01(c), 0.04(2) and 008(¢) in the vicinity of the
! | | (17)  location where the crossing occurs.
Tj— Tk
K ;‘SjsklogT - uzj: s,r,},

X exp

so that the capacitance divergesas/T at low temperatures
wheret is the tunneling amplitude between the well minima, [see Eq.[(B)]. This explains the transition observed for the
andr, is the short-time cut®. u = (2N — 1)Er denotes the capacitance in the strongly interacting case.
deviation from the degeneracy point. Note the similarity be  We now describe thefkact of the KT transition on the dy-
tween this partition function and that which was proposed imamical properties. lfv < 1/7rc holds (withRC time 7rc),
the context of dissipative Josephson junctions$ [10]. Ome cathe charge relaxation resistance can be defined in the low-

therefore identify the scaling equations![12]: frequency expansioB(w) = —iwC, + w?CiRy+0(w?). How-
ever, the validity of this expansion is not obvious, sineeKiT
dt _ (1_ i)t E — _42¢2 (18) transition may influencerc itself. Instead, we investigate the
d 2Kk )7 di ’ low-frequency resistance using
dus
—— =ugl- 2t2) (29) 1 1
d o)== —— — ——
R(iwn) o~ oGy’ (20)

which are familiar in the context of a Kosterlitz Thouless

transition in the two-dimensional XY model. No further ar- whereG(iw,) andC, are defined in Eqs[{2) and](3), respec-
guments are needed when one deviates from the degenerdayely. The extrapolatiofR(iw, — 0) gives the real part of the
point: sincet is small, starting fronu # 0, Eq. [19) predicts impedance in the low-frequency limit, henegc = R(0)C,..
that u will further increase, leading the system further awayIn Fig.[3, we plotR(0) for K = 1,1/3 and ¥5 as a function
from the degeneracy point. This means thatill be trapped  of V at temperatur& = 0.04. ForK = 1, R(0) equalsh/(2€?)

in an dfective harmonic potential, and one thus recover the reirespective oV, in agreement with the universal charge re-
sult of Eq. [), which is therefore universal. For the chatge laxation resistancé][ﬂ 3]. Fat = 1/3 and ¥5, the univer-
generate casd = 1/2, the transition corresponds to a Kondo sality is observed in the weak barrier region, wher is
type transition associated with the charge pseudo spinen trabruptly enhanced with increasing reflecting the RG flow
dot. Egs.[(IB) determine the tendency of the dot-lead trango the weak coupling regime due to the KT transition. The
mission as temperature is loweret;sf) flows along one of temperature dependenceR() for K = 1/3 is shown in the
the hyperbolic curveB?—4t? = const, whereB = 1-s°/(2K).  inset of Fig8, which indicates th&(0) diverges a¥ — 0in
For K > 1/2, the tunneling strength always grows upon re-the strong barrier region.

ducing the temperature, and the system reaches the KondoThe KT transition plays a crucial role in the relevance of
fixed point where the dot is strongly coupled to the reservoirthe universal charge relaxation resistance.ti¥B > 0, the
An electron freely tunnels in and out of the dot irrespectivesystem scales to the weak barrier limit, whege is indepen-

of the initial tunneling strength. In particular &t = 1 this  dent of temperature. Ift2+ B < 0, on the other hand, the
implies that the charge relaxation resistance is univeiga]  scaling equationg (18) predist — const andt « T8, so

Ry = h/(2€?), as a consequence of the unitary limit of the un-thatrc roughly scales as T~1(T?8 + const), which grows
derlying Kondo model. On the other hand r< 1/2, there  faster than the (thermal) coherence tirgg < 1/T as temper-

is the possibility that at a critical, ficiently weak transmis- ature is lowered. These observations suggest thatiB>> 0
siont (“large” V), the RG flow always drives the system into a coherent transport can be realized by lowering temperédure
weak coupling configuration with specified charge. Then theguaranteerc < 7con, While if 2t + B < 0 electronic transport
charge fluctuation remains finite, i.€4%) — (¢)? ~ (rs/2)?, in the dot decoheres before charge relaxation is achieved. |
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1 ' ' ' ' * ation resistance cannot be defined anymore due to the diver-
T=0.08+——+— .
~ ol 004 - | gence of theRCtime.
. 0.01 —*— /¢ Results could be probed experimentally using quantum dots
3 o6l i connected to an edge state in the FQHE regime. Another ex-
4 ¥ perimental probe could use one dimensional quantum wires
S o4l (non chiral Luttinger liquids) with the limitation that tlogper-
g ¥ ating frequency would have to be larger than the inverse time
& o2t ¥ of flight within the wire, in order to avoid renormalization
4 5 6 7 8 effects due to eventual Fermi liquid leads connected to this
0dk—= TR R wire [11].
i1 2 3 4 5 6 7 8
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