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Semiclassical measure for the solution of the dissipative
Helmholtz equation

Julien Royer

Abstract

We study the semiclassical measures for the solution of a dissipative Helmholtz equa-
tion with a source term concentrated on a bounded submanifold. The potential is not
assumed to be non-trapping, but trapped trajectories have to go through the region
where the absorption coefficient is positive. In that case, the solution is microlocally
written around any point away from the source as a sum (finite or infinite) of lagragian
distributions. Moreover we prove and use the fact that the outgoing solution of the
dissipative Helmholtz equation is microlocally zero in the incoming region.
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1 Introduction and statement of the result
We consider on L?(R™) the dissipative semiclassical Helmholtz equation:

(—h2A +V, — Eh)uh =5 (11)
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in the high frequency limit, that is when the semiclassical parameter h > 0 goes to 0. Here the
potential Vj, = V4 —ihV; has a nonpositive imaginary part of size h. We recall (see [])
that this equation modelizes for instance the propagation of the electromagnetic field of a
laser in material medium. In this setting the parameter h is the wave length of the laser,
Re(Enr — V) is linked to the electronic density of the material medium (and plays the role
of the refraction index for the corresponding hamiltonian problem) while h=! Im(Ej, — V) is
the absorption coefficient of the laser energy by the material.

Thus, in order to consider the case of a non-constant absorption coefficient we have to
allow non-real potentials. We proved in [} that if the potential has non-positive imaginary
part then (with decay and regularity assumptions on V) the resolvent (—h?A +Vj, —2)7 1 is
well-defined for Im z > 0 and is of size O(h™!) uniformly for z close to E € R* on condition E
satisfies an assumption on classical trajectories for the corresponding hamiltonian problem.
In this case, the resolvent has a limit for z — FE in the space of bounded operators in some
weighted spaces, and this limit operator gives the (outgoing) solution for ([L.1]) (see below).

Given a source term S;, and such an energy E > 0, our purpose in this paper is to
study the asymptotic when h — 0 for the outgoing solution uj of (@) More precisely we
are interested in the semiclassical measures (or Wigner measures) of up. The first work in
this direction seems to be the paper of J.-D. Benamou, F. Castella, T. Katsaounis and B.
Perthame ([BCKPO02]). In their paper S, = S(z/h)/h concentrates on 0 and Im E}, = hay,
with o, — a > 0. They consider the family of Wigner transforms fj, of the solutions u; and
prove that after extracting a subsequence, this family of Wigner transforms converges to a
measure f which is the (outgoing) solution of the transport equationﬂ:

1

Note that the solution is estimated by Morrey-Companato-type estimates (see ) and
that part of the result is left as a conjecture and proved in [[Cas0].

F. Castella, B. Perthame and O. Runborg study in [[CPR0Z] the similar problem with a
source term which concentrates on an unbounded submanifold of R™. As a consequence there
is a lack of decay of the source and Morrey-Companato estimates cannot be used. Actually
only a formal description of the asymptotics is given and the proof concerns the case where
the refraction index is constant, that is V3 = 0, and the submanifold is an affine subspace.
X.-P. Wang and P. Zhang give a proof for V4 # 0 (variable refraction index) in ] using
uniform estimates given by Mourre method. We also mention the work of E. Fouassier who
considered the case of a source which concentrates on two points (see [Fou0f], Vi = 0 in this
case) and the case of a potential discontinuous along an affine hyperplane in [Fou07 (the
source concentrates on 0 in this case). All this papers use a priori estimates of the solution
in Besov spaces (we have already mentionned [PV9]], see also [CJ0d, WZ0§, Wan07, [CJKO]]
for further results about these estimates).

Here we are going to use the point of view of J.-F. Bony (see [Bod]). He considers the case
of a source which concentrates on one or two points (with Vi # 0) using a time-dependant
method based on a BKW approximation of the propagator to prove that, microlocally, the
solution of the Helmholtz equation is a finite sum of lagrangian distributions. In particular,
abstract estimates of the solution are only used for the large times control, and this part
of the solution has no contribution for the semiclassical measure, so the measure is actually
constructed explicitely. Moreover, this method requires a geometrical assumption weaker
than the Virial hypothesis used in the previous works.

In this paper we consider the case where not only the refraction index but also the ab-
sorption coefficient can be non-constant, and hence we have to work with a non-selfadjoint
Schrédinger operator. But, as already mentionned, we know that the resolvent is well-defined
for a spectral parameter z with Imz > 0. For the selfadjoint semiclassical Schrédinger, we

1 given with our notations.



need a non-trapping condition on classical trajectories of energy E > 0 to have uniform esti-
mates of the resolvent and the limiting absorption principle around E (see [, )
In the dissipative case, this assumption can be weakened as follows: any trajectory should
either go to infinity or meet the region where Vo > 0. This is the assumption we are going
to use, and as as consequence, even if we can show that the outgoing solution wu; of (@)
is microlocally zero in the incoming region, the contribution of large times in u; does not
vanishes when i — 0 as is the case in [Bo], and in particular the solution can be an infi-
nite sum of lagrangian distributions around some points of the phase space. However, the
assumption that bounded trajectories should meet the region where there is absorption will
make the series of amplitudes of these distributions convergent, which is the key argument
in order to have a well-defined semiclassical measure in our case.

Concerning the source term, Sy, is allowed to concentrate on any bounded submanifold
of R™. We do not have problem like in [, ] with decay assumptions, but this
allows us to see what happens when the source concentrates on a non-flat submanifold. Note
that we do not have phase factor in our source term (see below) so we are in the propagative

regime described in [CPR02].

Let us now state the assumptions we are going to use in this work. We denote the free
laplacian —h?A by H}' and H}, is the dissipative Schrodinger operator on L2(R™) (n > 1):

Hy = —h*A + Vi(z) — ihVa(z)
We also denote by HI' = —h?A + V() the selfadjoint part of Hy,. Vi, Vs are smooth real
functions on R™, V4 is nonnegative and for j € {1,2}, a« € R™
0°V;(@)| < Ca ()" (1.3)
for some p > 0. Here (-) denotes the function z — (1 + |#|*)2. Let p : (z,£) — &2 + Vi(x)

be the symbol on R** ~ T*R" of the selfadjoint part H}'. The classical trajectories for this
problem are the solutions ¢'(w) = (Z(t,w), (¢, w)) for w € R?™ of the hamiltonian problem:

at?(ta w) = 2Z(ta w)
O&(t,w) = =VWi(Z(t, w))
¢ (w) =w

We recall from [@] that the exact hypothesis we need on an energy E > 0 to have the
limiting absorption principle around E is the following: if we set

O={zeR":Vy(z) >0}
then for all w € R?" such that p(w) = E we have:
{¢'(w),t € R} is unbounded in R*" or {¢'(w),t € R} NO # 0 (1.4)

which means that any trapped trajectories should meet the set where there is absorption.
For further use we also set, for v > 0:

Oy ={z e R" : Va(z) > v}

With this condition (which is actually necessary), for any o > % there exist e >0 and ¢ > 0
such that:
swp @) (=) @)
|[Re z—E|<e,Im 2>0

and for all A € [E — ¢, E + €] the limit:

C
Sh

(Hp — (B +1i0))"' := lim (Hy, — (E +ip))~*

p—0+



exists (and is a continuous function of \) in the space of bounded operators from L?*(R")
to L2~*(R"), where L*%(R") stands for L2((z)* dz). Then for all S, € L**(R"), u), =
(Hp — (E+1i0))~1S), € L>~*(R") is the outgoing solution for ([L.1)).

About the classical hamiltonian problem, we use the following notations:

QF(J) = {w € R*™™ : {Z(t,w), £t > 0} is bounded }

Note that Q% (J) is open if J is open and Qi (J) is closed if J is closed.

Let us now introduce the source term we consider. Given a (bounded) submanifold I'y of
dimension d € [0,n — 1] in R™ with the measure ¢ induced by the Lebesgue measure on R",
a smooth function A of compact support on I's and a Schwartz function S € S(R™), we note
for x € R™

Sp(x) = B 5" /ZEF A(2)S <‘T - Z) do(z) (1.5)

We can choose I' and T'; open in I'y such that I'g :=supp A C I, T € Ty and I’y C Ty (if
I’ is compact we can have g =T =T =T).
As usual, for z € Ty and ¢ € T.T'3 small enough (where T.T'5 is the tangent space to I's

at z), we denote by exp,(¢) the point c¢(1) where ¢ — c¢(¢) is the unique geodesic on I'y
with initial conditions c¢¢(0) = 2 and ¢;.(0) = ¢ (see [GHLI0, §2.86]). On I'> we define the

distance dr as usual: for z,y € s, dr(z,y) is the infimum of the length of all piecewise C!
curves from x to y. For z € Iy, there exists a neighborhood U of z in 'y and € > 0 such that
for x,y € U there is a unique geodesic ¢ from z to y of length less than . And the length of

cis dr(z,y) (see [GHL9], §2.C.3]).

We consider a family of energies Ej, € C for h €]0,1]. We assume that Im Ej, > 0 and:

Eh = E() + hEl + hOO(h) (16)

where Ey > 0 satisfies ([.4) and:
VzeTl, Vi(z) < Ep (1.7)

We set NI' = {(z,8) e I x R" : £LT,T'},

Nl = {(2,€) € NT 1 ¢] = VEo — a(2) }

and:
A={¢"(2,8):t>0,(2,¢) € Ngl'}
We similarly define NgT'y and NgI'y. For (z,&) € NgI' and (Z,Z) € T(. ¢)NgI' we have
Z € T,I' and = € R™ decomposes as = = Zp + =y +EL with Zp € T.T, SIS R¢ and
Z, € (T.T ©RE)E. Then Nl is endowed with the metric g defined by:

90 (2,21, (2%,2%) = (2", 2%) g, + (BL,E] )z

for all (Z1,2"),(Z2%,2°%) € T(.¢)NeT. This means that we do not take into account the part
of = colinear to £ and T.T", which is allowed since (Z, Z) never reduces to (0, =7 +Z) unless
(Z,2) = (0,0). Indeed, if Z = 0 then E € T(z 6 (NgI' T N.T') and hence = = Z;. Now we
denote by & the canonical measure on NgI' given by the metric g. This means that for any
smooth map 1 : U — V (where U is an open set in R"~! and V is an open set in NgI') and

any function f on V we have (see [[GHL90, §3.H]):
/f ) da (v /f (det(gy u) (D1t (u), 053 (u)))1<i j<n—1)

[SE

du



Finally we set:
dy = {(z,f) € Ngl': 3t >0,¢'(z,¢) € NEI‘}

The last assumption we need is:
g(Pp) =0 (1.8)

In , section 4] is given an example of what can happen without an hypothesis of this
kind. Note that when I' = {0}, this assumption is weaker than the assumption vo(Ey —
Vi(z)) — 2.VVi(z) > ¢ > 0 for some vy €]0,2] which is used for instance in [Wan07]. This
is no longer true in general (for instance we can take Vi = 0, Ey = 1 and any circle in R? for I').

To study semiclassical measures of uy, we choose the point of view of pseudo-differential
operators. Let us recall that the Weyl quantization of an observable a : R?” — C is the
operator:

1 i Tty
w — (z—y,E)
Oph (a)u(x) (27Th)n /n /n en a ( ) 75) u(y) dy d£
We also use the standard quantization:
1 #lz—y,6)
e e a(z, Epuly) dy d

See [Rob87, Mar02, [EZ] for more details about semiclassical pseudo-differential operators,
[Gér91] for semiclassical measures. We are going to use the following classes of symbols. For
0 € R we set:

Opp(a)u(r) =

Sy — {a € C®(R?™) : Vo, B € N*, a5, V(x, ) € R2",

o —|a
020 a(@,&)| < cas (@)1}
while Sy is the set of C°°(R?") functions whose derivatives up to any order are in L (R?").

We can now state the main theorem of this paper:

Theorem 1.1. There exists a Radon measure p on R?™ such that for all ¢ € C§°(R?"):

(Op (@)un, un) — qdp
—0 R2"

Moreover 1 is characterized by the following three properties:

(i) w is supported on the hypersurface of energy Ey:
supp i C p~ ' ({Eo})

(i) p vanishes in the incoming region: let o €]0,1[, then there exists R > 0 such that for
q € C§°(R*™) supported in the incoming region T _ (R, —0) (see definition in section

B-1) we have:
/qdu =0

(Hy, +2Tm Ey 4 2Va)p = m(2m) " A(2)? €] 5(6)%5 (1.9)

(111) p satisfies the Liouville equation:

where H, = {p,-} = 2£.0, — VVi(2).0¢ and G is extended by 0 on R*" \ NgI'. This
means that for any q € C§°(R?™) we have:

/ (—Hp +2Im Ey +2Vo)qdp = 7T(27T)‘7l_"/ 9(2, ) A(2)* €] 5(6)* do (=, €)
R2n NgIl



We first remark that this theorem gives not only existence of a semiclassical measure
but also uniqueness, since we do not need to extract a subsequence to have convergence of
(Opy (@)un,up) when h — 0.

Moreover, we see that in the Liouville equation the absorption coefficient o of ) is
replaced by our full non-constant absorption coefficient Im £y + V5, as one could expect.

And finally we will prove that the three properties of the theorem implies that the measure
w is given, for g € C§°(R?"), by:

[Ladn=rn=[ [ AR 1780 () B 20 g3 2, )
R2n Ry JNgpD

(1.10)
To prove this theorem we write as in ] the resolvent as the integral over positive times
of the propagator, the main difference being the large times contribution. Let:

Un(t) = e~ 5, UlMt) = e ®HO and UE(t) = o~ L (H,—E))

Then:

7

+oo
up = (Hy, — (B, +i0)) 'Sy, = E/ UE (t)Sy, dt (1.11)
0
and for T > 0 we set:

ul = (Hy — (Bp +1i0))'S), — (Hy, — (Ej, +i0))"UF(T)S),
i (T (1.12)
- E/o UE(1)S), dt

Our purpose is to study the quantity:

lim T (Opy(q)uf,, ui)

which we cannot do directly. Around w € R?", troubles appear when proving that relevant
parts of integral ([.11) are around times ¢ for which we can find (2,&) € NgI[ such that
¢'(2,€) = w (see proposition [i.1]). Indeed, far from these times we can find ¢ such that
¢'(NgT) is close to w, giving contribution for the semiclassical measure in any neighborhood
of w. Moreover, the Egorov theorem we use gives estimates uniform in A but not in time
(see [BROJ for a discussion of this problem). The key of our proof is to check that even if
the contribution of large times is not zero as for the non-trapping case, the damping term V5
makes it so small that the semiclassical measure is also given by:

i lim (O (a)u, ui))
which is much easier to study. Indeed, this means that we study the semiclassical measure
for the family (u:,f) This can be done as for the non-trapping case since we do not have to
worry about large times behavior. This gives a family of measures on R?”, and then we can
take the limit T" — +o0, since we no longer have problems with the parameter h. It only
remains to check this gives the measure we are looking for.

We begin the proof by a few preliminary results: we show to what extent the damping
term V5 implies a decay of Up(t), we look at the classical trajectories around the submanifold
T" and give more details about the assumption on ®,. Finally we show that the solution
up, concentrates on the hypersurface of energy Ey. In section 3 we give an estimate of the
solution near I', since we cannot give a precise description of uj there. This part is close to
section 3.3 of [@] but we give a complete proof in order to see how to deal with the general
case dimI" > 1. In section 4 we study the finite times contribution and give the semiclassical
measure for u} , and then in section 5 we prove that taking the limit 7' — oo for this family



of measures gives a semiclassical measure for the solution u;,. We also show that this limit is
the solution of the Liouville equation (E) where V5 naturally appears as a damping factor.

Finally in section 6 we give the proof of the estimate in the incoming region we use in
section 5. Indeed if we no longer assume that all the classical trajectories of energy Ey go
to infinity, there still are some non-trapped trajectories. So we still need the estimate of the
outgoing solution in the incoming region used in the non-trapping case. For the self-adjoint
Schrédinger operator, this is proved in ] but here we need to show that this remains
true in our dissipative setting.

2 Some preliminary results

2.1 Damping effect of the absorption coefficient on the semigroup
generated by H,

We saw in [Roy] that assumption (m) is actually satisfied for any energy close enough to
FEy, hence we can consider two closed intervals I and J such that Ey € I I C J and any
trapped trajectory of energy in J meets O.

The main tool we need in this section is the dissipative version of Egorov theorem. We
already stated this theorem in [Roy|] but we give here a more precise version we are going to
use in the proof of proposition j.1].

Proposition 2.1. Let a € Sp.

(i) There exists a family of symbols c;(t) for j € N and t > 0 such that for any N € N
and t = 0 the symbol Ay (t,h) = Zj‘v:o hia;(t) satisfies:

Un(t)"Opy (a)Un(t) = Opy, (An (¢, h)) + hQO(hN“)

where the rest is bounded as an operator on L*(R™) uniformly in t € [0,T] for any
T >0.

(ii) ag(t) = (ao @) exp (—2 fg Va0 ¢® ds) where for (z,€) € R?™, Va(x,€) means Va(x).

(i4i) If a vanishes on the open set W C R*™ then for all j € N the symbol aj(t) vanishes on
p~tW).

Proof. In [Roy|] we proved (i) for N = 0 and (ii). Moreover (iii) is a direct consequence of (ii)
for j = 0. What remains can be proved as in the selfadjoint case (see [Rob87]) so we only
recall the ideas. (i) is proved by induction. More precisely, we show that for any N € N:

N
Un(t)*Opji (a)Un(t) = > hIOpj(o;(1))

3=0
t T1 TN
+hN+1/ / / Uh(TNJrl)*Op}LU(bN(Tl,...,TN+1,h))Uh(TN+1)dTN+1...dTl
71=0 J 12=0 TN4+1=0

for some symbol by. The case N + 1 is obtained by applying the case N = 0 to the principal
symbol of by.
To prove (iii) we take the derivative of Uy (¢)*Op} (a)Un(t) with report to ¢. This gives,
for j e N:
j—1
Oraj(t) = Hp(a) — 2Va0;(t) + > Cj.4D; 409

q=0



where Cj 4 is a function with bounded derivatives and D7 , is a differential operator. Then

if @;(t) = (aj(t) o p~")exp (2 fg Vaog™* ds) we have:

q

Jj—1 t
06 (t) = Cj gD (aq(t) 0 ") exp (2/0 Vaog™® dS)
q=0

and it is easy to check by induction on j > 1:
@;(0) =0, &a;(t)=0o0nW, and hence a;(t) =0on ¢ (W)
O

Lemma 2.2. Let K be a compact subset of Q4 (J). There is C >0 and § > 0 such that:

¢
Yw e K, exp (—/ Vo (¢° (w)) ds) < Ce™%
s=0

Proof. 1. We first recall that if w € € (J) then there exists 7' > 0 such that ¢ (w) € O
(this is slightly stronger than assumption ([.4)). Indeed, the set K, = {¢t(w),t > 0} is
compact, so there is an increasing sequence (tm)mEN with t,, — +00 and w, € K, such
that ¢ (w) — wee. Since Q4 ({p(w)}) is closed, wae € QF ({p(w)}). Moreover, for M € N
and m > M we have ¢~ (¢ (w)) € K,, and hence ¢~ ' (w,) € Ky, which proves that
Weo € Q, (R). By assymption ([L4), there is T € R such that ¢” (we,) € O. Hence ¢ +m (w)
lies in O for large m. Since T + t,, > 0 when m is large enough, the claim is proved.

2. We set:

K ={¢t(w),t >0,we K}

By definition of K, K is compact in R?". Let w € K. There are T}, > 0 and Y > 0 such that
T (w) € Oa,,, so we can find 7, > 0 and a neighborhood V,, of w in R?" such that for all

v €V, and t € [T\ — Ty, Tw) we have: ¢'(v) € O, . As K is compact we can find wy, . .., wy,
such that K C U¥_,V,,. Then we take T' = max{T,,,1 < i < k}, 7 = min{r;,1 < i < k}
and v = min{7y,,,1 <i < k}. Forall w € K and t > 0, ¢'(w) is in K and hence in [t,t + T
there is a subinterval I, ; of length at least 7 such that ¢*(w) € O, for s € I,, ;. Thus:

t4+T
exp </ Va(6° (w)) dS) <e ™

=t
We apply this for ¢, = nT with n < ¢/T and this gives:

_t=T T

t
e ( [Va@rw)as) < T < et®
0

so the result follows with C = ¢ et § = TT—"* O

Proposition 2.3. Let ¢,q' € C§°(R?™) supported in p~*(J) and ¢ > 0. Then there exists
Ty = 0 such that for all'T > Ty we can find hp > 0 which satisfies:
Vh €]0,hr],  [|Opy (@) Un(T)Opy (¢l < €

Proof. We set K =suppq’ N Q7 (R). As K is a compact subset of ;7 (J), lemma .9 shows
that there is Ty > 0 such that:

T

sup [lqll [lg'll o exp (—/ (Va2 0 ¢*)(w) d8> <
weK s=0

= M



As the left-hand side is a continuous function of w, we can find a neighborhood V of K
in R?" such that this holds for w € V after having replaced /4 by /2. Let now K, =
suppq’ \ V. K is a compact subset of Q3°. Therefore, if Tj is large enough, we can assume
that for T > Ty and w € K+ we have ¢ (w) ¢ suppgq. Hence by Egorov theorem (see also

remark 4.4 in [Roy]), for any T > T; we have:

10p (q)Un(T)Opi ()| = ||UT(=T)Opj (q)Un(T)Opyy (¢) |

= |[omi (g0 9™)em L0 V20" ) Opip(a) | + 0 (B)
s 2.1
< sup [q/u)(a(6" @))e o o] oy Y
weR?"
< % +C(TWh
and hence for any fixed T' > Ty we can find Ay > 0 small enough to conclude. |
2.2 Classical trajectories around I
In this section we assume that assumptions ([[.3), ([.4) and ([.7) are satisfied.
Proposition 2.4. There exists 79 > 0 such that:
_J10,370] x NgI'y  — R™ (2.2)
T (t,w) — T(t,w) '
is one-to-one and Ran(7) UTy is a neighborhood of T in R™. Furthermore:
(i) We can choose 1y to have:
vt €]0,370],Vw € NgT'y, 29mt < d(ZT(t,w),Ta) < 2yt (2.3)

for some vy = vm > 0.

(i) If f is a continuous function with support in T (]0,379[x NgI') then:
310
[ g@de=zt [T gzt (14 0, 0) o d (2a)
xeER™ 0 NgT t—0

For 0 < r; < rg9 < 319 we set:
f(rg) =T7([0,72] x NgI') and f(rl,rg) =T (Jr1,r2] X NgI')
When z € T'(0, 379) we write (t,, 22, &) = T 1(z).

Proof. For 7 > 0, let :
N(r) = {(2,6) € NT1 : [6] < 7v/Bo — Vi(2) }
We consider the function 7 from N (1) to R” defined by:
Fo—V1(2)

= €] £ ;
T(z2,6) = I(\/Eo—vmz)’z’ E ) ez
z ifeE=0

We have: ~
T(2,8) = z+25+o([¢])

Hence for 79 > 0 small enough, 7 is a diffeomorphism from N (375) to a tubular neighborhood
of Ty (we can follow the proof for the function (x,&) — z + 2¢, see for instance theorem



2.7.12 in [BG87)). In particular 7 and hence T : (t,z,&) — T (z,t€) are one-to-one and
Ran7 UT'; = Ran ’ZN" U T is a neighborhood of T'y.

N(gT[))
(i) We have:

t t s
E(t,z,ﬁ)—z:/o 2Z(s,z,§)ds:2t§—2/0 /0 VVi(u,z,€) duds

Hence, if M = sup,cpn |[VVi(x)| this gives:
[Tt 2, €) — = — 2t¢] < 262M

Denote &min = min{|¢|,£ € NgI'1} > 0 and Enax = max{|§|,{ € NgIl'1}. We recall from
[BG87] that for (z,£) € NIy and t small enough we have d(z 4 t&,Ty) = t |¢|. Then for 7,
small enough we have 279 M < &y sO:

d(@(t,2,€),T2) > d(z + 2t€,T2) — |T(t, 2,§) — 2 — 2t&| = 2t [£] — t&min = t&min

and:

d(f(ta 275)7 F2) d(Z + 2t§ F2) + |£L’(f z 5) -z 2t§| 2t |§| + tgrnm X t(2§max + gmin)

(11) Let (t, Z, f) E]O, 3T0[><NEF. For (Tl, Z1, :.1), (Tg, Zs, :‘,2) S T(t)z)g)(]o, 3T0[><NEF) we
set:

G(t,2.6)((T1, 21, Z1), (T2, 22, Z2)) = Th' T + gz 6)((Z1, En), (22, E2))

We first look for good orthonormal bases of T(; . ¢)(]0, 37o[x NgI') (for the metric §) and
R™ (for the usual metric) to compute the jacobian of 7. NgI'N ({z} x R™) is a submanifold
of dimension n —d — 1 in NgI', so we can consider an orthonormal basis ((0,Z;))a+2<j<n
of its tangent space at (z,£). We now choose an orthonormal basis (Z;)a2<j<d+1 of T.I'. We
can find =y, ...,Eq11 € R™ such that (Z;,Z;) € T(. ) NgI for j € [2,d + 1] and since linear
combinations of (0,Z442),...,(0,Z,) can be added, we may assume that =; € T,I' & R¢ for
all j € [2,d+1]. These n — 1 vectors form an orthonormal family of 7{, ¢y NgI' to which we
add the canonical unit vector of R for the time component. This gives an orthonormal basis
Bit,z.¢) of Ty 2.6)(]0, 370[x NgT'). In R™ we consider the orthonormal basis:

BT(tz,g &/€l, Zn-a;s- - Zpn-1,81,..., Zn—d—1)
Since T (t, 2,&) = z + 2t + O(t?), the jacobian matrix of 7 in these two bases is:

21 0 0
D(t,z,f)T == O Id O (

MatB(t
’ 0 0 2tl,—g-1

1+ O (t))

2,6) BT (t,2,6) t—0

On the other hand, since basis B . ¢ and Z’S’T(tyzyg) are orthonormal, we have, for = €
(0, 37):
(det(ngl(m)(ﬁiT_l(x),@T‘ ( )))1<1)]<n ‘detMatB —B, DIT_l‘

Thus, using the definition of the measure dtds on ]0,379[x NgI' and the fact that 7' :
I'(0,379) —]0,379[x NgT can be seen as a map for the manifold ]0, 379[x NgI', we obtain:

/mE]R" f(z)dx

- /@Rn (f ° T) (T_ll‘) ’det Matgz—»BTfl(w) DIT—1’ ’det MatBT, —>B~t DTfl(m)T dCC

()

310
/t ‘/(Z £)ENET f OT) t : 5 ‘det MatB(t §)HBT(P z,€) t zf)T dO'(Z 5)

370
_ on—d n—d— ~
=yt [ p@a s ot (1 0,0) dote )
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Corollary 2.5. Let (t,z,€) # (s,(,n) € R x NgI' such that ¢'(z,€) = ¢°(¢,n). Then
|t — s| > 3719 where 1y is given by pmposition@.

Let w € R?” and denote:

((taw ks Zuwskes Ewke) )1<h<icw = {(E,2,€) €RY x NpT': ¢'(2,€) = w}

with ¢,1 < ty2 < ... and K, € NU {0} ([1, K] is to be understood as N* if K, = oo
and K, = 0 if w ¢ A). We also define KI = sup {k € [1, K] : twr < T} € N. For w € R*"
and k € [1, K,,] we write:

A = {¢"(2,€), [t — twr| < 70,1(2,6) — (21, )| < 7o}

and if w € NgI:
Awo = {¢"(2,€),[t| < 70,[(2,6) —w| <70}
Proposition 2.6. Let w = (z,€) € R*" and j,k € [1, K] ([0, K] if w € NgT'). Then
(1) Awj N Ay is of measure zero in Ay, ; is and only if it is of measure zero in Ay, k.
(ii) Assumption (L) is equivalent to:
Vw € R?", V4, k € [1, K] (or [0, Ky]), A; N Ay is of measure 0 in A; (2.5)

This proposition is proved in section 6 of [Bon].

2.3 Localization around FEj-energy hypersurface

Proposition 2.7. For any 6 € R we have:
HSh”Lz,a(Rn) = hgo (\/ﬁ) (2.6)

Proof. 1. There exists C' > 0 such that for all z € R™ and r > 0, the measure of B(z,r)NT
in T is less than Cr?. Otherwise for all m € N we can find z,, € R™ and r,, > 0 such that
the measure of the ball B(x,,7,,) NI in I is greater than mr? . As T is of finite measure,
rm necessarily goes to 0 as m — +o0o. On the other hand z,, has to stay close to I', hence
in a compact subset of R™, so taking a subsequence we can assume that x,, — z. € I'. But
the part of ' close to z is diffeomorphic to a subset of R? € R™, hence the measure of
B(%so,7) NT in T is less than Cr? for some C > 0.

2 /mh<|w—z|<<m+1>h ABS (x ; Z) d0(2)>

meN

2
<cht ST m2 / A(2)S (”3 — Z) do(2)
Z < mh<|z—z|<(m+1)h h

meN
xr—z 2
) do(2)

<epion Z m2+d/

o
meN mh<|z—z|<(m+1)h h

2. Let z € R™. We have:

Sh($)2 _ hl—n—d (

and hence:

2
T —z
HSh||2L2,a(Rn) < Chl_"/ g m2+d/ <3:>25S do(z)dx
zER™ meN mh<|z—z|<(m+1)h h

<enyomt [ f (= 4 b S(0)? dy do2)
m<|y|<(m+1)

meN zel
<chy m*t / / ()* S(y)* dydo(2)
meN zell Jm<|y|<(m+1)

11



_ n+26+4+d

for h €]0,1], since I" is bounded. As S decays faster than (y) 2 we have:

HS}L”i?,&(Rn) <ch Z m? <m>_4_d <ch
meN

O
Since (Hj, — (Ej, +1i0))~! = O(h™!) as an operator from L*»%(R") to L?~*(R") we get:

Corollary 2.8. uj, = O (h™2) in L*>~*(R™). The same applies to ul for all T > 0.
h—0

Proposition 2.9. S} is microlocalized in NT'.

Proof. Let q € C§°(R?*") supported outside NT'y. We have:

Ot @Sne) = s [ [ [ et Ouaga@s (L) avdgdos

g L[ R0 @ 946 S0) dudedo(:)

If 0,(x—2,&) = 0 and O¢(x—2,§) = 0 then z = z and £ € N,I so A(z)q(z,§) = 0.
According to the non-stationnary phase theorem, we have Op}’(¢)S, = O(h®°) in L2(R™). O

Proposition 2.10. (i) Let g € S equal to 1 in a neighborhood of p~*({Eo}). We have:

HOPZJ(l —9)(Hp — (Ep + io))il||L2,Q(Rn)—>L2*a(Rn) = hgo(l) (2.7)

(ii) Let f € Sy equal to 1 in a neighborhood of NgLy, then in L?~%(R™):

wn = (Hy = (By +10) "' Opy.(N)Sh + O (Vh) (2.8)

(1ii) Moreover there exists g € C°(R) equal to 1 in a neighborhood of Ey such that in
L2,7Q(Rn>:

(Hp—(En+i0)) "' Op, (1= £)Sh = (1—Q)(Hf)(Hh—(Eh—i-iO))_lOPh(l—f)Sh‘f'hQO (h%)
(2.9)

Similar results hold for u:,f, T >0.

Proof. (i) For Imz > 0 we have:
Op,(1 = g)(Hn — 2)"" = Op, (1 = g)(HY — 2) "' (1 + hVa(Hp — 2) 1)
According to [HR83] we have:

(HY =2)7" = Opiy (0@, &) =2)") + 0 (h)
Since (p(z,&) — z)~! is bounded on supp(1 — g) uniformly for z close to Ep, Imz > 0, the
operator Op}’'(1 — g)(H! — z)~! is uniformly bounded in A > 0 and z close to Ep, Imz >
0. Moreover (1 + hVa(Hy, — 2)7 1) is uniformly bounded as an operator from L?*(R") to
L?~%(R"™) so:

HOPZJ(l —9)(Hp — Z)_1HL2’Q(]R")—>L2*O‘(]R") = hgo(l)

uniformly in z. Taking the limit z — Ej, + 40 gives (2.7).

(i) Let U be a neighborhood of N[y in R?" such that f = 1 on . We can find € > 0
such that p~1([Ey — 2¢, Eo + 2¢]) \ U does not intersect NTg. Let x € C5°(R) supported in

12



|Eo—2e, Eg+2¢[ and equal to 1 on |Eg—e, Eg+¢[. Since modulo O(h>) the operator x(H;) is
a pseudo-differential operator with symbol supported in supp(x o p) and Sy, is microlocalized
on NTy we have in L%(R"):

(Hn = (En +i0) " Opy (1 = f)x(H1)Sp = O (h*)
On the other hand, as we proved (R.7) we see that:

(Hy, = (En +i0)) " (1 = x)(HY') = 0 (1)

so (B:§) follows since Opj! (1 — f)S), = O(Vh).

(iii) Let us refine this last estimate. Let g € C§°(R) supported in [Ey — €, Ep + €] and equal
to 1 in a neighborhood of Ey. Since (1 — x)g = 0, we have:

GUHY)(Hy, — 2)" (1= x)(HY)
= G(H})(Hy, — 2)7 (1 = x)(H) (1 - §)(HY)
GHM(1 + h(Hy, — 2) Vo) (HT — 2)" 1 (1 = x)(H?) (1 — §)(HY')
= hg(HY) (Hyp — 2)""Va (1= x)(H) (1 — §)(HY) (Hf — )7

It only remains to see that the operators (Hy, —2)~1Va(1—x)(H}) and (1—g)(HP)(HF —2)~!
are bounded uniformly in h €]0, 1] and z close to Ey with Imz > 0. O

As a first consequence of this proposition we see that the solution u; consentrates on

P~ ({Eo}):
Corollary 2.11. If g € C§°(R™) has support outside p~1({Eo}) then:

(Opy, (@)un, un) 700

Proof. Let ¢ € C§°(R*™) supported outside p~*({Ep}) and equal to 1 on supp q. We have:

(Opy (q)un, un) = (Opy (q)un, Opy (Q)un) + O ()= 0O (h)
h—0 h—0

3 Around I

3.1 WKB method

According to proposition IV.14 in [Rob87] or lemma 10.10 in [EZ] applied with the symbol
g (2,8) — 2+ Vi (2) — Ep we know that if 79 is small enough, then there exists a function
© € C([-379,37] x R?") such that:

{ at(/)(taxaf)_F|8I<P(taxa£)|2+vl($)_E0:0 (3 1)
<P(Oaxa£) = <Ia£> ’

Moreover ¢ is unique and:

ol 2,€) = (Gt 2, ), +2/5s 6% ds — tpp(a, )

_<I,€>—2/Ot<§(5t;p ds—|—2/§stx ds_tpE(fE,ﬁ) (3.2)

= <Ia£> - tpE(Iaf) +t7r (t,I,f)

13



where 7(t, x, &) is the unique point in R™ such that Z(¢,5(¢, z,£),£) = = (note that g(¢, z, )
is well-defined for ¢ small enough, see [Rob87]) and:

r(t,x, &) = tz/s O/T . Stx,f VWi (&(T,t, x, 5))> de5:<§,VV1($)>+tO (t)

—0

Proposition 3.1. Let f € C§°(R?",R). We can find a function a(h) € C§°([0,379] x R?")
such that:
a(0,z,&,h) = f(x,€) (3.3)

and:

k3

alt, @, W)eF#0re) — = HUE) ((f(z, )t (20|

sup
te[0,370]

—0 (3.4)
L2(R2") h—0

Proof. We define:

(s, 2, €) = exp </:(ZE1 Va(Z (7, t, 2, €) — z@(r,i(r,t,x,ﬁ),f))dT)

Then:
G/O(t,fli,é_) = f@(@%f)a@ﬁ(&ﬁ%é)

and:

t
ar(t,y,€) = i /0 Asao(s, &(s,t,2,€),E)n(s, t, 2, €) ds

where for 0 < s < t < 19 we have set Z(s,t,2,£) = T(s,7(¢t, z,£),£). Then we set a(h) =
ao + hay. Initial condition (B-3) is true and we can check that:

and:
(0 +20,p0.0, + Ao+ Vo —iEq) a1 (t, 2, €) = iAzao(t, z,§)

which, with (B.]), give (B-4). Note that the function a(h) is of compact support and the
absorption coefficient V5 does not change the phase ¢. Only a depends on V5 and the bigger
V5 is the faster a decays with time. [l

Remark. If ([.§) is replaced by:

N
Ey =Y WE;+O(hNT") forall N €N (3.5)
j=0

then we can define:
t j—2
a;(t,y,&) = z/ (A a;—1(s,%(s,t,2,€),§ +ZEJ wag(z, Z(x, t,2,§), §)> n(s,t,x,&)ds
0 k=0

for all j > 2 and a ~ 3 hia; by Borel theorem (see [EZ, th. 4.16]). Then the rest is of size
O(h>) instead of o(1) in (B.4) and hence in (B.16) and (B.29) below.

3.2 Critical points of the phase function

For t € [0,379], x,£ € R™ and 2z € 'y we write:

w(tvxvz7€) = cp(t,:v,é) - <27§>
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In this section we study the critical points of ¢ with report to ¢, ¢ and z with ¢ €]0, 37¢],
that is the solutions of the system:

OY(t, x,2,§) =0 et ,) =0

az¢(tuxuz7€) =0 — 5 € Nzl—‘l (36)
afdj(tuqu?g):O a&@(tﬁ[:ag) ==z

tE]O,?)TQ] tE]O,?)TQ]

Proposition 3.2. Let t €]0,37), 2, € R and z € T. If (t,2,&,2) is a solution of (B.6)
then (z,€) € NgI'y and x = Z(t, 2, §).

Proof. Assume that (¢,x,&,2) is such a solution. We already know that £ € N.I';. By

proposition IV.14 in [Rob87] we have:
(2,05 0(t, 2,€)) = ¢' (Deep(t, 2, ). €) = ¢'(2,€) (3.7)

and in particular: = = Z(t, z,£). Moreover, since ¢ is a solution of (B.1)) we also have:

p(27§> = p(ZE, 39&(@%5)) = |3z¢(t7$7§)|2 +W (I) =Eo - 8t90(t7x7§) = Eo
which proves that [¢|* = Ey — Vi (). O

We prove that for z close to I' (but not on I'y), there is a solution (¢,z, &, z) for (B.6). By
proposition @, this solution must be (¢, x, 25, &, ) (defined in proposition @), so we already
have uniqueness.

We consider the function ® defined as follows: for y € I'1(0,37), £ € R”, ( € T, T
of norm less than 1, § € [0,v1] (where 1 €]0, 1] is chosen small enough for exp,(d¢) being
defined in T’y for all z € T’y and ¢ of norm less than 1) and 6 €]0,379/71] then:

(60, (5t 7. ,). ) — (exp,, (50),€)) i 50

(3.8)
(& — ¢, 6) —0(&% + Vi(zy) — Ey) if5=0

‘1’(973/76575) = {

For § €]0,v1],t € ]O, 3;?6}, S f‘l(O, d79), 2z such that dr(z,,z) < § and £ € R™ we have:

vlta2) =00 (5.7 (%26 ) Gloxn.) ). 60)
Thus:
Ot 2, 2,6) =0 > 0P (%z <%Izm§m> ,%(expzz)l(z),f) —0  (3.92)
Oeh(t,w,2,6) =0 <= 0:® (%f (%””zmgm) ,%(exp%)—l(z)@) =0 (3.9b)
otttz =0 — oo (5a(Ene) Sew) N 0E) <0 @)

Proposition 3.3. Let K =T ([72—0,37'0} X NEI‘). There exists 69 €]0,71] such that for all
y € K and § € [0,0¢] the system:

{ Bpe,c®(0,y.(,€0) =0

96}0,%"}

(3.10)

has a solution (0,¢,¢) €]0,70/71] x R* x T, T".
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Proof. For § €]0,v1] we compute:
0(0,9.¢.6,6) = 5 (608,751, 21,6,). ) — {exp., (60),€))
((@(0ty: 2,60, ©) = 90(E* + VA(@ (0t 2, &,)) — Eo)
+ 6202 (36, 7(5ty, 2,€,), €) — (exp., (6).€) )
= <2ty§y -, €> -0 (52 +W (Zy) - EO) +60(\1 (f(&yv 2y gu)) -0 (Zy))
50700, 70y, 2, ,),6,1) — 5 (exp., (50) — 2 — 66,€)

= <2ty§y - Ca €> -0 (52 + Vl (Zy) - EO) + 5R(03 Y, 55 Cv 5)

where R is of class C'. This proves that @ is of class C'. The point (6,y,(,,0) is a solution

of (B-10) if and only if:

1
5

€l = v/ Eo = Vi(zy)
eNIT
2y, — ¢ = 26¢
96}0 T—O}

' 7
Let y € K. This system has a unique solution which we denote (éyyo, fyyo, éyyo). It is given
by:

9y,0 = ty? éy,O =0; gy,O = gu (3'11)

For z € T and ¢ € R™ we denote by ¢/ the orthogonal projection of ¢ on T,I' and
¢t = ¢— ¢/ Then we have:

t
0 0 -2¢ 2t

0 0o -1 0
Hess ®(0,y,(,6,9) = + 0 (¢
0.c.¢ ®(0,9,¢,§,0) _oel _1, 201, 0 6_}0()
-2 0 0  —20I,_4

and in particular:
det Hess,c ¢ D(0,.0, 9, Cy,0, €y,0,0) = 2"~ (=) dep=d=t g, |2
The derivative of the function:
(6.9,¢,€,0) = 0o, ®(0,y,¢, €, 0) € RMHIH
with report to 6, ¢ and € at the point (80,0, Cy.0,&y.0,0) is:

Hessg,c.¢ ®((0y,0,0,Cy.0,€4,0,0)) € GLpyat1(R)

so we can apply the implicit function theorem around (éyyo,y, éyﬁo,éyyo, 0). We obtain that
there exists §, > 0, a neighborhood V, of y in R" and a function ¢, which maps V, x [0, d,]
into a neighborhood U, of (6y,0,(y.0,&y,0) in ]0,70/71] x T2, T' x R™ such that:

V(U, 5) € Vy X [07 5y]7v(97 Cag) € Z/{y, 89,(,5(1)(93 v, Cvgva) =0+ (95 Cvg) = wy(vv 5)

K is covered by a finite number of such neighborhoods V,. We get the result if we take for
dp the minimum of the corresponding 6. O

Corollary 3.4. For all z € T(0,28079) there is a unique (t,z,&) €]0,70] x T' x R™ such that
(t,x, 2,€) is a solution of the system (@) Moreover this solution is given by (tz,x, 2z,&s)-

Proof. After proposition @, there only remains to prove existence. Let x € 1:‘(0,25070).
There is § €]0, 8] such that y = Z (%, 2,,&,) € T'(70,27). Proposition B.3 and equations
(B.9) give the result. O
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3.3 Small times control

We can find a neighborhood G of NgI'y such that for all ¢ € [0,70] and (z,€) € G we have
0 < dy < ¢ €dg and Z(t,z,&) € T'(279). We choose a function x € C5°(R) supported in
] = 1,70[ and equal to 1 in a neighborhood of 0. For f € C§°(R?") supported in G, we set:

1

Bo(h) = ¢ /0°° X(O)e # I =ER Opy (1) dt (3.12)

Egorov theorem (see proposition @) yields:

= 0 (h™) (3.13)

H]an\f(wO)Bo(h)’ L2En) | o

Proposition 3.5. If 79 > 0 is small enough, then for all € > 0, there exists 71 €]0,79] and
ho > 0 such that for all f € C§°(R*™) supported in G we have:

Vh €]0, h), H]l Forn) o(h)’

< 3.14
LQ(RH) € ( )

Proof. 1. If F}, denotes the semiclassical Fourier transform we have:

FnSh(€ hl’éd/ /eh =8 A(z ( )do()d

:h#//l(z)e*ﬂ'zvf)/ eii<y’£>3(y) dy do(z)
F n
S 5(0) / A(z)e”#5) do(2)

r

=h

where $ is the usual Fourier transform of S , and then:

1

o e O €) de

1+n d

27rh / / RO A() (2, )8(6) de dor(2)

SO:
g Lindd 400 ) ) )
Bo(h) = / / / RO B (R0 £()) §(€) de do(2) dr
(3.15)
Let a and ¢ given by WKB method (see section B.I]). We define:
J(z, h) / / / Yer (Pe =) (¢ 2 ¢ h)A(2)S(€) dE do(z) dt
so that by (B.4):
ih— , B
Bo(h) = WJ(h) <1 + h30(1)) in L?(R™) (3.16)

Let: R
’i(t7 z,2,§, h) = X(t)a(t7 z,¢, h)A(Z)S(f)

K is smooth and of compact support in ¢, z, z,£ so all its derivatives are bounded. We recall
that we wrote (¢, z,&, z) = ¢(t,x,€) — (z,&).
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2. Let N € N. To estimate J, we define, for all § €0, §yl:

JJ(‘I) = 1f(6T0)26T0)(I)/R/F/” e%d)(t’zﬂag)’%(taxazafvh) dg dg(z) dt

] (@) = Lt (57, 2570 (@) /]R /F / 4

Since 0.9 (t, x, 2,£) = é/, N partial integrations in z show that:

Let:

U051 2 2, €, ) d do(z) dt
>d 6

/ n\"
‘Ja (fﬂ)‘ < €L (57,257 (%) (g)

and hence: »
HJ!‘ < chN § N (3.17)
L2(R™)

3. By (B.9) we have:
Oep(t,x,2,€) = o — (2 + 2t€) + °0er(t, z, €)
and hence:

(v — (24 2tO)]" .0 (t, x,2,€) = |z — (2 + 2t8)| + t2lx — (2 + 2t)]".Oer(t, z, €)

B III ) 4d2
x € I'(679, 2070) we have:

where 2 stands for ;%. For ¢t < 79 min (1 Vm) (ym is defined in proposition R.4) and

070 Ym
o= (24 26)| > |o — 2] 26 €] > Srovm — 2dy > 21
and hence: .
|z — (2 + 2t6)| + 2[x — (2 + 2t€)].0er > & ( 00m MTg) (3.18)

where M = [|0¢r| ;o
brackets is positive.
On the other hand if t € [5M,m}, Zze is a point of T'y for which |z — 2z,4| =

dy
d(z,T1) and {,4/

[0,70] xR2")" Taking 79 smaller we may assume that the quantity in

< édy, then:

|z — (2 + 2t8)| = |z 4 2t€ — z20| — | — 22

2
2 ’Z + 2155’2L - me’ - 267‘0d1 — 257’0’7]\4
> 2tdy — 26T0(2d1 + ’YM)

/

z

since for ¢t small enough d(z + 2t&;,T) = |2t | > 2t |¢| — 2t . Thus:

|z — (2 4 2t8)| + %[z — (2 4+ 2t&)]|".0¢r = t(dy — 7o M) +tdy — 2670(2dy +yar) = 6+t% (3.19)

if di > 279 M, which may be assumed. In particular we have proved that there exists C, cq > 0
such that:

Y6 E]O, 50],Vt € |:0, %:| U [C(S, 7'0], |I — (Z + 2t§)| + t2[iE — (Z + Zté')]/\.ag’l” > cod
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on the support of Lg s, 5.0, (2)(t, 2, 2,& h). We get:
50 [z — (z + 2t))"
Clo— (24 2t8)| + [z — (2 + 2] Oer(t, w,€)

on this support, since the derivatives of [z — (z + 2t£)]" with report to £ are bounded for
t €[0,5/C)U[C6, 7] according to (B.1§) and (B.1]). We choose a function x; € C*(R) equal
to 1 in a neighborhood of } —00, %] U [2C, +0o0] and zero on [%, C’] and xo =1 — x1. Then

we have Js = J} + J9 + J// where, for j € {0,1}:

5@) = eonasng@ [ [ ]

We consider the operator:

‘ < cuslel

X <—> e%d’(t"z’z’g)n(t, x,2,&h)dédo(z)dt

<ddy

o ((m e @ — (= + 26€)]" O >

|x — (2 +2t8)| + t2[x — (= + 2tE)|".O¢r

The function (¢, x,2,£, h) — exp (%w(t, T, 2, 5)) is invariant by L and the adjoint L* is given

by:
Lo:v <(t’ 2:8) = ihd E<|:v—(2+2t§)|+t2[:v—(2+2t§)]A.357°)>

N partial integrations with L prove:

BN
|J5(x)| < Cn (g) 1§ (579,26m0) (@)

and hence:

|72 < OnhN* N (3.20)
4. We now turn to Jg. We recall that for all z € 'y and { € T.T'; of norm less than
1 then exp,(() is well-defined (on I's) and dr,(z,exp,(¢)) = |¢|]. For 79 small enough, if
x € T'(070,20m0) and dr, (2, 2,) > 710 then |z — z| > g‘; and |z — (z + 2t§)| > "}1175. As a
result we can do partial integrations with L as before and see that modulo O((h/5)N), J? ()
is given by integration over z in a neighborhood of radius § around z,:

J(?(:v) = lf(am,zafo)(x)/ / /
0 JBr(zz,710) J |§

0 ((h/é)N)

After the change of variables ¢ = 6 and z = exp,_(d¢), ¢ € T.,T', we get for y € R™:

t i
Yo (g> FUTR Ot o 2 € h) dédo (=) dt

/

<dds

IR0y, 20060) = ) [ [ 000006, mF O ap g
((h/é) )

where integral in ¢ is over the ball or radius v; in 7, I" and:

£(0,y,€,¢,h,0) = x(y)K(00, 0y, &, exp,_(6¢), h)0¢ exp,_(6¢)

with ¥ € C§°(R?™) supported in {79/2 < t,, < 379} and equal to 1 on {ry < t, < 279}. &(h,0)
is of compact support in ]0, +o0o[x(R" \ T) x (R™\ {0}) x T>,,T. @ is defined in (B.§). For y
such that 70/2 <ty < 379 and ¢ €0, 6o}, there is by proposition B.d a unique (By.5,€y.5:Cyos)
such that (9y 5y Y, 5%5, Cu s5,0) is a critical point of ¢ and 0 > 0. Moreover:

89,5,2(1)(97 Y, z, 57 5) = HeSSQ,Z,E (I)(éy,(;a Y, 51},57 gy,tsu 6)((97 Z, 5) - (éy,tsu 51},57 gy,é))

+ o (|9_9~y75|7|<—<~y,5|a|§—gyy5|)
(evgvg)"(‘gy,&gy,&gy,&)
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and hence:

(0,6,€) = (By.5,Cy5,€05) = [Hessoc.e D0y 5, Gy, Ey.6:6)] (Do.c.e®(6,C,€))

+ O (10=0y5,1¢— Cysls 1€ — Eysl)
(evgvg)"(‘gy,&gy,&gy,&)

y and ¢ stay in a compact set and zero is never an eigenvalue of Hessg ¢ ¢ Q)(éy,g, Y, 5%5, éyyg, d),
so the norm of Hessg ¢ ¢(0,¢,£)™! is bounded.
As a consequence the quantity:

0:€.6) = By.5,Gy5.60.0)]
|89,C,E(I)(97 Y,z 57 5)|
is uniformly bounded. So we can use theorems 7.7.5 and 7.7.6 in [Hor84], which give:

79(@)] < e (%)

8] < cath

n+d+1
2

BN
]lf(ém,zém)(fﬂ) +c (3) ]]‘f(570,2670)(x)

and thus:

n+d+1
2

+ehNgt N (3.21)
5. For v €]0, 1] we define :

5 @) = Uiy (@) [ [ [ ebv et n,z 6 by dgdo(e)
RJT n
I

% is defined as J! with L (5r0,25m0) replaced by 1 (9 r)- An estimate analog to ( holds
for j.é/ We now note x+ = L yoo[X1, X— = 1 — X, and:

@) = U@ [ [ ]

As we did for J} we see that:

( )ew<tvwv£>n(t,x,z,§,h) do(z) dé dt

HJjH < CnhNA" T8N (3.22)

To estimate J~, we remark that we are integrating a bounded function over a set of size

O(7) in t and over {(z,&), //| < 7ydy} whose volume is of size O(y4), so:

‘jJ (x)} < g g0 (@)

Taking the L?(R"™) norm in x gives:
< eyttE (3.23)

7|
H 7l L2rn)

6. Estimates (B.17), (B-20), (B-21)), (B:23) and (B-23) allow to conclude: let 71 €]0,5o7o)]
and p €]0,1[, we use a dyadic decomposition § = 27™ with h'™#* < § < 71 /79, that is
Ing(m0) —Ina (1) < m < —(1 — p) Ing h. We write m_ = Ina(79) — Ina(71) and my = —(1 —

1) Ing k. Then:
Yo el

m_<m<m4

o] < -

with:
-

< HJ,{/1 , + Hj,jl,u
<ew (huw)(“—;m) + h(w)*%dwv)

cNh7n+2d+1 (h*—u( +1) huN—%—d—u%”)

|

N

20



and:

DR LA R S (VNP N

m_<m<m4 m_<m<mg4

S LAl N G B he ) Dl o |

m<m4 m_<m

<en (hN—(l—u)(N—"T’d) +pEE \/T_1>

n+d+1 _1_4 . n—d
< enh T (N ddest

We now take p > O small enough to have v := % — i (”T*d + 1) > 0 and then N big
enough to have ulN — = — d — 252 > 0. This gives:
n+d+1 v
H]l L(r1) ‘L2(]R") ch (/11 +hY)

If 7 and hg are small enough we have c(,/71 + h¥) < £ for all h €]0, ho]. By B.14), if ho is
small enough we finally reach the result:

<e
L2(R™)

For z € I and x € R" we set:

/J;I,Z : (t7 C’ f) — /l/}(t’ I’ esz(C), 5) (3'24)
This is defined for ¢ €]0,7], £ € R™ and ¢ in a neighborhood U, of 0 in T.T. Now for
x € I'(0,279) we let ¢(x) = w(tm,x 22y €x) = Ptz , &) — (24, &) and:

) dil-n € e sganssz 2o (t2,0,€2) .
bo(z) = i(2m) "> - T A(22)ao(ts, 7,62)5(6) x (L) (3.25)
det Hess ¢, (t5,0, &)

Proposition 3.6. Let U be a neighborhood of Ty in R™. Then on T'(1o) \U the function By
s a lagrangian distribution of phase v and principal symbol by.

This means that By is of the form By(z) = en?@py(z) + o(1). Note that if (B-H) holds
we can have By(z) = en¥@b(x, h) +O(h™) where b(x, h) ~ 3 hib;(z) for some functions b;,
j = 1. See [Sog02) for more details about lagrangian distributions (in the microlocal setting).

Proof. Everything we need is already in the proof of proposition @ By Egorov theorem
there exists 72 €]0, 79] such that:

L (ronuBo = Lz, ry Bo + O (h%)

Let us come back to the proof of (B.1§) with § = 5. We see that if ¥ € Cg° (R%) is such
that X(t) = x(t) for ¢t > 1527 then in L*(D(79,70)):

Bo(z) =' Q;Wd///n DervEm20q (¢ 2z € h)A(2)S() d€ do(2) dt (Hhio(l))

Moreover as we explained for J? the only relevant part of integration on z is around z,
so:

- 1+n+d
zh

Z, ethzZ(tCE x aclex
Bt =P [ [0 alt, 2, h) A(2)S(€) Jaclexp. ) () de dC i

X <1 + hgo(l))

(3.26)
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Then, as we did to study Jg, we use the results of section and stationnary phase method
to get the result (in particular the only stationnary point for ¢y .. is (¢4,0,&;). O

Proposition 3.7. Let = € T'(y). We have:
[det Hess . (1,0,6)| = 21 &, 4+ 0 (127 (327)
te—0
where the size of the rest is uniform in x.
Proof. (ii). By (B.2) we have:

t
ot e) 0 —2¢ 2k

- 0 A -1 0 < >
det Hess ¢, .(t,0,&) = 1+ O (¢t
00 2l -1 -2 0 o
—2¢t 0 0 —2tl,_q

= (—1)ndgn—d+lym—d—1 ‘5;‘2 + tOO(tnfd)

where for 1 <14,j < d:
Aij = =3¢, (exp.(0), €)
only appears in the rest, and (&), = & since (2,,&;) € NgI. O

4 Partial result for finite times

4.1 Intermediate times contribution

We begin with a proposition which proves that for w € R?*" and ¢ € C§°(R?") supported
close to w, then in the integral:

7; T
ul = —/ UE(t)S), dt
0

only times around ¢, ; for 1 < k < K (and on a neighborhood of 0 if w € NgT') give a

w
relevant contribution.

Proposition 4.1. Let w € R?", T > 0 and x € C$°(R) a function which is zero near t, . for
k€ [1,Ky] (and 0 if w € NgT'). Then there exists a neighborhood V., v of w in R*" and a
neighborhood Gy w C G of NgT' (G was defined in section [3.3) such that for all ¢ € C§°(R?™)
supported in Vo 1 and f € C5(R*™) supported in Gy 1, we have in L*(R™):

. T
Op} (a) (% | xawE®on s, dt) = 0 (h)
Proof. There exists a neighborhood G, 7 C G of NgI' in R?" and p > 0 such that for all
w € G and t € supp x¥ we have:
64(5) — w| > 29

Otherwise for all m € N* we can find t,, € supp ¥ and w,, € R?*" with d(w,,), NgI') < %
such that |¢' (w,,) —w| < L. We can extract a subsequence so that t,,, — t € supp x
and Wy, — We € Ngl'. Then we have ¢'(ws) = w, which is impossible since t ¢
{twi, s twr,} (U{0}if we NgT).

Let V,, 1 be the ball B(w, p) and ¢ € C§°(R?") supported in V,, 7. By Egorov theorem,
we have for all t € [0,T):

lopk (@)U 60 (Dl = O (h™)

where the remainder is uniform in ¢ € [0,7]. An integration over ¢ gives the result. O
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Remark. Note that neither the neighborhoods G,, v and V,, 1 nor the size of the remainder
can be uniform in 7. That is the main reason why we cannot deal directly with u; and have
to begin with a study of ul.

Let w € A and 7, = min(ty,1,70). We consider x,, € C§°(R) supported in ]0, 27,[ and
equal to 1 in a neighborhood of 7, and set:

Bwaw-—1[“wa@ﬂhfa>0phuvshdt

«&Mm=i/mmﬁ—mwmw%%WmUﬁmt (4.1)

As in proposition @ (and we do not even have to worry about very small times since x.,
vanishes around 0) we see that By, (h) is a lagrangian distribution of submanifold

Bo = {(@,0:). @ € 1(0,270) } = {6" (20, &), € 10, 2r0) }
= {¢t(27§)7t 6]0727—0]7 (Zug) € NEF}
and of principal symbol

at1on 64 T sgn Hess P 2, (t2,0,62)

buw(z) =i(2m)" 2 A(Zz)ao(txaIafz)g(gm)xw(tx)

1
2

‘det Hess z/;Zz (t2,0,&) ‘

Proposition 4.2. For all w € A and k € [1, K], Bwk(h) is a lagrangian distribution of
lagrangian submanifold A, = ¢twkAg. We denote by bw.x and Yy, the principal symbol
and the phase of this distribution.

Remark. Again, with ([L.g) this means that By, (h) = e ¥ kb, p+0(1), but with assumption
(B-3) we can write By, x(h) = e Pwkby, 1(h) + O(h™) where by, 1 (h) is a classical symbol of
principal symbol by, j.

Proof. We have:

By p(h) =

SRS

oo

>

/OO Xuw(t = tw,k + 7w)URY (£)Opy, (f)Sh dt
/ wOUE (t + tw k. — Tw)Opy, (f)Sh dt

t=—1y, k+7w
U}?( & = Tw)Buw(h)

i(tw5 7Tw) d . . . . . .
It is known that e~ =% (HY=En) turns a lagrangian distribution of submanifold Ag into

a lagrangian distribution of submanifold ¢'=* =™ A, (see [Bog03d, [EZ]). We can similarly see
that this also applies to U,;E (tw,x — Tw). Computations are actually close to what is done
for WKB method, where we see that the imaginary part does not affect the phase factor
but only the amplitude. Here again V5 only appears in the symbol b, ; of the lagrangian
distribution. O

We give another property of B,,  we are going to use in section @:

Proposition 4.3. Let w € A. For all k € [1, K] we have:

(Hp, — En)By k(h) =0  microlocally near w
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Proof. We have:

+oo
(Hp — Ep)Buk(h) = (Hp — Eh)% /O X (t =t + 70) U3t (£)Opy, (f)Sh dt
“+oo
- _/ Nt = th + 70)RUE ) Op, () S dt
0

+oo
- / oot =t + ) UE(£)Opp (£)Sh dt
0

As Oyxw(t — t + Tw) is zero near ¢t = t; for j € [1, K,] (and t = 0), the result is given by
Egorov theorem as in the proof of theorem 1. O

4.2 Convergence toward a partial semiclassical measure

We are now ready to give the semiclassical measure for u} .

Theorem 4.4. Let T > 0. There erists a nonnegative Radon measure up on R?™ such that
for all ¢ € C§°(R*™) we have:

(Opk (@)uin uiy) —— /qduT (4.2)

Proof. 1. Localization around a point w € R?". We are going to show that for any
w € R?*™ and T > 0, there is a neighborhood V,, 7 C R*" such that for all ¢ € C§°(R*")
supported in V,, 7+ we have:

(Oph (a)ui, up ) —— /qduw,T (4.3)

where f1,, 7 is a Radon measure on V,, 7. If w1, ws € R2™ are such that YV, 1 N Vo w # 0,
then the two measures iy, 7 and f, r coincide on Vi, 7 N Vy, v (we only have to consider
the two versions of ([.3) for ¢ € C§°(R?™) supported in Vi, 7NV, 7). Thus we can define the
measure g7 on R?™ as the only measure which coincides with i, 7 on V,, 1 for all w € R?™.
Then for all ¢ € C§°(R?") a partition of unity and a finite numbers of applications of ([£.3)
give ([£2).

So let w € R?™. If w ¢ (NgI' UA) we can choose a neighborhood V,, of w which does not
intersect NpI' U A. Proposition [l.] with ¥ = 1 on [0, 7] shows:

(O (q)uiy, uy ) —— 0

for all ¢ € Cg° (RQ”) supported in V,,. Hence we set p,, 7 = 0 on V,, 7. This proves that if
pr exists then we must have:

ur =0 outside NgT'UA (4.4)

We now assume that w € NgI' U A.

2. Localization around relevant times. Let §, = 1 if w € NgI' and §,, = 0 otherwise.
We recall that x and x,, have been chosen in sections @ and . By corollary @, ifwe Ngl'
then .1 = 379 so for all w € NgI' U A supports of functions d,,x and X, (- — tw k + Tw) for
1 < k < KT are pairwise disjoint, so we can consider a function y € C§°(R, [0, 1]) such that:
KT
VEE[0,T], Sux(t) + D Xuwlt —te+7w) + X(t) =1
k=1
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By proposition EI there exists a function f, r € C§°(R?") equal to 1 around NgI' and
a neighborhood V,, 1 of w in R?" such that for ¢ supported in V,, 7 we have in L?(R"):

Opy (q)vi, = Opy/ (q)ay, + L0 (h%)
where:

. T w
7 ~
vl = 5/0 UY (t)Opy(fuw,r)Sndt and  @j, = 6,BY o+ § B,

with BY ; defined in (B.13) and the Bg)k given by ([L.1) with f replaced by f, 7. Let § be

given by proposition P.10. We have:

(Op} (a)ay, ,aj,) (4.5)
<0 i (@) (v + (1= g)(H)(up, —vy) + Oh)) oy + (1= g)(HT)(uj, — viy) + O(h))
Opiy (@)v , vy ) + (Opj; (4) (uj, —vy) )
+<OPZU(Q)( 9)(H oy ujy — vj,)

= (Opy(q) (9)uy, ﬁ£> + hQO(\/E)

3. Definition of the measure p,, . For k € [1,KI] and © a borelian set in Vi, We
define:

(@) = [ 100000 Pk i girol® =8 [ Lo, 00() (o)l do

and finally:

KT
Nw,T(Q) = Z Hoaw, T,k
k=0

which defines a measure on V,, 7. Note that all these measures are nonnegative. V,, r and
T are now fixed, and we have to prove that for any € > 0 and ¢ € C§°(R?") supported in
Vw T, there is hg > 0 such that for all h €]0, hg:

(Op (@)ul ul) - / qdur| <e (4.6)

Let € > 0 and ¢ supported in Vy, 7. (@) yields:

|(Opy (q)up,,up, ) — {(Op} (q )u;{,ﬁ;{>| <

NeJ o)

with h €]0, hg| for some hg > 0.

4. Self-intersections of A. Let j,k € [1,K,] with j # k (j,k € [0, K] if w € NgI).
Ay, N Ay is a closed set of measure 0 in the smooth manifold A, ;, hence by regularity
of the measure on Ay j, for all m € N we can find an open subset U™ of A, ; of measure
less than % such that Ay j N Ay C Um We can find an open sett Vm in R?” of measure
less than 1 such that U™ = V™ N Aw 4, and by Uryshon lemma there exists a function

me Cf° (RQ” [0,1]) equal to 1 outs1de V™ and zero in a neighborhood of Ay ; N Ay k. We

construct similarly a function ~;* interverting J and k, we set v} = 7" and finally:

wm= 11 oo J[ % ifweNgD (4.8)
1<j<k<KT 0<j<k<KT
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so that the sets Ay, NV, 7 for 1 < k < KUCC (or0< k< Kg) do not intersect on the support
of v, and:

mesp (supp(l — Ym) N (Uﬁ)Aw,k>) < % (4.9)

For all k € [0, K1], the support of the function z — (1 — v,,)(z, 99k (z)) is of measure
less than % in R™ where C only depends on I". Opy’ (vm)Bg) i is a lagrangian distribution
microlocally supported in Ay, , N supp(Yy,) with symbols uniformly bounded in h and k, so
there is ¢ > 0 such that for all h €]0, ho:

|, — Opy (ym )y | < (4.10)

c
m

Moreover, for j # k € [0, K] the distributions Op} (¢vm)By, ; and Op}, (Gym) B, ;, have
disjoint microsupports, so we have:

(Op} (@¥m)BL ;, Op} (@ym)BL 1) = L0 (h%) (4.11)

Taking m € N large enough and using ({.7), (J.10)) et (f.11)), we obtain for all A €]0, hol:

K,

(Op} (@)un, un) — 6w (OP} (¢¥m) Ban.o» Buro) = D (O (q1m) Bl i, Biy )| <
k=1

(4.12)

Wl M

5. Convergence for intermediate times.
Let k € [1, KI]. We know that Bg,k is a lagrangian distribution of phase 1)y, and of
principal symbol b,, &, hence we have:

(0P} (0)Op}, (Ym) Bry 1> B =/ 4@, 0 k(2 (2, Db 1 (2)) b 1(2)|* dz + 0 (1)

n

If m is large enough and hg small enough, we have for all h €]0, hg):

OBk OB (i) BL o B = [ ale, 00 i) (@) do| < g (013)

~3KT
6. Convergence for small times.

It only remains to consider the term &, (Opy; (q)Op}y (Ym) B 0, BL o). We assume that w
belongs to NgI'.

Let 71 €]0,70] and v € C§°(R?",[0,1]) such that suppv € T'(71) and v is equal to 1 in a
neighborhood of supp A. By proposition @, if 71 > 0 is small enough we have:

3
HUBZ;,OHLQ(Rn) < 6 (414)

On the other hand, since (1 — v) vanishes around supp A, we can write (1 —v(z))BY , as
a lagrangian distribution (see proposition B.g):

(OB (@)0p} (1 — v)Op} () B, B o)
— [ (@) 0001~ v(a) Io(a) o+ 0 (1)
]Rn

Thus, if 71 and hg are small enough, then for all h €]0, ho]:

‘<opz<q>0p::<1 — 0)OBK (1) B Bho) — [ adina < (4.15)

(=)

7. Conclusion. According to ([.13), (.13) and ({.17), we can conclude that ([.§) holds. [
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5 Convergence toward a semiclassical measure

5.1 Large times control
For R >0,d >0 and o €] — 1, 1[ we note:
IFi(R,do) = {(z,8 € R*™: [z
Ii(do) = {(z,6) €R™: [
As mentionned in the introduction, the following proposition states that the outgoing

solution uy is microlocally zero in the incoming region. The proof of this proposition is
postponed to section E

R,|¢| > d and (z,8) 2 o|z|[¢]}
dand (z,€) 2oz |¢]}

2
2

Proposition 5.1. Let d > 0, o €]0,1[ and Ep, such that Im E}, > 0 or E}, is positive and
satisfies (IL4). Then there exists R > 0 such that if w_,w € Sy are supported in T _ (R, d, —o)
(respectively outside I'_(R1,dy,—01) for some Ry < R, d1 < d and 01 < 0) then:

|Opy (w_)(Hp — (Eq + i0)) " Opy, (w)]| = hgo(hoo)

We now use this proposition to show that for 7' large enough, <Op}f (q)u;f, u;{> is a good
approximation of (Op} (q)un,up).

Proposition 5.2. Let ¢ € C5°(R?*™) be supported in p~'(I) and € > 0. Then there exists
To = 0 such that for all T > Ty we can find hp > 0 which satisfies:

Vh E]Ov hT]v ’<Op7;zu (Q)uhv uh> - <Op1hf)(q)ug= u£>’ e

Proof. 1. Let Ry > 0 such that I' C Bgn (Rs), suppq C Ba(Ry) = {(z,£) € R*™ : |z] < Ry}
and any trajectory of energy in J which leaves B, (Rp) never comes back (and goes to infinity).
Let x € C5°(R™) supported in B(2R;) and equal to 1 on B(Ry). Let Q € C§°(R?*™) supported
in p~1(J) and equal to 1 in a neighborhood of p~1(I) N B,(2Ry) and of suppq. Let T > 0
and w_ equal to 1 in the incoming region I'_(Ryp, —1/2) and zero outside I'_(R;/2,—1/4).
We have:

LT
OpY (Qun = / Op (QUE (£)Sh dt + Op (Q)UP (T)uy

7 Jizo
= Op} (Q)uf. + 0P (QUE(T)Op} (Q)un -
+ 0P (QUE(T)OpY (1 — Q)x(w)un '

+ 0P (QUE(T)OpY (1~ Q)(1 — x(x))Opy, (w—)un
+ 0P (QUE(T)OPE (1~ Q)(1 — x(2))Opy (1 — w_)up

For T large enough the last three terms are Oh_,o(\/ﬁ) respectively by the localization close
to the Fy-energy hypersurface (proposition , which implies that Opj (1 — Q)x(z)up is
small), estimates on the incoming region (Op}, (w—)uy is small by proposition p.1|, changing
quantization is harmless here) and Egorov theorem (Op} (Q)UF (T)Op;, (1 —w_)(1 — x(x)) is
small). Hence we have:

(1 - Opt (@UI(T)0PE (@) Ok (@)us = OB Q] + O (V) (5.2)
where Q € C$°(R?") is supported in p~1(.J) and equal to 1 on the support of Q. Furthermore:

|omi @k = Opit(@Pufuf) > [ Qdur < +oc
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Hence for any (large enough) fixed T', the right-hand side of @) is uniformly bounded in h.
Moreover, by proposition 2.d, there exists T such that for all T' > Tg there is hp > 0 which
satisfies:

Vh €10, hrl, HOph QUE(T H <=

As a consequence, the operator (1 — Opy’(Q)UF (T)Opy(Q)) is invertible and its inverse is
bounded uniformly in 7' > Ty and h €]0, hp]. This proves that the quantity:

Op (@un = (1~ OB @QUEMOB (@) Ot (@l + 0 (V)

—0

is bounded uniformly in h €]0, hy| for fixed T > Tj and hence is bounded uniformly for h
small enough since the left hand side does not depend on 7.

2. As for (p.1) we see that:

Opy; (q)un = Op}, (q)uj, + Opj, (@)U (T)Op}y (Q)un,
+ Opy (@)U (T)Opjy (1 — Q) x(x)un, (5.3)
+ Opy () Ui (T)Op (1 — Q) (1 — x(x))Opy, (w-un
+ Opy (@)U (T)Opi (1 — Q)(1 — x(x))Opj (1 — w_)up

And as for (B.I]) the last three terms are O (v/h) by localization close to Ey-energy hyper-
h—0

surface, estimates in the incoming region and Egorov theorem. Moreover the second term
is:

Opi (U2 (T)Opy (Q)ur, = Opil (UL (T)Opi (Q) (Opi (Q)un) + O (Vh)

h—0

But OpY (Q)uy, is bounded uniformly in A and the operator Opy’ (¢)Us(T)Opy,(Q) is of norm
less than any ¢ > 0 for T big enough and h small enough (depending of the chosen T'). Hence
we have proved:

V6 > 0,3Ty > 0,97 > Tp, 3hr > 0,Yh €]0, hy],  ||Opy (9)(wn, — uf)|| <6 (5.4)

and in particular:

3C > 0,YT > Ty, Vh €]0,hrl, |0y (q)uir|| < C (5.5)
We consider § € C§°(R?") supported in p~1(I), equal to 1 on supp g and such that Q = 1
on a neighborhood of supp §. We can assume that (@)-(@) hold for ¢ and §. Let § € ]O %]
and then T and hr given by (F.4). For all h €]0, hy] we have:
(O3, (9)un, un) — (Opj (@)uj,  up, )|
= |(Opi (@)un, Opi; (@)un) — (O (@)ui, Op} (@)ui)| + O (h*)
<}<Oph( )(un, — uj, ), Opy (§)u;, >’+}<Oph Jun, Opy (G )(Uh_uh >}+ O (h)
<4 ([|Opii(g)u H+HOPh up ||) +
S+ 0 (Vh
2 hQO( )
and this last quantity is less than ¢ if we choose h small enough. [l

5.2 Convergence of the partial semiclassical measure

Proposition 5.3. There exists a Radon measure pi on R*™ such that for all ¢ € C§°(R*™):

/quT m’/qdﬂ
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and we have:
(Opk (@)un, un) — /qdu

Proof. 1. We can assume that for any w € R?*", the family of neighborhoods Vy, 1,T > 0,
decreases when T increases. Let T} < Th € Ry. For w € R?" and ¢ € C§°(R?*") supported
in V1, C Vi, 1y, We have:

KM K2
/qduT1 = /qduw,T1 = Z/duw,ﬂ,k < Z/qduw,T2,k :/qduT2
k=0"4 k=0

Since any ¢ € C§°(R?*") can be written as a finite sum Y ¢; where ¢; is supported in Vy, 1,
for some w;, the same applies for all ¢ € C§°(R?"). This proves that [ ¢dur grows with T,
and hence has a limit in Ry U {400} when T goes to +oc.

2. If suppgNp 1 ({Eo}) = 0, then

/qduT:0—>0

T—+o00

This is consistent with corollary .

3. Now let ¢ € C§°(R?") supported in p~*(I), ¢ and C as in the proof of proposition f.9 (see

(B.9)). We have:
[ adur = im (O @] uf) = Jim (Op @) O @) < €7

As aresult, [gdur as a finite limit when 7" goes to +oo. This limit defines a nonnegative
(each 7 is a nonnegative measure) linear form on C§°(R?"). Let K be compact in R?" and
Q € Cg°(R?™) equal to 1 on K. Then for all ¢ € C§°(R?") supported in K we have:

‘ / qdu‘< tin [ la dr < lall tin [ Qr < el
T—o0o T—o0

and hence this limit is a continuous function of ¢ (is the space of compactly supported
continuous functions). Thus the application ¢ — limp_ 4o f gdur can be extended to a
nonnegative continuous linear form on the space of compactly supported continuous functions
so, by Riesz theorem, there is a nonnegative Radon measure ; on R?” such that:

Hm qdu:rz/qdu

4. For g € C§°(R?",[0,1]) there exists T > 0 such that:

0</qdu—/qducr<§

According to proposition @, if T is chosen large enough there is hp > 0 such that:

Vh €0, ], [(Opk (qunsun) = (Opk(@)uf uf)| <

and by theorem [L.4, there is ho €]0, hr| such that for all h €]0, ho] we have:

‘<OPZU(Q)U;{=U;{> —/qduT <

Wl ™

Hence we get:
Vh €]0, ho], ’(Op}f(q)uh,uh) — /qd,u' <e

which proves the proposition. [l
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5.3 Characterization of the semiclassical measure

We now finish the proof of theorem E;

Proof. 1. Statement (i) is already proved and similarly, (ii) is a consequence of the estimate
in the incoming region (see proposition p.1)).

2. Let ¢ € C§°(R?*™) such that supp g N (Ngl'UA) = 0. We have:
/q (Hp +2Im Ey + 2V2)dp = /(—Hp +2Im By 4 2Va)qdp

= Tlim (—Hp +2Im Eq + 2Va)g dur
=0
according to ([£-4) since the support of (—H, + 2Im E + 2V5)q does not meet NgI' U A.

8. Let w e A, T > 0 and ¢ € C§°(R*") such that suppgq C Vy 7.
Since 2ithIm Ey = E, — Ej + hoo(h) and Hp(¢) = {p,q} is the principal symbol of the

operator %[Hf, Opy (q)], we have:

= L1mp, 0p¥(g)] + hOpE(n) + O (1)

Op (Hy(@)) = 1 o

for some symbol r; € C§°(R?"). But <Op7;l“(r1)BlTu)k, B£k> as a limit as h goes to 0 (which

is [ r1dpw, K, see step 5 in the proof of theorem [t.4) and HB:{”“H = O(h~2), so:

/(—Hp +2Im By + 2Va)q dptw 1,k (5.6)
= lim (Op;; (= Hy(q) +21m Brq + 2V2q) By, 4 By 1)

iy ({11 Opf ()] + 21m ExOp a) + 2V200 (0B . P )

= — Jim - (((H ~ 1) Op} ) ~ Opf(a) (B — B0))BL1. BL)

= — lim = ((Op}/ ()BT, i, (Hn — En) B, 1) = ((Hy — En) BY, 1, Opil () B, 1))

according to proposition @

4. Let ¢ € C§°(R?*") and ¢ > 0. There exists T' > 0 such that:

g
/qduT>/qdu—§

We can find a finite number of w; € R?” such that supp ¢ C UV, and either w; € NgI'UA or
YV, 7N (NgT'UA) = (. With a partition of unity, we can write ¢ = > ¢; with supp ¢; C Vi, 1
and show the result for each ¢;. So without loss of generality we can assume that suppq C
Vw,r for some w € NgI"UA. According to (E) we have:

Ky
/(—Hp +2Im By + 2Va)qdpr = | /(—Hp +2Im Ey 4 2Va)q dpie 1 4
j=0

= /(—Hp +2Im Ey 4 2V2)q dptw, 1,0
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This is zero unless w € NgI', which we now assume. Let g € C§°(R) supported in | — o0, 1]

with g = 1 near 0. For m € N and (z,¢) € T'(19) x R" we set g (z, £) = g(mt,). In particular
the function (1 — g,,,)q vanishes near NgI', so:

Then since g,, is supported in T'(0, 1) for all m € N, we can use (R.4) to have:

/ (—Hp +2Im E1 + 2V2)q d,uw,T,O
R2n
= / (—Hp + 2Im Eq + 2V2)qGm dptw, 7,0
R2n

_ /m (—H, + 21m By + 2Va)(qgm)(x, 39(x)) [bo(2)[? d

)
__on—d o n—d— _ )
=2 i /NEFt el (1 +t90(t)) |bo(Z(t, 2, €))|

X (_HP +2Im E) + 2V2)(qgm)(f(tv 2, g)a 31/’@(@ 2, f))) d&(za 5) dt
According to (B.7) we have (z, 81(z)) = ¢ (24, &,). On the other hand, by (B.25) and (B.27)

we have:

2" [bo(®(E 2, ) —— m(2m) AR T S = e(z,6) (BT

t—0
SO:

/ (—Hp +2ImFE; + 2V2)q dﬂw7T70
R2n

_ _/TO/ (3t—21mE1—2‘/2)(Q(¢t(z,{))g(mt))c(z,{)(l—|— 0 (t)) 52, €) dt
0 JNgIl

t—0

_ /m/ g(tm)(80; — 2Im By — 2%)(q(¢t(2,g)))c(z,g)(1 + 0 (t)) A& (2, €) dt
0 JNgIl 20

_ /OT‘XVEF mg' (tm)q(6t (2, €))e(z, ) (1 + tg)()@)) d6 (2, ) dt

and hence:

‘/(—Hp +2Im By + 2Va)q dpw 7.0 — /N
oft)-
<O(5)+ [ mideml s Ja(e.6) = a6 (2. 00) | (e.6) . )

0<t< L
1
-o(3)
m

It only remains to choose m so large that the rest is less than 5. (|

As said in the introduction, u is actually characterized by the three properties of theorem

and is given by ([L.10)):

Proposition 5.4. Let v be a Radon measure on R*™ which satisfies the three properties of
theorem [I.]. Then for all ¢ € C3°(R*™) we have:

+o0 . -
[Lad= [ [ ce0ue ope B E 0t G a5
R27 0 NgT
where the function c is defined in @)

4(21€)e(z.€) do (. s>\

el

L[ mdom) a6 - a6 )z, otz € dt\
0 NgT
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Proof. Let I; be an open interval such that I C I C I; C J. Let ¢ € C3°(R?"). According
to property (i), if suppg C p~*(R\ I) then [gdv = 0 which is consistent with (5.9), since
both sides are zero. So we can assume that suppq C p~1(Iy).

Using property (iii) we see that:

% (qo ¢t)ef2tImE‘172f(; Vaogt ™% ds g,
R2n
= [ (H, —2Im By — 2V3) ((q o ¢h)e 2 Im B2 i Veoe ) g
R2n
== [ o) ((go eI B ) (2, a1 6)
E

and hence, for all 7 > 0:

/ qduZ/ (qo¢T)e 2T ImE1=2 [ Vaod™ " ds g,
R2n R2n
# [ e ((goane 2 m B e 6 o, )
0 NgIl

So we only have to prove that:

/ (q o ¢T)6_2T Im E,—2 fDT Voo™ " ds dv 0

R27 T—+00

U supp(qo ¢') C T (R, —%) UKg

t>0

5°(R?™) supported in p~*(J) and equal to 1 on K. For 7 > 0, since v vanishes

/ (q o ¢7)672t1mE172f0" Voo™ ds dy — / X(q o ¢7)672tImE172 Jo Vaod™ "% ds dv
R2n R2n

As v is a Radon measure, there is a constant C' > 0 such that for all § € C§°(R?") with
supp ¢ C supp x we have:
’ / qdv
R2n

y(w)(q o ¢7)(w)e 27 ImE1-2 I (Vaos™*)(w) ds

< Ol poo romy

so we only need to prove that:

— 0
T—+00

sup
weR2n

This is clear if Im F; > 0. Otherwise, this can be done with lemma E as in the proof of
proposition E [l

6 Estimate of the outgoing solution in the incoming re-
gion

The theorem we want to prove in this section is the following:
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Theorem 6.1. Let N € N and Ej, = Ey + O(h) be an energy such that for all h €]0, h),
ImE), > 0 or Ej, satisfies (L4). Let d > 0 and o €]0,1]. Then there exits v € N and
R > 0 such that if the symbols wy,w € Sy have supports in T (R, d, o) (respectively outside
Ty (Ry,d1,01) with Ry < R, di < d and o1 < o) then for all o > % we have:

| @) Opu()(Hy = (Bi +0) 7 Opy (1) ()| = O (8Y) (6.1)

Similarly, if suppw_ C T_(R,d,—0) and suppw NT_(Ry,dy, —0o1) = 0 then:

= 0 (hY) (6.2)

| @)~ Opu()(Hi; — (B, = 0) " Opy(w-) @) | = 0

Remark. This is the analog of lemma 2.3 in [RT8J] in the dissipative case. Note that here v
is different from « and may be large.

Remark. Taking the adjoint in @) gives:

()™ Opn (o) (Hi = (B +i0) 'Oy (@) ()| = 0 (nY)

h—0

which proves propositionp.]. This theorem proves that the solution w, = (Hy—(E+i0))~'S)
is microlocally zero in the incoming region.

To prove this theorem we follow [[Wan8§]. In particular we use the following result taken
from [[K8):

Proposition 6.2. Let dy €]0,d;[ and o¢ €]0,01[. There exists Ry > 0 and ¢4 € C*°(R*")
satisfying: , ,
V(z,§) € T+(Ro,do, £00), [Vaos(z, )"+ Vi(z) = [¢] (6.3)

and:

(@, €) € R Vo, B €N, |920 (ps(2,6) — (2,€))] < Ca (x)' 771 (6.4)

for some p > 0.

Without loss of generality we may assume that this is the same constant p as in ()

Remark. As mentioned in [Wan8g] (see (2.4)), we can assume that the constants Cy 5 in (6.4)
are as small as we wish if we take R large enough. Indeed, if we take a function x € C*°(R")
such that y(z) = 0 if |z| < 1 and x(x) = 1 if [z| > 1, and, for R > Ry:

br (@,6) = (62(@,6) = (2.)x (F) + @9 (6.5)

Then:
V(2,€) € Ti(R,do,00), |Vatr+(z,8)|° + Vi(z) = ¢ (6.6)

and for any p1, p2 > 0 such that p = p; + pa:

V(z,€) € R*",

0207 (br.+(@,6) = (0,9)] < CapR™ (@' (67)

where C,, g does not depend on R.

We are going to use the Fourier integral operators I, (a, ¢) defined as follows:

1 i
e du(e) = o [ [ b OO Do, uty) dy de
(27Th)n n n
As in [, the idea of the proof is to find two symbols a and e such that:

Un(t)In(a, ) = In(a, ¢)UL(t) and  Opy(wy) = In(a, ¢)In(e, ¢)*
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when h goes to 0. For a short range absorption coefficient V5, we can actually do as in
], but in the long range case, we have to consider a time dependant symbol a(t, h).
In this situation we have:

Un()In(a(t, h), o) — In(a(t, h), 1)U (t) (6.8)

— / Un(t) (—%thh(a(s, h), ¢+) + I (Dra(s, h), +) + %Ih(a(s, h), ¢i)H§> ULt — s)ds
0

Proposition 6.3. Let a(t,h) € Sy be a time-dependant symbol, ¢ = ¢4 or ¢_ given by
proposition [.4 and h €]0,1]. Then we have:

L i (alt, ). 6) + Tn(O1a(t, 1), 6) + + Tu(a(t, ), &) = In(p(t, ), 0)
where:

p(t, h) . (6.9)
— (1059 + Vi = €%)a(t. h) + (Dralt, h) — 20,0(t, ).0:6 — alt, h) Ay — alt, h)Va )
+ihAga(t, h)

Remark. If moreover a(t, h) is of the form:

N .
a(t,h) =Y Waj(t)
j=0

with a; € S for all j € [0, N, then p(t, h) takes the form:

%(|8m¢|2 +Vi—&%a(t,h) + (atQO(tv h) = 20za0(t).02¢ — ao(t) Az — @o(t)VZ)
N .

+3 W (3taj(t, h) — 20,0;(t).006 — a; (1) Agd — a;(t)Va + iAzaj,l(t))

j=1
+ ik Aan(t)

p(t, h) = -

This gives the transport equations the symbols a; have to satisfy if we want I, (p(¢, h), ¢) =

hNJrl .
W)

Remark. Similarly we have:

—%H;{Ih(a(t, h), 8) + In(Bralt, h), &) + %Ih(a(t, h), $)HI = In(pa(t, ), 0)
where:

p+(t,h)
= (100 + Vi = )a(t, ) + (Bualt, ) = 20.a(t, h).006 — alt, N)Aud + alt, h)V2 )

+ihAga(t, h)

Lemma 6.4. Let ¢ be a function which satisfies @) Then for all (x,€) € R?™, the Cauchy

problem:

{ 9 (t,2,€) = Dutp(r(t,7,€), )
r(0,z,8) =z

has a unique solution defined on R. Furthermore, for v €]0,01[, if R is large enough, we
have the following properties:
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(i) For (z,§) € T'1(d1,+01) and £t > 0 we have:
r(t, 2, &)| = [x] + (o1 —7)du |1 (6.10)
(i1) For (z,§) € T'+(di,%o01), £t > 0 and |a| 4+ |B] > 1, there is a constant cq,g such that:
Bgagr(t, :E,é)‘ < copmax(Jt], (x)) (x) ' (6.11)

Proof. Let (z,£) € R?". We have:

F(t2,€) = o+ 16+ / (Be(r(s,2,€),€) — £) ds (6.12)

where r(-, z, £) is defined, that is everywhere since (9, ¢(r (¢, z, £), &) — &) is bounded according

to (6.4).

(i) By (b.7), if R is large enough we can assume that:
Y(z,6) €R*, 0:0(z,€) — € <vda

and hence:
r(t, @, &) —x — t§] < |t|yda

If (x,€) € T'y(d1,+01) and £t > 0, then:

1
2+ 18] > — (z, 2 + 1) > || + o [t][] > [z] + [t|orda

]
SO:
r(t, 2, ) > o+ 6] =y [t di > [z] + (01 —7)du [t]

which proves (p.10).

(ii) We prove (B.11]) by induction on |a| + |3|, beginning by the case |a| = 1, 8 = 0. Let
+t >0 and (x,&) € I'4(dy,01). We have:

0u0u7(t, 2,€) = 026(r(t, ,€),)-0ur(t, 2, €)
According to Gronwall lemma, (6.4) and (5.10), we obtain the estimate:

fourtta.6)) < e ([ 102600(6.2.90.0)] ds) <ex ([ elrto..0)777 as)
<o ([ el ds) <o < emax(il (o) ()

Similarly, if @ = 0 and || = 1 we have:

OOer(t,x,&) = Dop(r(t,x,€),€).0er(t, 2, €) + 020¢p(r(t, 3, €), €)
and then:

[[0:0¢r(t, @, &) < <eclt]

t t
/ _ 19:0c0(r(s2.£). )| exp ( / ozetr(r 20,9 dT> ds

We now assume that we have proved (.11) for 1 < |a| + |3| < k € N* and we consider
and § such that |a| + |8] = k + 1. For j € [1,n] we have:

01020, 1;(t, %, €) = 029 (0w, B(r(t, 7, ), €))

=02, 0(r(t,,€),) 0500 (t, %, €) + Bj(t, x,€)
=1
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where B; is a sum of terms of the form:

71

(07000, ¢)(r(t, x,€),&) [[ (020 m. ) (t 2, €)

s=1
with ||+ [0] > 2 and for all s : s € [1,n], |as| +|8s]| <k, Y as=aand d+>.06, =0

Then Bj; is smaller than:
el
(r(t,,€) ™0 T ma(jal, (@) ()™ < ) ™0
s=1
and finally (6.11]) holds since:

Hatagagr(t,x,g)u < <clt] (z)~°

/:_0 |B(t,z,€)| exp (/Tt_ |26 (r(r, 2,€),€)| dT) ds

O

Let 1 be the functions defined in this proposition for ¢ = ¢, and:

Fi(t7w7§) = Aw¢i(ri(tu x?é-)vg) =+ %(T‘i(tu $,€))

In particular we have:

Fi(0,2,8) = Apgs (2, §) £ Va(x) and  Fi(t,r+(s,z,£),§) = Fi(t +5,7,8)
Proposition 6.5. The functions a; +(t,h),j € N defined by:

ao,+(t,,§) = exp <— /:_O (Fi(23=$7€))d5)

and for j > 1:

aj+(t,7,§) = i/:o Agajr+(7, 7+ (27,2, €),§)ao(T, 2, &) dT
are solutions of the transport equations:
Orao,+(t, h) — 205a0,+(t).0x0+ — ao,+(t) Az bt F ao,+(t)Vo =0 (6.13)
and for j > 1:
Oraj+(t, h) — 20505 +(8). 00+ — aj + (1) Agdx F aj+(t)Vo +ilgza;—1(t) =0 (6.14)
and satisfy estimates:

for £t>0,(x,§) € I'+(dy, x01),

agagaj)i(t7x’§)‘ < Cap |t|j+(|a\+|3\)(1—/’) <x>—\0¢|
(6.15)

Proof. We prove (B.15). For o, 8 € N, the derivative 8;’8?a07i(t,3:,§, h) is a sum of terms
of the form:

J t
[ ow oz ( [ resng ds) a0 (1,2, €)
k=1 0

with D pur = o, v,y = f and for all k¥ € [1,J]: |ux| + |vx] > 1 (and in particular
J < |a| +|8]). We first remark that according to (p.4) and (6.10) together with nonne-
gativeness of V5 the symbol ag is bounded uniformly in £¢ > 0. Hence we have to prove:

t
/ 85’“8ng¢(25,33,§) ds| < cap |t|(|#k|+\'/k|)(1*f)) <$>*\#k|
0
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Let £t > 0, (z,8) € I'+(d1,£01) and p,v € N™. Then:
t
oL O¢ (/0 Fyi(2s,,8) ds)

|9]

t
/ DN Aurs + V2)(rs (25, 7,€),€) [ 0401 rs (25, ,€) ds (6.16)
0 k=1

is a sum of terms of the form:

with S0 e = 1 S0 v + A = v and for all k € [1,[0]]: || + ] > 1. By (£3), (E4)
(

and ) we have:

t
00 ( / Fi(s,@,€) ds> \ <elt]'™" )~
' 0

this proves ) for j = 0. We now prove the general case by induction. For a, 3 € N the
derivative 8?8?aj+1,i(t, x,&) is a sum of terms of the form:

t
i / D10 (Agay (1, 1 (2(7 — 1),2,6),6)) X 01O ag 4 (7,2, ) dr

=0

We already know that for 7 € [0, ¢]:

3§7“3§_Vao,i(ﬂ:v,£)‘ < c|t|(1—P)(\a—u|+\ﬁ—V\) <x>—|a—u\
So it remains to show:
|08 (Apaj (77227, 3,€), €))| < e [t/ UKD () 7l
But 040¢ (Agpaj 1 (1,74(27,2,€),§)) is a sum of terms of the form:

5]
(D202 Ay i) (b s (2,2, ), €) [ (000 rs) (27, 2, €)
k=1

with u = Z‘k‘il up and v =\ + E‘,;ll Vg, and:

13
(202 Asaj 1) (r,r+ (27, 2,€),€) [ [ (010 r+) (27, 2,€)

j=1
o[ PHA=PIEINFD) o 0 2 (o] ()P () St
(1P SIHIAD (3 ~lu

NN

c

which concludes the proof after integration over 7 € [0, ¢]. O

Remark. This is for this part of the proof that we need a time-dependant symbol. Indeed,
following exactly the proof of [Wan8§] would have led to consider:

ao(z, €) = exp (/OOO F(t,z,€) dt>

which may have no sense for a long range imaginary part of the potential V5. For a short
range potential we do not have such a problem and the sign of V5 we have used here does
not matter.
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Let 05 and o3 such that 01 < 09 < 03 < 0, Ry and R3 such that Ry < Ry < R3 < R and
da,ds such that dy < dy < d3 < d. We consider functions p; € C*°(R) such that p;(s) =0
if s <ogand 1if s> o3, po € C°(R) such that pa(s) =0 and s < do and 1 if s > d3 and
p3 € C°(R) such that p3(s) =0 if s < Rz and p3(s) =1 if s > R3. Then we set:

£ {6
=] 1€]

N
bi(t,I,f,h) = l/fﬂ:(ﬂ%f) Zh’jaj,:t(tazaf) where: UJﬂ:(Iaf) =P <

=0

) palEDps ()

We also set:

pe(th) = 2 (10:0< + Vi = )bt h)
+ (Opb4(t, h) + 20,b+(t, h).0p 4 + b1 (t, h) Ayt £ b1 (t, h)V2)
—ihNTIALbL(t, h)
as given by proposition @
Proposition 6.6. The symbols by and pi+ satisfy:

(i) suppby C I'L(Ra,d2,+02) and for £t > 0, (x,€) € T (Ra,ds,+02) and o, 8 € N™ we
have:

D2AL(t, . €, h)’ < cap |tV HUHIBNO=P) 1y —lel (6.17)

(i) supp py+ C Ty (Ra,da, +02) and for £t > 0, (z,€) € T4 (Ra,d2, +02) and a, f € N we
have:

020D (12,6, h)| < cayp [tV FEFITHIN0) (g7l (6.18)

If furthermore (x,€) € T'+(Rs,ds, £03) then we have:

D20 D (1,6, 1) < cagh ™1 [N FEHITHIT0) (g 72l (6.19)

Proof. (p.17) comes from (.15). According to (6.13) and (f.14) we have:
N
pa(t, @, 6, h) = 20,05 (2,€). 0004 (2,6) Y aj s (t,2,8) —ihN T ALba (2,6, h)

=0

S0 ) is a consequence of ) and () Finally, it remains to remark that for £¢ > 0
and (z,€) € 'y (R3,ds, +03) we have py (t, h) = —ihN 1A by (¢, h) to get (B.19) from (6.17).
O

Proposition 6.7. Let Rs €|Rs, R[, ds €]ds,d| and o5 €]os,o[. There exists a symbol e (h)
of the form ey (h) = ijzo hi fj + with f; + € S_j and supp fj + C Ty (Rs,ds, +05) such that:

I (b4 (0, h), ) I (ey+(h), )" = wi(x, hD) + AN T10p, (r+(h))
where r+ € S_n uniformly in h.

Proof. This is lemma 4.5 in [Wan8§. Note that b (0, %) is just ¢y O
Proposition 6.8. For all § € R, there is v € N such that for alll € R and +t > 0 we have:

(@) I (ba (8 0), O)UE (O, 0)" ()7 < ey (6:20)

and:

@) 1o (8.1, UL ()T (e, 8)° ()77 | < e (1)~ (6.21)
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Proof. For v € S(R™) we have:

In(bs(t,h), ¢i)U0() cx(h), ¢x)"u(x)
// =0zyOp, (¢, & h)ex (y, €, h)u(y) dé dy

with (i (t,2,9,€) = ¢+ (x,€) — o+ (y, &) — t€2. If R is large enough then for (y,£) € supp e+
we have:

|0cds (y, €) + 26| = (Dedae (y, €) + 26€,9) = |yl — cly|' ™" + 205 [t] [€] = colly| + [¢]) (6.22)

for some cg > 0.
We consider the operator L such that for u € S(R?"):

(094 (y, §) + 2t€).Ocu

Lu=1h 5
|0:p+(y, &) + 2t¢]

Then we have:

L' = ihdive. ( Oed= (4, §) + 21€ v)

|0ch (y,€) + 2t€[?

In particular L (e*%(‘ﬁi(y*f)”&z) = e w02+ g0 for v € N:

I (b= (2, h) ¢+ UG () In (e (h), ) u(x)
Gy | [ HO IO @y (RO, T ) )

We can check by induction on v € N that:

Ju

(L) (eFo= b (t,a,6, Mex (1, € 1)) = D eh 00 (t,a,¢, h)el, 1 (y,€,h)
j=1

for some J, € N and for all j € [1, J,] we have:

920Lb) L (t,,€, h)’ < cap [tV -UAIHBDA=PI=pr oy v—al

and ey € Sp: Indeed, this is true for v = 0 by (6.17) and if this is true for some v € N then
for j € [1,J,] we have to compute:

Ot (1, 6) + 2t iy (me)i ]7>
h di en P=(T.8)y, t,xz,&, h)e, & h
e (|5z¢i(y €) + 2t¢)? Ltz & h)e), ((y,6,h)

= ih[Bepa (y, €) + 2t€] > x eh£(@0)
X {(Ag@: (y,€) + 2tn)b], . (t, 3, €, h)m

H 1,,).(0, 2 -
Pl ¢i(y|§j£; gii;f;(y X2 e b a0, €)

1 (0629, ) + 240w (v, ]2 (1,7,€, )] 1 (4,€)
+ (De (1,€) +2€) b . (62,6, 1) e, (5,)

=+ b{/,i(ta €T, 57 h) (afd):l: (ya 5) + 2t€)'a§€{/,i(ya 5)
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and check each term using () Note that the factor (x)” in the estimate is due to the
third term. We only gain a power ¢~*" at each iteration because of the fourth term and the
fact that we have a bad estimate in ¢ for the derivatives of b, +. Nonetheless, for all v € N
we get:

J
In(bs(t, h), 62U (D In(ex(h), ¢+)* = Tn(b], 1 (t,h), o) UG (1) In(el, 1 (h), d+)*  (6.23)
j=1

For any v € N, the two operators Ul (t) and Iy, (e, +(h), $+)* are uniformly bounded in
t and h from L2+ into itself. The norm of Iy (b, +(t,h),¢+) from L2+ to [21 is
estimated by a finite number of derivatives of bl, +, say M (see [Wan8g)). Then we have to
choose v such that N+ M (1 —p) —vp < =4 to obtain (B20).

To prove (f.21) we introduce a function y € C*°(R) such that x(s) = 0 if s < o3 and
x(s) = 1if s > 04 €]os,05[. Then we write pa +(t, 2,6, h) = pa(t,z,& h)x (:l: Ig\)\?l) and
pl,:t(ta €T, 57 h) = p:l:(ta €z, 57 h) - p2,:t(ta €T, 57 h) We have:

6gaﬁp2i(t &, h)‘ Car BhN+l|t|N+(2+|a|+\ﬁ|)(1 P)< > 2—|af

The same argument as above proves () with py replaced by pa +.
For p; 4, we remark that for (x,€) € supppi+ C R* \ T'y(Ry4,dy, +04) and (y,&) €
supp ey C 'y (R5,ds, 205) we have:

|0eC+ (2, €, )] = collz] + [yl + [¢])

for some ¢y > 0. Indeed we have:

10eC(7,y, &, )| = |0004(7,8) — Ods(y,§) — 26| = v — (y + 2t§)[ —cR™”
But (y + 2t&,€) € T4 (R4, dg, £04) so if |x| = v |y + 2t&|:

-1

2

o= (y+2t)| > (1= |2] > (] + |y + 2t€]) = co(|=] + |y[ + [¢])

and if |z| < |y + 2t

|z — (y + 2t€)| <:v— (y + 2t€), ﬂFé> (<y+2t§ &) —(z,8))

Tél

2 (05 |y +2t&| — 04 |z|) = (05 — 04) |y + 2t€] = co(|z] + |y + 2t¢])

=z colz| + lyl + [¢])
Then we can do partial integrations with the operator L = | 6<<|§, each iteration giving a
new power of A and t~°. O

Corollary 6.9. For all § € R, there is v € N such that for olll € R and +t > 0 we have:
() Oy (@) (b (8, 1), YU () (e, 0)" ()™ || < b1 (1) ™ (6.24)

Proof. The proof is the same as for (.20) but instead of an estimate of HIh bu 1 )H we need

’. According to lemma 4.4 in ] if we take R large

enough, then the supports of w(z, d,¢(x,€)) and b] 1 are disjoint, so this norm is only the
norm of the rest given in proposition A.3 of - This rest is of order O(h™Y +1) and the

time dependance is given as for HIh bl, ¢ H by a finite number of derivatives of b’ L.+ SO we

an estimate of HOph )Ih(bu 1, 0)

conclude the same way. O
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Now we can prove the main theorem of this section:

Proof of theorem . Let v € N given by proposition @ for 6 = 2. We prove the “4” case,
and we omit the + subscript for ¢, b, p and r. Let ¢ > 0. According to (@) and proposition

6.3, we have:
UL 00.1). ) = T (bt 1) O3 0) = [ V(e = )T ols. ). U (5 s
and then, by proposition @:
Un(t)Opy(wy) = KN UL ()Opy, (r(R)) + T (b(t, h), 6)Ug () In(e(h), ¢)*

- / Un(t — 5)In(p(s, h), UL (5) I (e(h), §)° ds

Fpr a>1andImz >0, using (H, —2)"' = £ [° e 2Up(t) dt (see theorem 1.10 in [ENOQ])
gives:

(@) Opy (W) (Hp — 2) 7' Opy (wy) (2) ™"
=BT (@)™ Opy (W) (Hy — 2) 7' Opy (r(h) ()"

)™ [ R Op IO, VSO I, ) (a) ™
t=0

oo

— (=)™ OPh(W)/ e (Hy — )" In(p(s, h), )UG () In(e(h), 6)" (&) ™" ds

s=0

According to the uniform estimate for the resolvent (see [Roy|) the first term is O(h™N).
We use (.24) and (f.21) for the second and third terms, which, after taking the limit z — E,
if E), € R, proves (b.1)). O

Remark. To prove (@) we apply the same argument with:

1

0 it *
(-2t =g [ e h
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