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Abstract

We present a numerical kinetic scheme for an unsteady mixed
pressurized and free surface model. This model has a source term
depending on both the space variable and the unknown U of the
system. Using the Finite Volume and Kinetic (FVK) framework, we
propose an approximation of the source terms following the principle
of interfacial upwind with a kinetic interpretation. Then, several
numerical tests are presented.
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1 Introduction

In this paper, we study a way to upwind the source terms of a mixed flows
model in non uniform closed water pipes in a one dimensional framework.
In the case of free surface incompressible flows, the model is called FS-
model and it is an extension of classical Saint-Venant models. When the
pipe is full, we introduce the pressurized model, called P-model, which
describes the evolution of a compressible inviscid flow and is close to gas
dynamics equations in a nozzle. In order to cope with the transition be-
tween a free surface and a pressurized model, we use a mixed model called
PFS-model. It is based on balance laws and provides an hyperbolic system
with source terms corresponding to the inclination of the pipe (seen as a
topography term), the section variation, the curvature and the friction.

Several ways to compute the numerical approximation of conservation
laws with source terms have already been investigated by many authors.
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The main difficulty is to preserve numerically some properties satisfied by
the continuous model: the invariant domain, the well-balanced property for
instance. The Finite Volume methods are largely used since they present
the remarkable property to be domain invariant (for instance, for Saint-
Venant equations, to be water height conservative). Some Well-Balanced
Finite Volume schemes, introduced by Greenberg et al [3], preserve steady
states. All these methods are based on two principles: firstly, the con-
servative quantities are cell-centered as usual finite volume schemes, and
secondly the source terms are upwinded at the cell interfaces.

In this paper, we consider a particular Finite Volume-Kinetic scheme
built to compute the numerical solution of PFS-model. This scheme is
based on the classical kinetic interpretation [5] of the system.

The source terms appearing in the PFS-model are either conserva-
tive, non-conservative or else. All source terms are upwinded at the cell
interfaces: we use the definition of the DLM theory [4] to define the non-
conservative products. The particular case of the friction term which is
neither conservative nor non-conservative will be upwinded using the no-
tion of dynamic slope. The source terms are taken into account in the
numerical fluxes and are computed from the microscopic ones, obtained
through the concept of potential barrier.

The paper is organized as follows. In the second section, we describe the
PFS-model [2] and focus on the source terms. The detailed description of
the method used to deal with the transition points (when a change of state
occurs) is not presented (see [2] for more details on this topic). We state
some theoretical properties of the system. In the third section, we give
the kinetic formulation of the PFS-model and the corresponding kinetic
scheme. In the fourth and last section, several numerical tests are provided.

Notations concerning geometrical quantities

• θ(x): angle of the inclination of the main pipe axis z = Z(x) at position x

• Ω(x) = S(x): cross-section area of the pipe orthogonal to the axis z = Z(x)

• R(x): radius of the cross-section S(x) orthogonal to the axis z = Z(x)

• Ω(t, x) : free surface cross-section area orthogonal to the axis z = Z(x)

• σ(x, z): width of the cross-section Ω at position x and altitude z

Notations concerning the PFS-model

• p(t, x, y, z): pressure

• ρ0: density of the water at atmospheric pressure p0

• ρ(t, x, y, z): density of the water at the current pressure

• ρ(t, x) =
1

S(x)

∫
Ω(x)

ρ(t, x, y, z) dy dz: mean value of ρ over Ω(x)
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• c: sonic speed

• A(t, x) =
ρ(t, x)

ρ0
S(x): equivalent wet area

• u(t, x): velocity

• Q(t, x) = A(t, x)u(t, x): discharge

• E: state indicator equal to E = 0 if the flow is free surface, E = 1 otherwise

• S: the physical wet area equal to A if the state is free surface, S otherwise

• H(S): the Z-coordinate of the water level equal to H(S) = h(t, x) if the
state is free surface, R(x) otherwise

• p(x,A,E): mean pressure over Ω

• Ks > 0: Strickler coefficient depending on the material

• Pm(A): wet perimeter of A (length of the part of the channels section in
contact with the water)

• Rh(A) =
A

Pm(A)
: hydraulic radius

• Bold characters are used for vectors, except for S

2 A model for unsteady water flows in pipes

The PFS-model [2] is a mixed model of a pressurized (compressible) and
free surface (incompressible) flow in a one dimensional rigid pipe with vari-
able cross-section. The pressurized parts of the flow correspond to a full
pipe whereas the section is not completely filled for the free surface flow.
The Free Surface part of the model is derived by writing the 3D Eu-
ler incompressible equations and by averaging over orthogonal sections to
the privileged axis of the flow. In the same spirit, by writing the Eu-
ler isentropic and compressible equations with the linearized pressure law

p(t, x, y, z) = p0 +
1

c2
(ρ(t, x, y, z)− ρ0), we obtain a Saint-Venant like sys-

tem of equations in the “FS-equivalent” variable A(t, x) =
ρ(t, x)

ρ0
S(x),

Q(t, x) = A(t, x)u(t, x) which takes into account the compressible effects
(for a detailed derivation, see [2]).

In order to deal with the transition points (that is, when a change of
state occurs), we introduce a state indicator variable E which is equal to
1 if the state is pressurized and to 0 if the state is free surface. We define
the physical wet area by:

S = S(A,E) =

{
S if E = 1,
A if E = 0.
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The pressure law is given by a mixed “hydrostatic” (for the free surface
part of the flow) and “acoustic” type (for the pressurized part of the flow)
as follows:

p(x,A,E) = c2(A− S) + gI1(x,S) cos θ (1)

where g is the gravity constant, c the sonic speed of the water (assumed to
be constant) and θ the inclination of the pipe. The term I1 is the classical
hydrostatic pressure:

I1(x,S) =

∫ H(S)

−R

(H(S)− z)σ dz

where σ(x, z) is the width of the cross-section, R = R(x) the radius of the
cross-section and H(S) is the z-coordinate of the free surface over the main
axis Z(x).
The defined pressure (1) is continuous throughout the transition points and
we define the PFS-model by:







∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ p(x,A,E)

)

= −g AZ ′ + Pr(x,A,E)

−G(x,A,E)

−K(x,A,E)
Q|Q|
A

(2)

where z = Z(x) is the altitude of the main pipe axis. The terms Pr, G
and K denote respectively the pressure source term, a curvature term and
the friction:

Pr(x,A,E) = c2
(
A

S
− 1

)

S′ + g I2(x,S) cos θ,

G(x,A,E) = g AZ(x,S) = g A (H(S)− I1(x,S)/S) (cos θ)
′,

K(x,A,E) =
1

K2
sRh(S)4/3

where we have used the notation f ′ to denote the derivative with respect
to the space variable x of any function f(x). The term I2 is the hydrostatic

pressure source term defined by: I2(x,S) =

∫ H(S)

−R

(H(S) − z)∂xσ dz . The

term Ks > 0 is the Strickler coefficient depending on the material and
Rh(S) is the hydraulic radius.

The System (2) has the following properties:

Theorem 2.1

1. System (2) is strictly hyperbolic on {A(t, x) > 0} .
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2. For smooth solutions, the mean velocity u = Q/A satisfies

∂tu+ ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ

)

= −gK(x,A,E)u|u| 6 0.
(3)

3. The still water steady state, for u = 0, reads:

c2 ln(A/S) + gH(S) cos θ + gZ = 0. (4)

4. System (2) admits a mathematical entropy

E(A,Q,E) =
Q2

2A
+ c2A ln(A/S) + c2S + gAZ(x,S) cos θ + gAZ

which satisfies the entropy relation for smooth solutions

∂tE + ∂x
(
(E + p(x,A,E))U

)
= −gAK(x,A,E)u2|u| 6 0 . (5)

In what follows, when no confusion is possible, the term K(x,A,E) will
be noted simply K(x,A) for free surface states and K(x, S) for pressurized
states.

3 The Kinetic approach

The kinetic formulation (3.1) is a (non physical) microscopic description of
the PFS-model provided by a given real function χ : R → R satisfying the
following properties:

χ(ω) = χ(−ω) > 0 ,

∫

R

χ(ω)dω = 1,

∫

R

ω2χ(ω)dω = 1.

It permits to define the density of particles, by a so-calledGibbs equilibrium,

M(t, x, ξ) =
A(t, x)

b(t, x)
χ

(
ξ − u(t, x)

b(t, x)

)

where b(t, x) = b(x,A(t, x), E(t, x))

with

b(x,A,E) =







√

g
I1(x,A)

A
cos θ if E = 0,

√

g
I1(x, S)

A
cos θ + c2 if E = 1.

5



3.1 The mathematical kinetic formulation

The Gibbs equilibrium M is related to the PFS-model by the classical
macro-microscopic kinetic relations:

A =

∫

R

M(t, x, ξ) dξ , (6)

Q =

∫

R

ξM(t, x, ξ) dξ , (7)

Q2

A
+Ab(x,A,E)2 =

∫

R

ξ2M(t, x, ξ) dξ . (8)

From the relations (6)–(8), the non-linear PFS-model can be viewed as a
single linear equation involving the non-linear quantity M:

Theorem 3.1 (Kinetic Formulation of the PFS-model) (A,Q) is a
strong solution of System (2) if and only if M satisfies the kinetic transport
equation:

∂tM+ ξ · ∂xM− gφ ∂ξM = K(t, x, ξ) (9)

for a collision term K(t, x, ξ) which satisfies for (t, x) a.e.

∫

R

(
1
ξ

)

K(t, x, ξ) dξ = 0.

The source terms are defined as:

φ(x,W) = B(x,W) · ∂xW (10)

with

W =

(

Z +

∫

x

K(x,A)u|u| dx, S, cos θ
)

(11)

and B =







(

1, −c2

g

(
A− S

AS

)

− γ(x, S) cos θ

A
, Z(x, S)

)

if E = 1,
(

1, −γ(x,A) cos θ

A
, Z(x,A)

)

if E = 0

where I2(x,S) reads γ(x,S)S′ for some function γ (depending on the ge-
ometry of the pipe).

We call the term
d

dx

(

Z +

∫

x

K(x,A)u|u| dx
)

the dynamic slope since

it is time and space variable dependent.
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3.2 The kinetic scheme

Based on the above kinetic formulation (9), we construct easily a Finite
Volume scheme where the source terms are upwinded by a generalized
kinetic scheme with reflections [5].

To this end, let us consider a uniform mesh on R where cells are denoted

for every i ∈ Z by mi = (xi−1/2, xi+1/2), with xi =
xi−1/2 + xi+1/2

2
and

∆x = xi+1/2 − xi+1/2 the space-step. We consider a time discretization
tn defined by tn+1 = tn + ∆tn with ∆tn the time-step. We note Un

i =

(An
i , Q

n
i ), u

n
i =

Qn
i

An
i

, Mn
i the cell-centered approximation of U = (A,Q), u

and M on the cell mi at time tn.

If W is

(

Z +

∫

x

K(x,A)u|u| dx, S, cos θ
)

, its piecewise constant rep-

resentation is given by, W(t, x) = Wi(t)1mi(x) where Wi(t) is defined as

Wi(t) =
1

∆x

∫

mi

W(t, x) dx for instance.

Denoting by Wi and Wi+1 the left and the right states of the cell interface
xi+1/2, and using the “straight lines” paths (see [4])

Ψ(s,Wi,Wi+1) = sWi+1 + (1− s)Wi, s ∈ [0, 1],

we define the non-conservative product φ(t, xi+1/2) by writing:

[W] (t) ·
∫ 1

0

B (t,Ψ(s,Wi(t),Wi+1(t))) ds (12)

where [W] (t) := Wi+1(t) − Wi(t), is the jump of W(t) across the dis-
continuity localized at x = xi+1/2. As the first component of B is 1, we
recover the classical interfacial upwinding for the term Z (appearing e.g.
in Saint-Venant equations) since it is a conservative term.

Neglecting the collision kernel [5] and using the fact that φ = 0 on the
cell mi (since [W] ≡ 0), the kinetic transport equation (9) simply reads:







∂

∂t
f + ξ · ∂

∂x
f = 0

f(tn, x, ξ) = M(tn, x, ξ)

, (t, x, ξ) ∈ [tn, tn+1)×mi × R (13)

and thus it may be discretized as follows:

fn+1
i (ξ) = Mn

i (ξ) +
∆tn

∆x
ξ (M−

i+ 1
2

(ξ) −M+
i− 1

2

(ξ)) (14)

where the contribution of the source term is included into the microscopic
numerical fluxes M±

i±1/2. This is the principle of interfacial source upwind.
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Using the macro-microscopic relations (6)–(8) and integrating Equation
(14) against ξ and ξ2, we obtain the Finite Volume scheme:

Un+1
i = Un

i +
∆tn

∆x
(F−

i+ 1
2

− F+
i− 1

2

) (15)

where the numerical fluxes are computed by :

F±
i+ 1

2

=

∫

R

(
ξ
ξ2

)

M±
i+ 1

2

(ξ) dξ . (16)

Following [5] (or [1]), the microscopic fluxes are given by:

M−
i+1/2(ξ) =

positive transmission
︷ ︸︸ ︷

1{ξ>0}Mn
i (ξ) +

reflection
︷ ︸︸ ︷

1{ξ<0,ξ2−2g∆φn
i+1/2

<0}Mn
i (−ξ)

+ 1{ξ<0,ξ2−2g∆φn
i+1/2

>0}Mn
i+1

(

−
√

ξ2 − 2g∆φn
i+1/2

)

︸ ︷︷ ︸

negative transmission

,

M+
i+1/2(ξ) =

negative transmission
︷ ︸︸ ︷

1{ξ<0}Mn
i+1(ξ) +

reflection
︷ ︸︸ ︷

1{ξ>0,ξ2+2g∆φn
i+1/2

<0}Mn
i+1(−ξ)

+ 1{ξ>0,ξ2+2g∆φn
i+1/2

>0}Mn
i

(√

ξ2 + 2g∆φn
i+1/2

)

︸ ︷︷ ︸

positive transmission

.

(17)
The term ∆φn

i±1/2 in (17) is the upwinded source term (10). It also plays

the role of the potential bareer: the term ξ2 ± 2g∆φn
i+1/2 is the jump

condition for a particle with a kinetic speed ξ which is necessary to

• be reflected: this means that the particle has not enough kinetic
energy ξ2/2 to overpass the potential barrier (reflection in (17))),

• overpass the potential barrier with a positive speed (positive trans-
mission in (17)),

• overpass the potential barrier with a negative speed (negative trans-
mission in (17))).

Taking an approximation of the non-conservative product φ (12), the po-
tential barrier ∆φn

i+1/2 has the following expression:

∆φn
i+1/2 = [W] (tn) ·B

(

tn,Ψ

(
1

2
,Wi(tn),Wi+1(tn)

))

(18)

Next, with the simplest choice of the χ-function χ(ω) =
1

2
√
3
1[−

√
3,
√
3](ω),

which allows to compute easily numerical fluxes, we have:
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Theorem 3.2

1. Under the CFL condition
∆tn

∆x
max
i∈Z

(

|un
i |+

√
3c
)

< 1, the kinetic

scheme (15)–(17) keeps A positive, i.e. An
i > 0 if it is initially true.

2. The kinetic scheme (15)–(17) allows to compute the drying and flood-
ing area.

4 Numerical results

Let us recall that the zero water level corresponds to the main pipe axis.
The piezometric head (or line) is defined by:

piezo = z + p with







p = 2R+
c2 (A− S)

g S
if the flow is pressurized

p = h if the flow is free surface,

where h is the water height.

Comparison with the VFRoe scheme [2].
We compare the result obtained by the presented kinetic scheme with

the upwinded VFRoe method [2].
The numerical experiment is performed in the case of an expanding 5

m long closed circular pipe at altitude Z0 = 1m with 0 slope (slope of
the main pipe axis). The upstream diameter is 2 m and the downstream
diameter is 2.2 m. The friction is not considered for the first test and is
set to 0. The simulation starts with a still free surface steady state. The
upstream boundary condition is a prescribed piezometric line (increasing
linearly from 1 m to 3.2 m in 5 s) while the downstream discharge is kept
constant to 0m3/s. The other parameters are N = 100 (discretization
points), CFL= 0.8 and the sound speed is 20 m/s.

The result is in a good agreement and is represented on Fig. 1.

Upwinding of the friction.
It is well-known that cell-centered approximation of source terms leads

to, generally, wrong results. We consider the kinetic scheme with the up-
winded friction and the cell-centered one (i.e. we use W = (Z, S, cos θ)
instead of (11) and we add the cell-centered friction Kn

i u
n
i |un

i | to the right
hand side of Equation (15)). We compare the schemes in a symmetrical
flow.

The numerical experiment is performed on a 100m long closed pipe with
constant section of diameter 2 m. The simulation starts from a “double
dam break”, as displayed on Fig. 2 and Fig. 3 at time t = 0. The upstream
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and downstream condition are identical: the piezometric head increases
linearly from 1 to 2.1 meters. We choose the same parameters as in the
previous experiment.

The results in Fig. 2-3 show that the scheme with the cell-centered
friction, contrary to the upwinded one, does not preserve the symmetry of
the flow. In particular, for Ks = 100 (low friction) and at time t = 56.210
(see Fig. 2 on top) we observe a small disymmetry, which evolves drastically
at time t = 1.095 forKs = 10 (high friction) (see Fig. 3 on top). Despite the
unavailability of experimental data, the kinetic scheme with the upwinded
friction term, from a physical point of view, gives the expected result,
namely, a symmetrical flow.

5 Conclusion

We have presented a global manner to upwind conservative and non con-
servative source terms. To this end, we have used the definition of the
non-conservative product of [4] which allows to recover the classical up-
winding of conservative terms. Using the notion of dynamic slope, we have
also upwinded the friction term given by the Manning-Strickler law (which
is neither conservative nor non-conservative) in a FVK framework. The
combination of all these quantities into a single one is an elegant and easy
way to construct a kinetic scheme with reflections by introducing the po-
tential bareer. Although kinetic schemes naturally deal with drying and
flooding areas, the friction term is manually set to 0 when such cells ap-
pear.
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Figure 2: Comparison of the cell-centered friction and upwinded friction
for Ks = 100.
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