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Abstract

We present a numerical kinetic scheme for an unsteady mixed
pressurised and free surface model. This model has a source term
depending on both the space variable and the unknown U of the
system. The source term is composed by a topography, a section
variation, a curvature (also called corrective) and a friction term.
Using the Finite Volume and Kinetic (FVK) framework, we propose
an approximation of the source terms following the principle of in-
terfacial upwind with a kinetic interpretation: the source term is
not treated as a volumic term, but included in the numerical fluxes.
Then, several numerical tests are presented.

Keywords : Finite volume scheme, Kinetic scheme, conservative source
terms, non-conservative source terms, friction

1 Introduction

In this paper, we study a way to upwind the source terms of a mixed flows
in non uniform closed water pipes, in a one dimensional framework. The
pressurised and free surface model is a numerical approximation of a model
for unsteady water flows in pipes. In the case of free surface incompressible
flows, the model is called FS-model and it is an extension of more classical
shallow water models. When the pipe is full, we introduce the pressurised
model, called P-model, which describes the evolution of a compressible
inviscid flow and is close to gas dynamics equation in a nozzle. In order
to cope with the transition between a free surface and a pressurised model
(that is compressible), we use a mixed model called PFS-model. The
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PFS-model is based on balance laws and provides an hyperbolic system
with source terms corresponding to the topography, the section variation
and the friction term.

Several ways to compute the numerical approximation of conservation
laws with source terms have already been investigated. The main difficulty
is to preserve numerically the properties satisfied by the continuous model;
the invariant domain, the well-balanced property for instance. The Finite
Volume methods [6, 7, 17] are largely used since they present the remarkable
property to be domain invariant (for instance for shallow water equations,
to be water height conservative). We have also some Well-balanced Finite
Volume scheme to preserve steady states initially introduced by Greenberg
et al [10, 11]. All these methods are based on two principles: firstly, the
conservative quantities are cell-centered as usual finite volume schemes,
and secondly the source terms are upwinded at the cell interfaces (Roe
[16]). The non-conservative source terms [10, 8] are defined by means of
non-conservative DLM theory [13], both for hyperbolic scalar and systems
of PDE [9].

In this paper, we consider a class of particular Finite Volume-Kinetic
schemes to compute the PFS-model. These schemes based on the classical
kinetic interpretation [15, 12, 1, 14, 2, 5] of the system.
The source terms appearing in the PFS-model are either conservative,
non-conservative or else. All conservative terms are upwinded at the cell
interfaces and, we use the definition of DLM theory to define the non-
conservative products. The particular case of the friction term which is nei-
ther conservative nor non-conservative will be “upwinded” using the notion
of static and dynamic slope. We take into account the source term directly
in the definition of the numerical fluxes where the fluxes are computed from
the microscopic ones provided by the concept of potential barrier and its
kinetic interpretation.

The paper is organized as follows. In the second section, we describe
the PFS-model and emphasizes our attention on the source terms. The
detailed description of the method used (see [4]) to deal with the transition
points (when a change of state occurs) is not presented. We state some
theoretical properties of the system. In the third section, we give the kinetic
formulation of the PFS-System with the corresponding kinetic scheme.
Finally, several numerical tests are provided in the last section.

2 A model for unsteady water flows in pipes

The PFS-model [4] is a mixed model of a pressurised (compressible) and
free surface (incompressible) flows in a one dimensional rigid pipes with
variable cross-section. The pressurised parts of the flow corresponds to a
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full pipe whereas for the free surface flow the section is not completely filled.
The PFS-System is governed by the mixed hydrostatic and “acoustic”

laws (1) and the conservative variables A =
ρ

ρ0
S and Q = Au where S

is the surface of the cross-section Ω. A and Q represents respectively the
equivalent wet area and the discharge where ρ = ρ(t, x) is the density of
the water, ρ0 the density of the water at atmospheric pressure p0 and u the
mean speed of the water over Ω.

In order to deal with transition points (that is, when a change of state
occurs), we introduce a state variable E which is equal to 1 if the state is
pressurised and to 0 if the state is free surface. We define the physical wet

area by:

S = S(A,E) =

{
S if E = 1 (ρ 6= ρ0)
A if E = 0 (ρ = ρ0)

.

The pressure law given by a mixed “hydrostatic” (for the free surface part
of the flow) and “acoustic” type (for the pressurised part of the flow) as
follows:

p(x,A,E) = c2(A− S) + gI1(x,S) cos θ (1)

where g is the gravity constant, c the sonic speed of the water and θ the
inclination of the pipe. The term I1 is the hydrostatic pressure:

I1(x,S) =

∫ H(S)

−R

(H(S) − z)σ dz

where σ(x, z) is the width of the cross-section, R = R(x) the radius of the
cross-section and H(S) is the z-coordinate of the free surface over the main
axis.
Thus, the defined pressure (1) is continuous throughout transition points
and allows us to write the PFS-model by:







∂t(A) + ∂x(Q) = 0

∂t(Q) + ∂x

(
Q2

A
+ p(x,A,E)

)

= −g AZ ′ + Pr(x,A,E)

−G(x,A,E)

−K(x,A,E)
Q|Q|
A

(2)

where Z = Z(x) is the altitude of the main axis. The terms Pr, G and
K denote respectively the pressure source term, a corrective term and the
friction term defined as follows:

Pr(x,A,E) = c2
(
A

S
− 1

)

S′ + g I2(x,S) cos θ,

G(x,A,E) = g AZ(x,S) = g A (H(S) − I1(x,S)/S) (cos θ)′,

K(x,A,E) =
1

K2
sRh(S)4/3
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where we have used the notation f ′ to denote the derivative with respect
to the space variable x of any function f(x). The term I2 is the hydrostatic
pressure source term defined by:

I2(x,S) =

∫ H(S)

−R

(H(S) − z)∂xσ dz .

The term Ks > 0 is the Strickler coefficient depending on the material and
Rh(S) is the hydraulic radius.
Then, System (2) has the following properties:

Theorem 2.1

1. System (2) is strictly hyperbolic on {A(t, x) > 0} .

2. For smooth solutions, the mean velocity u = Q/A satisfies

∂tu+ ∂x

(
u2

2
+ c2 ln(A/S) + gH(S) cos θ + gZ

)

= −gK(x,A,E)u|u| 6 0.
(3)

3. The still water steady state for u = 0 reads:

c2 ln(A/S) + gH(S) cos θ + gZ = 0. (4)

4. System (2) admits a mathematical entropy

E(A,Q,E) =
Q2

2A
+ c2A ln(A/S) + c2S + gAZ(x,S) cos θ + gAZ

which satisfies the entropy relation for smooth solutions

∂tE + ∂X

(
(E + p(x,A,E))U

)
= −gAK(x,A,E)u2|u| 6 0 . (5)

In what follows, when no confusion is possible, the term K(x,A,E) will be
noted simply K(x,A) for free surface and K(x, S) for pressurised states.

3 The Kinetic scheme

The kinetic formulation (3.1) is a microscopic description of the PFS-
System. The kinetic description of the system is provided by a given density
function χ satisfying the following three properties:

χ(ω) = χ(−ω) > 0 ,

∫

R

χ(ω)dω = 1,

∫

R

ω2χ(ω)dω = 1 ,
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which permits to define a maxwellian, also called Gibbs equilibrium, func-

tion M by M(ξ, A,E, u) =
A

c(A,E)
χ

(
ξ − u

c(A,E)

)

where

c(A,E) =







√

g
I1(x,A)

A
cos θ if E = 0

√

g
I1(x, S)

A
cos θ + c2 if E = 1

.

The microscopic quantity M is related to the PFS-System by the classical
macro-microscopic kinetic relations:

A =

∫

R

M(ξ, A,E, u) dξ , (6)

Q =

∫

R

ξM(ξ, A,E, u) dξ , (7)

Q2

A
+Ac(A,E)2 =

∫

R

ξ2M(ξ, A,E, u) dξ . (8)

As a result by (6-7-8), the non linear PFS-System can be viewed as a single
linear equation involving a non linear quantity M, which takes the form:

Theorem 3.1 (Kinetic Formulation of the PFS-model) (A,Q) is a
strong solution of System (2) if and only if M satisfies the kinetic transport
equation:

∂tM + ξ · ∂xM− gφ ∂ξM = K(t, x, ξ) (9)

for some collision term K(t, x, ξ, ) which satisfies for (t, x) a.e.

∫

R

K dξ = 0 ,

∫

R

ξ Kd ξ = 0 .

The source terms are defined as:

φ(x,W) = B(x,W) · ∂xW (10)

with W = (Z +

∫

x

K(x,A)u|u| dx, S, cos θ)

and B =







(

1, −c
2

g

(
A− S

AS

)

− γ(x, S) cos θ

A
, Z(x, S)

)

if E = 1
(

1, −γ(x,A) cos θ

A
, Z(x,A)

)

if E = 0

where I2(x,S) reads γ(x,S)S′ for some function γ (depending on the ge-
ometry of the pipe).
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Remark 3.1 The term
d

dx

(

Z +

∫

x

K(x,A)u|u| dx
)

is called dynamic slope

since it is time and space variable dependent contrary to the static slope
Z which only x-dependent.

Denoting by Wl and Wr the left and the right states of the cell interface,
and using the ”straight lines” paths

Ψ(s,Wl,Wr) = sWr + (1 − s)Wl, s ∈ [0, 1]

(see e.g. [9, 13]) we are able to give a sense to the non-conservative products
φ by:

[[W]] ·
∫ 1

0

B (s,Ψ(s,Wl,Wr)) ds (11)

where [[W]] denotes the jump Wr −Wl across the discontinuity localized
at the cell interface. As the first component of B is 1, we recover the
classical interfacial upwinding for the topography term (appearing e.g. in
shallow water equations) since it is a conservative term.

Based on the kinetic formulation, we construct easily a Finite Volume
scheme where the conservative quantities are cell-centered and source terms
are included into the numerical fluxes by a standard kinetic scheme with
reflections [14]. To this end, let us consider a uniform mesh on R where
cells are denoted for every i ∈ Z by mi = (xi−1/2, xi+1/2), with xi =
xi−1/2 + xi+1/2

2
and ∆x = xi+1/2 −xi+1/2 the spacestep. We also consider

a time discretisation tn defined by tn+1 = tn +∆tn with ∆tn the timestep.
We consider then An

i , Qn
i , Mn

i the cell-centered approximation of A, Q
and M on the cell mi at time tn.
The source term is given by its piecewise constant representation, that is
W = Wi1mi(x) with the approximation Wi defined by (16). It follows
that the kinetic transport equation (9) simply reads on the cell mi:







∂

∂t
f + ξ · ∂

∂x
f = 0

f(tn, x, ξ) = M(tn, x, ξ)

(12)

and thus it may be discretised as follows:

Mn+1
i (ξ) = Mn

i (ξ) +
∆tn

∆x
ξ (M−

i+ 1
2

(ξ) −M+
i− 1

2

(ξ)) (13)

where the contribution of the source term is included into the microscopic
numerical fluxes M±

i±1/2. This is the principle of interfacial source upwind.
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Using the macro-microscopic relations (6-7-8) and integrating Equation
(13) against ξ and ξ2, we obtain the Finite Volume scheme:

Un+1
i = Un

i +
∆tn

∆x
(F−

i+ 1
2

− F+
i− 1

2

) (14)

where the numerical fluxes are computed by :

F±
i+ 1

2

=

∫

R

(
ξ
ξ2

)

M±
i+ 1

2

(ξ) dξ .

U denotes the unknown vector (A,Q). At the cell interfaces which are not
transition points between free surface and pressurised states, the micro-
scopic fluxes are given by (see [14, 2, 3] for instance):

M−
i+1/2(ξ) =

positive transmission
︷ ︸︸ ︷

1ξ>0Mn
i (ξ) +

reflection
︷ ︸︸ ︷

1ξ<0,ξ2−2g∆φi+1/2<0Mn
i (−ξ)

+ 1ξ<0,ξ2−2g∆φi+1/2>0Mn
i+1

(

−
√

ξ2 − 2g∆φi+1/2

)

︸ ︷︷ ︸

negative transmission

M+
i+1/2(ξ) =

negative transmission
︷ ︸︸ ︷

1ξ<0Mn
i+1(ξ) +

reflection
︷ ︸︸ ︷

1ξ>0,ξ2+2g∆φi+1/2<0Mn
i+1(−ξ)

+ 1ξ>0,ξ2+2g∆φi+1/2>0Mn
i

(√

ξ2 + 2g∆φi+1/2

)

︸ ︷︷ ︸

positive transmission

.

(15)
The term ∆φi±1/2 in (15) is the upwinded source term (10) and ξ2 ±
2g∆φi+1/2 is the jump condition for a particle with the kinetic speed ξ
which is necessary to

• be reflected: this means that the particle has not enough kinetic
energy ξ2/2 to overpass the potential barrier (reflection in (15))),

• overpass the potential barrier with a positive speed (positive trans-
mission in (15)),

• overpass the potential barrier with a negative speed (negative trans-
mission in (15))).
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Using the definition of the non-conservative product φ (11), the potential
barrier ∆φi±1/2 has the following expression:

∆φi+1/2 =







[[

Z +

∫

x

K(x, S)u|u| dx
]]

i+1/2

− [[S]]i+1/2

∫ 1

0

c2

g

(
ψA(s) − ψS(s)

ψA(s)ψS(s)

)

ds

− [[S]]i+1/2

∫ 1

0

γ(s, ψS(s))ψcos θ(s)

ψA(s)
ds

+ [[cos θ]]i+1/2

∫ 1

0

Z(s, ψS(s))ds if En
i = 1

[[

Z +

∫

x

K(x,A)u|u| dx
]]

i+1/2

− [[A]]i+1/2

∫ 1

0

γ(s, ψA(s))

ψA(s)
(ψcos θ(s))ds

+ [[cos θ]]i+1/2

∫ 1

0

Z(s, ψA(s))ds if En
i = 0

(16)
where ψK is the straight lines path connecting the left state Ki to the right
one Ki+1.

The final step of the construction of the kinetic scheme is the choice of
the density function χ. The choice of the density χ function which defines
the equilibrium function M can be chosen as the solution of the stationary
equation (9): consequently, the scheme obtained belongs to the category of
exactly well-balanced scheme. Here, we focus only on the simplest choice of
the χ-function [1] which allows to compute easily numerical fluxes, namely:

χ(ω) =
1

2
√

3
1[−

√
3,
√

3](ω) .

We have then:

Theorem 3.2

1. Assuming the CFL condition
∆tn

∆x
max
i∈Z

(

|un
i | +

√
3c

)

< 1, the numer-

ical scheme (14) keeps A positive.
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2. The kinetic scheme allows to compute the drying and flooding area.

4 Numerical results

The numerical validation in the case of a pressurised flow has been previ-
ously studied by the authors in [3] (and thus is not presented in this paper).
Since experimental data for mixed flows in non uniform pipe are not avail-
able, we compare the result obtained by the presented kinetic scheme with
an upwinded VFRoe method [4]. The first numerical test is a validation
test. The numerical experiments are performed in the case of an expanding
5 m long closed circular pipe at altitude Z0 = 1m with 0 slope (slope of the
main pipe axis). The upstream diameter is 2 and the downstream diameter
is 2.2. The friction is not considered for the first test and is set to 0. The
simulation starts from a steady free surface with a discharge Q = 0 m3/s.
The upstream boundary condition is a prescribed hydrograph (increasing
linearly from 1m to 3.2m in 5 s) while the downstream discharge is kept
constant to 0m3/s.
Let us recall that the zero water level corresponds to the main pipe axis.
The piezometric head is defined by:

piezo = z + p with







p = 2R+
c2 (A− S)

g S
if the flow is pressurised

p = h if the flow is free surface,

where h is the water height.
The results are compared with the VFRoe scheme [4]. In spite of missing
experimental data, the results on Fig. 1 are in a good agreement.

A second test case is performed in order to compare the effect of the
presented kinetic scheme with upwinded friction and the explicit kinetic
scheme with cell-centered friction (treated as a source term) in a symmetric
flow for different values of Ks. The numerical experiment is performed on a
100 m long closed pipe with constant section of diameter 2. The simulation
starts from a double dam break, that is, one from the upstream and the
other from the downstream end (see the curve at time t = 0 Fig. 3-2).
The upstream and downstream condition are identical: the piezometric
line increases linearly from 1 to 2.1 meters. From a physical point of view,
we expect a symmetrical flow. The results in Fig. 3-2 show that the explicit
cell-centered friction scheme does not preserve the symmetry of the flow;
in particular at time t = 8.047 (see Fig. 3 on top) we observe a small
disymmetry for Ks = 10 which evolves drastically at time t = 3.492 with
Ks = 100 (see Fig. 2 on top). We observe that decreasing the value of the
Strickler coefficient Ks has catastrophical consequences on the results (see
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Fig. 2 on top) of the explicit cell-centered friction whereas the scheme with
upwinded friction perfectly preserves this property (see Fig. 2 on bottom).

5 Conclusion

We have presented a method to upwind the dynamic source term depending
on unknowns following the principle of interfacial upwind using a FVK
framework. We have also proposed a way to upwind the friction given by
the Manning-Strickler law by the notion of dynamic slope. The numerical
results show that the approximation of the source term provide an efficient
first order scheme for industrial application.
As a well-known result, the upwinding of source terms for approximate
Godunov schemes, introduce a stationnary wave with a vanishing denom-
inator when critical flows occurs. We also cannot deal with drying and
flooding with this kind of scheme. All these drawbacks are avoided with
the presented scheme. Actually, the friction term is manually set to 0 when
drying or flooding cells appears.
Although the numerical scheme is not based on an exactly well-balanced
scheme, it seems to be numerically valid.
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Figure 1: Comparison between the kinetic scheme and the upwinded
VFRoe scheme at x = 0.5m.
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Figure 2: Comparison of the cell-centered friction and upwinded friction
for Ks = 100.
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Figure 3: Comparison of the cell-centered friction and upwinded friction
for Ks = 10.
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