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PROPAGATION OF GEVREY REGULARITY FOR SOLUTIONS OF LANDAU
EQUATIONS

HUA CHEN, WEI-XI LI AND CHAO-JIANG XU

AsstrAcT. By using the energy-type inequality, we obtain, in this graphe result on
propagation of Gevrey regularity for the solution of thetidly homogeneous Landau
equation in the cases of Maxwellian molecules and hard giaten

1. INTRODUCTION

There are many papers concerning the propagation of régufar the solution of
the Boltzmann equation (cf.[][$] € B, [0] 13] and referencesein). In these works, it
has been shown that the Sobolev or Lebesgue regularitfisdtlsy the initial datum is
propagated along the time variable. The solutions haviagxévrey regularity for a finite
time have been constructed [n]15] in which the initial daa the same Gevrey regularity.
Recently, the uniform propagation in all time of the Gevregularity has been proved in
[A] in the case of Maxwellian molecules, which was based erMfild expansion and the
characterization of the Gevrey regularity by the Fouriangform.

In this paper, we study the propagation of Gevrey reguldoitythe solution of Landau
equation, which is the limit of the Boltzmann equation whiea tollisions become graz-
ing, see [B] for more details. Also we know that the Landauatiqun can be regarded as
a non-linear and non-local analog of the hypo-elliptic FkRlanck equation, and if we
choose a suitable orthogonal basis, the Landau equatitve iMaxwellian molecules case
will become a non-linear Fokker-Planck equation (Ef] [LRgcently, a lot of progress on
the Sobolev regularity has been made for the spatially hemegus and inhomogeneous
Landau equations, cf[][2] B,[7]16] and references thereirth®other hand, in the Gevrey
class frame, the local Gevrey regularity for all variatiles v is obtained in [[lL] for some
semi-linear Fokker-Planck equations.

Let us consider the following Cauchy problem for the spitihbmogeneous Landau
equation,

{ of =V, {fRn a(v—v)[f(v.)Vyf(v) = F(V)V, f(v.)]dv}, 1
f(0,v) = fo(v),

wheref(t,v) > 0 stands for the density of particles with velocitg R" at timet > 0, and
(&) is a nonnegative symmetric matrix given by
ViV
aij (V) = (5” - ﬁ) M**2, y € [0,1]. )
Here and throughout the paper, we consider only the harchpatease (i.e.y € (0, 1])
and the Maxwellian molecules case (he= 0).

2000Mathematics Subject ClassificatioRrimary: 35B65, 76P05.
Key words and phrased.andau equation, Boltzmann equation, Gevrey regularity.
This work is partially supported by the NSFC.
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Set

n n
=1 ij=1

E;j(t,v):(aj*f)(t,v):faij(v—v*)f(t,v*)dv*, bi=bjf, C=cxf.
RI’]

Then the Cauchy problemf (1) can be rewritten in the follgwWarm:

{ o f :Z{jjzlajavivjf—Ef, 3)
f(0,v) = fo(v),

which is a non-linear diusion equation with the cdiécientsa;; andc depending on the
solution f.

The motivation for studying the Cauchy probleph (3) (df-] j[L@&dmes from the study
of the inhomogenous Boltzmann equations without angulaficand non linear Vlasov-
Fokker-Planck equation (see [10] 11]).

Throughout the paper, for a mult-index= (a1, @, - - - ,an) and an integek with 0 <
k < |al, the notationD!*~K is always used to denot& with the multi-indexy satisfying
v < @ andly| = |a| - k. We denote also b (f(t)), E(f(t)) andH(f(t)) as the mass, energy
and entropy respectively for the functidit, -) . That is,

M(f(t)):fRnf(t,v)dv, E(f(t)):%fknf(t,vnw2 dv,

H(f (1) = fR £(t,v) log f(t, v) dv.

Denote herdMy = M(f(0)), Ep = E(f(0)) andHo = H(f(0)). It's known that the solutions
of the Landau equation satisfy the formal conservation laws

M(f(®) = Mo, E(f(t) = Eo, H(f®)) <Ho,  forvt>o0.

Also in this paper we use the following notations

It lls = f f(tv) (1+M?) 7 dv,
Rn

19 F(t, M2, = fR gt WP (2+M?) 7 dv,

TN = D, 18 TR
O<|al<m
When there is no risk causing confusion, we Wntl]ét)IILé for |lg(t, ')||Lg-
Next, let us recall the definition of the Gevrey class funttgpaceG”(RN), where
o > 1is the Gevrey index (cf[T14]). Lat € C*(RN). We sayu € G"(RN) if there exists
a constanC, called the Gevrey constant, such that for all multi-indiees NN,

10 Ull 2zny < CFE ().

We denote b)Gg(RN) the space of Gevrey function with compact support. Noteé tha
GY(RN) is space of all real analytic functions.

In the hard potential case, the existence, uniqueness dualesaegularity of the weak
solution had been studied ifj [6], in which they proved thater suitable assumptions on
the initial datum (e.g.fg € L%H3 with 6 > 0,) there exists a unique weak solution of the
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Cauchy problem[{3), which moreover is in the sp@&R;"; S(R?)). HereR; = (0, +o0)
andS denotes the space of smooth functions which decay rapidhfiaity.

Assuming the existence of the smooth solution, we state heantain result of the
paper as follows:

Theorem 1.1. Let f be an initial datum with finite mass, energy and entropy. $app
fo € GZ(R") with o > 1, and f is a solution of the Cauchy probleph (3) which satisfies

f(t,v) € L. ([0, +oof; Hm(R”))ﬂL2 ([o, +ool; H;“”(R”)), forall m>0. (4)

loc

Then ft,-) € G7(R") for all t > 0 uniformly, namely, the Gevrey constant df,f) is
independent of t. More precisely, for any fixed-T0, there exists a constant € 0 which
is independent of t, such that for any multi-indexone has

sup 110§ f(t, Mz@ny < C*E ().
te[0,T]

Remark 1. If fo € L3, ; additionally, then by the result of|[6], the Cauchy problef (
admits a solution which satisfiel§ (4).

Remark 2. For simplicity, we shall prove Theorem [L.1 in the case of spdicmension
n = 3. The conclusion for general cases can be deduced similarly.

The plan of the paper is as follows: In Section 2 we prove s@merias. Section 3 is
devoted to the proof of the main result.

2. SOME LEMMAS
In this section we give some lemmas, which will be used in tlo@fof the main result.

Lemma 2.1. For anyo > 1, there exists a constant,Cdepending only owr, such that
for all multi-indicesu € N3, |u| > 1,

1 .
— < Cy lul” ™, (5)
1< 1P

and

1
—————— < C,[ul” . (6)
Kw,gw,_l 1B (1ul - 18]
Here and throughout the paper, the notatipi. 5, denotes the summation over all the
multi-indices satisfyingg < u and1 < |8 < |ul. Also the notatior}’;.5<,-1 denotes the
summation over all the multi-indices satisfyifigc x and1 < |8| < |u| — 1.

Proof. For each positive integérwe denote by {|8] = |} the number of the multi-indices
B with |8] = I. In the case when the space dimension is 3, one has

1+ 2)
NI =1 = 21

It is easy to deduce that

1
=50+ 1)0 +2)

3
1 BT i R I=1
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Combining the estimates above, it holds that

Iul

( 1)(| 2) U
Z + + ;I_

3
1< W' 24

Observing that 3!, 1! < C,, [~ for some constar€,, we obtain the desired estimate
(B). Similarly we can deduce the estimdtg (6). o

The following lemma is crucial to the proof of Theor¢m]1.1.

Lemma 2.2. Leto > 1. There exist constant:CC, > 0, depending only on W) Eq, Ho
andy, such that for all multi-indiceg € N2 with |u| > 2 and all t > 0, we have

Mo FOIE2 + CallVud FOIF, < Colul® VDY (D)7,

+Cy D CHIVDHLE )2 - VDM (1)l - [Gol f ()] 512
2<|BI<|ul

+Co > CLIGT®I - 9D Ol - [Go (F O]y
0<|BI<lul

where Cﬁ oA B),ﬁ, is the binomial cogicient, and[G,(f(t))]
with B being the constant as given in Lemima 2.4 below.

By the assumption in Theorefn 1.1, the solutibfh, v) of the Cauchy problem([|(3) is
smooth inv, and so are the cfiicientsaj = aj = f, b = by « f andc = ¢+ f. Here and
in what follows, we writeC for a constant, depending only on the Gevrey indexand
Mo, Eg andHp (the initial mass, energy and entropy), which may tfeedent in diferent
contexts.

The proof of Lemm& 2]2 can be deduced by the following lemmas:

18y f (O)ll.2 + B (Iv!)”

v =

Lemma 2.3. (uniformly ellipticity) There exists a constant K, depemgdonly ony and
Mo, Eo, Ho, such that

3
D&t &g > KA+ MY21gP, v ¢eR®, andy € [0, 1], (7)
ij=1

Proof. See Proposition 4 of][6] O

Remark 3. Although the ellipticity of &) was proved in[[6] in the hard potential case

v € (0, 1], it still holds for the Maxwellian casg = 0. This can be seen in the proof of
Proposition 4 of [[6].

Lemma 2.4. There exists a constant B, depending only on the Gevrey imdex, such
that for all multi-indicesg with |3 > 2 and all g, he L2(R3), one has

f (8ﬂa”(t v))g(v)h(v)dv < C||g|||_2||h|||_2[ o (f()] g, forall t>0,
i,j=1
where[G(f(1)] 5 = {IDP-2(t)ll= + BA-2[(181 - 2)!]°).

Proof. Foro > 1, there exists a functiogr € G (R3) (cf. [L4]) with compact support in
{v eR3| M< 2} , satisfying thaty(v) = 1 on the ball{v eR3| v < 1}, and that for some
constantB > 4 depending only oumr,

sup|ady| < BAQA - 117, forall 1 e Z3. (8)
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Write aj = yaj + (1 - y)aij. Thenaj = (yaij) = f + [(1 — ¢)a;] = f. Itis easy to see
that

Koy = [ (way)] = @ 1) + (1AL - wyay 1} « £, for W] =

We first treat the ternol(ya;;)] = (a@‘vf). A direct computation shows that

[9ywa] = @ )| = \ f [Bywap](v =) - (@ v.)dv.

<c |
{Iv.-vi<2}

< ClIA; ™ F @)l

@5 f)(v.)| dv.

Next, for the tern{&é[(l - w)aij]} x f, one has, by using the Leibniz’s formula,
|(aﬂ [(1-wya]) = (V)
= > c f [ (L - w)l(v - v.) - (8ai) (v - v.) - Fv)alw.

O<l=B]

< > c f (0 ) (v—v.) - (8dai}) (v =) - F(v.)dvi

1<jai<(8] g {1<v,-vI<2)

[ Il () - v) -t
{lvi—vi=1}
=J;|_ + Jz.
In view of (@), we can find a constaf, depending only or, such that

[(2¢ai) (v - va)| < ¥t fori<iv -v <2

And for |8] = 2,
(@) (v - )

From the estimat€](8) we know that + J, can be estimated by

< CPBNIL + vl + M) for L< v -,

BB - I @l D (%)'”' + GBI - Tl (L + VD).

1<|A<|B]

We can takeB large enough such th&> 2C. Then we get
(@@ - )z« f0)] < 9+ 3
< CIf Ol BB (2 + Py
< CBPI(IBINT (1 + 22,

In the last inequality we used the fap‘t(t)llL% < Mg + 2Eo. Now we choose a constaBt
such thaB2(|8])” < BE-2[(|8] — 2)!]°. It follows immediately that

@1 - wag)) « 1) < CBP2((81 - 217 (1 + W) 2
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Combining with the estimate da(va;j)] = (a\'i‘vf), we get finally

v ()] < C 1o Tl + B2[(181 - 217 - (1 + M)72)
< C[Go(F(O) gz - (L + V)72,

Thus, combining with Cauchy’s inequality, the estimatewvabgives the proof of Lemma

2.4. O
Similar to Lemmd 2]4, we can prove that

Lemma 2.5. For all multi-indicesp with |8 > 0 and all g h € L(R?), one has

f (et V)IIhEV < Cldizlihlz - (Go(fE)]y  VE=0.
R
Let us now present the proof of the main result of this section

Proof of Lemma 2]2Since

3 3
Zé‘vﬁij = bj, Z(?vjbj =C,
i=1 =1

and f satisfies) f = Zﬁjzl gjoyy, f —cf, then it holds that

[0:0% T (t, V)] - [94 f (8, V)]dv

3

AN, = 2

3

[ D" di@ouy f - TN [ FE]dv

=1

%%

w

Moreover, by using Leibniz’s formula, we have

1
N
[
w
I
—
&
=
&
=
—
&
~—
o
<

o (OII7

ij=1vR
3

123 3 0 [ (048) (0w 1) - (2 v
=1 g1 VR
3

w23 Y o [ (eha) (Gwet ) (o) av
=1 2l VE

S NCACICHRCHEY

ospislyl  VF

= )+ 1)+ 1)+ AV).

Thus the proof of Lemmp 3.2 depends on the following estimate
Step 1. Estimate on theterm (1).
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Integrating by parts, one has

n = -2

ZMw

8 6

[ Bi(vett)-(@)av

R3

i

(D1 + (D2

For the term )1, one has, by applying the ellipticity property (7),

i,j=1

Mo

-2

1l
=

(1 < -2K fR [ @+ P2y = 2K T,
For the term (), integrating by parts again, we have
(12 =—(1)2 + 2fR3 c(af)- (a4 f)av.
Observing thaf(v)| < CIIf (B)ll (1 + M?)7/2 < C(1 + M?)?/2, one has
(D2 < ClIGTIIF, < CIVVD* 7.

This implies
(1) < —2K[IVy& f[1Z, + CIIV, D2, 9)
Y Y

Step 2. Upper bound for theterm (I1).

Recall that (1) = 233 35-1Cp [ (00a)) (Guy, a6 7 f) - (8 ) dv. Integrating by
parts, we have

(||)_—2ZZcﬁf ) (04,77 1) (8 ) dv

11L3|1

—22 >0 [ (@) vt 1) (auit)av
i,j=1 |8]=1
= (||)1 + (||)2.
Observing thaWBj(t, v)| < C(1+ M?)/2for |8| = 1, one has
()2 = Clul - IV F Ol 2% F @l 2 < Clul - IVDH Q.

For the term [l ), if we write u = 8 + (u — B), then it holds that

(||)2_—2Z Zcﬁf () (0,7 1) - (60437 1) dv

i,j=1 |p|=1
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SincelB| = 1, we can integrate by parts to get

(1) —22 Zcﬁf (a;) (0, ) - (94" 1) dv

i,j=1 |8]=1

3
" 2'2 - Cﬁ Ls (3€+ﬂ§ij ) (avjac_ﬂ f) : (8Vi8(1,_'8f) dv

i,j=1 |g=1
3
:_(||)2+2_Z CﬁLs(aﬁ@+ﬁ§ij)(3vja‘\;‘ﬁf).(8Vi8’\;‘r3f)dv.
Hence

(=), S0 [ (078) @ ?1)- (2,7 ) .

Observing tham+ﬂaij (v)| < C(1+ |22 for |8| = 1, one has

(IN2<C > Ch- IV PHIZ, < Clul - IV,D¥ 212,
|ﬁ|=1 Y Y
which means

(1) < Clul- VDY I,

Step 3. Upper bound for theterm (I11) and (1V).

Recall that
3

(=2 Y o [ (o6a) (0w 1) (67) v
NEPEENEEE
and that
(IV) = -2 Z cﬁf (&77e) (a6f) - (4 7) v
o<l VE
By Lemma[2.4 and Lemmn{a 2.5, vCe have

3
M <CY > Chlduy &P TOIz - 10 T Ol 2[Golf ()] 510
i,j=1 2<|BI<Iul
<C > CAVyDHLE )2 - IV, DH Ol 2[Gorl F (1) 1o
2<|BI<|ul
and
(V)<C > ClIfOlz - VD FOll2 - [Gor(FO)] -
0<|BI<|ul
Combining with the estimatef] (9)-{12), one has

M F @Iz + CallVud FOIF, < Colu® VD DI,

+Co D CHIVDHLE )2 - IVDH (1)l - [Gol f ()] 510
2<|BI< ul

+Ca D ATl - 9D Oz - [Co(FO)]
0<|B]< [l

(10)

(11)

(12)
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This completes the proof of Lemnpa]2.2. O

3. Proor oF THEOREM 1.1

Theoren{ 1]1 will be deduced by the following resuilt:

Proposition 1. Leto > 1 and § € G7(R®) be the initial datum with finite mass, energy
and entropy, and let f be a smooth solution of the Cauchy pralfB) satisfying[{4). Then
for any fixed TQ < T < +c0, there exists a constant A, which depends only ¢n B4,
Ho, v, T, o and the Gevrey constant of, uch that for any kk N, k > 1, one has

T 1/2
Qe sup 11O+ { [ 19 FOF 0t} < Al 211
te[0,T] 0 Y

for all multi-indicesa anda with |a| = |a] = k.

Remark 4. From the estimateQ)x in Proposition[JL we can deduce directly the result of

Theoren{ 1]1.

Proof of Propositior{JL.We use induction otk to prove the estimateQ)x. Observe that
(Q)1 holds if we takeA large enough such that

A= sup [[f (Ol + 1Tl 2o 1y H2) + 2 (13)
t€[0,T] 4 4

Assume that the estimat®); holds for 1< | < k-1 andk > 2. Then we need to prove
that the estimateQ)x is true. Firstly we prove that
1
sup |02 f ()]l 2 < ZA[(la] - 1)1]7, forall |of = k. (14)
te[0,T] 2
Applying Lemmd 2.2 with: = o, we obtain
o F I, + C1lIVudy FII?, < Calaf?(IV,DH 12,
Y Y

+Cp ) CAIVYD Al o [9,DI I - [Go (F(D)] 5
2<1B<lol (15)

+Ca > ChIA Tl - VD 'l - [Go(f ()] g
0<|BI<]al

Next for the last term on the right hand side of the above iattyuone has
Co > Caldif®lz - IVl f Ol - [Golf )]y
0<|BI<]al
=Callf®)llz - Vv F Oz - [Gor ()]
+Ca ) CAIA T Wz - 11940 FOll2 - [Gor(FO)]jop-a
181=1

+Co > CHIRTOI2 - IV F Oz - [Gor(F )] g1y
2<|8I<]al
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We denotgGy(f)] 5 = SURepo,1] [Go(f(1))] 5+ Integrating in both sides of the estimate
(L3) over the interval [0T], and using the Cauchy inequality, we get

-
||(93f(t)||ﬁz - ||5\[ff(0)||i2 <GC, |a|2‘f0‘ ||Vlea|_lf(S)||i§dS

1

T 2

+C ) Céi[Ga(f)]w._z{ f ||VVD"’"W'+1f(s)||i2ds}
2<(BI<la 0 7

T :
X IVyD1 1 (9)I%,ds
0 Ly

T 3T 2
+Comaxitol | [ sct@, a5 { [ moe o,

:
+Cz%0§ogg¥nf(t)n%-[Gg(f)]|a|_1- fo IV, D (s)l| 2 ds

. ;
+Co 3 BN [ 10EFOI2,05)

2<|B<lal

T :
x{ f ||VVD'“"1f(s)||ﬁ2ds}
0 Y

L7 (S1) + (S2) + (Sa) + (Sa) + (Ss).

From the induction assumption and the fﬂiﬁﬁfHLg < ||VV8\Lf'_1f||L§ for |8| > 1, we have,
respectively, the following estimates:

{ f ' ||\7va'v“"1f(s)nﬁzols}z < A (ol - 2)1]7; (16)
0 Y

T :
{ f ||va'6’"“*'+1f(s)||izds} < AT (o] - 1B, 2< 1B < lal; (17)
0 Y
T ;
{[Cwtroadd < aiqgs-2r. 2<pi<iol (18)
We next treat the terfG(f)],, given by
[Go ()] = sup [Go(f()]y = sup 1B F (Il 2 + B™ (m))”,
te[0,T] te[0,T]

Observe that for somé, > 0,
B™(m)” < (C,B)™(m- 1)), forl<|Bl <lal- 1
Also from the induction assumption, one has

max |07 f ()l 2 < AM(m-1))7, 1<m<|a|-1=k-1
te[0,T]

Thus forA large enough, we have
[Go(f)], <2A™(M-1))7, 1<m<|a|-1=k-1 (29)
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By using the estimaté (IL6), one has

T
| 16011, 8 < Aol - 201"
0
The estimate for the tern®() can be given by[(16) directly,
(S1) < Calaf? [A2 ((jal - 1)) ? < Co[ A (laf!)” 2.
We write now the termS,) into two parts,

!
(52 =C2 Y, iGNy [ VD" 1(9E,ds
B=2 0 !

T 1/2
+Cp Y cfi[eg(f)]w_z{ fo ||VD'Q'-W'+1f(s)nﬁ5ds}

3<(BI<lal

T 1/2
X VDl f(9)|2,ds
0 Ly

=(S2)' +(S2)".
Thus (1B) and[(16) give that
(S2)" < CoAlal? (A (lal - 217} < CoA[A (1ol - 1)),
and (Ip), [(47) and (19) give that

(S2) <Co w;l | WW"Z[(WI — )17 A-B (] — |BI)1 |

x A1 (la - 2)1]7.

Observing that
|a’|l o o 6|(Z| -
we have by the estimatf] (5)
(S2)" < Ca(AH2[(lal = 21 [(la - )17 " 6|_C;|
3<igiial P

< 6C2(A")?[(lal - 2)!]7[(lal - )] lal”
< 6C, {A" (ol - )7}
Therefore ,
(S2) = (S2)' +(S2)" < 6CoA{A Y (jal - 1)1}
Similarly, from the estimateg (I3}, (16) ar{d](20), one has
(Sa) < CoA A (o - 201177
From (13B), [1p) and (19), one can deduce that
(Sa) < CZA{N“'_l[(lal - 1)!]"}2.

11

(20)

(21)

(22)

(23)

(24)
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It remains to estimate the terr84). From (1§), [1B) and (19) we have
Z Colal!
o<fpi1 Bl = B])!

x A (o] - 2)1]7

+ CoA[A (ol - 217}

(Ss) < A B[] - 18] - 1)1]7 AP - 2)1]”

Since for 2< |8 < |a] - 1,
la]!

1Bl'(lel - 18])!

then by using the estimatf (6), we have

S <C Aldl—lz e ) &
(Ss) < C2 (A1) [(lal = 1)!]7[(lal - 2)!] zgw%;rl‘l 1B (lal - 181)

(ol - 18— D108 - 217 < —2T[(a1 - 2117,

" 182 (lal - 18])

+ CoA[A (o] - 2117}
< 3CA (A1) [(lal - 1)117[(ol - 2)1]7 lel”
< 3GA A (o] - 7).
This, combined with[(31)f(24), implies that
10 FOIZ, - 165 F O, < CaA[A (a7}, Vte[o,T].
Sincef(0) = fo € G7(R3), then there exists a constadnsuch that
16 TP, < {L¥[(al - 117",

Thus takingA large enough, we can deduce that
1 2
g FOI12, < {EA'“'[(IaI - 1)!]“} , forallte[0,T], andle| = k.

This gives the proof of the inequalitf/ {14).
Finally, we need to prove that

T 5 1 .~ 2
f ||vv63f(t)||izdts{—A'“'[(|&|—1)!]‘T}, v 1d =k (25)
0 7 2

The proof of the estimatd (P5) is similar to that pf](14). Letapply Lemmd 2|2 again
with u = @. Then we have

auloG FOIZ, + CallVvay fIZ, < ol Ivuay' ™ 12,

+Co D CAIVW Tl - IVWO - [Go(F(0)] 5
2<|BI<|@|

+Co > CRIA Iz - 160 ll2 - [Go(FO)] 3y
0<|g<lal

C N ).
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Integrating the above inequality over the intervalT() we then have

T T
Ci | V(IR ds<0FO)%, + | N(9ds
0 L7 L 0

By a similar argument as in the proof §f]14), one has

T 2
165 £ I, + fo N(9)ds< Cl{%A'&'[(l(ﬂ - 1)!]0} ,

which gives the estimaté¢ (25). The validity @), can be derived directly by the estimates
in ({I4) and [2b). O
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