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GEVREY REGULARITY FOR THE SOLUTION OF THE SPATIALLY
HOMOGENEOUS LANDAU EQUATION

HUA CHEN, WEI-XI LI AND CHAO-JIANG XU

Abstract. In this paper, we study the Gevrey class regularity for solutions of the spatially
homogeneous Landau equations in the hard potential case andthe Maxwellian molecules
case.

1. Introduction

In this paper we study the smoothness effects of solutions for the following Cauchy
problem of the spatially homogeneous Landau equation

{

∂t f = ∇v ·
{

∫

R3 a(v− v∗)[ f (v∗)∇v f (v) − f (v)∇v f (v∗)]dv∗
}

,

f (0, v) = f0(v),
(1)

where f (t, v) ≥ 0 stands for the density of particles with velocityv ∈ R3 at timet ≥ 0, and
(ai j ) is a nonnegative symmetric matrix given by

ai j (v) =

(

δi j −
viv j

|v|2

)

|v|γ+2 . (2)

We only consider here the conditionγ ∈ [0, 1]. It’s called the hard potential case when
γ ∈]0, 1] and the Maxwellian molecules case whenγ = 0.

Setc =
∑3

i, j=1 ∂vivj ai j = −2(γ + 3) |v|γ and

āi j (t, v) =
(

ai j ∗ f
)

(t, v) =
∫

R3
ai j (v− v∗) f (t, v∗)dv∗, c̄ = c ∗ f .

Then the Cauchy problem (1) can be rewritten as the followingform,
{

∂t f =
∑3

i, j=1 āi j∂vivj f − c̄ f,
f (0, v) = f0(v).

(3)

This is a non-linear diffusion equation, and the coefficientsāi j , c̄ depend on the solutionf .
Here we are mainly concerned with the Gevrey class regularity for the solution of the

Landau equation. This equation is obtained as a limit of the Boltzmann equation when the
collisions become grazing (see [8] and references therein). Recently, a lot of progress has
been made on the study of the Sobolev regularizing property,cf. [6, 11, 13, 18, 19] and
references therein, which shows that in some sense the Landau equation can be regarded as
a non-linear and non-local analog of the hypo-elliptic Fokker-Planck equation. That means
the weak solution, which constructed under rather weak hypothesis on the initial datum,
will become smooth or, even more, rapidly decreasing inv at infinity. This behavior is
quite similar to that of the spatially homogeneous Boltzmann equation without cut-off (see
[2, 10] for more details).
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In the Gevrey class frame, some results have been obtained concerning the propagation
property for solutions of the Boltzmann equation, e.g. the solutions having the Gevrey
regularity have been constructed in [17] for initial data having the same Gevrey regularity,
and the uniform propagation in all time of the Gevrey regularity has been proved in [9] in
the case of Maxwellian molecules. Recently a general Gevreyregularity result have been
given in [15] for spatially homogeneous and linear Boltzmann equation for any initial data.
On the other hand, the local Gevrey regularity for all variables t, x, v is obtained in [4] for
some semi-linear Fokker-Planck equations, which implies that, in this case, there are also
the smoothness effects which is similar to the heat equation case.

Now we give some notations used throughout the paper. For a multi-indexα = (α1, α2, α3),
we denote|α| = α1+α2+α3,α! = α1!α2!α3! and∂α = ∂α1

v1
∂
α2
v2
∂
α3
v3

. We sayβ = (β1, β2, β3) ≤
(α1, α2, α3) = α if βi ≤ αi for eachi. Denote byM( f (t)), E( f (t)) andH( f (t)) respectively
the mass, energy and entropy of the functionf (t), i.e.,

M( f (t)) =
∫

R3
f (t, v) dv, E( f (t)) =

1
2

∫

R3
f (t, v) |v|2 dv,

H( f (t)) =
∫

R3
f (t, v) log f (t, v) dv.

and denoteM0 = M( f (0)), E0 = E( f (0)) andH0 = H( f (0)). We know that the solution of
the Landau equation satisfies the formal conservation laws:

M( f (t)) = M0, E( f (t)) = E0, H( f (t)) ≤ H0, ∀ t ≥ 0.

Also we adopt the following notations,

‖∂α f (t, ·)‖p
Lp

s
= ‖∂α f (t)‖p

Lp
s
=

∫

R3

∣

∣

∣∂α f (t, v)
∣

∣

∣

p (

1+ |v|2
)s/2

dv, for p ≥ 1,

‖ f (t, ·)‖2Hm
s
= ‖ f (t)‖2Hm

s
=

∑

|α|≤m

‖∂α f (t, ·)‖2
L2

s
.

Before stating our main result, let us recall the definition of the Gevrey class function
spaceGσ(RN), whereσ ≥ 1 is the Gevrey index (cf. [5, 16]). Letu be a real function
defined inRN. We sayu ∈ Gσ(RN) if u ∈ C∞(RN) and there exists a positive constantC
such that for all multi-indicesα ∈ NN, we have

‖∂αu‖L2(R3) ≤ C|α|+1(|α|!)σ.

We denote byGσ
0 (R3) the space of Gevrey functions with compact support. Note that

G1(RN) is the space of real analytic functions.
In the hard potential case, the existence, uniqueness and Sobolev regularity of the weak

solution had been studied by Desvillettes and Villani (see [11], Theorem 5, Theorem 6
and Theorem 7). Actually they proved that, under rather weakassumptions on the initial
datum (for instance iff0 ∈ L1

2+δ with δ > 0), there exists a weak solutionf of the Cauchy
problem (3) such that for all timet0 > 0, all integerm≥ 0, and alls> 0,

sup
t≥t0
‖ f (t, ·)‖Hm

s ≤ C,

whereC is a constant depending only onγ, M0, E0, H0, m, s and t0. Furthermore they
proved thatf (t, v) ∈ C∞

(

R
+

t ;S(R3
v)
)

, whereR+t =]0,+∞[ andS(R3
v) denotes the space of

smooth functions rapidly decreasing at infinity. Iff0 ∈ L2
p with p > 5γ + 15, then the

Cauchy problem admits a unique smooth solution .
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In the Maxwellian case, Villani [19] proved that the Cauchy problem admits a unique
classical solutionf for any initial datum and for allt > 0, and thatf is bounded and lies
in C∞(R3

v).

Now starting from the smooth solution, we state our main result on the Gevrey regularity
as follows.

Theorem 1.1. Let f0 be the initial datum with finite mass, energy and entropy and fbe
any solution of the Cauchy problem (3) such that for all t0, t1 with 0 < t0 < t1 < +∞, and
all integer m≥ 0,

sup
t∈[t0,t1]

‖ f (t, ·)‖Hm
γ
< +∞. (4)

Then for any numberσ > 1, we have f(t, ·) ∈ Gσ(R3) for all time t> 0.

Remark 1.2. Our result, which is given here for the space dimension to be equal to3, will
also be true for any space dimension.

This paper includes three sections. The proof of the main result Theorem 1.1 will be
given in Section 2, and in Section 3 we shall mainly prove Lemma 2.2, which is crucial in
the proof of Section 2.

2. Proof of the main results

This section is devoted to the proof of the main result. In thesequel, we always use
∑

1≤|β|≤|µ| to denotes the summation over all the multi-indicesβ satisfyingβ ≤ µ and 1≤
|β| ≤ |µ|. Likewise

∑

1≤|β|≤|µ|−1 denotes the summation over all the multi-indicesβ satisfying
β ≤ µ and 1≤ |β| ≤ |µ| − 1. Firstly we have

Lemma 2.1. For anyσ > 1, there exists a constant Cσ, depending only onσ, such that
for all multi-indicesµ ∈ N3, |µ| ≥ 1,

∑

1≤|β|≤|µ|

1

|β|3
≤ Cσ |µ|

σ−1 , (5)

and
∑

1≤|β|≤|µ|−1

1

|β|2 (|µ| − |β|)
≤ Cσ |µ|

σ−1 . (6)

Proof For each positive integerl, we denote byN {|β| = l} the number of the multi-
indicesβ with |β| = l. In the case when the space dimension equals to 3, one has

N {|β| = l} =
(l + 2)!

2! l!
=

1
2

(l + 1)(l + 2).

It’s easy to see that

∑

1≤|β|≤|µ|

1

|β|3
≤

|µ|
∑

l=1

∑

|β|=l

1

l3
=

|µ|
∑

l=1

N {|β| = l}

l3

We combine these estimates to compute

∑

1≤|β|≤|µ|

1

|β|3
≤

1
2

|µ|
∑

l=1

(l + 1)(l + 2)
l3

≤ 3
|µ|
∑

l=1

1
l
.
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Together with the fact that 3
∑|µ|

l=1 l−1 ≤ Cσ |µ|
σ−1 for some constantCσ, this gives the

estimate (5). In a similar way as above we can prove the estimate (6). The proof is
completed.

The following lemma, which will be proved in the next section, is of great of use to us.
For simplicity, in the following discussions, we shall use the notationγ− j, with γ a multi-
index andj an integer, to denotes some multi-index ˜γ satisfyingγ̃ ≤ γ and|γ̃| = |µ| − j.

Lemma 2.2. Let σ > 1. There exist constants B,C1,C2 > 0 with B depending only on
the Gevrey indexσ and C1,C2 depending only on M0,E0,H0, σ andγ, such that for all
multi-indicesµ ∈ N3 with |µ| ≥ 2 and all t > 0, we have

d
dt
‖ ‖∂µ f (t)2

L2 +C1‖∇v∂
µ f (t)‖2

L2
γ
≤ C2 |µ|

2 ‖∇v∂
µ−1 f (t)‖2

L2
γ

+ C2

∑

2≤|β|≤|µ|

Cβ
µ‖∇v∂

µ−β+1 f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

β−2

+ C2

∑

0≤|β|≤|µ|

Cβ
µ‖∂

β f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

µ−β,

where Cβµ =
µ!

(µ−β)!β! is the binomial coefficients, and
[

Gσ( f (t))
]

β−2 = ‖∂
β−2 f (t)‖L2 + B|β|−2 ((|β| − 2)!)σ .

From now on,Ωwill be used to denote an arbitrary fixed interval [T0,T1] with 0 < T0 <

T1 < T0 + 1. We denote

Ωρ = [T0 + ρ,T1 − ρ], 0 < ρ <
T1 − T0

2
<

1
2
.

For any integerk with k ≥ 2 and anyρ with 0 < ρ < (T1 − T0)/2, take a function
ϕρ,k(t) ∈ C∞0 (R) satisfying 0≤ ϕρ,k ≤ 1, and Suppϕρ,k ⊂ Ωρ̃ with ρ̃ = k−1

k ρ, andϕρ,k = 1
in Ωρ. it is easy to verify

sup

∣

∣

∣

∣

∣

∣

d jϕρ,k

dt j

∣

∣

∣

∣

∣

∣

≤ C̃ j (k/ρ) j , ∀ j ∈ N. (7)

And for ρ̃ = (k − 1)ρ/k, k ≥ 2, the following simple fact is clear,

1

ρk
≤

1

ρ̃k
=

1

ρk
×

( k
k− 1

)k
≤

5

ρk
. (8)

Now we are prepare to prove the main results, which can be deduced easily from the
following

Proposition 2.3. Let f0 be the initial datum with finite mass, energy and entropy and fbe
any solution of the Cauchy problem satisfying (4). Then forσ > 1, there exists a constant
A, depending only on T0,T1,M0,E0,H0, γ andσ, such that for any k∈ N, k ≥ 0,

(Q)k sup
t∈Ωρ
‖∂α f (t)‖L2 +

{∫ T1−ρ

T0+ρ

‖∇v∂
α̃ f (t)‖2

L2
γ
dt

}1/2

≤
Ak

ρk

[

(k − 1)!
]σ

holds for any multi-indicesα, α̃ with |α| = |α̃| = k and allρ with 0 < ρ < (T1−T0)/2. Here
we assume(−1)! = 0! = 1.

Proof We use induction onk. (Q)0, (Q)1 obviously hold if we takeA large enough such
that

A ≥ sup
s∈[T0,T1]

‖ f (s)‖H2
γ
+ 1 (9)
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The term on the right hand of (9) is finite by virtue of (4). Now assuming (Q)k−1 holds,
we shall show the truth of (Q)k, k ≥ 2. In this proofC j , j ≥ 3, are used to denote different
constants depending only onT0,T1,M0,E0,H0, γ andσ.

Firstly we shall prove

sup
t∈Ωρ
‖∂α f (t)‖L2 ≤

1
2

A|α|

ρ|α|
[

(|α| − 1)!
]σ
, ∀ |α| = k, ∀ 0 < ρ <

T1 − T2

2
. (10)

In the following discussion, letα be any multi-index with|α| = k andρ be any number
with 0 < ρ < (T1 − T2)/2. Applying Lemma 2.2 withµ = α, we obtain

d
dt ‖∂α f (t)‖2L2 +C1‖∇v∂

α f (t)‖2
L2
γ
≤ C2 |α|

2 ‖∇v∂
α−1 f (t)‖2

L2
γ

+ C2

∑

2≤|β|≤|α|

Cβ
α‖∇v∂

α−β+1 f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

β−2

+ C2

∑

0≤|β|≤|α|

Cβ
α‖∂

β f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α−β.

Write the last term of the right side as

C2‖ f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α

+C2
∑

1≤|β|≤|α|C
β
α‖∂

β f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α−β.

And then we get

d
dt ‖∂α f (t)‖2L2 +C1‖∇v∂

α f (t)‖2
L2
γ
≤ C2 |α|

2 ‖∇v∂
α−1 f (t)‖2

L2
γ

+ C2‖ f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α

+ C2

∑

2≤|β|≤|α|

Cβ
α‖∇v∂

α−β+1 f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

β−2

+ C2

∑

1≤|β|≤|α|

Cβ
α‖∂

β f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α−β.

Multiplying by ϕρ,k(t) the both sides of the above inequality, one has

d
dt

[

ϕρ,k(t)‖∂
α f (t)‖2L2

]

+C1ϕρ,k(t)‖∇v∂
α f (t)‖2

L2
γ

≤
dϕρ,k

dt
· ‖∂α f (t)‖2L2 +C2 · ϕρ,k(t) |α|

2 ‖∇v∂
α−1 f (t)‖2

L2
γ

+ C2 · ϕρ,k(t) ‖ f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α

+ C2 · ϕρ,k(t)
∑

2≤|β|≤|α|

Cβ
α‖∇v∂

α−β+1 f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

β−2

+ C2 · ϕρ,k(t)
∑

1≤|β|≤|α|

Cβ
α‖∂

β f (t)‖L2
γ
· ‖∇v∂

α−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

α−β.

To simplify the notation, we set
[

Gσ( f )
]

ρ,β = sup
s∈Ωρ

[

Gσ( f (s))
]

β = sup
s∈Ωρ
‖∂β f (s)‖L2 + B|β|(|β|!)σ.

Recall Suppϕρ,k ⊂ Ωρ̃ with ρ̃ = (k − 1)ρ/k andϕρ,k(t) = 1 for all t ∈ Ωρ andϕρ,k(T0) = 0.
Then for anyt ∈ Ωρ,we integrate the above inequality over the interval [T0, t] ⊂ [T0,T1−ρ]
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and then use Cauchy inequality to get

‖ ‖∂α f (t)2
L2 = ϕρ,k(t)‖∂

α f (t)‖2L2 − ϕρ,k(T0) ‖∂α f (T0)‖2L2

≤ sup

∣

∣

∣

∣

∣

∣

dϕρ,k
dt

∣

∣

∣

∣

∣

∣

∫ T1−ρ̃

T0+ρ̃

‖∂α f (s)‖2L2ds+C2 |α|
2
∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

+ C2 sup
s∈Ωρ̃
‖ f (s)‖L2

γ
·

{∫ T1−ρ̃

T0+ρ̃

[

Gσ( f (s))
]2
αds

}

1
2
{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

}

1
2

+ C2

∑

2≤|β|≤|α|

Cβ
α

[

Gσ( f )
]

ρ̃, β−2

{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−β+1 f (s)‖2

L2
γ
ds

}

1
2

×

{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

}

1
2

+ C2

∑

1≤|β|≤|α|

Cβ
α

[

Gσ( f )
]

ρ̃,α−β

{∫ T1−ρ̃

T0+ρ̃

‖∂β f (s)‖2
L2
γ
ds

}

1
2
{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

}

1
2

= (S1) + (S2) + (S3) + (S4) + (S5).

In order to treat the above five terms, we need the following estimates which are deduced
directly from the the induction hypothesis. By the truth of (Q)k−1, we have

{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

}1/2

≤
A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ; (11)

{

∫ T1−ρ̃

T0+ρ̃
‖∇v∂

α−β+1 f (s)‖2
L2
γ

ds
}

1
2
≤ A|α|−|β|+1

ρ̃|α|−|β|+1

[

(|α| − |β|)!
]σ
, 2 ≤ |β| ≤ |α| ; (12)

and
{∫ T1−ρ̃

T0+ρ̃

‖∂β f (s)‖2
L2
γ
ds

}1/2

≤
A|β|−1

ρ̃|β|−1

[

(|β| − 2)!
]σ
, 2 ≤ |β| ≤ |α| . (13)

the last inequality using the fact‖∂β f ‖L2
γ
≤ ‖∇v∂

β−1 f ‖L2
γ

for any β with 2 ≤ |β| ≤ α.

Observe that there exists a constantB̃ > 1, depending only onB andσ, such that
{

Bm (m!)σ ≤ B̃m ((m− 1)!)σ , 1 ≤ m≤ |α| − 1,
B|α| (|α|!)σ ≤ B̃|α|−1 ((|α| − 2)!)σ .

With (13), one has, by takingA such thatA ≥ B̃,
{∫ T1−ρ̃

T0+ρ̃

[

Gσ( f (s))
]2
αds

}1/2

≤
2A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ
. (14)

Next we shall treat the term
[

Gσ( f )
]

ρ̃,λ which equals to sups∈Ωρ̃ ‖∂
λ f (s)‖L2 + B|λ| (|λ|!)σ by

definition. It follows from the truth of (Q)k−1 again that

sup
t∈Ωρ̃
‖∂λ f (t)‖L2 ≤

A|λ|

ρ̃|λ|
((|λ| − 1)!)σ , ∀λ, 1 ≤ |λ| ≤ k− 1,

from which and the factA ≥ B̃, we get the estimate on
[

Gσ( f )
]

ρ̃,λ, that is,

[

Gσ( f )
]

ρ̃,λ ≤
2A|λ|

ρ̃|λ|
((|λ| − 1)!)σ , 1 ≤ |λ| ≤ |α| − 1. (15)
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Now the above estimates allow us to deal with the terms from (S1) to (S5). Note that
‖∂α f (s)‖L2 ≤ ‖∂α f (s)‖L2

γ
and hence from (7) and (13), it follows immediately that

(S1) ≤
C3k
ρ

{

A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ

}2

.

This along with the factsk = |α| andρ−1 < ρ̃−1 < ρ̃−2 shows at once

(S1) ≤ C4

{

A|α|−1

ρ̃|α|
[

(|α| − 1)!
]σ

}2

. (16)

And by virtue of (11), we obtain

(S2) ≤ C2 |α|
2
{

A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ

}2
≤ C5

{

A|α|−1

ρ̃|α|−1

[

(|α| − 1)!
]σ

}2
. (17)

For the term (S3), Combining (9), (11) and (14), one has

(S3) ≤ C6A

{

A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ

}2

. (18)

The treatment of the terms (S4) is a little more complicated. Write (S4) = (S4)′ + (S4)
′′

with

(S4)′ = C2
∑

|β|=2
Cβ
α

[

Gσ( f )
]

ρ̃,0

{

∫ T1−ρ̃

T0+ρ̃
‖∇v∂

α−β+1 f (s)‖2
L2
γ

ds
} 1

2
{

∫ T1−ρ̃

T0+ρ̃
‖∇v∂

α−1 f (s)‖2
L2
γ

ds
} 1

2

and

(S4)
′′

= C2

∑

3≤|β|≤|α|

Cβ
α

[

Gσ( f )
]

ρ̃,β−2

{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−β+1 f (s)‖2

L2
γ
ds

}

1
2

×

{∫ T1−ρ̃

T0+ρ̃

‖∇v∂
α−1 f (s)‖2

L2
γ
ds

}

1
2

.

It is easy to verify that, by (9), (11) and (12),

(S4)′ ≤ C7A |α|2
{

A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ

}2

≤ C8A

{

A|α|−1

ρ̃|α|−1

[

(|α| − 1)!
]σ

}2

.

And by virtue of (11) and (15), we know (S4)
′′

is bounded from above by
∑

3≤|β|≤|α|
C3|α|!

|β|!(|α|−|β|)!
A|β|−2

ρ̃|β|−2

[

(|β| − 3)!
]σ A|α|−|β|+1

ρ̃|α|−|β|+1

[

(|α| − |β|)!
]σ A|α|−1

ρ̃|α|−1

[

(|α| − 2)!
]σ
,

from which we get

(S4)
′′

≤ C9

{

A|α|−1

ρ̃|α|−1

}2
[

(|α| − 2)!
]σ

∑

3≤|β|≤|α|

|α|!
|β|!(|α| − |β|)!

[

(|β| − 3)!
]σ[(|α| − |β|)!

]σ
.

Direct verification shows that
∑

3≤|β|≤|α|

|α|!
|β|!(|α| − |β|)!

[

(|β| − 3)!
]σ[(|α| − |β|)!

]σ
≤

[

(|α| − 1)!
]σ

∑

3≤|β|≤|α|

6 |α|

|β|3

≤ C10
[

(|α| − 1)!
]σ
|α|σ (by(5)).



8 HUA CHEN, WEI-XI LI AND CHAO-JIANG XU

Combining these, we get the estimate of (S4)
′′

; that is

(S4)
′′

≤ C11

{

A|α|−1

ρ̃|α|−1

[

(|α| − 1)!
]σ

}2

.

This with the estimate of (S4)′ gives

(S4) = (S4)′ + (S4)
′′

≤ C12A

{

A|α|−1

ρ̃|α|−1

[

(|α| − 1)!
]σ

}2

. (19)

The term (S5) can be handled exactly as above, and we have, by virtue of (6), (9), (11) and
(13),

(S5) ≤ C13A

{

A|α|−1

ρ̃|α|−1

[

(|α| − 1)!
]σ

}2

. (20)

Now combination of (16), (17), (18),(19) and (20) gives that, for all t ∈ Ωρ,

‖∂α f (t)‖2L2 ≤ (S1) + (S2) + (S3) + (S4) + (S5) ≤ C14A

{

A|α|−1

ρ̃|α|

[

(|α| − 1)!
]σ

}2

.

Note that ˜ρ−|α| = ρ̃−k ≤ 5ρ−|α| by (8), and hence the above inequality yields

‖∂α f (t)‖2L2 ≤ C15A

{

A|α|−1

ρ|α|
[

(|α| − 1)!
]σ

}2

, ∀ t ∈ Ωρ.

TakingA large enough such thatA ≥ 16 max
{

sup
s∈[T0,T1]

‖ f (s)‖H2
γ
+ 1, B̃, C15

}

, then we get

finally

‖∂α f (t)‖2L2 ≤

{

1
2

A|α|

ρ|α|
[

(|α| − 1)!
]σ

}2

.

The above inequality holds for allt ∈ Ωρ, and hence (10) follows.
In order to finish the proof, it remains to prove

{∫ T1−ρ

T0+ρ

‖∇v∂
α̃ f (t)‖2

L2
γ
dt

}

1
2

≤
1
2

A|α|

ρ|α|
[

(|α| − 1)!
]σ
, ∀ |α̃| = k, ∀ 0 < ρ <

T1 − T0

2
. (21)

And it can be handled exactly as (10). The only difference is that the multi-indexα and the
term‖∂α f (t)‖2

L2 = ϕρ,k(t)‖∂
α f (t)‖2

L2−ϕρ,k(T0)‖∂α f (T0)‖2
L2 appearing in the above argument

will be replace respectively by ˜α and

C1

∫ T1−ρ

T0+ρ

‖∇v∂
α̃ f (s)‖2

L2
γ
ds≤ C1

∫ T1−ρ̃

T0+ρ̃

ϕρ,k(s)‖∇v∂
α̃ f (s)‖2

L2
γ
ds.

Finally, combination of (10) and (21) gives the truth of (Q)k. This completes the proof
of Proposition 2.3.

3. Proof of Lemma 2.2

For simplicity , in this section,∂vivj āi j andāi j will stand for
∑

1≤i, j≤3 ∂vivj āi j and
∑

i, j āi j ,

respectively. In the sequelC is used to denote different constants which can be replaced
by a larger one and depend only onγ, the Gevrey indexσ, and the initial massM0, the
initial energyE0 and the initial entropyH0.

Our starting point is the following uniformly ellipticity property of the matrix (¯ai j ), cf.
Proposition 4 of [11].
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Lemma 3.1. There exists a constant K, depending only onγ and M0,E0,H0, such that
∑

1≤i, j≤3

āi j (t, v)ξiξ j ≥ K(1+ |v|2)γ/2 |ξ|2 , ∀ ξ ∈ R3. (22)

Remark 3.2. Although the ellipticity of(ai j ) was proved in[11] under the hard potential
caseγ > 0, it’s still true for γ = 0, the Maxwellian case. This can be seen in the proof of
Proposition 4 of[11].

Lemma 3.3. There exists a constant B, depending only on the Gevrey indexσ > 1, such
that for all multi-indicesβ with |β| ≥ 2 and all g, h ∈ L2

γ(R
3),

∫

R3(∂
βāi j (t, v))g(v)h(v)dv ≤ C‖g‖L2

γ
‖h‖L2

γ

[

Gσ( f (t))
]

β−2, ∀ t > 0,

where
[

Gσ( f (t))
]

β−2 =
{

‖∂β−2 f (t)‖L2 + B|β|−2[(|β| − 2)!
]σ

}

.

Proof Forσ > 1, there exists a functionψ ∈ Gσ
0 (R3) compact support in

{

v ∈ R3 | |v| ≤ 2
}

,

satisfyingψ(v) = 1 on the ball
{

v ∈ R3 | |v| ≤ 1
}

, and moreover for some constantL > 4
depending only onσ,

sup
∣

∣

∣∂λψ
∣

∣

∣ ≤ L|λ|(|λ|!)σ, ∀ λ. (23)

For the construction ofψ, see [16] for example. Writeai j = ψai j + (1 − ψ)ai j . Then
āi j = (ψai j ) ∗ f + [(1 − ψ)ai j ] ∗ f , and hence

∂βāi j =
[

∂β̃(ψai j )
]

∗ (∂β−β̃ f ) +
{

∂β
[

(1− ψ)ai j
]

}

∗ f ,

whereβ̃ is an arbitrary multi-index satisfying̃β ≤ β and |β̃| = 2. We firstly treat the term
[

∂β̃(ψai j )
]

∗ (∂β−β̃ f ). It is easy to verify that for all̃β with
∣

∣

∣β̃
∣

∣

∣ = 2,
∣

∣

∣(∂β̃ai j )(v− v∗)
∣

∣

∣ ≤ C |v− v∗|
γ ,

from which, we can compute
∣

∣

∣

∣

[

∂β̃(ψai j )
]

∗ (∂β−β̃ f )(v)
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

R3

[

∂β̃(ψai j )
]

(v− v∗) · (∂β−β̃ f )(v∗)dv∗
∣

∣

∣

∣

≤ C
∫

{|v∗−v|≤2}

∣

∣

∣

∣

(∂β−β̃ f )(v∗)
∣

∣

∣

∣

dv∗

≤ C‖∂β−2 f (t)‖L2.

Next the term
{

∂β
[

(1− ψ)ai j
]

}

∗ f , we use Leibniz’s formula to get
∣

∣

∣

(

∂β
[

(1− ψ)ai j
])

∗ f (v)
∣

∣

∣

=

∣

∣

∣

∑

0≤|λ|≤|β|C
λ
β

∫

R3

[

∂β−λ(1− ψ)
]

(v− v∗) ·
(

∂λai j

)

(v− v∗) · f (t, v∗)dv∗
∣

∣

∣

≤
∣

∣

∣

∑

0≤|λ|≤|β|−1 Cλ
β

∫

{1≤|v∗−v|≤2}

(

∂β−λψ
)

(v− v∗) ·
(

∂λai j

)

(v− v∗) · f (t, v∗)dv∗
∣

∣

∣

+

∣

∣

∣

∫

{|v∗−v|≥1}

[

(1− ψ)
]

(v− v∗) ·
(

∂βai j

)

(v− v∗) · f (t, v∗)dv∗
∣

∣

∣

= J1 + J2.

In view of (2), we can find a constant̃C, such that for all multi-indicesλ,
∣

∣

∣

∣

(

∂λai j

)

(v− v∗)
∣

∣

∣

∣

≤ C̃|λ| |λ|! for 1 ≤ |v∗ − v| ≤ 2.

And for all β with |β| ≥ 2,
∣

∣

∣

∣

(

∂βai j

)

(v− v∗)
∣

∣

∣

∣

≤ C̃|β| |β|!(1 + |v∗|
γ
+ |v|γ) for |v∗ − v| ≥ 1.
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These along with (23) give the upper bound ofJ1 andJ2,

J1 ≤ L|β|(|β|!)σ · ‖ f (t)‖L1

∑

0≤|λ|≤|β|−1

(

C̃
L

)|λ|

; J2 ≤ 2C̃|β|(|β|!)σ · ‖ f (t)‖L1
γ
(1+ |v|γ).

By takingL large enough such thatL ≥ 2C̃, then we get

J1 + J2 ≤ C‖ f (t)‖L1
γ
L|β|(|β|!)σ(1+ |v|2)γ/2.

This along with the fact‖ f (t)‖L1
γ
≤ M0 + 2E0 gives at once

∣

∣

∣

∣

(

∂
β
v
[

(1− ψ)ai j
])

∗ f (v)
∣

∣

∣

∣

≤ J1 + J2 ≤ CL|β|(|β|!)σ(1+ |v|2)γ/2.

Now we choose a constantB such thatL|β|(|β|!)σ ≤ B|β|
[

(|β| − 2)!
]σ
. From the above in-

equality it follows immediately that
∣

∣

∣

∣

(

∂
β
v
[

(1− ψ)ai j
])

∗ f (v)
∣

∣

∣

∣

≤ CB|β|−2[(|β| − 2)!
]σ(1+ |v|2)γ/2.

Combining the estimate on the term
[

∂2(ψai j )
]

∗ (∂|β|−2 f ), one has
∣

∣

∣∂βāi j (v)
∣

∣

∣ ≤ C
{

‖∂β−2 f (t)‖L2 + B|β|−2[(|β| − 2)!
]σ
· (1+ |v|2)γ/2

}

≤ C
[

Gσ( f (t))
]

β−2 · (1+ |v|
2)γ/2.

Together with Cauchy’s inequality, we get the desired inequality.
In quite similar argument, we have the following

Lemma 3.4. For all multi-indicesβ with |β| ≥ 0 and all g, h ∈ L2
γ(R

3), one has
∫

R3(∂
βc̄(t, v))g(v)h(v)dv ≤ C‖g‖L2

γ
‖h‖L2

γ
·
[

Gσ( f (t))
]

β, ∀ t ≥ 0.

The rest of the paper is devoted to

Proof of Lemma 2.2.Let b j = ∂vi ai j (v) = −2 |v|γ v j . Then we have the following relation

∂vi āi j (v) = b̄ j(v), ∂vj b̄ j = c̄.

Since f satisfies∂t f = āi j∂viv j f − c̄ f, then direct verification shows

d
dt
‖∂µ f (t)‖2L2 = 2

∫

R3

[

∂t∂
µ f (t, v)

]

·
[

∂µ f (t, v)
]

dv

= 2
∫

R3

[

∂µ
(

āi j∂vivj f − c̄ f
)]

·
[

∂µ f (t, v)
]

dv.

Moreover, using Leibniz’s formula on the term∂µ
(

āi j∂vivj f − c̄ f
)

, one has

∂t‖∂
µ f (t)‖2L2 = 2

∫

R3
āi j

(

∂vivj∂
µ f

)

·
(

∂µ f
)

dv

+2
∑

|β|=1

Cβ
µ

∫

R3

(

∂βāi j

) (

∂vivj∂
µ−β f

)

·
(

∂µ f
)

dv

+2
∑

2≤|β|≤|µ|

Cβ
µ

∫

R3

(

∂βāi j

) (

∂vivj∂
µ−β f

)

·
(

∂µ f
)

dv

−2
∑

0≤|β|≤|µ|

Cβ
µ

∫

R3

(

∂µ−βc̄
) (

∂β f
)

·
(

∂µ f
)

dv

= (I ) + (II ) + (III ) + (IV).

We shall proceed to treat the above terms by the following steps.
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Step 1. Upper bound for the term (I ).

Integrating by parts, one has

(I ) = −2
∫

R3
āi j

(

∂vj∂
µ f

)

·
(

∂vi∂
µ f

)

dv− 2
∫

R3
b̄ j

(

∂vj∂
µ f

)

·
(

∂µ f
)

dv

= (I )1 + (I )2.

The ellipticity property (22) of (ai j ) gives that

(I )1 ≤ −2K
∫

R3

∣

∣

∣∇v∂
µ f

∣

∣

∣

2
(1+ |v|2)γ/2dv= −2K‖∇v∂

µ f (t)‖2
L2
γ
.

For the term (I )2, integrating by parts again, we have

(I )2 = −(I )2 + 2
∫

R3
c̄
(

∂µ f
)

·
(

∂µ f
)

dv.

This along with the fact|c̄(v)| ≤ C‖ f (t)‖L1
γ
(1+ |v|2)γ/2 ≤ C(1+ |v|2)γ/2 shows immediately

(I )2 ≤ C‖∂µ f (t)‖2
L2
γ
≤ C‖∇v∂

µ−1 f (t)‖2
L2
γ
.

Combining these, we get the estimate on the term (I ), that is

(I ) ≤ −2K‖∇v∂
µ f (t)‖2

L2
γ
+C‖∇v∂

µ−1 f (t)‖2
L2
γ
. (24)

Step 2. Upper bound for the term (II ).

Recall (II ) = 2
∑

|β|=1 Cβ
µ

∫

R3

(

∂βāi j

) (

∂vivj∂
µ−β f

)

· (∂µ f ) dv. Integrating by parts, we get

(II ) = −2
∑

|β|=1 Cβ
µ

∫

R3

(

∂βb̄ j

) (

∂vj∂
µ−β f

)

· (∂µ f ) dv

− 2
∑

|β|=1 Cβ
µ

∫

R3

(

∂βāi j

) (

∂vj∂
µ−β f

)

·
(

∂vi∂
µ f

)

dv

= (II )1 + (II )2.

Note
∣

∣

∣∂βb̄ j(t, v)
∣

∣

∣ ≤ C(1+ |v|2)γ/2 for anyβ with |β| = 1 and hence

(II )1 ≤ C |µ| · ‖∇v∂
µ−β f (t)‖L2

γ
‖∂µ f (t)‖L2

γ
≤ C |µ| · ‖∇v∂

µ−1 f (t)‖2
L2
γ
.

For the term (II )2, noticing thatµ = β + (µ − β), it can be rewritten as the following form

(II )2 = −2
∑

|β|=1 Cβ
µ

∫

R3

(

∂βāi j

) (

∂vj∂
µ−β f

)

·
(

∂β∂vi∂
µ−β f

)

dv.

Since|β| = 1, we can integrate by parts to get

(II )2 = 2
∑

|β|=1 Cβ
µ

∫

R3

(

∂βāi j

) (

∂vj∂
µ f

)

·
(

∂vi∂
µ−β f

)

dv

+2
∑

|β|=1 Cβ
µ

∫

R3

(

∂β+βāi j

) (

∂vj∂
µ−β f

)

·
(

∂vi∂
µ−β f

)

dv

= −(II )2 + 2
∑

|β|=1 Cβ
µ

∫

R3

(

∂β+βāi j

) (

∂vj∂
µ−β f

)

·
(

∂vi∂
µ−β f

)

dv.

Hence

(II )2 =
∑

|β|=1 Cβ
µ

∫

R3

(

∂β+βāi j

) (

∂vj∂
µ−β f

)

·
(

∂vi∂
µ−β f

)

dv.

This along with the fact
∣

∣

∣∂β+βāi j (v)
∣

∣

∣ ≤ C(1+ |v|2)γ/2 for all β with |β| = 1 shows at once

(II )2 ≤ C
∑

|β|=1

Cβ
µ · ‖∇v∂

µ−β f ‖2
L2
γ
≤ C |µ| · ‖∇v∂

µ−1 f ‖2
L2
γ
.

Combining these, we obtain

(II ) ≤ C |µ| · ‖∇v∂
|µ|−1 f ‖2

L2
γ
. (25)
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Step 3. Upper bound for the term (III ) and (IV) and the conclusion.

Recall (III ) = 2
∑

2≤|β|≤|µ|C
β
µ

∫

R3

(

∂βāi j

) (

∂vivj∂
µ−β f

)

· (∂µ f ) dv and

(IV) = −2
∑

0≤|β|≤|µ|

Cβ
µ

∫

R3

(

∂µ−βc̄
) (

∂β f
)

·
(

∂µ f
)

dv.

By virtue of Lemma 3.3 and lemma 3.4, it follows that

(III ) ≤ C
∑

2≤|β|≤|µ|C
β
µ‖∂vivj∂

µ−β f (t)‖L2
γ
· ‖∂µ f (t)‖L2

γ

[

Gσ( f (t))
]

β−2

≤ C
∑

2≤|β|≤|µ|C
β
µ‖∇v∂

µ−β+1 f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ

[

Gσ( f (t))
]

β−2,
(26)

and
(IV) ≤ C

∑

0≤|β|≤|µ|

Cβ
µ‖∂

β f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

µ−β. (27)

Combination of (24)-(27) gives the desired inequality

d
dt

‖∂µ f (t)‖2
L2 +C1‖∇v∂

µ f (t)‖2
L2
γ

≤ C2 |µ|
2 ‖∇v∂

µ−1 f (t)‖2
L2
γ

+C2
∑

2≤|β|≤|µ|C
β
µ‖∇v∂

µ−β+1 f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

β−2

+C2
∑

0≤|β|≤|µ|C
β
µ‖∂

β f (t)‖L2
γ
· ‖∇v∂

µ−1 f (t)‖L2
γ
·
[

Gσ( f (t))
]

µ−β,

whereC1,C2 are two constants depending only onM0,E0,H0, σ andγ. This completes
the proof of Lemma 2.2.
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