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GEVREY REGULARITY FOR THE SOLUTION OF THE SPATIALLY
HOMOGENEOUS LANDAU EQUATION

HUA CHEN, WEI-XI LI AND CHAO-JIANG XU

AsstrAcT. In this paper, we study the Gevrey class regularity fortsas of the spatially
homogeneous Landau equations in the hard potential caghaibxwellian molecules
case.

1. INTRODUCTION

In this paper we study the smoothneskeets of solutions for the following Cauchy
problem of the spatially homogeneous Landau equation

{ of =V, -{ fR3 a(v—v)[f(v.)Vyf(v) - F(VV, F(v.)]dv.}, )
f(0,v) = fo(v),

wheref(t,v) > 0 stands for the density of particles with velocitg R3 at timet > 0, and
(&) is a nonnegative symmetric matrix given by

a;(v) = (cx - %) w2, @

We only consider here the conditigne [0, 1]. It's called the hard potential case when
v €]0, 1] and the Maxwellian molecules case wheg 0.
Setc = 21, dyv &) = —2(y + 3)M” and

&j(tv) = (aj « f) (tV) = f aj(v-v,)f(t,v.)dv, C=cxf.
R3
Then the Cauchy problerfi (1) can be rewritten as the follovidng,

£(0,V) = fo(v).

This is a non-linear diusion equation, and the déieientsa;j, c depend on the solutiofi
Here we are mainly concerned with the Gevrey class regyloitthe solution of the
Landau equation. This equation is obtained as a limit of thkzBhann equation when the
collisions become grazing (sdé [8] and references therBiegently, a lot of progress has

been made on the study of the Sobolev regularizing propefity§, [13,[18,[1B[ 9] and
references therein, which shows that in some sense the Laogetion can be regarded as
a non-linear and non-local analog of the hypo-elliptic FerkRlanck equation. That means
the weak solution, which constructed under rather weak thgsis on the initial datum,
will become smooth or, even more, rapidly decreasing at infinity. This behavior is
quite similar to that of the spatially homogeneous Boltzmaquation without cut{d (see
[B, Q] for more details).

®3)
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In the Gevrey class frame, some results have been obtaimegcing the propagation
property for solutions of the Boltzmann equation, e.g. tbletsons having the Gevrey
regularity have been constructed n][17] for initial dataihg the same Gevrey regularity,
and the uniform propagation in all time of the Gevrey regtydras been proved iff][9] in
the case of Maxwellian molecules. Recently a general Genagylarity result have been
given in [13] for spatially homogeneous and linear Boltzmaguation for any initial data.
On the other hand, the local Gevrey regularity for all vagal, x, v is obtained in [[4] for
some semi-linear Fokker-Planck equations, which imphes, tin this case, there are also
the smoothnesdiects which is similar to the heat equation case.

Now we give some notations used throughout the paper. Fottaimiex « = (a1, a2, a3),
we denotéa| = a1+az+as, a! = arlaslas! andd” = 4710y20,2. We sayB = (81,82, 83) <
(a1, a2, @3) = a if B < «; for eachi. Denote byM(f(t)), E(f(t)) andH(f(t)) respectively
the mass, energy and entropy of the functfdt), i.e.,

M(f(t)):[Rsf(t,v)dv, E(f(t)):%Lgf(t,v)|v|2 dv,

H(f (1) = fRs £(t,v) log f(t, v) dv.

and denotéMy = M(f(0)), Eq = E(f(0)) andHo = H(f(0)). We know that the solution of
the Landau equation satisfies the formal conservation laws:

M(f(®) = Mo, E(f() = Eo, H(f®)) <Ho V0.

Also we adopt the following notations,

(04 V04 Yo% /2
10 £ (t, Py = 116° FOIPy =f 07 £t V)| (1 + M2)™ " dv, for p> 1,
S S R3

IRy = 1T @Iy = D 10"t
lal<m
Before stating our main result, let us recall the definitibrthe Gevrey class function
spaceG”(RN), whereo > 1 is the Gevrey index (cf.[J4, .6]). Let be a real function
defined inRN. We sayu € G"(RN) if u e C*(RN) and there exists a positive const&ht
such that for all multi-indices € NN, we have

10Ul 2y < C*HE ()

We denote byG (R®) the space of Gevrey functions with compact support. Noge th
GY(RN) is the space of real analytic functions.

In the hard potential case, the existence, uniqueness dualesaegularity of the weak
solution had been studied by Desvillettes and Villani (§£H,[Theorem 5, Theorem 6
and Theorem 7). Actually they proved that, under rather vasakimptions on the initial
datum (for instance ify € L1 . with § > 0), there exists a weak solutidnof the Cauchy

245
problem [B) such that for alrtimt@ > 0, all integerm > 0, and alls > 0,

supllf(t, )line < C,
t>tp

whereC is a constant depending only an Mg, Eg, Hog, m, s andty. Furthermore they
proved thatf (t,v) € C*(R{; S(R3)), whereR; =]0, +oo[ and S(RZ) denotes the space of
smooth functions rapidly decreasing at infinity. fif € L% with p > 5y + 15, then the
Cauchy problem admits a unigue smooth solution .
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In the Maxwellian case, Villani[39] proved that the Cauchglgem admits a unique
classical solutionf for any initial datum and for ali > O, and thatf is bounded and lies
in C(R3).

Now starting from the smooth solution, we state our mainltesiuthe Gevrey regularity
as follows.

Theorem 1.1. Let f be the initial datum with finite mass, energy and entropy arize f
any solution of the Cauchy problef (3) such that for @l with 0 < to < t; < +o0, and
all integer m> 0,

sup [If(t, )llhm < +oo. (4)
te[to,ta]

Then for any number > 1, we have {t,-) € G”(R3) for all time t > 0.

Remark 1.2. Our result, which is given here for the space dimension todomkto 3, will
also be true for any space dimension.

This paper includes three sections. The proof of the maultr@heorem[ 1]1 will be
given in Sectior}]2, and in Sectiph 3 we shall mainly prove Lexf#h®, which is crucial in
the proof of Sectiofl]2.

2. PROOF OF THE MAIN RESULTS

This section is devoted to the proof of the main result. Ingbguel, we always use
21<pi< 10 denotes the summation over all the multi-indigesatisfyings < u and 1<
1B < |ul. Likewise}’1j<),-1 denotes the summation over all the multi-indigesatisfying
B <pand 1< |B] < |u| — 1. Firstly we have

Lemma 2.1. For anyo > 1, there exists a constant,Cdepending only owr, such that
for all multi-indicesu € N3, |u| > 1,

1
< Co ", (5)
1<Iﬁzl<lu| |'3|3

and

1
1<wz<|;¢| BEG -y (6)

Proof For each positive integdr we denote byN {|8] = I} the number of the multi-

indicesp with |8] = I. In the case when the space dimension equals to 3, one has
o +2) 1
N{Bl =1} = oI 2(I + 1)(1 + 2).

It's easy to see that

1 1 HNgg =
e erZ%
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Together with the fact thatgl’i'l I-1 < C, |ul”* for some constan€,, this gives the
estimate [(5). In a similar way as above we can prove the esif. The proof is
completed.

The following lemma, which will be proved in the next sectiaof great of use to us.
For simplicity, in the following discussions, we shall uke notationy — j, with y a multi-
index andj an integer, to denotes some multi-indezatisfyingy < y andly| = |u| — j.

Lemma 2.2. Leto > 1. There exist constants, 81,C, > 0 with B depending only on
the Gevrey index- and G, C, depending only on W Ep, Hp, o andy, such that for all
multi-indicesu € N3 with |u| > 2 and all t > 0, we have

d
g I 19T + Cllvad fOIF, < Colul IV I,
+ Co ). CAIVW POl - 190 Ollz - [Go(FO)]-2
2<|BI< ul
+ Co D ChPTOI - 1IN Oz - [Go(FO)],p
0<|BI<|ul

where G = #’)!ﬂ! is the binomial cogicients, and

[Go(f(1)]5_p = P2 E(®)ll2 + BA2 (181 - 2)1)” .

From now onQ will be used to denote an arbitrary fixed interv@}[T1] with 0 < Tp <
T1 < To + 1. We denote
T1-Tp 1

2 7
For any integek with k > 2 and anyp with 0 < p < (T; — Tp)/2, take a function
@pk(t) € C5'(R) satisfying 0< ¢,k < 1, and Sup,k € Q5 with p = ";klp, andg,x =1
in Q,. itis easy to verify

Q,=[To+p,T1-p], O0<p<

dig . .
sup . J <Cj(k/p), VYjeN @)
And forp = (k- 1)p/k, k= 2, the following simple fact is clear,
1 1
— <= x (1 ) <= (8)
P K

Now we are prepare to prove the main results, which can beceedeasily from the
following

Proposition 2.3. Let f be the initial datum with finite mass, energy and entropy ate f
any solution of the Cauchy problem satisfyifi (4). Thervfor 1, there exists a constant
A, depending only ongl T1, Mg, Eg, Ho, ¥ and o, such that for any k N, k > 0,

Ti-p V2 pk

(Qx  supllo” f(®)ll 2 + {f |V\,a“f(t)||2 dt} S [(k n1”
teQ, To+p

holds for any multi-indiceg, @ with || = |a| = k and allp With 0<p < (Ty—Ty)/2 Here

we assumé-1)! = 0! = 1.

Proof We use induction ok. (Q)o, (Q)1 obviously hold if we takeA large enough such
that

A> sup [If(Ilhe +1 ©)
se[To, T4l
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The term on the right hand of|(9) is finite by virtue ¢f (4). Nogsaming Q)x_1 holds,
we shall show the truth ofQ)k, k > 2. In this proofC;, j > 3, are used to denoteftérent
constants depending only d, T1, Mg, Eo, Ho, v ando-.
Firstly we shall prove
1A T -T

suplld®f ()l < =—[(lal - 1)1, VY lel=k VYO0<p<——-2  (10)

teQ, 2p|a| 2
In the following discussion, lek be any multi-index witha| = k andp be any number
with 0 < p < (T1 — T2)/2. Applying Lemmd 2.2 with: = «, we obtain

G 107 FOIE2 + Callvud” FOIF, < Colol® 940" FOIF,

dt

+ Co Y. CAIVW P Ml - IV Oz - [Go (T,
2<|BI<]al

+ Co Y CAIPTOIz - V™ Ol - [GolfO)],p
0<|BI<]al

Write the last term of the right side as
Call fOllz - IV F Ol - [Go(F ()],
+Co Ya<ipi<iol CollP Ol z - V60" F Ol 2 - [Gor(F ()],
And then we get

G 10" T + CallVud” FOIF; < Colel* 190" FOIF,

+ Callf@®)lz - IV Ol - [Go (T,

+ Co D ChV POl - 950" Oz - [Go(FM)],o
2<|8I<]al

+ Co D ChIPI®Iz - 900" T Oll2 - [Co(FO)],p
1<l

Multiplying by ¢, k(t) the both sides of the above inequality, one has
G [eox®I0" FOIE] + Cagpu DIV FOIFE,

d‘:op,k
dt
+ Cogpi® I Ollz - V™ B)ll2 - [Go(F(1)],

+ C2 . (pp,k(t) Z C§||V\,(9"_ﬂ+1f(t)ll|_5 : ||Vvaa_lf(t)”|_§ ) [Ga(f(t))]ﬂ—z
2<|BI<]a]

+ Cogpu® Y. CRIPTWOIz - 900" M O)l2 - [Co(F ()],
1<IBI<]al

<

10" Iz + Co - Ol V0" DI,

To simplify the notation, we set
[Go()], 5 = Sl;)p[GO'(f(S))]IB = sup|la° f(s)ll.2 + BX(8IN .

seQ)y

Recall Suppp,k ¢ Q5 with p = (k- 1L)o/k andg, k(t) = 1 for allt € Q, andg, x(To) = 0.
Then for anyt € Q,,, we integrate the above inequality over the intenfgl f] < [To, T1—p]
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and then use Cauchy inequality to get
I 16 F(©F2 = @ok®IF” F I — @pi(To) 07 (To)lIZ

dopk| (T e o -1 Q12
< sup l6* f(9)IIT.ds+ Cz e IVv0* = £ (IIIF, dS
dt | Jross Tot7
Ti-p , \E( (T AL
o caswptiong{ [ eat@ted { [ imarioias)
Q5 To+p To+p Y

1
T1—0 2
+ G ) Cg[Ga(f)]ﬁ,,g_z{ fT IVy* P (9II2, ds}

2<(BI<lal o+p

1

T1—p 2

X {f IV,0* (I, ds}
T0+p

T1-p 2 T1-p 3
+ G ) Cfi[Ga(f)],;,a_ﬁ{ fT [CRIC] ds} { fT V0" ()7 ds}
otp otp

1<Bi=lol
= (S1) +(S2) + (S3) + (S4) + (Ss).

In order to treat the above five terms, we need the followirignedes which are deduced
directly from the the induction hypothesis. By the truth Q)(_1, we have

T1-p 12 lol-1
{[morttomgas < Siol- 21 v
To+p p
(T o192, ds}_ < Aol - ). 2< Bl < lal;  (12)
and
T1—p Y2 pB-1
{[wrroned < Zma-ar 2spse. 03
0+p

the last inequality using the faﬂﬁﬁflng < ||[Vyo# 1flng for any 8 with 2 < |8 < a.
Observe that there exists a constBnt 1, depending only o8 ando, such that

B™(m)” < B™"(m-1)1)?, l<m<|o|-
{ Bl (lal)” < B ((jo] — 2)1)7 .

With (I3), one has, by taking such thatA > B,

Ti-p Yz oplai-1
([ earonzas) < 2ol -2 14)
T0+,5 p

Next we shall treat the terfiG(f)]; , which equals to supq, 110 f(3)ll2 + BY (]a])7 by
definition. It follows from the truth ofQ)x_; again that

Supld F(Qllz < o A -1, VA 1<i<k-1

teQ;

from which and the facA > B, we get the estimate diG.(f)] ,, that is,

P,
2
(G < 5 (A=) 1M <lal -1 15)
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Now the above estimates allow us to deal with the terms fiSm {0 (Ss). Note that
102 (9|2 < ||<9"f(s)||L§ and hence fron{]7) anfl (13), it follows immediately that

la—1 2
S0 = X Sslar - 217}
p g

This along with the factk = |a| andp™* < 571 < 572 shows at once

Ale-1 2
(S = Ca{ Lol - 117} (16)
And by virtue of [1]L), we obtain
) 2
() < Colof {5 (al - 21"} < Co {2 (ol - 117 an

For the term §3), Combining [P), [1L) and (14), one has

Alal—l
(Se) < CGA{ :
p|a/|—1

2
(ol - 2)!]"} . (18)

The treatment of the term${) is a little more complicated. WriteSg) = (S4)’ + (Sa)”
with

Nl=
NI=

ro_ B T1=p a—p+1 2 T1i—p a-1 2
(Sa) —CzWEZCQ[GU(f)]ﬁ,O{ TV QIZds) | T I (9IR, s

and
1

T1—0 2
||vva“‘ﬁ+1f(s)||i2ds}
Y

S’ = G Z Cﬁ[Ga(f)]ﬁ,g_z{ f )

3<|BI<e] To+p

1

T1—p 2

X {f IV (92 ds} .
To+p

It is easy to verify that, by(]9)[ (11) anf {12),
lof-1 lol-1

2 2
S <ot { 1001~ 217} < con{ Sl - 17}

And by virtue of [IIL) and[(15), we knowBg)” is bounded from above by
23<|ﬂ|<|a| |ﬁ|l80|a|ig|)| f;g 22[(|ﬂ| ) ](Te\[j\‘ uf\‘:i [(| | - I:BD ]U%m(ﬂ - 2)!]0—’
from which we get

|| -1

A _ o | o _ o
(Sa) <Cs{ﬁ| E 1} [(lal - 2)1] 3%% —m LRI N

Direct verification shows that

| - - - 6lal
—[(Iﬁ’l AN [(el = 181)!] [(Jal = 1)1] § —

< Ciol(lel = D7 1™ (by@))

IA

A
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Combining these, we get the estimate $f) ; that is

|or|-1

2
9" < Cu{Slel -}
o

This with the estimate 0f3;)’ gives

lo]-1 2
(S0 = (S + (84 < Caon{ Ssllol -1} 19)

The term Bs) can be handled exactly as above, and we have, by virtyé of)6)11) and
3.
Ale-1 . 2
(Ss) < cm{mmm ~ 1y } | (20)
Now combination of [(16),[(37)[(18],(IL9) an[d|20) gives tiat all t € Qp,
=

2
107 FOIIZ, < (S1) + (S2) + (S3) + (Sa) + (Ss) <C14A{A~| —[ (el - 1)!]0} :

Note thato™® = 57K < 5p71! by @), and hence the above inequality yields

Alal 1
0" O, < clsA{

2
[(la] - 1)!]"}, VieQp.

|

Taking A large enough such thét > 16 max{ sup ||f(S)||H2 +1, B, Cys), then we get
s€[To.T4]
finally

|

2
1 1O, < {3 51001 - D1}

The above inequality holds for alke Q,, and hence[(10) follows.
In order to finish the proof, it remains to prove

1
T1-p lal -
VTR < 22 (-1, viE=k vo<p< B2T0 )
T0+p 2 |a,| 2

And it can be handled exactly §s}(10). The onlffetience is that the multi-indexand the
term|6” f(OI1Z, = @, k(N0” fO)II%, — ¢, x(To)lI6” f (To)lIZ, appearing in the above argument
will be replace respectively by and

T1—p . ) T1-p 5
N R CTRA R P ETL P CTEE
T0+p L4 To+ﬁ
Finally, combination of[(30) and (R1) gives the truth @f)¢. This completes the proof
of Propositior{ 2]3.

3. Proor oF LEmma P.2

For simplicity , in this sectionjy,y;a;; anda;j will stand for 1 ;<3 dvy, &;j andy; j aj,
respectively. In the sequél is used to denote flerent constants which can be replaced
by a larger one and depend only enthe Gevrey indexr, and the initial masy, the
initial energyEg and the initial entropyHo.

Our starting point is the following uniformly ellipticitynoperty of the matrix&;), cf.
Proposition 4 of [T1].
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Lemma 3.1. There exists a constant K, depending onlyyand M, Eq, Hp, such that

D &t vEg = KA+ M2 P, VRS, (22)
147]<3

Remark 3.2. Although the ellipticity ofa;;) was proved iffLd] under the hard potential
casey > 0, it's still true for v = 0, the Maxwellian case. This can be seen in the proof of
Proposition 4 ofL1].

Lemma 3.3. There exists a constant B, depending only on the Gevrey imdex, such
that for all multi-indicesB with |3 > 2and all g h € LZ(R),

2078 (t. V)WV < CligllzlIhil 2 [Go (F(E)]g-p V>0,
where[G,(f())],_, = {192 (t)ll= + BA-?((j81 - 2)1]"}.

Proof Foro > 1, there exists a function € G§(R®) compact supportifv e R® | M < 2},

satisfyingy/(v) = 1 on the ball{v eR3| M < 1}, and moreover for some constdnt- 4
depending only o,

sup|oty| < LY@, v a. (23)
For the construction of, see [1b] for example. Writey; = ya;j + (1 — ¥)aj. Then
aij = (yaij) = f +[(1 — y)a;] = f, and hence

Paj = [Pa)] « (@1 + {11 -v)ay ]} = .

Whereﬁ is an arbitrary multi-index satisfying < g and|3| = 2. We firstly treat the term
[6P(yaij)] = (PP F). Itis easy to verify that for af with |5| = 2,

(@ ai)(v - )
from which, we can compute
[P wap)] « @) = |fe [Panv-w) - @FHw)dvw
<C oy e |(83‘5f)(v*)
< ClloP 2 £ ().
Next the tern{aﬁ[(l - gl/)aij]} % T, we use Leibniz's formula to get
|(0°[(1 - w)aij]) = F(v)|

= | Zoucp C} fis [°4A - w)I(v— W) - (0%ay;) (v— v.) - F(t va)dwe
< | So<ti<-1 Cp Sy, ez (P0) (v = W2 - (0%a5) (v = va) - (1, v.)dw.
| fiy ooy (L= 0V = V) - (PP ) (v = va) - F(t, v )ve

= J1+ J2.

<Clv-v[]",

dv,

In view of (]2), we can find a consta@t such that for all multi-indices,
(72 v-v.

And for all 8 with |8] > 2,
|(8Ba;j) (v— v*)| <CPBIA + v + V") for v, =V > L

<Gl forl<iv,—-v<2
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These along with[(23) give the upper boundlpfand J,

0
VLD (%) P 2 < 28PN IF Ol (L + M)

0<|AI<|BI-1
By taking L large enough such that> 2C, then we get
Ji+ & < CIFOIL L8N 7 (L + M2,

This along with the fach(t)llL% < Mg + 2Eg gives at once
(@11 - wya]) = 1] < I1 + T < CLAGBINT (L + W22,

Now we choose a constaBtsuch that ¥(|g])* < BFI[(|8] - 2)!]”. From the above in-
equality it follows immediately that

@11 - wag)) « T(v)| < CBP2((81 - 217 (1 + WP)2.
Combining the estimate on the tefét(ya;;)] = (9¥-2f), one has
@ (v)] < C{lIF2f(®)ll2 + BA2[(181 - 2)!]7 - (1 + vP)r2)
< CIGo(F()]5_p - (1 + V)2,

Together with Cauchy’s inequality, we get the desired idityu
In quite similar argument, we have the following

Lemma3.4. For all multi-indicesp with |3 > 0 and all g h € LZ(R®), one has
Ja(@Pctt, v)g(Wh(v)dv < Cligllzlihllz - [Go(f()]g. V20

The rest of the paper is devoted to
Proof of Lemm& 2] 2L et bj = dyaj(v) = —2|vI” vj. Then we have the following relation

Ovaij(V) = 6J'(V), aVJBj =C.
Sincef satisfiesd f = &;dyy;f — Cf, then direct verification shows

SIFOR, =2 [a 3T [# v
= 2 [ [0(E;duy, T - D] [t W]

Moreover, using Leibniz’s formula on the tedti (a_jjavivj f— Ef) , one has
2f & (Ouy;0'f) - (0" f)dv
RS

+2Zcﬁf (0°&;) (O, 0 #1) - (") dv
pm1 VR

w2 Y o [ (#8) (0w #1)- @ D

3
2<(BI<lul R

-2 > CﬁLS(W‘ﬁQ(Mf)-(Wf)dV

0<|BI<|ul
M+ Ay + 1) + (1v).

We shall proceed to treat the above terms by the followingsste

Al £ (OIIZ
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Step 1. Upper bound for theterm (I).
Integrating by parts, one has

) = —2fR354,- (8Vja“f).(8Vi(9“f)dv—2fR36j(6vj8"f).(8"f)dv

(D1 + (2.
The ellipticity property [2R) of;) gives that

(1 < —2K fR 3 Vv £ (L + [v)"/2dv = ~2KIV F O
For the term [),, integrating by parts again, we have
(1) = —(1) + szs T ) - (8"F) dv.
This along with the faciE(v)| < CIIf (t)ll1(1 + IM?)?/2 < C(1 + M?)?/2 shows immediately
(D2 < ClI* FOIF; < CIVFOIF;.
Combining these, we get the estimate on the tdipiliat is
(1) < =2K|IV* FOIF; + CIVv* O (24)
Step 2. Upper bound for theterm (I1).
Recall (1) = 2551 Cf; [ (&) (0w, 0P 1) - (9f) dv. Integrating by parts, we get
(1) =-2%3-1Cp [ (bj) (8y,04 P 1) - (1) dv
~ 251 Ch [ (0%a)) (04,04 1) - (9y0# ) dv

= (101 + (12
Note |#bj(t, v)| < C(1 + [v?)/? for anyg with |5 = 1 and hence

(11 < Clul - M POl 21 Ol < Clad - 119 F QI
For the term (1), noticing thatu = 8+ (u — B), it can be rewritten as the following form
()2 =-2%p1Ch [ (0%a)) (0,04 1) - (P04 0P ) dv.
Since|g| = 1, we can integrate by parts to get
()2 = 251Gl s (0°a;) (04,0 ) - (940 P £ ) dv
+2 %511 Cl fos (05 a;) (0y,04 P 1) - (040 P 1) dv
= —()2+ 251 Ch [ (PPa) (0,04 1) - (04,04 1) dv.
Hence
(2 = Ch Lo (PPa) (9y,04 1) - (04,04 1) dv.
This along with the facp?*#a;j(v)| < C(1 + [v/%)*/2 for all g with |5 = 1 shows at once

(N2 <C > Cl- IV PHIE, < Cll - IV I,
1B=1
Combining these, we obtain

(1) < Clul - [Vv0* 1, (25)
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Step 3. Upper bound for theterm (I11) and (1V) and the conclusion.
Recall (1) = 2 oq541 Ch [ (0°&)) (0w, P 1) - (9 1) dvand

Vy=-2 > cﬁf (0"7) (1) - (0 ) dv.
R3

0<|Bl<lul
By virtue of Lemmd3]3 and lemnja B.4, it follows that

(1) < C Zoxpiep Chllduy P EOllz - 19 F Ol 2[Gor(F ()]s

26
< C Socppa CUITH POl 2 - IV Ol 2 G (FO)] (20)
and
(V)<C > CllfOllz - IV Oz - [Co(FO)], - (27)
0<|BI<|ul
Combination of [34){(37) gives the desired inequality
d
— 10 £ (112, + CalIVvd* F(OI12, < Calul? IVv* 2 @)1,
dt L Ly Ly

+C2 22§|ﬁ|§|ﬂ| CﬁHVvaﬂ_ﬂJr:L f (t)|||_$ : ||Vv8#_l f (t)|||_§ : [GO'(f(t))]ﬁ—z
+Co Yo<pie Chll? T O)llz - 1IN0 Ol 2 - [Go (F ()],

whereCy, C, are two constants depending only Bhy, Eg, Ho, o andvy. This completes
the proof of Lemmé 2} 2.
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