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Introduction

In this work, we proceed with the study of the problem of restriction of functions that belongs to Sobolev spaces associated to left invariant vector fields for the Heisenberg group ℍ . We shall assume that ≥ 2. Let us recall that the Heisenberg group is the space ℝ 2 +1 of the (non commutative) law of product In all that follows, we shall denote by this family and state = and + = for in {1, ⋅ ⋅ ⋅ , }. Moreover, for any 1 function , we shall state

⋅ ′ = ( , , ) ⋅ ( ′ , ′ , ′ ) = ( + ′ , + ′ , + ′ + ( | ′ ) -( ′ | ).
∇ ℍ def = ( 1 ⋅ , ⋅ ⋅ ⋅ , 2 ⋅ ).
The key point is that satisfies Hörmander's condition at order 2, which means that the family ( 1 , ⋅ ⋅ ⋅ , 2 , [ 1 , +1 ]) spans the whole tangent space ℝ 2 +1 .

For ∈ ℕ and an open subset of ℍ , we define the associated Sobolev space as following

(ℍ , ) = { ∈ 2 (ℝ 2 +1 ) / Supp ⊂ and ∀ / | | ≤ , ∈ 2 (ℝ 2 +1 ) } , where if ∈ {1, ⋅ ⋅ ⋅ , 2 } ′ , | | def = ′ and def = 1 ⋅ ⋅ ⋅ ′ .
As in the classical case, when is any real number, we can define the function space (ℍ ) through duality and complex interpolation, Littlewood-Paley theory on the Heisenberg group (see [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF]), or Weyl-Hörmander calculus (see [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF], [START_REF] Cancelier | Calcul de Weyl-Hörmander et opérateurs sous-elliptiques[END_REF] and [START_REF] Chemin | Inclusions de Sobolev en calcul de Weyl-Hörmander et systèmes souselliptiques[END_REF]).

It turns out that these spaces have properties which look very much like the ones of usual Sobolev spaces, see [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] and their references.

The purpose of this paper is the study of the problems of trace and trace lifting on a smooth hypersurface of ℍ in the frame of Sobolev spaces. Let us point out that the problem of existence of trace appears only when is less than or equal to 1. Indeed, under the subellipicity of system , the space (ℍ ) is included locally in 2 (ℝ 2 +1 ). So if is strictly larger than 1, this implies that the trace on any smooth hypersurface exists and belongslocally to the usual Sobolev space 2 -1 2 of the hypersurface. Thus the case when = 1 appears as the critical one. It is the case we study here.

1.1. Statement of the results. Two very different cases then appear: the one when the hypersurface is non characteristic, which means that any point 0 of the hypersurface Σ is such that | 0 ∕ ⊂ 0 Σ, and the one when some point 0 of the hypersurface Σ is characteristic, which means that | 0 ⊂ 0 Σ.

The non characteristic case is now well understood. In [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF], we give a full account of trace and trace lifting results on smooth non characteristic hypersurfaces for ≥ 1/2. This result generalize various previous results (see among others [START_REF] Berhanu | The trace problem for vector field satisfying Hörmander's condition[END_REF], [START_REF] Danielli | Trace inequalities for Carnot-Carathédory spaces and applications[END_REF] and [START_REF] Pesenson | The trace Problem and Hardy operator for non-isotropic function spaces on the Heisenberg group[END_REF]).

Let us recall this theorem in the case of 1 (see [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] for the details). If 0 is any non characteristic point of Σ, then there exists at last one of the vector fields 1 , ⋅ ⋅ ⋅ 2 which is transverse to Σ at 0 . We denote by Σ the subspace of Σ define, for in Σ, by Σ| = Σ ∩ | where is the ∞ -module of vector fields spanned by

{ 1 , ⋅ ⋅ ⋅ , 2 }. It is easily checked that, if is a local defining function of Σ, the family , def = ( ⋅ ) -( ⋅ )
generates Σ and that it satisfies the Hörmander condition at order 2 (see for instance Lemma 4.1 of [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF]). We define

(Σ, Σ ) = { ∈ 2 (Σ) / Supp ⊂ and ∀( , ) , , ∈ 2 } .
We have proved the following trace and trace lifting theorem in [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF]:

Theorem 1.1. Let us suppose that Σ is non characteristic on an open subset of ℍ , then the trace operator on Σ denoted by Σ is an onto continuous map from 1 (ℍ , )

onto [ 1 (Σ, Σ ), 2 (Σ)] 1 2 def = 1 2 (Σ, Σ ).
Remark As the system Σ satisfies the Hörmander's condition at order 2, Theorem 1.1 implies in particular that Σ maps 1 (ℍ , ) into 1/4 (Σ, ).

We shall now consider the characteristic case. The set of characteristic points of Σ

Σ = { ∈ Σ / | ⊂ Σ},
may have a complicated structure. Let us introduce the following definition.

Definition 1.1. A characteristic point 0 of a hypersurface Σ is a regular point of order if and only if i) for any 1-form ∈ ★ ℝ 2 +1 that vanishes on Σ and such that ( 0 ) ∕ = 0, the system

(ℒ | 0 Σ ) 1≤ ≤2 is of rank ; ii) near 0 , the characteristic set Σ is a submanifold of Σ of codimension in Σ.
Let us make some comments about this definition. A regular characteristic point of order 2 is exactly the familiar notion of non degenerate characteristic point. This notion of non degenerate characteristic point have been used in our preceeding work [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] to study this problem of trace.

As wee shall prove in forthcoming Proposition 2.1, if is a local defining function of Σ, the condition ii) means exactly that the matrix ( ⋅ ⋅ ) 1≤ , ≤2 is of rank at 0 . Let us notice that, because, if ∈ {1, ⋅ ⋅ ⋅ } and ∕ = + ,

( ⋅ + ⋅ )( 0 ) -( + ⋅ ⋅ )( 0 ) = -2∂ ( 0 ) ∕ = 0 and ( ⋅ ⋅ ) = ( ⋅ ⋅ ),
the rank of the matrix ( ⋅ ⋅ ) 1≤ , ≤2 is at least at 0 .

Let us give some examples. First let us consider the case when the hypersurface Σ is give by an equation of the type -( , ) where is a homogenenous polynomial of degree 2 on ℝ 2 . Let us observe that this equation is homogenenous of order 2 wih respect to the dilation of Heisenberg group ( , , ) def = ( , , 2 ). In this case 0 = (0, 0, 0) is always a regular characteristic point. Indeed the family ( ⋅ ) 1≤ ≤2 is a family of linear form on ℝ 2 . As | 0 = ∂ and | 0 = ∂ , the rank of the family is exactly the rank of the matrix ( ⋅ ⋅ ) 1≤ , ≤2 at point 0 . Thus Σ is obviously a submanifold of codimension of Σ. Now let us exhibit an example of non regular characteristic point. In the case when = 2, let us define, for in ℝ,

Σ = { ( 1 , 1 , 2 , 2 , ) ∈ ℝ 5 / = 1 1 + ( 3 1 + 3 1 )
} .

If = 0, as observe above, the origin is a regular characteristic point. A very easy computation shows that the rank of the matrix ( ⋅ ⋅ ) 1≤ , ≤4 is three. But the characteristic set Σ , is the set of points of Σ such that 

3 2 1 = -2 1 + 3 2 1 = 2 = 2 = 0. If ∕ = 0,
∀ ∈ ℕ |∂ ( )| ≤ ( , ) -| | ,
where denotes the distance on Σ induced by the euclian distance on ℝ 2 +1 . Now let us define the vector fields on Σ which will describe the regularity on Σ.

Definition 1.3. Let 0 a characteristic point of a hypersurface Σ. Let be a neighhourhood of 0 . We denote by Σ the ∞ Σ ( ) modulus spanned by the set vector fields of ∩ Σ | that vanish on Σ .

As we shall see in Proposition 3.1, the modulus Σ is a finite type (of course as a ∞ Σ ( ) modulus) if 0 is a regular characteristic point and is choosen small enough. If is a local defining function of Σ, a generating system is given by

, def = ( ⋅ ) -( ⋅ ) for 1 ≤ ≤ ≤ 2 . (1.1)
Now we are ready to introduce the space of traces.

Definition 1.4. Let 0 a regular characteristic point of a hypersurface Σ. Let be a small enough neighbourhood of 0 . We denote by 1 ( Σ , ) the space of functions of 2 (Σ) supported in such that

∥ ∥ 2 1 ( Σ ) def = ∥ ∥ 2 2 (Σ) + ∑ 1≤ , ≤2 ∥ , ∥ 2 2 (Σ) ≤ ∞.
where the family ( , ) 1≤ , ≤2 is given by (1.1). If ∈ [0, 1], we define ( Σ , ) by complex interpolation.

Our theorem is the following. Theorem 1.2. Let 0 a regular characteristic point of a hypersurface Σ. Let be a small enough neighhourhood of 0 . Then the restriction map Σ is an onto continuous map from 1 (ℍ , ) onto

1 2 ( Σ , ∩ Σ).
Let us remark that, if 0 is a non degenerate characteristic point (i.e. a regular characterisitic point or order 2 ) this theorem is Theorem 1.8 of [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF].

1.2. Structure of the proof. In our paper [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF], we use a blow up of the point 0 (which is Σ in the case when the characteristic point 0 is of order 2 ). Here we shall blow up the submanifold Σ . In order to do it, let us introduce a function

∈ (ℝ + ∖ {0}) such that ∀ ∈ [-1, 1] ∖ {0} , ∞ ∑ =0 (2 ) = 1. (1.2)
Let us define the function by

def = ( 2 + |∇ ℍ | 4 ) 1 4
. Now writing that for any function in

2 ( ≤ 1), = ∞ ∑ =0 with ( ) def = (2 ( )), (1.3) 
we apply Theorem 1.1 of trace and trace lifting to each piece which is supported in a domain where Σ is non charactersitic because ∼ 2 -in this domain. This decomposition leads immediately to the problem of estimating the norm 1 (ℍ ) of each piece . Leibnitz formula and the chain rule tell us that

∇ ℍ ( ) = ∇ ℍ + 2 ′ (2 ) ∇ ℍ .
Let us observe that, as

4 = 2 ⋅ + 4|∇ ℍ | 2 ( ⋅ ) 2 ∑ =1 ⋅ ( ⋅ ) ,
we have, for any real number ,

|∇ ℍ | ≤ -1 . As the support of ′ (2 ) included in ∼ 2 -, the supports of ′ (2 ) and ′ (2 ′ ) are disjoint if | -′ | ≤ 0 for some 0 . Thus, we get that ∞ ∑ =0 2 2 ∥ ′ (2 ) ∇ ℍ ∥ 2 2 ≤ 2 2 .
This leads to the proof of the following Hardy type inequality.

Theorem 1.3. If 0 is a regular characteristic point of Σ, a neighbourhood of 0 exists such that, for any in the space 1 (ℍ , ) of 1 (ℍ ) functions supported in ,

∫ ℍ 2 2 ≤ ∥∇ ℍ ∥ 2 2 . with = ( 2 + |∇ ℍ | 4 ) 1 4 .
This theorem implies that, for any in

1 (ℍ , ), ∞ ∑ =0 ∥∇ ℍ ( )∥ 2 2 ≤ ∥∇ ℍ ∥ 2 2 . (1.4)
The proof of this theorem, which is the core of this work, is the purpose of the second section.

In the third section, we first straighten the submanifolds Σ and Σ , and after dilation, we apply Theorem 1.1. This gives a rather unpleasant description on the trace space. Then, we prove an interpolation result which allows to conclude the proof of Theorem 1.2.

A Hardy type inequality

The classical Hardy inequality. As a warm up, let us recall briefly the usual proof of the classical Hardy inequality

1 . ∫ ℍ 2 2 ≤ ∥∇ ℍ ∥ 2 2 with ( ) = ( 2 + (| | 2 + | | 2 ) 2 ) 1 4 . (2.5)
As (ℍ ∖ {0}) is dense1 (ℍ ), we have restrict ourselves to functions in (ℍ ∖ {0}).

Then the proof mainely consists in an integration by parts with respect to the radial vector field ℍ adapted to the structure of ℍ , namely

ℍ def = 2 ∂ + ∑ =1 ( ∂ + ∂ ) = [ 1 , 1 ] + ∑ =1 ( + )
once noticed that ℍ ⋅ -2 = -2 -2 and div ℍ = 2 + 2. More precisely, this gives

- ∫ 2 2 = ∫ ∑ =1 ( + ) - ∫ ( 1 2 
)

( 1 ) + ∫ ( 1 2 
)

( 1 ) .

As we have (

2

)
≤ -1 , Cauchy-Schwarz inequality gives (2.5).

2.2.

Construction of substitute of and ℍ . Let us start with some remarks about the relations between Σ and the vector fileds in the case when 0 is a regular characteristic point.

Proposition 2.1. The condition ii) of Definition 1.1 is equivalent to the fact that, for any defining function of Σ, the rank of the matrix ( ⋅ ⋅ ) 1≤ , ≤2 is .

Proof of Proposition 2.1 Let be a local defining function of Σ. Of course, vanishes on Σ. As ( 0 ) belongs to 0 Σ, we have ℒ ( )( 0 ) = ( ⋅ )( 0 ). By definition of , we infer that

( ⋅ )( 0 ) = 2 ∑ =1 ( ⋅ ⋅ )( 0 ) .
Thus the rank of matrix ( ⋅ ⋅ ) 1≤ , ≤2 is the rank of ℒ ( )( 0 ). Conversevely, let be a 1-form that vanishes on Σ and such that ( 0 ) ∕ = 0 and a local defining function of Σ. A function that does not vanish at 0 exists such that = . Thanks to Leibnitz formula, ℒ ( )( 0

) | 0 Σ = ( 0 ) ( ⋅ )( 0 ) | 0 Σ .
The fact that the function does not vanish at point 0 implies the proposition. ■

In all that follows, will denote a defining function of Σ of the form ( , , ) = + ( , ) (this is allowed by the implit function theorem) near the origin 0 of ℍ which is assumed to be a characterisitc regular point of order ≤ 2 .

As the matrix ( ⋅ ⋅ ) 1≤ , ≤2 is of rank in 0 , and as | 0 = ∂ , a family ( ℓ ) 1≤ℓ≤ exists in {1, . . . , 2 } such that the linear forms ( ( ℓ ⋅ )) 1≤ℓ≤ are linearly independant near 0 . Moreover, the function are independant of and ( 0 ) = ( , 0, 0). Thus the family of functions ( ,

( 1 ⋅ ), ⋅ ⋅ ⋅ , ( ⋅ )) (2.6)
is a family of + 1 independant functions. They vanish on the submanifold Σ which is by hypothesis a submanifold of ℍ of codimension + 1. This implies that, near 0 ,

Σ = { / ( ) = ( 1 ⋅ )( ) = ⋅ ⋅ ⋅ = ( ⋅ )( ) = 0} . (2.7)
We shall keep these notations all along this text.

The definition of substitute to and ℍ relies on the following two lemmas.

Lemma 2.1. A couple of vector fields ( 0 , 0 ) exists in

( ∖ { 1 , ⋅ ⋅ ⋅ , }) × (± ) such that [ 0 , 0 ] = 2∂ and ( 0 ⋅ )( 0 ) ∕ = 0. Proof of Lemma 2.1 Let us consider 0 ∈ ∖ { 1 , ⋅ ⋅ ⋅ , }. and 0 in ± such that [ 0 , 0 ] = 2∂ . If ± 0 belongs to { 1 , ⋅ ⋅ ⋅ , }, then (2.6) implies that ( 0 ⋅ )( 0 ) is different from 0 and then 0 = 0 fits. If ± 0 is not in { 1 , ⋅ ⋅ ⋅ , }, as ( 0 ⋅ ( 0 ⋅ ))( 0 ) -( 0 ⋅ ( 0 ⋅ ))( 0 ) = 2, either ( 0 ⋅ )( 0 ) or ( 0 ⋅ )( 0 ) is different from 0.
Thus if ( 0 ⋅ )( 0 ) = 0, we get the lemma interchanging the role of 0 and 0 . ■ Using (2.6) and (2.7), the proof of the following lemma is very easy and thus omitted.

Lemma 2.2. A neighhourhood of 0 and a family ( ℓ ) 1≤ℓ≤ of functions of ∞ ( ) exist such that

0 ⋅ = ∑ ℓ=1 ℓ ( ℓ ⋅ ).
Now let us state a Hardy inequality, which is obviously better than the one of Theorem 1.3 and which is surprisingly the one we are able to prove.

Theorem 2.1. A neighbourhood of 0 exists such that, for any in 1 (ℍ , ),

∫ 2 2 0 ≤ ∥∇ ℍ ∥ 2 2 with 0 def = ( 2 + ( 0 ⋅ ) 4 ) 1 4 .
Now the problem is to find an analogous of ℍ is our situation. We do not manage to do it for . For the function 0 , it is done by the following Lemma.

Lemma 2.3. A neighbourhood of 0 , two functions and of ∞ ( ) exist such that vanishes on Σ and which satisfy the following properties. Let us define

1 = 2 ∂ + ( 0 ⋅ ) ˜ 0 with ˜ 0 def = 0 - ∑ ℓ=1 ℓ ℓ
where the functions ( ℓ ) 1ℓ≤ are the functions which appear in Lemma 2.2. Then,

1 ⋅ 4 0 = 4 4 0 and div 1 = 3 + . Proof of Lemma 2.3
The main point of the proof is the computation of the function . By definition of the function 0 , we have

1 ⋅ 4 0 = 2 ( 1 ⋅ ) + 4( 0 ⋅ ) 3 ( 1 ⋅ ( 0 ⋅ ) ) .
Lemma 2.2 implies that ˜ 0 is tangent to Σ. Using that ∂ ≡ 1, this implies that 1 ⋅ = 2 .

Let us compute 1 ⋅ ( 0 ⋅ ). As ∂ ( 0 ⋅ ) = 0, we have

1 ⋅ ( 0 ⋅ ) = ( 0 ⋅ ) ( ˜ 0 ⋅ ( 0 ⋅ ) ) .
Let us notice that 0 does not belong to the family ( ℓ ) 1≤ℓ≤ . Thus 0 commutes with the vector fields ℓ . By definition of ˜ 0 , we infer

[ ˜ 0 , 0 ] ; = ; [ 0 , 0 ] + ∑ ℓ=1 [ ℓ ℓ , 0 ] ; = ; 2∂ - ∑ ℓ=1 ( 0 ⋅ ℓ ) ℓ . (2.8) 
Using that ˜ 0 ⋅ = 0, we deduce

˜ 0 ⋅ ( 0 ⋅ ) ; = ; 0 ⋅ ( ˜ 0 ⋅ ) + 2∂ - ∑ ℓ=1 ( 0 ⋅ ℓ )( ℓ ⋅ ) ; = ; 2 + ˜ with ˜ def = - ∑ ℓ=1 ( 0 ⋅ ℓ )( ℓ ⋅ ).
(2.9)

It turns out that 1 ⋅ 4 1 = 4 2 + 4( 0 ⋅ ) 4 (2 + ˜ ). Choosing def = (2 + ˜ ) -1
gives the first relation of Lemma 2.3. Now, let us compute div 1 . We have

div 1 = 2∂ + ˜ 0 ⋅ ( 0 ⋅ ) + ( 0 ⋅ ) div ˜ 0 .
Using that ∂ ≡ 1 and (2.9), we get

div 1 ; = ; 2 + (2 + ˜ ) + ( 0 ⋅ ) div ˜ 0 ; = ; 3 + ( 0 ⋅ ) div ˜ 0 .
This proves the lemma with def = ( 0 ⋅ ) div ˜ 0 . ■ 2.3. Proof of Theorem 2.1. Lemma 2.1 implies that, near 0 , the set -1 0 (0) is a submanifold of ℍ of codimension 2. The following lemma will allow us to assume that belongs to ( ∖ -1 0 (0)). Lemma 2.4. Let be a bounded domain of ℍ and Γ is a submanifold of codimension ≥ 2. Then ( ∖ Γ) is dense in the space 1 0 (ℍ , ) of functions of 1 0 (ℍ ) supported in equipped with the norm

( ∥ ∥ 2 2 + ∥∇ ℍ ∥ 2 2 ) 1 2 .
Proof of Lemma 2.4 As 1 0 (ℍ , ) is a Hilbert space, it is enough to prove that the orthogonal of ( ∖ Γ) is {0}. Let be in this space. For any in ( ∖ Γ), we have

( | ) 2 + (∇ ℍ |∇ ℍ ) 2 = 0.
By integration by part, this implies that

∀ ∈ ( ∖ Γ) , ⟨ -Δ ℍ , ⟩ = 0.
Thus the support of -Δ ℍ is included in Γ. As belongs to 2 , then 2 belongs to -1 (ℝ 2 +1 ) (the classical Sobolev space). And except 0, no distribution of -1 (ℝ 2 +1 ) can be supported in a submanifold of codimension greater than 1. Thus -Δ ℍ = 0. Taking the 2 scalar product with implies that ≡ 0. ■ Thanks to Lemma 2.3, we have

-2 0 = - 1 2 1 ⋅ -2 0 .
(2.10)

Thus by integration by part, we have, using Lemma 2.3,

∫ 2 2 0 = 3 2 ∫ 2 2 0 + ∫ 2 2 0 + with def = ∫ 2 0 ( 1 ⋅ ) .
Assuming small enough such that ∥ ∥ ∞ ( ) ≤ 1/4, we get

∫ 2 2 0 ≤ 4| |. (2.11) 
In order to estimate , which contains terms of the type ∂ , we have to compute the vector field 1 in term of elements of . Using (2.8), we infer that

1 = 2 [ ˜ 0 , 0 ] + ∑ ℓ=1 ( 0 ⋅ ℓ ) ℓ + ( 0 ⋅ ) 0 -( 0 ⋅ ) ∑ ℓ=1 ℓ ℓ .
In other terms, two families ( ) 1≤ ≤2 and ( ) 1≤ ≤2 exist such that

1 = 2 [ ˜ 0 , 0 ] + 2 ∑ =1 ( + ( 0 ⋅ ) ) .
(2.12)

We deduce that

; = ; 1 + 2 with 1 ; def = ; 2 ∑ =1 ∫ 0 + ( 0 ⋅ ) 0 ( ⋅ ) and 2 ; def = ; ∫ 2 0 [ ˜ 0 , 0 ] ⋅ .
As is supposed bounded, we have that the functions + ( 0 ⋅ ) 0 are bounded. Cauchy Schwarz inequality yields

| 1 | ≤ 0 2 ∥∇ ℍ ∥ 2 . (2.13)
The estimate about 2 is a little bit more difficult to obtain. Let us write that 2 = 1 -2 with

1 def = ∫ 2 ˜ 0 ⋅ ( 0 ⋅ ) and 2 def = ∫ 2 0 ⋅ ( ˜ 0 ⋅ ) .
By integration by parts, we have 1 = -11 -12 with

11 def = ∫ 2 0 ( ˜ 0 ⋅ )( 0 ⋅ ) and 12 def = ∫ 0 ( 0 ⋅ ) with def = (div ˜ 0 ) 0 + 0 ( ˜ 0 ⋅ 2 0 ) ⋅
By definition of 0 , it is obvious that

| 11 | ≤ ∥∇ ℍ ∥ 2 2 .
(2.14)

As we can assume that is included in -1 ([0, 1]), we have that -1 | div ˜ 0 | ≤ on . Moreover using that ˜ 0 ⋅ = 0, we get

˜ 0 ⋅ 2 0 = 2 6 0 ˜ 0 ⋅ ( 0 ⋅ ) | 0 ⋅ | 3 ≤ 3 0 ≤ 0 ⋅
This ensures that is bounded on and thus by Cauchy-Schwarz inequality,

∥ 12 ∥ ≤ 0 2 ∥∇ ℍ ∥ 2 .
Together with (2.14), this proves that

| 1 | ≤ ( 0 2 + ∥∇ ℍ ∥ 2 ) ∥∇ ℍ ∥ 2 .
(2.15)

In order to estimate 2 , let us write that, by integration by parts,

2 = ∫ 2 0 ( 0 ⋅ )( ˜ 0 ⋅ ) + ∫ 0 ( 0 ⋅ 2 0 ) 0 ( ˜ 0 ⋅ ) .
Using that

0 ⋅ 4 0 = 2 ( 0 ⋅ ) + 4 ( 0 ⋅ ( 0 ⋅ ) ) ( 0 ⋅ ) 3 ,
we immediatly get that the function 0

( 0 ⋅ 2 0
) is bounded on and we deduce that

| 2 | ≤ ( 0 2 + ∥∇ ℍ ∥ 2 ) ∥∇ ℍ ∥ 2 .
Together with (2.11), (2.13) and (2.15), we infer that

0 2 2 ≤ ( 0 2 + ∥∇ ℍ ∥ 2 ) ∥∇ ℍ ∥ 2
which concludes the proof of Theorem 2.1.

3.

The proof of the trace and trace lifting theorem Let us introduce a partition of unity ( ˜ ) 1≤ ≤2 of the sphere 2 -1 such that the support of ˜ is included in the set of of

2 -1 such that | | ≥ (4 ) -1 . Let us state def = ˜ ( ∇ ℍ |∇ ℍ | ) ⋅
It is an exercice left to the reader to check that belongs to ∞ Σ ( ). On Σ ∖ Σ , we have, for any in {1, ⋅ ⋅ ⋅ , 2 },

( ⋅ ) = 2 ∑ =1 ( ⋅ ) = 0.
By definition of , ( ⋅ ) does not vanish on the support of . Thus we have

= - 1 ( ⋅ ) ∑ ∕ = ( ⋅ ).
From this, we deduce that

; = ; ∑ ∕ = ( - ( ⋅ ) ( ⋅ ) ) ; = ; ∑ ∕ = ( ⋅ ) ( ( ⋅ ) -( ⋅ ) ) .
Now the facts that ∈ ∞ Σ and that ( ⋅ ) does not vanish on the support of ensure that

, def = ( ⋅ ) ∈ ∞ Σ . So we have = ∑ 1≤ ≤ ≤2 , ( ( 
⋅ ) -( ⋅ ) )
and the proposition is proved. ■

The blow up prodecure requires to straighten the submanifolds Σ and Σ .

Lemma 3.1. A neighbourhood of 0 and a diffeomorphism from onto ( ) exist which satisfy the following properties.

• It straighten the submanifolds Σ and Σ , namely

(Σ ∩ ) = ( = 0) ∩ ( ) and (Σ ∩ ) = ( = 1 = ⋅ ⋅ ⋅ = 0) ∩ ( ).
• The transported vector fields are of the form

★ (∂ ) = ∂ and def = ★ ( ) = ∂ ∂ + ( ∑ ℓ=1 ℓ ( ) ) ∂ + ℎ ( , ∂ )
where ( ) 1≤ ≤2 is a basis of ℝ 2 , the ( ℓ ) are smooth bounded functions on such that, for ∈ {1, ⋅ ⋅ ⋅ , }, ℓ ≡ ℓ and (ℎ ) 1≤ ≤2 is a family of smooth vector fields which vanish at = 0.

Proof of Lemma 3.1 It is easily checked that the (local) diffeomorphism defined by

( , , ) = ⎛ ⎝ ( , , ) = + ( , ) = ( ℓ ⋅ )( , ) if ≤ = ⟨ , ( , )⟩ if ; ⎞ ⎠
where the family of linear form ( ) +1≤ ≤2 is choosen such that

( ( ℓ ⋅ )( 0 )) 1≤ℓ≤ , ( ) +1≤ ≤2
is a basis of the dual space of ℝ 2 . ■

From now on, we shall work only in the straighten situation and to avoid excessive heavyness of notations, we shall still denote by .

3.2.

The blow up procedure. Let us write that, for any function , we can write (at least in

2 ) that = ∞ ∑ =0 with ( , ) def = ( 2 ( 2 + | ′ | 4 ) 1 4 
) and

′ def = ( 1 , ⋅ ⋅ ⋅ , , 0, ⋅ ⋅ ⋅ 0)
where is the function introduced in (1.2). We shall proof the following theorem.

Theorem 3.1. The restriction map on the hypersurface ( = 0) can be extended in a continuous onto map from 1 ( ; { ≤ 1}) onto the space

1 2 of function ∈ 2 (| ′ | ≤ 1) such that ∥ ∥ 2 1 2 def = ∞ ∑ =0 ∥ Σ ∥ 2 1 2 ) ≤ ∞ with (ℛ, ) def = [ 2 (2 - Σ ), 1 (ℛ, (2 - Σ )] .
where

Σ def = { ≤ | ′ | ≤ , Σ ( ) def = ( , 0) = (2 | ′ |), [ , ]
denotes the complex interpolation between and and 1 (ℛ, ) the space of functions of 1 (ℛ) supported in .

Proof of Theorem 3.1 Once noticed that the Hardy inequality given by Theorem 1.3 becomes ∫ 2 ( , )

( 2 + | ′ | 4 ) 1 2 ≤ 2 ∑ =1 ∥ ∥ 2 2 , (3.16) 
we get, by computations very similar to the ones done at the beginning of subsection 1.2, an analogous of (1.4), namely

∞ ∑ =0 2 ∑ =1 ∥ ( )∥ 2 2 ≤ 2 ∑ =1 ∥ ∥ 2 2 . (3.17) 
Let us notice that outside Σ = {( , ) / = 0 , ′ = 0}, thus in particular on the support of , the hypersurface Σ is non characteristic for . Thus locally we can apply Theorem 1.1 to each piece . The key point is the control of the constant when tends to ∞. In order to do so, it is convenient to use the quasi-homogenenous dilations ( ,

) def = (2 , 2 2 ). Let us define ( , ) def = 0 ( , ) (2 , 2 2 ) and , def = ∂ ∂ + ∑ ℓ=1 ℓ (2 -) ℓ ∂ + ℎ (2 -, ∂ ).
It is obvious that a one to one map of {1, ⋅ ⋅ ⋅ , 2 } exists such that

[ , , , ] = 2 , ( ) ∂ . (3.18) 
Moreover, as ∥ ∥ 2 2 = 2 2 ( +1) ∥ ∥ 2 , we have, thanks to Hardy inequality (3.16),

∞ ∑ =0 2 -2 ∥ ∥ 2 2 ≤ 2 ∑ =1 ∥ ∥ 2 2 .
Applying (3.17), we infer

∞ ∑ =0 2 -2 ( ∥ ∥ 2 2 + 2 ∑ =1 ∥ , ∥ 2 2 ) ≤ 2 ∑ =1 ∥ ∥ 2 2 . (3.19)
On the support of 0 , the hypersurface ( = 0) is non characteristic with respect to the family ( , ) 1≤ ≤2 because, for between 1 and ,

, = ∂ ∂ + ℎ (2 -, ∂ ) + ∂ .
Let us notice that the transverse component of , does not depend on . Thus we can apply Theorem 4.6 of [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] together with a result of interpolation between Sobolev space (see Remarque 4.2 page 89 in [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF]) to each . Using that ∥ ∥ 1 ( ) = 2 2 ∥ ∥ 1 ( ) , this gives in particular that a constant exists (independant of ) such that

∥ ( )∥ [ 2 (ℝ 2 ), 1 ( R ,ℝ 2 )] 1 2 ≤ 2 2 ∥ ∥ 1 ( ) (3.20)
with R is the union of

ℛ = ( ˜ Σ 0 ( , ⋅ ) , -Σ 0 ( , ⋅ ) , ) 1≤ , ≤2 and 
( (1 -˜ Σ 0 )∂ ) 1≤ ≤2
where ˜ Σ 0 is a smooth function supported in Σ such that ˜ Σ 0 ≡ 1 near the support of Σ 0 . At this point, let us recall the definition of complex interpolation. For details of this theory, we refer in particular to [START_REF] Bergh | Interpolation spaces. An introduction[END_REF] and [START_REF] Huet | Décomposition spectrale et opérateurs[END_REF]. Definition 3.1. Let (ℋ , ∥ ⋅ ∥ ) ∈{0,1} be two Hilbert spaces such that ℋ 1 is densely included in ℋ 0 . Let ℱ(ℋ 0 , ℋ 1 ) be the space of holomorphic functions from the strip 0 ≤ ℜ ≤ 1 into ℋ 0 such that ( + ) is continuous and vanishes at infinity in ℋ . Then, for ∈]0, 1[, the space

[ℋ 0 , ℋ 1 ] is [ℋ 0 , ℋ 1 ] def = { ∈ 2 / ∃ ∈ ℱ(ℋ 0 , ℋ 1 ) / ( ) = } equipped with the norm ∥ ∥ [ℋ 0 ,ℋ 1 ] def = inf ∈ℱ (ℋ 0 ,ℋ 1 ) max ∈{0,1} sup ∈ℝ ∥ ( + )∥ ℋ .
As the support of ( ) is included in the support of Σ 0 , let us consider a smooth function Σ 1 supported in the set where Σ 0 has value 1 and such that Σ 1 has value 1 near the support of Σ 0 . If is a function in ℱ( 2 (ℝ 2 ), 1 ( R , ℝ 2 )) such that (1/2) = , then the function → 1 ( ) belongs to ℱ( 2 ( Σ ), 1 ( R , Σ )) and 1 (1/2) = . As we obviously have that 1 

( R , Σ ) = 1 (ℛ , Σ ), Inequality (3.20) becomes ∥ ( )∥ [ 2 ( Σ ), 1 (ℛ , Σ )] 1 2 ≤ 2 2 ∥ ∥ 1 ( ) . (3.21) 
Moreover, dilations on ℝ 2 of ratio 2 -maps 2 ( Σ ) (resp.

1 (ℛ ), Σ ) into 2 (2 - Σ ) (resp. 1 (ℛ, 2 - Σ ))
with norm equal to 2 -. Thus by the functorial property of complex interpolation, Inequality (3.21) becomes

∥ ( )∥ 1 2 (ℛ, ) ≤ ∥ ∥ 1 ( ) . (3.22) 
Inequality (3.17) implies that can be extended to a continuous linear map from 1 ( ) into . In order to prove that is onto, let us consider ∈ 1 2 . By definition of 1 2 , and after dilation, we infer that

∥ Σ 0 (2 -⋅)∥ [ 2 ( Σ ), 1 (ℛ , Σ )] 1 2 ≤ 2 ∥ ∥ 1 2 with ∑ 2 = 1. (3.23) As 2 ( Σ ) (resp. 1 (ℛ , Σ )) is a subspace of 2 (ℝ 2 ) (resp. 1 ( R ; ℝ 2
)), using Theorem 4.6 of [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] together with Remarque 4.2 of [START_REF] Bony | Espaces fonctionnels associés au calcul de Weyl-Hörmander[END_REF] and (3.23), we claim the existence of a function ˜ in the space 1 ( ˜ ) such that a constant (independant of ) exists which satisfies, for any ,

∥˜ ∥ 1 ( ˜ ) ≤ ≤ 2 ∥ ∥ 1 2 with ∑ 2 = 1 (3.24)
where ˜ is the union of the families

( ˜ 0 , ) 1≤ , ≤2 , ((1 -˜ 0 )∂ ) 1≤ ≤2 and (1 -˜ 0 )∂ .
Let us consider a smooth function 1 supported in the domain where ˜ are has value 1 and such that 1 ≡ 1 near the support of 0 . Defining def = 1 ˜ , we have, by definition of ℛ and by (3.24)

∈ 1 ( ˜ , Σ ) = 1 ( , Σ ) and ∥ ∥ 1 (ℛ ) ≤ ∥˜ ∥ 1 ( R , Σ ) . After dilation, this gives ∑ ∥ (2 ⋅)∥ 2 1 ( ) ≤ ∥ ∥ 2 1 2 
.

As an integer 0 exists such that

| -′ | ≥ 0 =⇒ (2 ⋅) ⊥ ′ (2 ′ ⋅) in 1 ( ),
the series ( (2 ⋅)) converge in 1 ( ) to a function the trace of which is obviously . This concludes the proof of Theorem 3.1. ■ 3.3. The space of trace as an interpolation space. The description given by Theorem 3.1 is not totally satisfactory. We want to describe this space of trace as an interpolation space to get Theorem 1.2. In order to do so, let us define, for ∈ [0, 1], the space def As, for some positive integer 0 , the support of the two functions (2 | ′ |) and (2 ′ | ′ |) are disjoint when | -′ | ≥ 0 , this gives the lemma. ■ Now Theorem 1.2 will be an easy consequence of the following abstract interpolation lemma.

Lemma 3.3. Let us consider (ℋ , ∥ ⋅ ∥ ) ∈{0,1} two Hilbert spaces such that ℋ 1 is densely included in ℋ 0 and a family (ℋ , ) ( , )∈{0,1}×ℕ such that, for any , ℋ , is a closed subset of ℋ .

Let us assume that a family of (Λ ) ∈ℕ of (unbounded) selfadjoints operators on ℋ 0, exists such that ℋ 1, equals to the domain of Λ and

∀ ∈ ℋ 1, , ∥ ∥ ℋ 1 ∼ ∥Λ ∥ ℋ 0 . ( 3 

.25)

Let us assume in addition that a familyof operators ( ) ∈ℕ exists such that, for any ( , ) in {0, 1} × ℕ, the operator is continuous from ℋ into ℋ , and

∀ ∈ ℋ , lim ∞ - ∑ =0 = 0 and ∥ ∥ 2 ℋ ∼ ∑ ∥ ∥ 2 ℋ . (3.26)
Then, As the sum is finite, this is obvious that belongs to ℱ(ℋ 0 , ℋ 1 ). Because of (3.26), we have, for ∈ {0, 1},

[ℋ 0 , ℋ 1 ] = { ∈ ℋ 0 / ∥ ∥ 2 def = ∞ ∑ =0 ∥ ∥ 2 ℋ , } with ℋ , def = [ℋ 0, , ℋ 1, ] .
∥ ( + )∥ 2 ℋ ; ≤ ; -2 ∑ =0 ∥ ( + )∥ 2 ℋ ; ≤ ; -2 ∑ =0 ∥ ∥ 2 ℋ , ; ≤ ; ∥ ∥ 2 .
Thus by definition of the complex interpolation norm, we deduce that 

∥ ∥ [ℋ 0 ,ℋ 1 ] ≤ ∥ ∥ .
; ≤ ; -2 ∑ =0 ∥ ( + )∥ 2 ℋ ; ≤ ; -2 ∥ ( + )∥ 2 ℋ ; ≤ ; ∥ ∥ 2 [ℋ 0 ,ℋ 1 ]
. Then using the Phragmen-Lindelöf principle, we get that

( ) ≤ sup | )| 1-| (1 + )| ≤ ∥ ∥ 2 [ℋ 0 ,ℋ 1 ] .
Thus a constant exists such that, for any ,

∑ =0 ∫ 1 2 ( , ) ≤ ∥ ∥ 2 [ℋ 0 ,ℋ 1 ] . (3.27)
By definition of ℋ , and using that

∥ ∥ 2 ℋ , = ∫ ∞ 1 2 ( , ),
we infer by passing to the limit when tends to infinity in (3.27) that

∑ =0 ∥ ∥ 2 ℋ , ≤ ∥ ∥ 2 [ℋ 0 ,ℋ 1 ] .
This conclude the proof of Lemma 3. To be able to apply Lemma 3.3, and then to conclude the proof of Theorem 1.2, it is enough to prove the following proposition.

Thus, by using (3.30) and (3.32) we infer that

∥ , ′ , ′ ∥ 2 ≤ (∥Δ Σ ∥ 2 + ∥ ∥ 2 ) with ∞ ∑ =0 2 = 1.
This proves (3.28) and thus Proposition (3.2). ■

  The left invariant vector fields are= ∂ + ∂ , = ∂ -∂ , = 1, ⋅ ⋅ ⋅ ,

3. 1 .

 1 Some preliminary properties. Proposition 3.1. A neighbourhood of 0 exists such that the Σ ( ) modulus Σ spanned the vector fields of ∩ Σ | which vanish on the characterisitic submanifold Σ is of finite type and generated by , def = ( ⋅ ) -( ⋅ ) . Proof of Proposition 3.1 It is enough to prove that any element of ∩ Σ which vanish on Σ is a combinaison (with coeffcients in ∞ Σ ( )) of the , . By definition =

1

 1 

2

 2 

Proof of Lemma 3 . 3

 33 It is enough to prove that the two norms are equivalent on the dense space of such that = ∑ =0 with ∈ ℋ 1, . Let us first estimate ∥ ∥ [ℋ 0 ,ℋ 1 ] . By definition of the norm on ℋ , , a function exists in ℱ(ℋ 0, , ℋ 1,

For

  Now let us estimate ∥ ∥ . In order to do so, let us consider in ℱ(ℋ 0 , ℋ 1 ) such that ( ) = and max∈{0,1} sup ∥ ( + )∥ ℋ ≤ 2∥ ∥ [ℋ 0 ,ℋ 1 ]. measure of Λ . Then, by using (3.25) and (3.26),

3 . ■ 3 . 4 .

 334 Conclusion of the proof of Theorem 1.2. Theorem 1.2 follows, observing that the hypothesis of Lemma 3.3 are satisfied with ℋ 0 = 2 , ℋ 1 = 1 (ℛ), ℋ , is the set of in ℋ the support of which is included in 2 -and Λ is the square root of Dirichlet realization on 2 -of the operator Id +Δ Σ with Δ Σ

  the characteristic set Σ , reduces to the origin.Let us introduce some rings of functions adapted to our situation.

	Definition 1.2. Let	be any open subset of Σ and a closed subset of . Let us denote
	by ∞ ( ) the set of smooth functions on	∖	such that for any multi-index , a
	constant	exists such that

For a different approach based on Fourier analysis, see[START_REF] Bahouri | Precised Hardy inequality on ℝ and on the Heisenberg group ℍ[END_REF] 

Let us start with the proof of the following lemma.

Lemma 3.2. The space 1 is equal to 1 (ℛ) and the norm are equivalents.

Proof of Lemma 3.2 By definition of the norm on 1 (ℛ ), we have

By definition of , , , we have

By Leibnitz formula and by definition of Σ , we have

As the vector fields , vanishes at 0, we have sup

This gives that

Proof of Proposition 3.2 Up to an omitted regularization process, it is enough to prove that, for any ∈ ( ),

Let us start with the observation that

In order to estimate ∥ , ′ , ′ ∥ 2 , we are going to proceed as in the proof of Lemma 3.2. Let us write that

(3.30) As the coefficients of the vector fields , vanishes on Δ , we have sup

Thus, using (3.29), we have

We have [START_REF] Bahouri | Trace and trace lifting theorems in weighted Sobolev space[END_REF] telles us that the sytems (ℛ , , ) , satisfy the Hörmander condition at order 2 uniformely with respect to on . Thus, the classical maximal estimate tells us that

) .

Applied with = 0 (2 ⋅), this gives