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Abstract

In the context of self-stabilizing processes, that is processes attracted
by their own law, leaving in some potential landscape, we investigate dif-
ferent properties of the invariant measures. The interaction between the
process and its law leads to nonlinear stochastic differential equations.
In [7], the authors proved that, for linear interaction and under suitable
conditions, there exist some unique symmetric limit measure associated
to the set of invariant measures in the small noise limit. The aim of this
study is essentially to point out that this statement leads to the existence,
as the noise intensity is small, of one unique symmetric invariant measure
for the self-stabilizing process. Informations about the asymmetric mea-
sures shall be presented too. The main key consists in estimating the
convergence rate for sequences of stationary measures using generalized
Laplace’s method approximations.

Key words and phrases: self-interacting diffusion; McKean-Vlasov equa-
tion, stationary measures; double well potential; perturbed dynamical system;
Laplace’s method; fixed point theorem; uniqueness problem.
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1 Introduction

In the framework of nonlinear diffusions, self-stabilizing stochastic processes
play a particular rule. Introduced by McKean [8] these processes attracted by
their own law are solution of the so-called McKean-Viasov equation:

dXt = th + b[Xt, Ut] dt, XO =T € R, (11)



where u; is the law of Xy, b[z,u] := [, b(x,y)u(dy) for any probability measure u
and (Wy, t > 0) represents some one-dimensional Brownian motion. A solution
of (1.1) is in fact a couple (X;,u;) such that, for any ¢ > 0, u; represents the
distribution of the variable X;. Such processes appear naturally in huge systems
of particles in interaction by the so-called propagation of chaos phenomenon,
see [11] for an introduction to this topic.

The common mathematical problems related to these self-stabilizing pro-
cesses concern the existence and uniqueness of solutions to (1.1) and ergodicity
properties like the existence and uniqueness of stationary measures, the conver-
gence of the law of X; to the invariant law as time elapses. A relative numerous
literature, based on fixed point technics, free energy methods or logarithmic
Sobolev inequalities, presents results concerning the existence and uniqueness
of invariant measures and ergodic behavior. Each study deals with some par-
ticular family of interaction function b, let us present an incomplete selection
of works: [1], [2], [3], [4], [9], [12], [13], [14]. In the situations described previ-
ously, the results are quite similar than those developed in the classical diffusion
context even if the methods of proof are clearly different.

However the self-attraction structure of (1.1) can lead to surprising phe-
nomena like non-uniqueness of invariant measures. The aim of this paper is
namely to focus our attention to some of them. Let us introduce the process
we are interesting in: the solution (X, t > 0) of the following one-dimensional
McKean-Vlasov equation:

dX, = edW, — V'(X,)dt — /RF (Xe — w)dui (2)dt, (12)

where u (z) represents the distribution of X; and ¢ is a small positive parameter.
In other words the function b introduced above satisfies b(x,y) := —V'(z) —
F'(z—y): V is called the environment potential and F' represents the interaction
potential. The functions V and F are assumed to verify different conditions
developed in Section 1.1 and related to [1] and [2]. Let us just note two principal
properties: F is an even convex function with F(0) = 0 and lim,_, , F'(z) = 400
and V is an even double-well potential whose global minima are reached for
z=-aand z=a>0.

In some preceding paper [6], the authors pointed out, under some suitable
conditions and for small noise intensity €, that the nonlinearity of the dynamical
system permits the existence of at least three invariant measures, one symmetric
(due to the symmetry of F' and V') and two so-called outlying measures which
are concentrated around —a or a, the bottoms of the double-well landscape V.
Moreover, in the particular case of convex functions V" and linear functions
F', there exist exactly three invariant measures for € small enough. The aim
of this paper is to take the first steps in order to generalize this nice result to
general interaction functions F. In particular, we shall prove three essential
statements concerning the set of invariant measures whose first moments are
uniformly bounded with respect to the parameter € (the number of moments to
consider will be specified in the following): if V" and F" are convex functions
then, for € small enough,



e There exists some unique invariant measure which converges towards d,
in the small noise limit.

e There exists some unique invariant measure converging towards §_, in the
small noise limit.

e There exists some unique symmetric stationary measure provided that
F"(0) # sup,cp —V" ().

These results developed in Section 7 permit to present informations concerning
the set of invariant measures for the self-stabilizing process (1.1). Indeed the
authors proved in [7] that any symmetric measure converges to the discrete
measure % O—go + % 0z0, as € = 0, where z is the unique solution (see Theorem
5.4 in [7]) of the system

VI(SL'()) + %F’(ng) = 0,
V(o) + LF"(0) + LF"(2z0) > 0.

Let us just note that g = 0 when F"(0) > —sup,cp V" (z). Furthermore
the existence of some family of asymmetric measures converging towards d,,
respectively d_,, is presented in [7].

In other words, the statements proved in this paper suggest the following
conjecture: under some conditions (convexity of F"' and V" for instance), for
any M > 0 large enough, there exists g > 0 such that (1.1) admits exactly three
invariant measures whose first moments are bounded by M for all € < .

The results announced above are proved using the convergence rate for se-
quences of invariant measures denoted by (u., € > 0) and associated to some
limit measure ug. In fact, the convergence rate depends on the measure ug con-
sidered: the three different cases §_, d, (Section 6) and % 6_,, + 1 &, (Section
3 for 2y = 0 and Section 4 for zo > 0) shall be analyzed. A particular conver-
gence rate problem shall be analyzed in the borderline between the situations
satisfying o > 0 and those associated to zog = 0 (see Section 5). In all these
situations, arguments based on Laplace’s method type approximations permit
to obtain some equivalence in the small noise limit of the following expression:

D, = (fus) — (fyuo) where (f,u):= /R f(@yu(dz),

and f is a C*(R)-continuous function with polynomial growth.
The paper shall begin with the detailed assumptions concerning the function
F and V of (1.2) and some preliminary key asymptotic results.

1.1 Main assumptions

We assume the following properties for the function V:



(V-1) Regularity: V € C*®(R,R). C° denotes
the Banach space of infinitely bounded con-
tinuously differentiable function.

(V-2) Symmetry: V is an even function.

(V-3) V is a double-well potential. The equa-
tion V'(z) = 0 admits exactly three solu-
tions : a, —a and 0 with a > 0; V"(a) > 0
and V"(0) < 0. The bottoms of Wells are
reached for z = a and z = —a.

Figure 1: Potential V

(V-4) There exist two constants Cy, Cy > 0 such
that Vz € R, V(z) > Cyz? — Cax?.

(V-5) lim V"(xz) = +o0 and Vz > a, V"(z) > 0.

(V-6) Analyticity: There exists an analytic function V such that V(z) = V()
for all z € [—a;al.

(V-7) The growth of the potential V' is at most polynomial: there exist ¢ € N*
and Cy > 0 such that |V'(z)| < Cy (1 + z%9).

(V-8) Initialization: V(0) = 0.

Typically, V is a double-well polynomial function. But our results can be applied
to more general functions: regular functions with polynomial growth as ||
becomes large. We introduce the parameter ¥ which plays some important role
in the following:
¥ :=sup —V"(z). (1.3)
T€ER

Let us note that the simplest example (most famous in the literature) is V(z) =

”4—4 — % which bottoms are localized in —1 and 1 and with parameter ¢ = 1.

Let us now present the assumptions concerning the attraction function F.

(F-1) F is an even polynomial function with F(0) = 0. Indeed we consider
some classical situation: the attraction between two points z and y only
depends on the distance F'(z —y) = F(y — z).

(F-2) F is a convex function.

(F-3) F' is a convex function on Ry therefore for any x > 0 and y > 0 such
that z >y we get F'(z) — F'(y) > F"(0)(z — y).

(F-4) The polynomial growth of the attraction function F' is related to the
growth condition (V-7): |F'(z) — F'(y)| < Cylz —y|(1 + |z|?772 + |y|24~2).

Let us define the parameter @ > 0 which shall play some essential role in fol-
lowing:
F'(z) = ar + Fj(z) with a := F"(0) > 0. (1.4)



2 Preliminary results

In [7], the authors considered the asymptotic behavior of invariant measures
(ue)eso for the self-stabilizing process (1.2), as the noise intensity ¢ tends to
0. Some simple arguments permit to present the invariant measure in some
particular exponential form: this idea was previously presented in [6]. Indeed,
defining

We(z) := V(z) + F * uc(x) — F xuc(0), (2.1)

the following expression holds
_ exp[—2W, ()]
Jrexp[—2W.(y)]dy

In order to study the asymptotic behavior of invariant measures, we shall use
Laplace method type results and estimate (W)eso as € — 0. This section will
concern these essential asymptotic analysis steps. Let us first introduce

ue () (2.2)

s(e) = /R ol ue (o) da.

Under weak conditions on the moments, namely the family {pan(€), € > 0} with
2n := deg(F) is bounded (see Proposition 3.3 and Theorem 3.6 in [7]), there
exist a sequence (€j)r>0 tending towards 0 and some regular function Wy such
that:

5(,{) converges uniformly on each compact subset of R to Wéj ), for any

JEN

e the sequence (u.,)r>1 converges weakly towards some discrete probability
measure given by ug = Y., p; 64, with p; > 0 and Ay,..., A, are
locations of the global minimum of Wy :=V 4+ F xug — F *u¢(0). Since F
is an even function, we get Wo(z) = V(z) + X, pj(F(z — A;) — F(4;)).

We shall now use these previous results in order to obtain some estimation of
the speed of convergence for the subsequence (uc, )k>1.

Attention ! In the following we shall drop the index g just replaced by &
for notational simplicity but the reader has to keep in mind that both previous
properties (uniform convergence of the pseudo-potential and weak onvergence
of the measures) are satisfied.

First we present some special Laplace method: we define A4 := {4;;1<j <r}
the support of the limit measure ug and B the set of all locations for Wj’s global
minimum which don’t belong to A.

Lemma 2.1. Let (u€)€>0 a sequence of stationary measures which converges
weakly to ug. We assume moreover that {psy,(g), € > 0} is bounded with 2n =
deg(F). Let W :=V + Fxu. — F xu.(0) and Wy :=V + F xug — F % uo(0).
We denote by Ay < --- < A, (respectively By < --- < By if s > 0) the elements
of A (resp. B).



1. Let us consider the set of intervals (I;)i1<i<r4+s which correspond to the
Voronoi cells centered in the elements of D :== AU B. If W['(D) > 0 for all
D € D, W, reaches its global minimum at some unique location in I; denoted
by D5 (also denoted by A® or Bf), 1 <i < r + s, which converges to D; € D.
Then, D satisfies the following asymptotic development:
! D

D;:Di—%ﬁ-o{Wé(Di)}, 1<i<r+s. (2.3)
2. If ue is symmetric, if ug = 0o, and if both Wy and F" are conver functions,
then 0 is the unique location of the global minimum of W,. Furthermore, if F'
is not a linear function, we get W!(0) > 0.
3. If W/'(D) > 0 for all D € D, then for any function f € C*(R,R) with
polynomial growth, we have as e — 0:

/Rf(t)e—%”dt = ; /VVG%;;)e_2W€e(A§){f(A§)+’yj(f)€+o(e)} (2.4)
+ l:ZIMWE#eB;) e‘w{f(Bl)-i-o(l)}

5 W§ ) W i Wi I"(A)
) — (A g ¥ _ A, Ni i) 9.
u(f) = F(45) (48 wi, " 1ewg, ) T W T, 39

Here W, := w (A3).

with

Proof. 1. (W¢)eso satisfies the assumptions of Lemma A.4. Indeed, w9 con-
verges uniformly towards Wé]), for j € N, on all compact subsets of R, see
Proposition 3.3 in [7]. Besides, since F is a even polynomial function of de-
gree 2n and since the moments are bounded, F' * uc(z) — F * uc(0) > P(x)
where P is a polynomial function independent of € whose principal term is pos-
itive. Therefore, using (V-4), we obtain the following lower bound: W (z) >
Cyz* — Cox? + P(x). The application of Lemma A.4 provides the existence of A5
and B;. Let D be a location for the global minimum of Wy. If W'(D) > 0, the
uniform convergence of D¢ towards D and the convergence of W, towards Wy,
on each compact set, imply W! (D€) > 0 for € small enough. The asymptotic
development (2.3) comes directly from Lemma A.4.

2. If ug = d then Theorem 3.6 in [7] implies that 0 is one global minimum of
Wo and by the way Wy (z) > Wy (0) = 0 for all z € R. Furthermore, since F" is
a convex function and wu. is symmetric and absolutely continuous with respect
to the Lebesgue measure, see [6], we obtain the following lower bound

W (z) — W(z) = / (P~ 2) + F'(a + 2) - 2P"(@) uc(2)dz > 0.
Ry



Due to the convexity of Wy, we obtain the convexity of W,: W/ (x) > 0 for all
z € R. Let us note that W, (0) = 0 and W/(0) = W{}(0) = 0. We deduce that
We(z) > Wo(z) >0 for all z € R.

Let us prove that the global minimum of W, is only reached at 0. If
there exists some m > 0 such that W.(m) = 0, then due to the convex-
ity We(z) = Wo(z) = 0 for any = € [0,m]. By definition, since ug = do,
we get Wo = V + F. By (V-6), we know that V is an “analytic function”
on [—a,a] and F is polynomial. Therefore Wo(z) = V(z) + F(z) = 0 and
W§(z) = V"(x) + F"(x) = 0 for any € [—a,a]. This contradicts the hypothe-
ses (V-3) and (F-2) which imply that W' (a) > 0. Finally we conclude that 0 is
the unique location of the global minimum of We.

Besides, if F' is not a linear function then F"(z) > F"(0) for all z # 0. Con-
sequently, W/ (0) — Wy'(0) = [, (F"(z) — F"(0)) uc(2)dz > 0 because F' is odd
and convex on Ry. Therefore, W/ (0) > W§'(0) > 0 and so 0 is the unique
location of the global minimum.

3. As By tends to By, we have f(Bf) = f(B;) + o(1) so that (2.4) is a direct
consequence of Lemma A .4. O

The previous lemma is essential for the computation of the convergence’s speed.
In order to complete this asymptotic description, we need to estimate the be-
havior of W,(A$) for any j as e — 0.

Proposition 2.2. Let D defined in Lemma 2.1. We assume that W' (D) > 0 for
alDe D=AUB. If A; and Ay, are two elements of A with the corresponding
asymptotic weight: uo(A;) = p; and uo(Ax) = pr, we denote by A5 and Aj
the corresponding arg min defined in the statement of Lemma 2.1. Then the
following asymptotic development holds

WA - W4 1 A\ 1, (s
li J = __1 RASUR Sl V2 I =1 =1 . 2.
lim c 108 (WO"(Ak)> 2 8 (pk) (26)

Moreover, for any B € B # 0 we denote B® the corresponding arg min presented
in Lemma 2.1 and obtain
. WG(BE) - WG(A;')
lim

e—0 €

=400, foralll1<j<r. (2.7)

Proof. By Theorem 3.6 in [7], the limit measure ug is a discrete measure con-
structed as follows ug = 2221 Pjoa; +> -1 @16, where the weights are defined
by

Aj+6 Bi+6
p; = lim ue(x)dr and ¢ = lim ue(z)de, 1<j<r 1<I<s.

e—0 Ai—§ e—0 B —¢

J
The only assumption on § is that all the intervals [A. —§, A.+d] and [B.—§, B.+)]
are disjoint. By definition of the set A, p; # 0 for all 1 <4 < r. As an immediate
consequence, we obtain for 1 < j,k<rand 1 <[ <s:

Aj+6 2w, Bi+é _2w,
Dj .. AjJ—é e Weldy Q. Bll—d e <Welr)dy
= = lim y v a— d lim DV .
P €0 fAk—é e~ We(®) qyp pj =0 IA; s e~ e We(®)




By definition of the set B, the weights (¢;);>1 vanish. An adaptation of Lemma
A.3 to the constant function f =1 yields

”7r6 o 2U€£A€-) poo efzueiBf)
. W/ (A5) Dj . W (By)
lim oA = and lim AT 0.
e—0 e _ ek’ Pk e—0 e _ J
wrap ¢ WAy € °

Applying the function z — —% log x to the previous equalities permits to prove
the asymptotic estimates (2.6) and (2.7). O

Remark 2.3. Let us first note that the pseudo-potential W, doesn’t generally
reach its global minimum at each location A; respectively By, defined in the
statement of Lemma 2.1, even if each of these points converges to one location
of the global minimum of Wy. The equation (2.6) emphasizes that the speed of
convergence of W(A3) towards Wo(A;) is directly related to the weight p;. Even
if the elements of B don’t have any impact on the limit measure ug, they can
influence the convergence’s speed of the sequence of invariant measures u. for
the self-stabilizing diffusion towards uyg.

Let us introduce some assumptions in order to avoid the parasitism of B in the
computation of the rate of convergence of any subsequence of invariant measures
towards a limit measure ug. In the following, this condition is assumed to be
satisfied.

Let us recall the definition of D: if wg := ;161{2 Wo(z) then D = Wy ({wo})-

Assumption 2.1. For each D € D = AU B, W§' (D) > 0. Moreover, for
any element A5 associated with Aj € A, 1 < j <r, (see Lemma 2.1 for the
definition of A°) and B; associated with B;, 1 <1 <'s, we set
.. We(Ble) _We(Aj')
lim inf
=0 —elog(e)

> 1. (2.8)

This condition is quite natural: it is related to the asymptotic estimate (2.4).
In that development appear either terms induced from elements of A either from
elements of B. The condition expressed in (2.8) is interpreted as follows: the
terms associated to B are negligible with respect to those of A of order £3/2. In
other words, we assume that, for any 1 < j <rand 1< <s,

3 _ 2We(Bf) TE _2We(A§)
——— e " ¢ = . [—F—€e < o
\ B \ WA ©,

which is equivalent to (2.8).
Example: Let us just introduce some example which satisfies Assumption 2.1.
This example was already pointed out in [7]. The context is as follows: the

environment function of the self-stabilizing process satisfies V' (z) := ZG—G —3qt—
;—;xQ while the interaction function equals F'(z) := w4—4 + WQ—Z Two essential results



were already proven (see [7]): first, any family of symmetric invariant measures
{ue, € > 0} satisfies the following weak convergence result:

. 19
lgI(l)ue—U(). —(50+90 ((5f —|—(5 f) (29)
We deduce, by the way, the expression of the limit pseudo-potential
26 19
Wo(@) = V(@) + (@) + 5o { F@ = 20) + F(z +20) = 2F (o) },

where zg = Y12,

Secondly, due to some convexity property of Wé4), the global minimum of W,
can only be reached at three locations, namely A1 = —zp, A2 =0 and A3 = zo.

e Therefore B = () which implies that it suffices to obtain W§'(A4;) > 0, for
1 <4 < 3, in order to verify Assumption 2.1. After straightforward com-

putations, we effectively obtain: W{' ( ) Wy (—£> 4W(0) =
% >0.

e In this example, Proposition 2.2 leads to some explicit computation of
the first order development of W(A§) where (A$).>o is a sequence of
local minimum locations for the potential W, which converges towards
Al =—xo = —@ (see Lemma, 2.1). Let us note that the pseudo-potential
W, associated to the symmetric invariant measure introduced in (2.9)
admits exactly three local minima as € is small. Indeed D admits three
elements, which implies that W, admits at least three local minima, in the
small € limit as it was proven in Lemma 2.1. Furthermore if W, admits

more than 4 local minima, then W/ vanishes at least seven times. By

Rolle’s theorem this implies that WE(4), which is a polynomial function of
order 2, admits 3 zeros: this is of course a nonsense. Finally we obtain
the existence of exactly three local minima of W,.: A] < A5 < A. The
symmetry of u® and consequently of W, permits to know that A7 = —A3
and A5 = 0. Finally Proposition 2.2 and W,(0) = 0 provide

We(AT) ~ glog (1 + %) ase — 0.

The next part of this paper concerns the rate of convergence of sequences of
invariant measures for the self-stabilizing process towards the associated limit
measure. The study shall of course depend on the limit measure considered.
We focus our attention to various particular situations.

3 Convergence rate associated with ug = g

In this part of the study, {uc, € > 0} represents a sequence of symmetric in-
variant measures, with 2n-th uniformly bounded moments, which converges to



ug := 0g. The aim is to establish the associated rate of convergence. Let us
first note that the limit pseudo-potential defined in (2.1) is given by Wy(z) =
V(x)+ F(x). Since the support of the limit measure is contained in the localiza-
tion set of global minima for W, (see Theorem 3.6 in [7]), the origin is a global
minimum. In this section, we shall assume that

(H) Wo and F" are convex functions.

By Lemma 2.1, 0 is the unique location of the global minimum of W, and of W.
Therefore B = (. Actually we do not impose that Assumption 2.1 is satisfied,
we are going to study the rate of convergence in the two following cases:

o firstly Wy'(0) > 0, that is @ > —V"(0), which corresponds to the situation
where Assumption 2.1 is satisfied.

e secondly W['(0) =0, i.e. a =—-V"(0).

3.1 Convergence rate for the case: a > —V"(0)

Let us recall that this situation corresponds to the lower-bound W{'(0) > 0.
Since we assume that Condition (H) is satisfied, B is empty and finally As-
sumption 2.1 is satisfied. Applying a Laplace type asymptotic result, we obtain
easely the convergence rate of the sequence of symmetric invariant measures
{u¢, € > 0} towards the limit measure ug = dp as € — 0.

Theorem 3.1. Under the condition (H), for any function f € C* (R, R) with
polynomial growth, we have:

tim 14— (o) } =

A e CERIO) 8-1)

Proof. We recall that u. is characterized by the exponential structure (2.2).
Moreover due to Condition (H), B = () and 0 is the unique location of the global
minimum of W,. Therefore, applying the third item of Lemma 2.1 with A} =0
and W, (A7) =0, we get

/Rf(a:)e_zWe(w)da;Z i) 10 +0(Ne +0(e)},

where o (f) is defined by (2.5). Since W{¥(0) = V®(0) = 0 and W'(0) =
a+V"(0) >0, v(f) converges towards

f"(0)
AW (0)°

Wi (0) 0+

v(f) = 16w (0) (3.2)

Hence
e

/R f(@)exp [—%Wé(m)] do = W—(O){ fO) +9(Ne+o@}.  (33)

€

10



First we apply (3.3) to the constant function f =1 and obtain

/Rexp [—%We(x)] de =,/ WZ'T'EO) {1 +v(1)e+ o(e)}. (3.4)

O)
Here v(1) = —%. Let f € C* (R, R) with polynomial growth. We divide

(3.3) by (3.4), the following estimate yields

f(0) +v(f)e+ ole)
1+7(1)e + o(e)

[ 1@uc(e)ia = 1)+ (+() = FOND)e +ofe),

where v(f) is defined by (3.2). Finally we get
<f7 ue) - <f7 U())

€

=1() = 101 + o(1) = s +ol0).

In order to complete the proof, it suffices to note that W}'(0) = a + V" (0). O

3.2 Convergence rate for the case a = —V"(0)

Let us recall that this situation is equivalent to W{'(0) = 0. In other words,
Assumption 2.1 is not satisfied. The aim of this subsection is to emphasize that
the convergence rate is not always equal to €. This rate was effectively presented
in Section 3.1 and concerns most of the situations. The condition W{'(0) = 0
changes drastically the asymptotic behavior of the self-stabilizing invariant mea-
sure. The asymptotic results shall be proved under some additional conditions,
namely the convexity of both F'' and Wy, that is, Condition (H).

The computation of convergence rate will be based on successive derivations of
the pseudo-potential: WE(%)(O). We therefore introduce:

ko = min{kZl | W(§2k)(0)>0}, (3.5)
— @) (0| —35
Q. - @%ﬁo{‘we 0)]” € } (3.6)
2
and Mo.(e) := /azQTexp [—ZWE(JL‘)] dz. (3.7
R

The expression (2, corresponds in fact to the suitable change of variable asso-
ciated with the computation of Ma, (). This result is detailed in the following
proposition. Let us just note that Moy, (¢) is well-defined. Indeed since u. is
a symmetric invariant measure, Lemma 4.2 in [6] implies the following lower
bound:

/OE(F' * u)(y)dy > 0.

It suffices then to use (2.1) and the growth property of V in order to prove the
boundedness of the integrals My,.(¢), for e > 0 and r € N.

11



Proposition 3.2. Under the assumption (H), for all r € N, the following in-
equalities holds:
0 < lim i(1]1f Q¥ My, (€) < limsup Q2 My, (€) < +o0. (3.8)
e—

e—0

Proof. Step 1. Preliminaries. Since {u., € > 0} is a sequence of symmetric

invariant measures with uniformly bounded 2n-th moments, Wg(zr) converges
uniformly on each compact set to WO(QT) (see the discussion before Lemma 2.1

and the statement of Proposition 3.3 in [7]). The definition of ky implies there-
1 1
fore: |W6(2k°)(0) 2o ¢~ 2k — +00 as € = 0. Consequently, Q. — +00.

Let Cj(e) == % By construction, the families {Cj(e)},, are bounded.
Let us select a decreasing subsequence (), oy converging towards 0 such that,
for any 1 < j < kg, we observe Cj(ex) = C; € R.

In order to simplify the notations, we drop the index.

We define

o= {i [1<5<ho, € #0} = {310t} (3.9)

with 1 <7y <jo <+ <j; <kop-
Let us now focus our attention to the computation of the integral term Ms,.(¢)
which can be split into two principal terms as follows:

MQT(E)
2

n(e) W (o Foo W (e
= Ir.(€)+ Jar(€) :=/ e )d:L‘+/ 22T e 2 )d:l?, (3.10)
0 n(e)

7(e) shall be specified in the following.
Step 2. Asymptotic analysis of Iz,.(¢). The mean value theorem applied
to the function W, on [0;7(¢)] leads to:

We(x) _ 1 &0 1 (25) 2j W6(2k0+2)(yz) 2ko+2
¢ _E;@j)!wf O™+ o ayre &

with y, € [0;7(€)]. Using the definition and the convergence result related to
Cj(e), we get:

l (2k0+2)

We(z) Cii 2k 25k We (Yz) 2ko+2
e _k;(zj'k)!ﬂf T Grrore
ko 1 1N\2 2 2
+ 3 g (G0 = C) (It = c5l%) " 2w, (3.11)
=1

We shall find some suitable sequence {n(e), € > 0} (subsequence since the index
was dropped), decreasing toward 0 and such that the first sum in the rhs of the
previous expression is the principal term, all the others being negligible. For €
small enough and for all z € [0;7 (¢)], the second term is upper bounded by:

1 W€(2k°+2)(yx) $2k0+2S sup ‘W€(2ko+2)(z)‘n(€)2ko+2 e 1
€ z€[051]
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Let us now introduce the parameter Q. which tends to 0 in the small ¢ limit
and which is defined by:

_ 11 1
Qci=max{ sup [Cj(e) = Cjl5 5 oo eothodn b (312)
1<j<ko Q2

Q. is a good candidate for the construction of 5(c); we set

1
n(e) =" (Q) 2. (3.13)
Some straightforward considerations permit to observe that:
e Firstly, 7 (¢) tends to 0 as € becomes small.

e Secondly, there exists p(e) > 0, satisfying lim._,¢ p(¢) = 0, such that, for
all z € [0;n(€)],

Wkt (g,
(2]{30 + 2

(o0-c)
p2ko+2 | Z QY 2% < p(e). (3.14)

Due to the suitable choice of the parameter n(e), see (3.13), the integral I»,.(¢)
defined by (3.10) is equivalent to the simpler integral

n(e)
/ 2" exp | -2
0

in the small € limit. The change of variable z := Q_ !y provides

l

Cjk 25k .27k
Z(ij)!ﬂf x dx,

k=1

dy, ase—0, (3.15)

1
where () := 1 (e) Qe = (Q) ? = +o0 as € = 0. By definition Cj, # 0, see
(3.9). If Cj, > 0, then ', := [, 2" exp [ QZk 1 2M),C x Jk] dx < oo and
therefore, in the small € limit, (3.15) leads to

Iy (e) = Q7271T,.. (3.16)

To conclude the asymptotic analysis of I>,(¢), it remains to prove that Cj; > 0.

We shall prove it by reductio ad absurdum. Let us then assume that Cj; < 0

which implies limy 4 Zk 1 (;’;Jk), y?* = —oo. Hence there exists yo > 0
(!

such that Zk 1 (g;:), yg“ < —1. Due to the convergence of M

S (;’;?k)! y?* for any y € R, we deduce that W, (2 'yo) < 0 for € small

enough. This contradicts the fact that 0 is the global minimum of W, in a

towards
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neighborhood of 0, for € small enough (see Lemma 2.1).

Step 3. Asymptotic analysis of Ja.(¢). It is now sufficient to prove that
Jor(¢) defined in (3.10) satisfies Jo,(¢) = o(Io-(g)) = 0 {Q72""'}. We split
this integral into three different parts depending on the support: J3,.(¢) for the
support [n(¢),e [, J3,.(¢) for [e*,e™#[ and finally J4.(¢) for [e~#,4o0o[ where
A, o > 0 shall be specified in the following.

3.1. Let us first estimate J£.(¢). Due to the assumptions (F-2) and (V-4), we
get the lower bound W, (z) > Wy(z) > Cyx* — Cox?® > g—z for large x. The first
inequality in the previous formula is also related to the second item in the proof
of Lemma 2.1. We apply the change of variable x := /ey, Lemma A.1 leads to:

oo

JQAT(E) < €r+§/ . y2re_y2dy < 9el+(1=2r)p exp [—6_2“_1] ,
T

for € small enough. It remains to prove that the rhs is negligible with respect

to Q7271 Tt suffices in fact to note that, by definition of (2., the following

convergence result holds: Q. — 0 as € — 0. Consequently, since p > 0,

er"'lel"‘(l_zr)” exp [—6_2“_1] — 0.

3.2. Secondly we estimate J3,(¢). We obtain:

-k
€ 2 2
I (€) = / 2" exp [——Wf(x)] de <e PP tDexp (=2 inf  W.(2)|.
X € € z€[e*;+oo]
We note that 0 is the unique location of the global minimum for the pseudo-
potential Wo which implies that inf, e, oof We(2) = We (€}) > W (€*), for

(2k0) gy .
e small enough. The mean value theorem provides Wy (e}) = m(,%)go) gZkoA,

Taking A = %(}T and p > 0, J5.(¢) is exponentially small in e. By definition,
Ve=0{Q;'}. Hence Js,(¢) is negligible.
3.3. We focus now our attention on the integral J3,.(¢) related to the support

[n(e),e*[ where n(g) defined by (3.13) tends to 0 as € becomes small. The change
of variable z := Q_ 1y yields

b(e) 2
5@ =0 [ e[ 2wl G

where a(e) := n(€)Qe — +oo and b(e) := €*Q.. Let us just prove that the
integral introduced in (3.17) is negligible, that is tends to 0 in the small £ limit.
An integration by parts permits to obtain:

‘(02 = a(e)* exp [=2W(Q 'a(e))]  b(e)*" exp [ 2W(Q'b(e))]
S S W0 ale) - 25 5 WHQ1b(e) — 5
P s

T EAACIEEY

2
5 exp [—ET/V6 (Q;ly)] dy.
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Since F" is a convex function, we obtain
W (z) = W (z) = / (F"(@+2) + F"( = 2) = 2F"(z) )uc(:)dz > 0. (3.18)
Ry

The main assumption in this section is Wy'(0) = 0. Moreover, since 0 is the
unique global minimum location of the limit pseudo potential Wy, there exists
some constant > 0 such that W{§'(z) > 0 on the interval | — n,n[ and so, due
o (3.18), W' (Q-ty) > 0 for y € [a(e), b(e)]. Hence

a(e)Qre—%We(Qe_la(e)) ~ b() e% (7 1b(e))
(Q:Tale) - 25 ZWHQL b)) - 25

Moreover since the application y — W/ (- 1y) is non decreasing on the interval
[a(e), b(e)], we get

()T < (3.19)

69 (leb(e)) —% o W'(Q L ()) —%. (3.20)

Let us prove now that the r.h.s. is positive for £ small enough. The mean value
theorem leads to some similar development as (3.11) namely

2ko+-2
W’ W( °+)(yz) 2ko+1

l
QZJk 1 2Jk 1 _c @ \gL/
;2]]9—1 ZL‘ +(2k0+1) eﬂx

ko 1\2J . )
+ 3 G 80 (€500 = 0 (10,60 — € F) it o,
j=1

with y, € [0,z]. In particular, for x = Q-'a(¢) = 7., similar arguments as
those used in (3.14) permit the existence of some function p(g) > 0 satisfying
lim. o p(e) = 0, such that

0
P (ko +2) (¥2) ko (|Cj (€) — Cj|2%‘) j

e (2k = 1) 2hott 2j-1 2j-1
Qe (2ko + 1)! n(e) + ; (2j — 1) Q7 n(e) < p(e).

We deduce that WGI(SZ%:'(E)) is close to P() == Yk, % a(e)?*~1: for any

6 > 0 small enough, there exists 9 > 0, such that

€

_P(E) S(S, VES‘EO-

Let us recall that a(e) = oo as € — 0. Furthermore, in Step 2 we have proved
that Cj, > 0. Therefore, as e — 0, P(e) = oo and so do M Finally
we deduce that the rhs of (3.20) is lower-bounded: for any § > 0 there exists &g

such that 5 1
(- ale)) — (T) >3, Ve<eo. (3.21)

EQ
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By (3.21), (3.20) and (3.19), there exists some § > 0 such that the following
upper bound yields in the small € limit:

)2’!‘ —-2w. (27 a(e))

Ir ezt < _Me)e < da(e)?re— W a(e) 3.22
27‘( ) € — ﬁWé(Qs—la(e)) _ aQ(z) = (6) ( )

Let us prove now that the previous upper-bound becomes small as € — 0 which
implies immediately the required asymptotic result: J3.(¢) = o(Q. 27 1). It
suffices in fact to get some estimate of W (2 la(e))/e. The procedure re-
quires the arguments just used for the asymptotic estimation of the expression
W!(Q-ta(e))e=1Q 1. Indeed for any § > 0 there exists eg > 0 such that

1
“We(Q7a(6)) = Q(e)| <6, & <o, (3.23)
with Q(e) == Y4 _, %a(e)zﬂ"“. Since Cj, > 0, the following limit holds

lim._,0 Q(g) = +oo and therefore (3.23) leads to LW, (. 'a(e)) > % a(e)?
for € small enough. By (3.22), we finally get

0 < J5 ()2 < da(e) exp [ — %%)% .
1)!

Since a(e) — oo as € — 0, the rhs in the preceding inequality tends to 0 and
* (6) — 0(0—27‘—1)'
2r €
Step 4. Conclusion. In the first step, we have decomposed the moment
My, (€) (for some subsequence (e),cy) into two parts: In.(e) studied in the
second step and Ja,-(€) studied in the third step. We have proved that Jo.(g) is
negligible with respect to I5,.(g). Hence the following asymptotic estimate holds

l
1 .
" exp l—Q Z @i Cja® | dz+o{Q7*"'} (3.24)
k=1 )

M2T(6) — 96—21‘—1/

R

where the coefficient C; depend on the sequence € = (k) ,cn-
In order to archive the proof, we analyze, not only for some subsequence, the fol-
lowing expressions: liminf. o Q21 My, (e) and limsup,_,q Q?"*! My, (¢) and
prove (3.8) by reductio ad absurdum. If we assume that the limsup is un-
bounded, then there exists some sequence (ex)r>0 which tends to 0 and such
that

lim Qz:—i_l M2r(€k) = +4ox0.

k—o0
Applying Step 1, we extract some subsequence (¢},)r>0 such that C;(e},) = C}
as k — oo for all 1 < j < kg. For this subsequence we have already proved, see
(3.24), that Q> " Mo, (€),) is bounded. We obtain the announced contradiction

k

and therefore limsup,_,, 227! My, () < oo. The same argument is used to
obtain the lower-bound. O
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According to Proposition 3.2, we observe that . defined by (3.6) is essential
in the description of the asymptotic estimation of Ms,.(g), defined by

Mon(e) = /]R 2% exp [—%We (z’)] da.

In particular My(e), corresponding to the normalization term for the invariant
measure u., see (2.2), converges towards 0 with the rate Q1.

We recall the expression of the limit pseudo-potential introduced by (2.1):
Wo(z) = V(z) + F(z) and the related parameter

ko = min{k >1 | W) > 0}.
We introduce two other parameters: py and myg, defined by
po := inf {k >2 | FCR(0) > 0} and mg := min {ko,po} . (3.25)

The aim is now to prove that the convergence rate of sequences { M2, (ex,), & > 0}

isrelated to efrﬂ)/ (2mo) Firgt of all, we present the following asymptotic result:

Proposition 3.3. If F" and Wy are both convex functions, the following in-
equalities yield:

0 < liminf Qeeﬁ < lim sup Qeeﬁ < 4o00. (3.26)
=0 e—0

Proof. By definition of the parameter kg, we have

w29 (0) = /

(FCI () — FCD(0)) uc(z)ds, 1< <ko—1.
R

Since F' is a polynomial function of degree 2n,

2 I 20 (0) My, (e
w2 (0) =) (2T)!() o ((E)). (3.27)

r=1
For any 1 < j < n — 1, we define s(j) := inf {r > 1 | Fi+21(0) #£0}. Ap-
plying Proposition 3.2 with 1 < r < kg — 1, there exists a decreasing sequence
(24)
(er)k>0 such that Cj(ex) = VZE’“Q2E-0) converges towards some limit denoted by
- kdley
Cj, as k — oo, for all 1 < j < kg. Moreover, by (3.24), we obtain

, (25+25(7)) ,
W (0) = F(TJ))'(O) gy Q2D (1 +0(1)) ask — oo (3.28)
C; .
fosz®exp =23 | irg?ie | dy
with a, = — [ =t Cir): ] . (3.29)

1 C; o
Jo+exp [—2 D p=1 (2;;’)!3;21p] dz
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The set of indexes J = {ji, 1 < k < [} is defined by (3.9).

We distinguish two different cases:

First case: pg > ko. By definition of the coefficient Cj(e}) and using (3.28),
we obtain the following asymptotic result:

W€(2j) 0 F@2i+2s(3)) (o Qg i
Cj(ék) = k 28_ ) = A '( ) 2((-7—)3()) +0(€k196k2(]+5(])))'
er 2, (25(4))! ex e, Y
Since j > 1 and s(j) > 1, we get j + s(j) > 2. Using the definition of s(j), we
obtain F(2+25(7))(0) # 0 which implies j + s(j) > po. Furthermore (3.6) yields
T
Qe > We(,? ko) (O)ﬁek %o Therefore the following lower-bound holds

€ Q20+6) > (We(fko) (O)ﬁ)ﬂjﬂ(m ek
The rhs of the preceding inequality becomes infinite as & — oco. This is due
to the definition of kg, see (3.5), and the inequality po > ko. Hence, for any
1 < j < ko — 1, the sequence C;(ex) tends to 0 as k — oo. In other words the
set J is a singleton: J = {ko}. Finally for k large enough, we get

_L A i
Q. = We(fko)(o)ﬁek g _ We(jko)(o)ﬁek 7m0

Second case: pg < kg. For all j < kg — 1, (3.28) implies the following
asymptotic estimation:
2 6;2%

F(2j+2s(j))(0) N S _sG) _ 1

Q. > ‘We(fj) (0) )| Qe i e 2 _ KiQq ' € 2

1
where K is some constant. Hence, for k large enough, Q,e;"**%" > K. In
particular, for j = pg — 1, we have

Q, > Ce, ™. (3.30)

Hence there exists some constant C' > 0 such that, for any 1 < j < kg — 1,

_s() _% , _pngs(j) , -
Qe, 7 6,7 <C 77 <C¢ ™.

Therefore, for all 1 < j < ky — 1, there exists some constant C" > 0 such that

1
2j

, — L — i
‘WE(EJ)(O) €, 7 <C"¢, %0 for k large enough.

In order to conclude it suffices to use the definition of €., , see (3.6). The term
4oL
of highest degree in the construction of €, is |W€(,c2 ko)(0)|2k0 €, ° which is of
L L
order €, "*° = O(e,, *°), since py < ko. The others components satisfy

sup {‘We(fj)(O) ¥ 6;21} < Cle, 0.

1<j<ko—1
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These upper-bounds combined with (3.30) permits to prove the boundedness of

the sequence {ka/eQPO k>1} = {Qek/ez’"0 k>1}.

The result announced in (3.26) is a straightforward consequence of the conver-
gence rates proved on subsequences. Indeed it suffices to adopt similar argu-
ments as those developed in the proof of Proposition 3.2 (Step 4). O

Remark 3.4. In the proof of Proposition 3.2, the boundedness of the fam-

ily (Cj(e) = %, € > 0) for all 1 < j < ko and the asymptotic result

liminf. ;0 sup; <<y, [Cj(€)| > 0 were the main starting arguments. Further-
more the inequalities presented in (3.26) imply that Cj(e) := W) (O)e"%o_1
satisfies these properties too. Therefore, in the following, we shall consider
C’(€) and its possible limit C; instead of Cj(e) and C;. In order to simplify the
notations, we shall continue to write C;(e) and Cj.

Using the preceding results concerning the asymptotic behavior of the mo-
ments Mo,.(¢) as € — 0, we shall now focus our attention to the convergence
rate of the expression (f,u.) towards (f,ug) for general functions f.

Theorem 3.5. We assume that F" and Wy are convex functions. Let (€x),~,
be a decreasing sequence satisfying: -

e 1) lim g, =0
k—o0
e 2) for any 1 < j < ko, the sequence {We(k’)( 0)e, o~ , k> 1} converges as
k — 0o. We denote by C; the associated limit.

Then, for any function f € C*(R,R) with polynomial growth, we have the fol-
lowing asymptotic result:

. f”(O) fR"EQ exp[ QZ] 1 (2;-), j] dz
k—oo 2 fRexp[ 221 1 (2]),.’E2 ]d:t:

We recall that mg is defined by (3.25).

60 (U ue) (0 - (331)

Proof. Let us introduce the function f1(z) := 3 (f(z) + f(—z)). Therefore we

obtain (f,uc,) — (f,u0) = 2 fus (f+ () — 1(0)) ti, (z)da. Applying the mean
value theorem to fy, there exists a function z — y, € [0, z], such that

110 My(e) |, 1
[ (7@~ 1@)uatorte = FREE 1 2 [ A0 u)atu, @

The integral term in the rhs can be upper-bounded by a finite combination of

moments A]([;T((:’“)), with r > 2, since y, € [0;2] and since fy is of polynomial

growth. Taking into account Remark 3.4, we adapt Proposmon 3.2 to our

particular situation. Therefore fp f i (yx):c Ue, (x)dx = o(ek ). Proposition
3.2 and especially the asymptotic equlvalence (3.26) yields (3.31). O
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Let us now precise the limit just pointed out. The following study consists in
describing the whole family of coefficients (C;, 1 < j < ko).

Corollary 3.6. We assume that both F'" and Wy are convex functions. Let
f € C*(R,R) be some function with polynomial growth. Let us recall that ko, po
and myg are defined respectively by (3.5) and (3.25).

1. First case: kg < pg. We have:

tim 5 ({f,u0) = (fru0)) = 5 (

(2ko)! )ﬁ r (%) (3.32)
2ko

21 {2k (0 r( )f”(o)'

We note that this convergence concerns the whole family {uc, € > 0}.
2. Second case: pg < ko. Let us consider some decreasing sequence (ex), >,

which tends to 0 and satisfies: Cj(ex) = We(fj) (O)Ef;/mofl converges to C; for
all 1 < j <kyg. Then

e C;>0for1<j<po—1,

e C;=0forpo<j<ko—1,
2%

o Cr = o( 0)(0)1{po=k0}-

Proof. Set s(j) = min {r >1 | Fi+2(0) #0} for all 1 < j < ko. Let us
consider some decreasing sequence (gx)r>1 such that Cj(ex) = Wi (0)61:/ mo=1

converges as k — oo. Using similar results as (3.28) and (3.29), we obtain

. F2i+25(1)) (0) 2(i)
W2 (0) = ———————L a0y €7° (L+0(1)) as k — oo 3.33
( ) (2S(J))! (4) & ( ( )) ( )

€k
[orz?exp |—23 K G 2% | dy
with @, == == [ L ] : (3.34)

S+ exp [—2 250:1 % x2j] dz

1. If ko < po then Cj(ex) — 0 as k — oo for all 1 < j < ko. Indeed due to the
inequality j + s(j) > po > ko, (3.33) leads to the asymptotic estimate:

. . (2i+25(7)) (0) i+aG)
. — w2 ko ! ~ F ( . ko k
Cjlex) = W7 (0)e, 00! Qs(5) € -0, ask — oo.

Hence C; = 0 for 1 < j < ko. Moreover Cy, = é(fko)(o). The rhs of (3.31) can

be easily computed using some change of variable. We obtain (3.32) and the

limit doesn’t depend on the choice of the subsequence.

2. Let us consider now the case: pg < ko. By similar arguments as above
2

we obtain that C; = 0 for pp < j < ko and C; = % ag;) > 0 for all

1 < j < po, since j + 5(j) = po. O
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Let us note that, in the case py < ko, the coefficients C; corresponding to
the limit values of special subsequences are linked together by the relation

o = FP(0) Jes 200 exp [_2 Py (gzlz)!le] dx for1<j<
T Qo - )t Jo+ex [—2 po  Or 21] d ’ = J < po-
R+ €XP z T

1=1 ()t

If we can prove that these relations admit some unique solution (C}, 1 < j < pp)
then the result of Corollary 3.6 is sharpened. Indeed the limit value does not
depend on the choice of the subsequence. The prefactor in the convergence
estimate is then uniquely determined. This is for instance the case for pg = 2
but, in general, this question is open. Let us finally observe that the rate of
convergence in the particular case po = 2 is £'/2 which is actually different from
the rate (namely €) described in Section 3.1. In other words the comparison
between the interaction function and the potential landscape respectively rep-
resented by the growth coefficient o and —V"'(0) is essential for the study of the
invariant measure convergence rate associated to the limit measure ug = Jg.

4 Convergence rate for ug = %5_330 +%5m0, xog >0

In [7], the authors describe, in the self-stabilization framework and under some
conditions (the convexity of both F"' and V"), the whole set of limit measures for
sequences of symmetric invariant measures. In the previous section, we focus our
attention to the convergence rate for sequences associated to the limit measure
ug = dg. This trivial discrete measure corresponds to particular environment
functions V and interaction functions F. In Section 4, we are interested by
other functions V' and F' which permit to deal with the following discrete limit
measure ug = %5,50 + %5_;00.

According to Proposition 5.3 in [7], any limit measure associated to symmetric
invariant measures and which support is reduced to the set {—zg,zo} with
o > 0, satisfies the following properties:

{ V'(z0) + §F'(210) = 0,

(4.1)
V™" (zo) + £ + $F"(230) > 0.

Furthermore the support satisfies g < a, where a was introduced in (V-3). In

Section 3, we considered only the situation where the link between the function

F and V is characterized by the inequality « := F"'(0) > —V"(0). This condi-

tion is totally adapted to the existence of the limit measure §y. For the discrete

measure ug = 104, + 30_z,, Remark 3.8 in [7] implies the following relation:

a:=F"(0) <9 :=sup—V"(z).
zER

In this section, we shall focus our attention to the rate of convergence of sym-
metric invariant measures u. towards the discrete measure ug. Let us just note
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that the moments of symmetric invariant measures are uniformly bounded, see
Lemma 5.2 in [7]. The material is organized in a similar way as Section 3: start-
ing with the convergence of the pseudo-potential W, defined by (2.1), towards
Wo, given by

Wo(z) :=V(z) + %F(w — o) + %F(m + o) — F(x0),

we analyze the asymptotic behavior of the minimum locations and deduce the
expected rate.

Lemma 4.1. If V" and F" are conver functions then the global minimum of
Wo is reached ezactly at two points To and —zo. Besides, W' (zg) > 0 i.e.

ko := min{k > 1| W () > 0} —1.

Proof. Since V" and F" are convex functions, Theorem 5.4 of [7] ensures the

uniqueness of zo. If we assume that W' (zo) = 0 then WO(3) (x0) = 0, Wy reaching
some local minimum for z = zo. However, the convexity property of W' implies

that W0(3) is non-decreasing. Since W0(3)(0) = 0 due to the symmetry of Wy,
we deduce that W0(3)(a:) =0, for all z € [0,z0]. Hence Wy'(0) = Wy'(x0) which
is of course a nonsense since W{'(zo) = 0 and W§'(0) = a — ¢ < 0. Indeed,
¥ :=sup,cp —V"(z) = =V"(0) since V" is a convex function. O

As a consequence, we obtain that the set B containing each location of the global
minimum for the pseudo potential Wy which does not belong to the support of
ug is empty. From now on, we shall just assume that W{'(zo) > 0 and allow B
not to be empty. The preliminary results obtained in Section 2 namely Lemma
2.1 permit to obtain directly the following asymptotic behavior: for £ small
enough, there exists some unique zf in the neighborhood V of z( such that W,
defined by (2.1) reaches its global minimum on V for = x§. Moreover we get
the following convergence: since Wy'(zo) > 0, z§ converges towards zo and

o= 0= e+ o{Wan)}. (42)

This convergence can even be more precise.

Theorem 4.2. If W§'(zo) > 0, under the condition (2.8), we get

ag—ay _ W w) (F"(2a0) — a) = PO 2ag) Wy (z0)
e—0 € SWé'(.’Eo)z (V”(.CII()) + F”(2.CEO))

. (4.3)

The proof of Theorem 4.2 is essentially based on two lemmas: Lemma 4.3 and
Lemma, 4.4. The first one deals with some integral estimate in the spirit of (2.4)
and permits to prove the second one which describes the asymptotic behavior
of the following expression W!(zo)/e. It suffices then to consider (4.2) in order
to finish the proof. The details are left to the reader.
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Lemma 4.3. Let us assume (2.8). For any function f € C*(R,R) with poly-
nomial growth, the following estimate holds:

[ f@e i s =2 [oes R @) +a(De+ o) @)

where
(5 W?
7(f)'_(48V\/§_16V\;2>f+ %o) 4W2f+() AWy *

Here Wy := W (z0) and fy () := (f(z) + f(=2))/2.

Proof. We recall that Lemma 2.1 provides directly the existence of £z§. More-
over (2.4) combined with Assumption 2.1 permits to obtain (see the comments
following Assumption 2.1):

/f s g W;T(‘;S) e—%—){ﬁr(xg)_,_we—i—o(e)}

with v(f) == f(£20)

d
I8WE, 1603, Jawz, i, ™

Wh,e i= w (x§). In order to prove (4.4), it suffices to note that z§ converges

5 Wi;z,e _ W4,e ) —fl(:*:ﬂf )iw&e f”(iﬂfo)

towards z¢ and that We(k) converges uniformly towards Wo(k) (see Section 2) as
e—=0. (]

Lemma 4.4. Let W§/(z0) > 0. Under the condition (2.8), we have:

e We@o) _ F Qo)W (w0) — Wg™ (w0) (F"(20) — 0)

e =T 8wy (o) (Vi (o) + F"(220)) (16)

Proof. Since zo is the location of a local extremum for Wy, W{(z¢) = 0. Hence,
defining £(z2) := F'(zo — z), we get

W (o)

W (a0) = Walao) = [ €@huc(e)ds = 5 (¢(o0) + &(-a0))

_ Jré(x)exp [—2W(2)] dz & (z0)
B Jpexp [-2W(2)] dz o

By Lemma 4.3 the following estimates holds:

[ e@evear = S e e @) +1(©e+o(0)) (47)

/e—§We(w)dw - ,W” M 1+'y(1)e+o(e)}. (4.8)
R

Let us divide (4.7) by (4.8). Therefore

[ €@ucte)ds = €.a5) + (1) - €1 (&5)7(D e + o)
R
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The definition of ~ leads to:

[ e =g+ (o e+ D) ch ot @9

Therefore, we have

. Wi(zo) Ei(wg) —&p(mo) 2 —m0 . W3, Y (20)
!l—% € {1_ x5 — T Wé(xo)}__4 W2 & (w0) + 4 Wy’
By (4.2), we get
. Wi(xo) & (wo) \ . Wi &Y (wo)
;l—% € {1 + Wé'(xg)} T o4Wn? & (@o) + 4W, (4.10)

Since W5 = Wé3) (z0) = VO (o) + FO®)(20)/2 and Wo = W' (2¢) = V" (x0) +
g+ %, the announced limit (4.6) is proved. O

Finally we obtain the desired result concerning the convergence rate:

Theorem 4.5. Let W§'(zo) > 0. Under the condition (2.8), for any function
f € C*(R,R) with polynomial growth, the following convergence rate holds
frue) — (fuo) _ f"(xo) + f"(=20) f'(@o) — f'(=0)

.|
| =
50 ¢ sWitmo) T X0 TR e

V@) (20) + FO)(2x0)
VII($0)+FII(2.Z'0) :

Proof. Since ug = %5% + %6_%, the difference (f,ue) — (f,uo) equals

where x(zo) = —

1
[ $@ue(o)ds = fia) where fi(o) = 5 (1) + f(-a))-
Applying Lemma 4.3 to the functions f and 1, we obtain the estimate of the
ratio. Hence

[ e = 1uta) + (- s o)+ T

4 W,

) e+o(e).  (4.11)

Therefore, defining

_f{frue) — (fruo)  f(@g) — fi(wo) 2G5 — 20 Wi (@o)
=1 - £
T :=lim { € x§ — Zo Wi(zo) € }’
_ f(@e)  Wafi(wo) : . fr(@g) = fe(xo) _ 4
we get T = AW (o) - Wi Obviously gl_r}(l) o5 — 20 = fi(20),
(4.2) implies lime_,o(z§ — o) /Wl (zo) = —1/W{'(z0) and lim._,o W.(zo)/e is
determined by Lemma 4.4. Hence

. <f7 us) - <f7 UO) _ —Iii(xo)
L e = AW (wo)

e—0

+ fi (x0) A(xo),
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with
_ Ws¥ (o) (F"(20) — @) = F®) (220) Wy (z0) _ W

A = _
(#0) SWY @) (Vi (ao) T F7(220)) W
_ 2Wi (o) + F® (2m0)
— 8W{(wo) (V" (o) + F"'(210))
The proof is achieved since W0(3) (z0) = V&) (o) + 1F®)(20). O

5 Around the condition a = ¥ = —V"(0)

The study described in the preceding sections points out different rates of con-
vergence which do not really depend on the corresponding discrete limit measure
ug. The difference comes essentially from the comparison between « := F"(0)
and —V"(0). Roughly speaking, if a # —V"(0) we obtain some rate like £ and

if & = —V"(0) we get £'/™0 with mo > 2. The aim of this section is to prove
that we can observed intermediate rates of convergence around the condition
a = —V"(0) provided that the interaction function F' depends on the small

parameter €. This section is based on some particular example, nevertheless
extensions to general situations can easily be proved.
Let us first assume that V" and F" are convex functions. Consequently

¥ :=sup —V"(z) = =V"(0).

Tz€ER

We consider symmetric stationary measures u. (whose 2n-th moment is uni-
formly bounded) converging towards wug, according to the results developed in
the preceding sections (Theorem 3.1, Theorem 3.5 and Theorem 4.5), we get:
for any f € C* (R, R) with polynomial growth,

lim log [(f, ue) = (f,u0)| =A() := { 1 if o #9 (5.1)

e—0 loge 1/mg if a=4,

where my is defined by (3.25). In order to produce intermediate rate, we con-
struct some particular model. First we choose the reference environment (resp.
interaction) function V(z) := z4—4 - z2—2 (resp. F(z) := ﬁ—4 + EZ—Z) Obviously
¥ = a = 1. The example is based on some small perturbation of this reference:
we consider the association between V' and one of the following interaction func-
tions
4 2 4 2
x (14 pe") z _ x (1—pe")x

Ftz)="4+""" o F (z):="4+ """

() =2+ 0 C@) =
with p > 0. In other words, (1.2) leads to the study of symmetric invariant
measures of the following self-stabilizing process:

dX§ = \/edB;, — {2 (X5)? + (3ma(e, t) £ pen) X;} dt

ma(e,t) = E [(X;)Q] , (5.2)
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We remove the odd moments appearing in the equation since we focus our atten-
tion to symmetric laws. There exists some unique strong solution for (5.2) (see
[5]) and some symmetric invariant measure (see [6]) denoted by uX. We define
my (€) == Jg #?u(z)dz. By (2.2), the second moment m = mg (e) satisfies

fR+ z” exp [—% ((3m + pe")x? + z‘4)] dz

Jr, &P [_% ((3m + pe)z? + w4)] de

(5.3)

m =

Proposition 5.1. For alln > 0 and p > 0, the sequence of symmetric invariant
measures (uX, e > 0) converges weakly to &.

Proof. Let us assume the existence of some positive constant C' and some de-
creasing sequence (€g),cy converging towards 0 such that mi(e;) > C for all
k € N (for notational simplicity, we shall drop the index k). We apply the follow-
ing change of variable z := \/ey to (5.3) and get mi () = € £(mi (€) + pe” /3, €)
where

exp |:—3uy2 - vy4]

£u,v) == / Prun@)dy and v (y) : (5.4)

- Jrexp[—3uz? —vzt]dz

Let u € R, v > 0. We construct Y some random variable whose distribution is
given by v, ,. Then, by Jensen’s inequality

9 _ 4 a2 _ . 96 — 6 2 4
™ (u,v) = —3E[Y*] + 3E[Y*]* < 0; 5 (u,v) = —E[Y°] + E[Y “]E[Y"*] < 0.
Since 3ms () £ pe” > C, for e small enough, we deduce that m3 (e) < e£(C/3,0).
The r.h.s tends to 0 with & which is a nonsense because mz (¢) > C. Therefore
we deduce that m3 (e) converges to 0 as e decreases. O

In order to emphasize some intermediate rate of convergence, we shall just
estimate the convergence of mi (¢) as € — 0 instead of the general expression
(f,uZ) since (f,ux) — (f,ud) is directly linked to m7 (¢).
Proposition 5.2. Let > 0 and p > 0. Then

. logmi (e) ) 1

lim —=—2-~ =A =1- R .

i oge +(n) min 4 77; 5 (5.5)
Proof. Let us recall that m3 (¢) satisfies m3 (¢) = € £(m3 (€) + pe"/3,¢) where
¢ is defined by (5.4). According to the proof of Proposition 5.1, the function &
is decreasing with respect to both variables. Therefore we can compute some
upper-bound of mj () just by noting that m3 (¢) + pe” /3 > m (¢) and m3 (e) +
pe" |3 > pen /3.

e The first inequality leads to m3 (¢) < e&(m7 (¢),0). The r.h.s can be com-
puted by some change of variable: there exists some constant ¢y > 0 such
that m3 (¢) < cov/e.
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e The second inequality implies m7 (¢) < e£(pe”/3,0). The same arguments
permit to obtain the existence of ¢; > 0 such that m3 (¢) < c;e'~".

Hence, for € small enough, we get the following bound
m3 (e) < max{ey,co e+, (5.6)

Let us now prove the lower-bound. By (5.6), for £ small enough, there exists
¢z > 0 such that my (€)+pe”/3 < cze™™{m1/2} Gince ¢ is decreasing, we obtain:
my (€) > e&(cze™inim1/2} gmin{2n.1}) " By some classical change of variable, we

get immediately m7 (e) > cae®+ with ¢4 > 0. O
Let us now precise the asymptotic behavior of m7 ().

Corollary 5.3. Letn > 0 and p > 0. Then

2071 if ;<1

m+ € ( p X

by ey =M= o 20— ©
Zo ?, Ui .

Here xo (respectively x}) is the unique solution of xo = &(xo,1) (resp. z} =
£z +p/3,1), see (5.4) for the definition of £).

Proof. 1. Let us consider the first case: n < 1/2i.e. Ay(n) =1 —1n. Applying
the change of variable z := €2y to (5.3), we obtain

mg(e)e " +p/3 1
el—2n ’ 51—27])'

m3 () =¢"¢ ( (5.8)

Since mJ (€)e~" tends to 0, we can use Lemma A.2 with U (z)

_ pt3ma(e)e”” 2
= D) Y “+
s1—'r] 61—7]

2077(0) % -

2. Let us consider now 7 = 1/2 which implies Ay(7) = 1. By the same
argument, we obtain (5.8). By (5.5) we know that m3 (¢)/+/z is bounded w.r.t €.
Any limit value M satisfies M = (M +p/3,1). Due to the strict monotonicity
of £, this equation admits some unique solution denoted by mj.
3. The arguments to prove the third case n > 1/2 are similar to those presented

in the second one. The details are left to the reader. O

9; and n = 2. Thus the following estimate holds mJ (¢) ~

The same kind of convergence rate can be analyzed for m; (¢).

Proposition 5.4. Let > 0 and p > 0. Then

. logmsy (e) . 1

Proof. 1. Let us first assume that n > 1/2. Applying the change of variable
2 :=eiy to (5.3) and by the definition of £ (5.4) we obtain

mf_/i_g) - g(mf_/(;) — pen1/2)3, 1). (5.10)

27



Let us assume that lim inf,_,o m; (€)/4/€ = 0, then we consider some sequence
(ek)ren converging towards 0 such that lim._,om5 (ex)//€x = 0. Due to the
continuity of the function &, we can let ¢ tend to 0 in (5.10). We immediately
find some contradiction : 0 = £(0,1) = I'(3/4)/T'(1/4). Therefore we deduce
that, for € small enough, there exists some constant ¢ > 0 such that m; (¢) >
cv/e. Since £ is a decreasing function with respect to both variables, (5.10)
leads, for £ small enough, to m; (g) < /€£(¢/2,1) which achieves the proof in
the first case. These arguments can also be used for the case n = 1/2, it suffices
to replace 0 = £(0,1) by 0 = £(—p/3,1) in the contradiction statement.

2. Let us finally assume that n < 1/2. By some change of variable, (5.3) is
equivalent to

my(e) _ (my(e)e”"—p/3 2n*1)
28 - .5( ] (5.11)
The monotonicity of £ leads to my () < e"&(—pe?1-1/3,£271). Using Laplace’s
method, we estimate the r.h.s which is equivalent to 5e”7. We deduce that
asymptotically m, () < pe”. Let us now assume that we can find some sequence
(ek)ken converging towards 0 and such that m, (ex) < pe}l/6. By (5.11) we
deduce the inequality my () > ]&(—pe;" " /6,6," ). By Laplace’s method
we find that the r.h.s. is equivalent to pej /4, for large k, which contradicts the
hypothesis. We deduce that m, () > pe”/6. O

Let us note that Proposition 5.2 and Proposition 5.4 point out that the behavior
of the second moment is not symmetric with respect to the critical value a = 4.
On one hand we find min{2;7} and on the other hand 1 — min{%;7n}. Some
heuristic argument which could explain this difference is based on the limit
measure. We know that the measure considered when o > 4 is the trivial
measure §g whereas the support of the limit measure for @ < ¥ contains two
points: u_ is then farther from do.

Let us precise the asymptotics for m; ().

Corollary 5.5. Letp > 0 and p > 0. Then

_ p/5 if 2m<1
. my (e R
lgr(l) eAQ—En)) =A(n):=< z, if 2n=1 (5.12)
xo if 2n>1.

Here xq (resp. x, ) is the unique solution of xo = &(x0,1) (resp. x, = &(x, —
p/3,1), see (5.4) for the definition of £).

The proof of Corollary 5.5 is based on similar arguments as those used in Corol-
lary 5.3. The proof is left to the reader.

Let us illustrate with some simulation: we choose & := 10710, The following
figures represent {log(mi(¢)) — log(A+)}/loge with respect to 5. The continu-
ous line represent min{n, 1/2} respectively 1 — min{n,1/2}. The discontinuity
appearing in the simulation is due to the prefactors in the asymptotic estimates.
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Figure 2: Description of m, . Figure 3: Description of m3 .

6 Convergence rate associated with u(? = 04,

In the preceding sections, we deal with symmetric invariant measures associ-
ated to the self-stabilizing process (1.2). The aim of this section is to present
convergence rates associated to non-symmetric stationary measures. For that
purpose, we introduce the so-called outlying invariant measures, introduced in
[6], which are concentrated around d4, in the small ¢ limit. Here a and —a
represent the locations of the global minimum of the environment potential V.
In this section, we shall admit the existence of these extremal outlying station-
ary measures for € small enough. In other words, we assume the existence of
a sequence of stationary measures (u;i) hEN which converges to d+,. We will
drop the k for notational simplicity. Let us just note that this main assumption
is satisfied in many situations. Let 2n be the degree of F'. According to Theo-
rem 4.6 in [6] and Proposition 4.1 in [7], we know that the following condition
is sufficient in order to ensure this existence:

 [EC(0)]

ol a? < a+V'"(a). (6.1)

p=0

Let us denote by W+ the pseudo-potential associated with these outlying mea-
sures (see (2.1) for the definition of the pseudo-potential). (WF)U) converges
uniformly towards (WiF)() as € — 0. The limit pseudo-potential is given by

W =V + F(. - (+a)) — F(a). (6.2)

Let us also assume that V" and F" are convex functions. In particular, Con-
dition (2.8) is satisfied since *a is the unique location of the global minimum
of Woi. In order to present the convergence rate of uX towards ugc, we shall
essentially apply the procedure presented in Section 4. By symmetry, it suffices
to study u, so in the following we delete the exponent symbol.

First of all, in order to apply Lemma 2.1, we just observe that W{'(a) =
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a+ V"(a) > 0 and deduce the following result: for € small enough, W, reaches
its global minimum only at the point a. which satisfies moreover:

N A C) ,
a.=a-— ot Vi(a) +o{W/(a)}. (6.3)

This convergence can even be more precise.

Theorem 6.1. The distance between a and a. satisfies:

_ (3)
lim 2 —% = _ aV(a) . (6.4)
=0 e T V@ @+ V@)
The proof of this theorem is based on the decomposition: lim._,q ‘j‘;;,zg) WE;(“).

The limit value of the first ratio is determined by (6.3). It suffices to study the
second ratio.

Proposition 6.2. The following convergence result holds:

i W!(a) aV®(a)
50 e 4AV'(a) (a+ V")

(6.5)
Proof. Since a is the location of a local minimum of V', Wj(a) = 0 and so
W!(a) = Wi(a) - Wy(a@) = [ F'(a - 2)uc(:)ds.
R

We define £(z) := F'(a — z) and proceed similarly to the proof of Lemma 4.4.
Applying twice Lemma 2.1 to the functions f(t) := £(t) and f(t) := 1 and
computing the ratio permits to obtain

/Ri(fv)ue(w)dﬂc = £(ae) +71(§e—E(ac)n (e +ofe), (6.6)

where 7, is defined by (2.5) with 41 = a. In other words,

_ W e, €@
[e@n@is = ga)+ (- @+ i) ero0. 60

Therefore, we have

§"(a)
AW,

W(a) {(ac) —€(a) ac —a Ws .,

1— -

- { a: —a Wg(a)} 4W22§(a)+
It suffices in fact to replace in (4.9) &4 by &, zo by a and z§ by a°. The
asymptotic result (4.10) is then satisfied. In order to finish the proof, let us
note that Wz = W@ (a) = V@) (a), Wy = V" (a) + a = W/ (a), £'(a) = —a and
&"(a) = 0. O

Finally we obtain the wished convergence rate.
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Theorem 6.3. Let f € C* (R, R) with polynomial growth. Then,

_ V") f"(a) - VE)(a)f'(a)
il_r;(l) €{<f7u€> <f5 Uo)} - 4V”(a) (OL—}—V”((I)) . (68)
Proof. Let us recall that ug = d,. Hence (f,u.) — (f,uo) fR x)dx —

f(a). Obviously the proof is similar to that of Theorem 4.5. It sufﬁces to replace
f+ by f, zo by a and zj by a.. So we obtain directly

i 2 [ S0 - f0)} = Foll 4 @@, 69

e—=0 ¢

where

Aa) == —aV®(a) _ VG (a) _ V3 (a)
T AV(@) (a+ V@)’ A(a+V"(a) 4AV"(a)(a+V"(a)

The combination of both the definition of A(a) and (6.9) leads to (6.8). O

Remark 6.4. Theorem 4.8 in [6] can be presented as a consequence of Theorem
6.3 applied to the particular polynomial function f(zx) := z*. However the state-
ment of the theorem is much more accurate. Indeed, on one hand, the authors
proved in [6] that there exists an outlying stationary measure whose k-th first

moments are closed to a* — ka*—! GZ;;),(,”(L)((OI?HI,),};“) @) o On the other hand, we

prove in Theorem 6.3 that any stationary outlying measure around a has such
moments.

Remark 6.5. In this section we consider general invariant measures converging
towards a discrete limit measure with trivial support d,. In fact in the proof
of Theorem 6.3 the value a does not play some crucial role: it suffices that
it characterizes the limit measure. We deduce therefore that Theorem 6.3 can
be applied to &g, it suffices to replace a by 0 in the statement. In other words,
Theorem 8.1 which concerns only symmetric invariant measures can be extended
to the whole set of invariant measures converging towards &q.

7 Uniqueness problem for the stationary mea-
sures

The study about the convergence rate, developed in the preceding sections,
permits to estimate the moments of the associated stationary measures. This
feature is crucial for the uniqueness problem. Indeed, since F is a polynomial
function of degree 2n, the 2n — 1 first moments of an invariant measure char-
acterize completely this measure (see the discussion introducing Section 4.3 in
[6]). This essential property shall be used to discuss the uniqueness problem:
in fact, we know that, under simple conditions, there exists several invariant
measures for the self-stabilizing process (see [6]). However we want to precise
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the statement in order to describe the set of all invariant measures. This set
was already explicitly presented in [6] for particular situations, namely when
V' is a convex function and F” is linear. Our aim is to extend this result to
more general interaction functions.

We will now assume that the functions F' and V satisfy (6.1) which implies
the existence of the so-called outlying stationary measures: invariant measures
converging towards d4,. Moreover V" and F" shall be convex functions.

Let u. be an invariant measure for the self-stabilizing process and p;(e),...,
fon—1(€) its first 2n — 1 moments. Let us assume that u. converges to ug €
{8a;6_a; 302 + 36—z, } Where z is the non-negative solution of

2V (x0) + F'(229) = 0 and 2V"(x9) + F"'(220) + @ > 0.

In [7] we proved that the condition oo > —V"(0) is equivalent to 2y = 0 and
SO %6350 + %6_:00 = §g. We denote by W, the pseudo-potential associated with
ue and defined by (2.1), Wy the limit pseudo-potential associated with ug, and
my(0) the k-th moment of ug.

For any measure u whose 2n first moments are bounded (we denoted these
moments by (mp, 1 < p <2n —1)), we have:

Win(z) := V(z) + F xu(z) = Fxu(0) = Wo(2) + Zm(z) — Zm(0),  (7.1)

with Zp (z) := 322771 EX (my, — m,y(0)) F® (z). For all k > 1, we define the

p=1  pl
application ¢}, and the probability measure v,, by

kexp [—2WW,,
il ) = BRI [ ).
R e’ 'm

Moreover, if the two measures u and ug are symmetric, then Z,, and conse-
quently W,, does not depend on the odd trivial moments. In this case, we
consider the function £ defined by

Egk (m27 o 7m2n—2) = 90§k (O;m% Oa s, Map—2, 0) (73)

Finally we introduce ®(© : R*"~! - R*"~! and <I)((]€) :R" ' -5 R" ! given by

) = (5, .., 05 )T and B = (€5,. .., €5, -, &5 0) . (7.4)

Key property: The measure u, is invariant if and only if the following vector
(p1(€), po(€),- -+, pan—1(€)) is a fixed point of ®(¢). It is invariant and symmet-
ric if and only if pagy1(€) = 0 for all 0 < k < n— 1 and if the moments compose
some vector (pa(€), - , fian—2(€)) which is a fixed point of &,

Procedure: In order to obtain local uniqueness for asymmetric stationary mea-
sures, we shall use the uniform convergence on some compact set of ®(¢) (and
its derivatives) towards an application ®© (and its derivatives). Secondly,
we shall prove that the differential of Id — ®© is invertible on a small neigh-
borhood of the limit point (m(0),--- ,ma2,_1(0)) associated with ug. Finally
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we shall conclude by using the convergence rate which assures that the vector
(p1(€),- -, pon—1(€)) belongs to the observed compact set. We shall proceed in
a similar way for the uniqueness of symmetric stationary measures with <I>((f).
We begin with a preliminary result:

Proposition 7.1. Let (u1,--- , tan—1) € R and (va, -+ ,Van—2) € R L.
Wg selt po :=1=:1vy . For C > 0, we deﬁne two compact sets namely P, :=
[L2 [p = Ce pp + Ce] and Q. := ]_[p_1 [vop — Ce; 1o + Cel.

1. If the function Uy(z) := V(z) + 22" DR l)p pp (F®(z) — F®)(0)) reaches
its global minimum at a unique location ag wzth U§ (ao) > 0 then for all m € P,
k>1 and p € [1;2n — 1], we have

0y ka1 (—1)p-1

k (m) — ”0 ( )'
Ug(ao)  p!

2. If the function To(z) := V(z) + Ep 0 (21)),1/21, (F@P)(z) — FCP)(0)) admits

two global minima +by with T} (by) > 0 then for all i € Q., k > 1 and
p € [1;n — 1], we have:

F®(ag) + o, (1). (7.5)

omy,

O ) = _2k bgk_l L
Omiap Ty (bo) (2p)!

FEP) (bg) + 0, (1). (7.6)

Proof. Step 1. ¢f, is directly related to Wp,. By (7.1) and since F' is an even
polynomial function of degree 2n, we get

2n—1 n
B (=1)P FCi(0 2i—
Wm(x)—wo(wng o (mp = my(0 >Z G

Then, the derivative of (7.2) in the variable m, satisfies

1% (25)
e R | R A

The derivative of £, is computed in a similar way.
Step 2. Let m € P,. For all 1 < i < 2n — 1, there exists C; € [-C,C] such
that m; = p; + Cje. Then, for all [ > 1:

. Ja 2t exp [-2Uo(z) — 2Ry (2)] dz
(m) = )

Jrexp [-2Uo(z) — 2Rm ()] dx
where R, (z) = Zfﬁll ( p{)” Mp(p)( ) = foi 1P 1)” CoF®(z). Ac-
cording to Lemma A.5 in [6], we have the following asymptotlc result which is
uniform with respect to m € P,:

(7.8)

(oN_ g ap U (ao) ,
pi(m) = ag lWé’( 3 ag Ul ao) (I —1)+4agR;,(a0) | e+ op_(€).
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We obtain an equivalence of the following expression directly linked to the
derivative of ¢f:

€ € € _ k(QJ _p) 2j+k—p—2
P5jrh—p(m) — p5;_p(m)py(m) = 207 (a0) ag e+op,(€).

Therefore, (7.7) becomes

om, P! 25 —p)! | 207 (a) *° €t+op, (6)}

kag ' ()P & F9(0) g2i—p-1
Ug' (ao)p! 2j—-p-1)°

Oy, (m) = 2 (—1)p~! i F)(0) {k(Qj—P) 2jtk—p—2
i

+ op, (1)7
i>ige

which provides (7.5) as announced.

Step 3. The proof of (7.6) is similar to the previous one. Let m € Q.. For
all 1 <4 < n —1, there exists Cy; € [—C;C] such that mg; = vo; + Coe.
Then, for all I > 1, &, satisfies the same expression that ¢§; in (7.8) with the
support of the integral reduced to R, Uy replaced by Ty and R, by Rz =

EZ:_II ﬁC’gPF@”) (). We cannot apply directly Lemma A.5 in [6] since the

support is reduced to R™ instead of R. However the result can be adapted when
bo — the unique minimum of Ty on R — is positive. Therefore

_ 2k(2) = 2p) 2512k -2p2
0

&5 jaan—2p(M) = &55_0p (M)&E5, (M) = 277 (bo) e+0g,.(€)

Finally (7.6) is proved as follows:

n

0w , .. 2 1 F(29) (0) {Qk(Qj —2p) .5 j+2k—2p—2
m) == . b’ P2 e+ 00, (€)
Omayp e (2p)! jgl (2 —=2p)! | 2T (bo)
_ 2%k bgk_l n F(QJ)(O) bgj_gp_l +OQ (1)
" . € .
T5'(bo)2p)! £, (2) —2p—1)!

O

This preliminary result permits to estimate the differential and by the way
answer some questions concerning the uniqueness problem.

7.1 Local uniqueness for outlying measures

In this section, we assume that the condition (6.1) is satisfied. Theorem 4.6
in [6] then provides the existence of outlying stationary measures u} and u_,
that is, invariant measures converging towards §, respectively 6 _, where a and
—a are the bottoms of the landscape V. We are going to prove that there exist
exactly two extremal outlying measures for e sufficiently small.
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Theorem 7.2. Let F"' and V" be two convex functions. Let (uc) o and (ve) g
two families of stationary measures converging to 6,. Then there exists ¢g > 0
such that for all € < €g, ue = v,.

By symmetry, the same result of local uniqueness holds for §_,.

Proof. Step 1. For all 1 < k < 2n — 1, we apply Theorem 6.3 to the func-
tion f(z) := z¥ and so get the existence of a constant C > 0 such that
(n1(€), -+, pan—1(€)) and (v1(€),- - ,van—1(€)) belong to P, for € small enough.
Here pr(€) (resp. wvg(e)) is the k-th moment of u. (resp. wv.) and P, :=
177 'a* - Ce;al + Ce).

Step 2. Since u. and v, are invariant measures, each vector composed with
the 2n — 1 first moments is solution of the equation: u = ®°(u) where ®° is
defined by (7.4). Therefore let us prove that this equation admits some unique
solution in P,, it suffices to point out that Id — Jac ®¢ is invertible. Here Jac ®°
represents the Jacobian matrix of the 2n—1 dimensional function ®¢. According
to Proposition 7.1 applied to u, = a?, Uy = W, defined by (6.2) and satisfying
(W5H)"(a) = V"(a) + F"(0) = V"(a) + a > 0 (see condition (V-3) and (1.4)),
we get

6(,05:)
omy,

k k—1 -1 p—1 )
(m) = (W;),,(a)( P 0) + o5, (1) (7.9)

The Jacobian matrix then takes a simple expression. Indegd it suffices to
prove that (W) (a)Id + V1 ViE is invertible, with V4 (i) := ia* ! and V5(j) :=
EE PO+ (a), 1 < 0,5 < 20— 1. The proof of Lemma 4.7 in [6] solves this
question: if (W)"(a) + (V1,V2) # 0 then the matrix considered is invertible.
s i—1 i .
Let us note that (Vi,Va) = 327" %_—ILF(’“) (a) = —F"(0) = —a. Hence
(W5H)"(a) + (V1,Va) = V"(a) > 0 because of the hypothesis (V-3). By these
arguments we have obtained that g = ®°(u) admits a unique solution in P..
In order to conclude it suffices to note that the 2n — 1 first moments charac-

terize the stationary measure: F' is a polynomial function of degree 2n and the
invariant measures are defined by (2.2). O

7.2 Local uniqueness for symmetric measures

We shall divide the study into two parts. The first one concerns the limit
measure ug = 99 and the second one concerns ug = %540 + %(5%.

Let us now consider the limit measure d§g. This discrete measure is effectively
a limit measure when a > 9 (these parameters are defined by (1.4) and (1.3)).
In this case, we get also the following property B = (.

Theorem 7.3. Let V" and F"' be two convex functions. Let a > 9. There
erists a unique symmetric invariant measure for € small enough.

Proof. Step 1. According to Theorem 4.5 of [6], we know that there exists at
least one symmetric invariant measure u.. We know by Theorem 5.4 in [7] that
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any such symmetric stationary converges weakly to g since a > 4.

Step 2. Let us consider now two symmetric invariant measures u. and v,
converging towards dg-

By Theorem 3.1, there exists C > 0 such that the vectors (uz2(€),- -+ , p2n_2(€))
and (va(€),- -+ ,va,_2(€)) belong to O, for € small enough. Here pop(€) (resp.
var(€)) is the 2k-th moment of u, (resp. v.) and Q. := [—Ce, Ce|" 1.

As in the preceding proof, it suffices to prove that Id—Jac ®§ is locally invertible,
where Jac ®§ denotes the Jacobian matrix. Applying Proposition 7.1 with ve, =
Oforalll < p<n-—1andsoTy= Wy which admits one unique global minimum
location: 0, we get for 1 € Q., 252 (1n) = 0, (1). This implies directly that

Omaop
Id — Jac ®j is invertible. Moreover since F' is a polynomial function of degree
2n, these moments characterize the measure, see (2.1). O

Let us finally consider the case ug = £ 05, + 3 04, zo > 0, associated with
the study developed in Section 4. The discrete measure ug is a limit measure for

families of symmetric invariant measures provided that a < ¢ (these parameters
are defined by (1.4) and (1.3)).

Theorem 7.4. Let F" and V' be two convex functions and a < . For € small
enough, the self-stabilizing process (1.2) admits a unique symmetric invariant
measure.

Proof. We shall assume that deg(F) > 6. Indeed, we have already proved
(Theorem 3.2 in [6]) that, in the linear case (F” is linear), there exists a unique
symmetric invariant measure for (1.2). Moreover, Example 4.2 in [6] points out
that there exists a unique symmetric invariant measure for deg(F') = 4.

According to Theorem 5.4 of [7], since V" and F"' are convex functions, each
sequence of symmetric stationary measures converges to the discrete measure
1020 + 30_a,- Let (uc).oq be such a sequence then it defines a fixed point of

the application @E)E) defined by (7.4). Moreover, by Theorem 4.5, we know that
there exists C' > 0 such that the n — 1 first even moments of u. represented
by (ma(e), -+ ,T2n_2(e)) belongs to the set Q. = [[)Z} [x5” — Ce, g’ + Ce.
In order to prove the statement of the theorem, it suffices to prove that the
equation u = <I>((f) (1) admits a unique symmetric solution in Q.. As explained
in the two preceding proofs, the work just consists in verifying that Id — Jac <I>((f)

is invertible where Jac <I>(()E) denotes the Jacobian matrix. Applying Proposition
7.1 with vy, = 23? for all 1 < p < n—1 and so Ty = Wy =V +1F(.—z0) +
1F(.+20) — F(zo) which reaches its global minimum for two locations —zo and
Zo (see (4.1)), we get for 7 € O,

085, .. 2k 2k ! 2
m)=——-0 ___ FCrHD () 4 o(1). 7.10
Bmgp (Qp)'WéI(IL'()) (.TL’()) 0( ) ( )

By similar arguments as those used in Theorem 7.3, we have just to verify that
W{(zo) + (Va,V2) # 0 where (V1,V3) = % (F"(2x0) — F"(0)). On one hand,
the definition of z¢ (4.1) leads to W{'(x9) > 0, on the other hand the convexity
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of F" which is a polynomial function of degree larger than 6 permits to obtain
(1,V2) > 0. O

Using the convergence rate from wu, towards ug, we prove that there exists a

unique symmetric invariant measure for the self-stabilizing process (1.2) under
the convexity property of V" and F"” and when a > 9 or a < ¥. The case a = 9
is more difficult since the convergence rate is not of order €. It needs then some
other kind of tools.
Let us note that the uniqueness of symmetric invariant measure was already
studied in [1] where the authors considered the constant potential case V(z) :=
0. They obtained uniqueness results for a large enough but € fixed which is to
relate to our situation where o > ¥ but the noise intensity € should be small.
Their proof is essentially based on some contraction map which of course leads
to local uniqueness. Our study handles directly with local uniqueness.

A  Annex

Let us finally present some useful asymptotic results which are close to the
classical Laplace’s method. Let us first recall some preliminary asymptotic
result (see [6]):

Lemma A.1. Let M > 0. Let us assume that U is C*([M,oo|)-continuous,
U(z) # 0 and U"(z) > 0 for all & € [M,o0] and lim,_,o o @) =o0. If
z — e~V s integrable on R then:

oo ~U(®) g e U d ¢ U) gt et@ Al
/z e T an /Me ~ @) as T — 00. (A1)

Lemma A.2. Set € > 0. Let U and G two C*(R)-continuous functions. We
define U, = U + pG for p belonging to some compact interval Z of R. Let
us introduce some interval [a,b] satisfying: U, (a) # 0, U, (b) # 0 and U,(x)
reaches its global minimum on the interval [a,b] in some unique point z,, €]a,b|
for all p € T. We assume that there exists some exponent ko independent of

u € T such that 2ky = mingen- {U,(f) () # 0}. Let f a C*(R)-continuous
function. Then letting the parameter € tend to 0, we get

b _U#T(t) N f(SL'H) G(Zko)‘ ﬁ i _U.u(:”u)
/a f(t)e dt = o \ 02 r (Zko) e (1+o0z(1)),

where T’ represents the Euler function and oz(1) converges towards 0 uniformly
with respect to p € T.

Proof. The arguments are similar to those used in Lemma A.2 [6]. O

Lemma A.3. Let U, and U € C*® ([a;b],R) such that for all i € N, U
converges to U uniformly on [a;b] as € — 0. If the global minimum of U
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is reached at some unique point xTo on [a;b] with o €]a;d[, then, for € small
enough,

1. U, has a unique global minimum location x. on [a;b] with . €la;b].

2. U"(zg) > 0 implies U (z.) > 0 and

Ul(wo)

U”(:L'O) +o {Uel(a"O)} . (A-Q)

3. Furthermore, if U"(x0) > 0, by taking the limit € — 0, for all the function
f €C*([a;b];R), we get

/ et = \/Z,: e i@ + e (Pe+ol0)  (A3)

with

5 U§ U4 ' U3 f”(.’L’())
- - . A4
BU3 16 ug) Fe)re + T (A-4)

o () = £(z0) (

Here Uy, := U® (z¢).

Proof. 1. We shall proceed using reductio ad absurdum. Let us assume that
there exists a sequence (€;),~, such that U, admits two different locations for

the global minimum: x,(cl) and mg) for all ¥ > 1. Due to the uniform conver-
gence of U, on [a;b], both xgcl) and mg) tend to xg as k — oco. Hence, for any

0 > 0, there exists ko large enough, such that both xg) and mff) belong to
Jzo — ;20 + &[ for k > ko. Moreover U"(z¢) > 0 by assumption and U} con-
verges uniformly on [a;b]; so there exist p > 0 and o > 0 such that U!! (z) > p
for all z € [zg — do; o + do] and for k large enough. Consequently, the equation
U'(z) = 0 does not admit several solutions on this interval. Taking § = &y,
we obtain the uniqueness of the global minimum location for U, and e small
enough.

2. The uniform convergence and the assumption U"(zg) > 0 imply that
U!(xz.) > 0 for e small enough. Moreover we get the following convergence
U!l(z¢) — 0 as € = 0. Using the mean value theorem, we obtain as € — 0:

Ullmo) = Ullwe) + Ul (zc) (w0 — zc) (1 + 0(1))
= Udze) + U"(20) (xo — zc) (14 0o(1)).

—

Since U!(z¢) = 0, we obtain

Te = To — g/é/((z(;)) +0{U/(z0)}.

3. It suffices to adapt the proof of Lemma A.3 in [6]. The arguments are namely
the same. O

We can extend the previous statement to integrals with unbounded supports.
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Lemma A.4. Let U, and U € C® (R, R) such that for all i € N, vl converges
uniformly on all compact subset. If U has r global minimum locations A; <
.-+ < A, and if there exist R > 0 and €. such that U.(z) > z? for all |z| > R
and € < €., then, for € small enough, we get:

1. U, has exactly one global minimum location AS on each interval I;, where I;

represent the Voronoi cells corresponding to the central points A;, with1 < i <r.
2. U"(A;) > 0 implies U/'(AS) > 0 and

Ue(4i)

+o{Ul(4))}. (A.5)
3. Furthermore, if U"(A;) > 0 for all 1 < i < r, then for any function f €

C* (R,R) with polynomial growth, the following asymptotic development holds
as € = 0:

2U(t - TE _ 2Ue(43) .
/ f(t)e%dﬁ;«/wm;)e A T (e 0@} (A6)

with

SUs;  Ua, Usj . F"(4))
. — f(A. 3 4,j Iy 3,J J Al
’YJ (f) f( J) (48 u237j ].6 u227j> f ( J)4 u22,j + 4 u2,j ) ( 7)

and Uy, ; == Uk (AS).

Proof. For all 2 < j < r —1, we apply Lemma A.3 on the interval I; defined
in the statement. We also apply Lemma A.3 on [-R; R]N I; and [-R; RN I,.
Hence the result is proved on the integral [-R; R]. To conclude it suffices to
note that the integral on [—R; R]° is negligible due to the polynomial growth of
f and the gaussian behavior of exp [-2U.]. O
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