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REGULARITY OF SOLUTIONS TO THE SPATIALLY HOMOGENEOUS

BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF

Y. MORIMOTO & S. UKAI & C.-J. XU & T. YANG

Abstract Most of the work on the Boltzmann equation is based on Grad’s cutoff assumption.
Even though the smoothing effect from the singular cross-section without cutoff coming from the
grazing collision is expected, there is no general mathematical theory especially for the spatially
inhomogeneous case. As a further study on the problem in the spatially homogeneous situation,
in this paper, we will prove the Gevrey smoothing property of the solutions to the Cauchy
problem for Maxwellian molecules without angular cutoff by using pseudo-differential calculus.
Furthermore, we apply the similar analytic technique for the Sobolev space regularity to the
nonlinear equation, and prove the smoothing property of solutions for the spatially homogeneous
nonlinear Boltzmann equation with Debye-Yukawa potential.

Key words Boltzmann equation, Debye-Yukawa potential, Gevrey hypoellipticity, non-cutoff
cross-sections.

A.M.S. Classification 35B65, 35D05, 35D10, 35F20, 76P05, 84C40.

1. Introduction

Among the extensive studies on the Boltzmann equation, most of them are based on the
Grad’s cutoff assumption to avoid the mathematical difficulty from the grazing effects in the
elastic collisions between particles. Recently, a lot of progress has made on the study on the
non-cutoff problems, cf. [1, 2, 6, 7, 12] and references therein, which shows that the singularity of
collision cross-section yields some gain of regularity on weak solutions. In some sense, this gives
the hypo-ellipiticity property of the Boltzmann operator without angular cutoff. However, so far
the study in this direction is still not satisfactory because there is no general theory especially
for the spatially inhomogeneous problems.

This paper is concerned with the smoothing effects of the singular integral kenerl in the
collision operator coming from the non-cutoff cross-sections in the Boltzmann equation. There
are two main results in this paper. One is about the smoothing effect of the non-cutoff Debye-
Yukawa potential which gives the gain of a fraction of the logarithm of Laplacian regularity. This
is different from the non-cutoff inverse power laws which give the gain of a fraction of Laplacian
regularity. Another problem is concerned with the Gevrey regularity of the non-cutoff inverse
power laws. Even though both results are about the spatially homogeneous problem, it provides
some new aspects of the regularity for the singular cross-sections.

Consider the Cauchy problem of spatially homogeneous nonlinear Boltzmann equation

(1.1)
∂f

∂t
= Q(f, f), x ∈ R

3, v ∈ R
3, t > 0 ; f |t=0 = f0,

where f = f(t, v) ≥ 0 on [0,∞) × R
3
v represents the particle distribution function. In the

following, we assume that the initial datum f0 ≡/ 0 satisfies the natural boundedness on mass,
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energy and entropy, that is,

(1.2) f0 ≥ 0,

∫

R3

f0(v)(1 + |v|2 + log(1 + f0(v)))dv < +∞.

The Boltzmann quadratic operator Q(g, f) is a bi-linear functional representing the change rate
of the particle distribution through the elastic binary collisions which takes the form

(1.3) Q(g, f) =

∫

R3

∫

S2

B (v − v∗, σ)
{

g(v′∗)f(v′) − g(v∗)f(v)
}

dσdv∗ ,

where for σ ∈ S
2, and

(1.4) v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ

are the relations between the post and pre collisional velocities. The non-negative function
B(z, σ) called the Boltzmann collision kernel depends only on |z| and on the scalar product
< z

|z| , σ >. In most cases, the collision kernel B can not be expressed explicitly, but to capture

its main property, it can be assumed to be in the form

B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
〈 v − v∗
|v − v∗|

, σ
〉

, 0 ≤ θ ≤ π

2
.

In this paper, we consider only mathematical Maxwellian case, that is, we take Φ ≡ 1. Except
for hard sphere model, the function b(cos(·)) has a singularity at θ = 0. For example, if the

inter-molecule potential satisfies the inverse-power law potential U(ρ) = ρ−(γ−1), γ > 2, then

(1.5) sin θ b(cos θ) ≈ Kθ−1−2α when θ → 0,

where K > 0, 0 < α = 1
γ−1 < 1. The Maxwellian molecule case corresponds to γ = 5 and Φ = 1.

Notice that the Boltzmann collision operator is not well defined for the case when γ = 2 which
is called the Coulomb potential. In the great majority of works on the Boltzmann equation, the
angular singularity at θ = 0 is removed by using the Grad’s angular cutoff assumption so that
B is locally integrable in σ variable.

We will first consdier a family of Debye-Yukawa type potentials where the potential function
is given by

(1.6) U(ρ) = ρ−1e−ρs
, with s > 0.

In some sense, it is a model between the Coulomb potential corresponding to s = 0 and the
potential satisfying the inverse power law. In fact, the classical Debye-Yukawa potential is when
s = 1.

In §2, we will show that the collision cross-section of this kind of potentials has the singularity
in the following form, see (2.2),

b(cos θ) ≈ Kθ−2
(

log θ−1
)

2

s
−1
, when θ → 0.

where K > 0 is constant, and further that this singularity endows the collision operator Q
with the logalithmic regularity property, see Proposition 2.1. We mention that the logalithmic
regularity theory was first introduced in [8] on the hypoellipticity of the infinitely degenerate
elliptic operator and developed in [9, 10] on the logalithmic Sobolev estimates.

Suppose that there exists a weak solution to the Cauchy problem (1.1) with the following
natural bound for some time T > 0, see the Defintion 3.1 of Section 3 and also [12],

(1.7) sup
t∈[0,T ]

∫

R3

f(t, v)(1 + |v|2 + log(1 + f(t, v)))dv < +∞.

In §3, we are going to prove the following theorem on the regularity of this weak solution.
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Theorem 1.1. Assume that the initial datum f0 satisfies (1.2) and the collision cross-section
satisfies

(1.8) B(|v − v∗|, cos θ) = b(cos θ) ≈ Kθ−2
(

log θ−1
)m

when θ → 0,

with K > 0,m > 0. Let f be a weak solution of Cauchy problem (1.1) satisfying (1.7). Then for
any 0 < t ≤ T , we have f(t, ·) ∈ H+∞(R3).

Remark 1.1: Note that m > 0 corresponds to 0 < s < 2 in (1.6). In [2, 7], the H+∞(R3)
regularity of weak solutions was proved under the condition (1.5). Notice that the condition
(1.8) is much weaker than (1.5) and it still leads to H+∞(R3) regularity on the weak solutions.
Moreover, the following proof on the regularity of weak solutions is more straightforward and
illustrative than the previous methods. Even though the assumption (1.8) on the cross-section
is mathematical because the exact cross-section depends also on the relative velocity as given
in (2.2), the following analysis reveals the smoothing effect of the singularity of the collision
operator on the weak solution to the Boltzmann equation.

To have a more precise description on the regularity, in the second part of the paper, we
consider the Gevrey regularity of solutions with cross-section satisfying (1.3). Notice that while
local solutions having the Gevrey regularity have been constructed in [11] for initial data having
the same Gevrey regularity, the result given here is concerned with the production of the Gevrey
regularity for weak solutions whose initial data have no regularity.

Before stating the result, we now recall the definition of Gevrey regularity. For s ≥ 1,
u ∈ Gs(R3) which is the Gevrey class function space with index s, if there exists C > 0 such
that for any k ∈ N,

‖Dku‖L2 ≤ Ck+1(k!)s,

or equivalently, there existe ε0 > 0 such that eε0<|D|>1/s
u ∈ L2, where L2 = L2(R3) and

< |D| >= (1 + |Dv |2)1/2, ‖Dku‖2
L2 =

∑

|β|=k

‖Dβu‖2
L2 .

Note that G1(R3) is usual analytic function space. In this following discussion, we also adopt
the following notations,

‖f‖Lk
ℓ

=

(
∫

R3

|f(v)|k(1 + |v|)kℓdv

)
1

k

; ‖f‖L log L =

∫

R3

|f(v)| log(1 + |f(v)|)dv.

What we are going to show in Section 4 is that the weak solutions to the linearized Boltzmann
equation with the cross-section satisfying (1.3) are in the Gevrey class with index 1

α for t > 0.
For this, we first linearize the Boltzmann equation near the absolute Maxwellian distribution

(1.9) µ(v) = (2π)−
3

2 e−
|v|2

2 .

Since Q(µ, µ) = 0, we have

Q(µ+ g, µ+ g) = Q(µ, g) +Q(g, µ) +Q(g, g).

Set
Lg = Q(µ, g) +Q(g, µ),

where L is the usual linearized collision operator. Then, consider the linear Cauchy problem

(1.10)
∂g

∂t
= Lg, v ∈ R

3, t > 0 ; g|t=0 = g0.

The definition of weak solution for this linear equation is standard which is given precisely in
Section 4. The result on Gevrey regularity can be stated as follows.
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Theorem 1.2. Assume that the initial perturbation in (1.10) satisfies g0 ∈ L1
2(R

3), and Q is
defined by Maxwellian collision cross-section B satisfying (1.5) with 0 < α < 1. For T0 > 0,
if g ∈ L1([0, T0];L

1
2(R

3)) ∩ L∞([0, T0];L
1(R3)) is a weak solution of the Cauchy problem (1.10),

then g(t, ·) ∈ G1/α(R3) ∩ L1
2(R

3) for any 0 < t ≤ T0.

The assumption in the above theorem does not seem strong enough to construct the weak
solutions which meet the requirement of the theorem, but it is possible under additional as-
sumptions. In §4, we will prove the

Proposition 1.1. Suppose that 0 < α < 1/2 and g0 ∈ L2
ℓ for some ℓ > 5/2. Then, (1.10)

possesses a weak solution g ∈ L∞(0, T0; L
2
ℓ(R

3)) for any T0 > 0.

Remark 1.2: (1) Evidently, L2
ℓ (R

3) ⊂ L1
2(R

3) when ℓ > 7/2.
(2) Though the above results are given when the space dimension equals to three, they hold for
any space dimensions with due modification.

2. Logarithmic regularity estimate

Firstly, following the computation given in [4, 13], we will give an asymptotic description
of the Boltzmann collision kernel B(z, σ) for the potential U(ρ) defined in (1.6). Here, ρ is
the distance between two interacting particles, z = v − v∗ is relative velocity, σ ∈ S

2 and
< z

|z| , σ >= cos(π − 2ϑ), θ = π − 2ϑ is the deviation angle. Let p ≥ 0 be the impact parameter

which is a function of ϑ and z. Then Boltzmann collision cross-section is defined by

(2.1) B(|z|, ϑ) = |z|s(|z|, ϑ) =
|z|s(|z|, ϑ)

4 cos ϑ
= |z| p

2 sin 2ϑ

∂p

∂ϑ
,

where s(|z|, ϑ) is called the differential scattering cross-section.
If ρ and ϕ are the radial and angular coordinates in the plane of motion, then the impact

parameter p(V, ϑ) is determined by the conservation of energy and angular momentum respec-
tively:

{

1
2

(

ρ̇2 + ρ2ϕ̇2
)

+ U(ρ) = 1
2V

2 + U(σ), (ρ ≤ σ),
ρ2ϕ̇ = pV 2.

where the relative speed is now denoted by V = |v − v∗|. As usual, it is impossible to give an
explicit expression of solutions to this nonlinear system. Hence, in the following, we will study
the singular behavior of the solutions around the grazing collisions, that it, when θ ∼ 0.

By using ϕ as independent variable to eliminate the time derivative, after integration, we have

ϑ =
1√
2
V p

∫ σ

ρ0

ρ−2
[V 2

2

(

1 − p2

ρ2

)

− U(ρ) + U(σ)
]−1/2

dρ+ sin−1
( p

σ

)

,

where ρ0 is the smallest distance between two particles which satisfies

1

2
V 2

(

1 − p2

ρ2
0

)

= U(ρ0) − U(σ) > 0.

Note that p < ρ0 < ρ ≤ σ. By the transformation u = p
ρ , we have

ϑ =

∫ u0

p/σ

[

1 − u2 − 2

V 2

(

U
(p

u

)

− U(σ)
)]−1/2

du+ sin−1
( p

σ

)

,

where u0 = p/ρ0 satisfies

1 − u2
0 −

2

V 2

(

U
( p

u0

)

− U(σ)
)

= 0.
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Therefore

θ

2
=

π

2
− ϑ =

π

2
−

∫ u0

p/σ

[

1 − u2 − 2

V 2

(

U
(p

u

)

− U(σ)
)]−1/2

du− sin−1
( p

σ

)

=

∫ 1

0

dt√
1 − t2

−
∫ p/σ

0

dt√
1 − t2

−
∫ u0

p/σ

[

1 − u2 − 2

V 2

(

U
(p

u

)

− U(σ)
)]−1/2

du.

By setting u = u0t, we get

θ

2
=

∫ 1

p/σ

dt√
1 − t2

−
∫ 1

p
u0σ

[

1 − u2
0t

2 − 2

V 2

(

U
( p

u0t

)

− U(σ)
)]−1/2

u0dt

=

∫ 1

p/σ

dt√
1 − t2

−
∫ 1

p
u0σ

[

1 − t2 +
2

V 2u2
0

(

U
( p

u0

)

− U
( p

u0t

))]−1/2
dt

= −
∫ p/σ

p
u0σ

dt√
1 − t2

+

∫ 1

p
u0σ

1√
1 − t2

[

1 −
(

1 +
2U( p

u0
) − 2U( p

u0t)

(1 − t2)V 2u0

)−1/2]
dt,

where we have used the fact that

1 − u2
0

u2
0

=
2

V 2u2
0

(

U(
p

u0
) − U(σ)

)

.

It is clear that there is no explicit formula for θ = θ(p, V ). To study its asymptotic behavior
when θ ∼ 0, we let σ → ∞ which is equivalent to p → ∞. Under this assumption, we have
u0 ≈ 1 and

(

1 +
2U( p

u0
) − 2U( p

u0t)

(1 − t2)V 2u0

)−1/2 ≈ 1 −
U( p

u0
) − U( p

u0t)

(1 − t2)V 2u0
.

Thus,

θ

2
≈

∫ 1

0

1√
1 − t2

U(p) − U(p
t )

(1 − t2)V 2
dt.

By plugging U(ρ) = ρ−1e−ρs
into the above integral, we have

θ

2
≈ 1

V 2p
e−ps

∫ 1

0
(1 − t2)−3/2

(

1 − te−ps(t−s−1)
)

dt.

Since

0 ≤ ∂

∂p

(
∫ 1

0
(1 − t2)−3/2

(

1 − te−ps(t−s−1)
)

dt

)

=

∫ 1

0
(1 − t2)−3/2t(t−s − 1)sps−1e−ps(t−s−1)dt ≤ Cssp

s−1,

it holds that

0 < c0 ≤
∫ 1

0
(1 − t2)−3/2

(

1 − te−ps(t−s−1)
)

dt ≤ Csp
s + c0.

where c0 =
∫ 1
0 (1 − t2)−3/2(1 − t)dt. Finally, for p→ ∞ (equivalently θ → 0), we have

log θ ≈ −K ′ps.

In summary, we have the Boltzmann collision cross-section for the Debye-Yukawa type potentials
as

(2.2) B(V, θ) = − V

sin θ

∂p2

∂θ
≈ KV θ−2

(

log θ−1
)

2

s
−1
,
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for some constant K > 0 when θ → 0. Note that the cross-section B(V, θ) satisfies for any s > 0,
∫ π/2

0
B(V, θ) sin θdθ = +∞, and

∫ π/2

0
B(V, θ) sin2 θdθ < +∞.

We prove firstly the following logarithmic regularities estimate for the collision operator.

Proposition 2.1. Assume that the collision kernel B satisfies the assumption (1.8) and g ≥
0, g ∈ L1

2

⋂

L logL. Then there exists a constant Cg depending only on B, ‖g‖L1
2

and ‖g‖L log L

such that for any smooth function f ∈ H2(R3),

(2.3) ‖ (log Λ)
m+1

2 f‖2
L2(R3) ≤ Cg

{

(−Q(g, f), f)L2(R3) + ‖f‖2
L2(R3)

}

,

where Λ = (e+ |Dv|2)1/2.

Remark 2.1: With hypothesis (1.5), we have the following sub-elliptic estimate (see [2, 5, 7])

(2.4) ‖Λαf‖2
L2(R3) ≤ Cg

{

(−Q(g, f), f)L2(R3) + ‖f‖2
L2(R3)

}

.

And we will use this estimate to prove the Gevrey regularity stated in the Theorem 1.2.

Proof of Proposition 2.1.

For f ∈ H2(R3), we have

(−Q(g, f), f)L2(R3) = −
∫

R6

∫

S2

b(k · σ)g(v∗)f(v)
(

f(v′) − f(v)
)

dσdv∗dv

=
1

2

∫

R6

∫

S2

b(k · σ)g(v∗)
(

f(v′) − f(v)
)2
dσdv∗dv

− 1

2

∫

R6

∫

S2

b(k · σ)g(v∗)
(

f(v′)2 − f(v)2
)

dσdv∗dv.

According to cancellation lemma (Corollary 2 of [1]), we have
∣

∣

∣

∣

1

2

∫

R6

∫

S2

b(k · σ)g(v∗)
(

f(v′)2 − f(v)2
)

dσdv∗dv

∣

∣

∣

∣

≤ C‖g‖L1‖f‖2
L2 .

Notice that there is no weight in the norm of f in L2 on the right hand side of the above equation
because we consider the Maxwellian molecule type of cross-sections and it is a direct consequnce
of

∫ π/2

−π/2
sin θb(cos θ)

(

1

cos3(θ/2)
− 1

)

dθ <∞.

Now the proof of Proposition 2.1 is reduced to the following lemma.

Lemma 2.1. There exists a constant Cg, depending only on b, ‖g‖L1
1

and ‖g‖L log L such that

‖ (log Λ)
m+1

2 f‖2
L2 ≤ Cg

{

∫

R6

∫

S2

b(k · σ)g(v∗)
(

f(v′) − f(v)
)2
dσdv∗dv + ‖f‖2

L2

}

.

The proof of this lemma is similar to that of Theorem 1 in [1]. By taking the Fourier transform
on collision operator and applying the Bobylev identity, we have

∫

R6

∫

S2

b(k · σ)g(v∗)
(

f(v) − f(v′)
)2
dσdv∗dv

= (2π)−3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

ĝ(0)|f̂ (ξ)|2 + ĝ(0)|f̂(ξ+)|2 − 2Re ĝ(ξ−)f̂(ξ+)
¯̂
f(ξ)

}

dσdξ

≥ 1

2(2π)3

∫

R3

|f̂(ξ)|2
{

∫

S2

b
( ξ

|ξ| · σ
)

(ĝ(0) − |ĝ(ξ−)|)dσ
}

dξ,

6



where

ξ+ =
ξ + |ξ|σ

2
, ξ− =

ξ − |ξ|σ
2

.

By using the condition that g ≥ 0, g ∈ L1
1 ∩ L logL and the assumption (1.8), similar to the

argument in [1], we can show that there exists a positive conatant Cg depending only on ‖g‖L1
1

and ‖g‖L log L such that
∫

S2

b
( ξ

|ξ| · σ
)

(ĝ(0) − |ĝ(ξ−)|)dσ ≥ C−1
g

(

log < ξ >
)m+1 − Cg.

And this completes the proof of lemma 2.1.

3. Smoothing effect for the nonlinear Cauchy problem

We will give the proof of Theorem 1.1 on the smoothing effect of the collision operator for the
Debye-Yukawa type potentials in this section. Before that, let us recall the definition of weak
solution for the Cauchy problem (1.1), cf. [12].

Definition 3.1. Let f0(v) ≥ 0 be a function defined on R
3 with finite mass, energy and en-

tropy. f(t, v) is called a weak solution of the Cauchy problem (1.1), if it satisfies the following
conditions:

f(t, v) ≥ 0, f(t, v) ∈ C(R+;D′(R3)) ∩ L1([0, T ];L1
2(R

3)), f(0, v) = f0(v);
∫

R3

f(t, v)ψ(v)dv =

∫

R3

f0(v)ψ(v)dv for ψ = 1, vj , |v|2;

f(t, v) ∈ L1(R3) logL1(R3),

∫

R3

f(t, v) log f(t, v)dv ≤
∫

R3

f0 log f0dv, ∀t ≥ 0;

∫

R3

f(t, v)ϕ(t, v)dv −
∫

R3

f0ϕ(0, v)dv −
∫ t

0
dτ

∫

R3

f(τ, v)∂τϕ(τ, v)dv

=

∫ t

0
dτ

∫

R3

Q(f, f)(τ, v)ϕ(τ, v)dv,

where ϕ(t, v) ∈ C1(R+;C∞
0 (R3)). Here the last integral above on the right hand side is defined

by
∫

R3 Q(f, f)(v)ϕ(v)dv = 1
2

∫

R6

∫

S2 Bf(v∗)f(v)(ϕ(v′) + ϕ(v′∗) − ϕ(v) − ϕ(v∗))dvdv∗dσ.

Hence, this integral is well defined for any test function ϕ ∈ L∞([0, T ];W 2,∞(R3))(see p. 291 of
[12]).

Since the existence of weak solution was proved in [12], we will then show the regularity of
the weak solution. Let f be a weak solution of the Cauchy problem (1.1). For any fixed T0 > 0,
we know that f(t) ∈ L1(R3) ⊂ H−2(R3) for all t ∈ [0, T0]. For t ∈ [0, T0], N > 0 and 0 < δ < 1,
set

Mδ(t, ξ) =
(

1 + |ξ|2
)

Nt−4

2 ×
(

1 + δ|ξ|2
)−N0

,

with N0 = NT0

2 + 2. Then, for any δ ∈]0, 1[

Mδ(t,Dv)f ∈ L∞([0, T0];W
2,∞(R3)),

whose norm is estimated above from Cδ‖f0‖L1 , in view of the mass conservation law.
By using Proposition 2.1, we have

(3.1) ‖ (log Λ)
m+1

2 Mδ(t,Dv)f‖2
L2 ≤ Cf

{

(−Q(f,Mδf),Mδf)L2 + ‖Mδf‖2
L2

}

,

where the constant Cf is independent of δ ∈]0, 1[.
7



To apply this logarithmic regularity estimate to the nonlinear Boltzmann equation, we need to
estimate the commutators of the pseudo-differtial operator Mδ(t,Dv) and the nonlinear operator
Q(f, ·) which is given in the following lemma.

Lemma 3.1. Under the hypothesis of Theorem 1.1, we have that

(3.2) |(Q(f,Mδf),Mδf)L2 − (Q(f, f),M2
δ f)L2| ≤ Cf‖Mδf‖2

L2

with Cf independent of 0 < δ < 1.

Proof. By applying Proposition 2.1 to the function Mδf ∈ H2, we have

(−Q(f,Mδf),Mδf)L2(R3) +O(‖Mδf‖2
L2)

=
1

2(2π)3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

f̂(0)M2
δ (t, ξ)|f̂ (ξ)|2 + f̂(0)M2

δ (t, ξ+)|f̂(ξ+)|2

− 2Re f̂(ξ−)Mδ(t, ξ
+)f̂(ξ+)Mδ(t, ξ)

¯̂
f(ξ)

}

dσdξ,

By the Bobylev identity, we also have

(

Q(f, f),M2
δ f

)

L2
=

∫

R6

∫

S2

b(k · σ)f(v∗)f(v)
(

M2
δ f(v′) −M2

δ f(v)
)

dv∗dσdv

=
1

(2π)3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

f̂(ξ−)M2
δ (t, ξ)f̂(ξ+)

¯̂
f(ξ) − f̂(0)M2

δ (t, ξ)|f̂ (ξ)|2
}

dσdξ.

Thus,

(

Q(f, f),M2
δ f

)

L2
= − 1

2(2π)3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

f̂(0)M2
δ (t, ξ)|f̂ (ξ)|2

+ f̂(0)M2
δ (t, ξ+)|f̂(ξ+)|2 − 2Re f̂(ξ−)Mδ(t, ξ

+)f̂(ξ+)Mδ(t, ξ)
¯̂
f(ξ)

}

dσdξ

+
1

2(2π)3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

f̂(0)M2
δ (t, ξ+)|f̂(ξ+)|2 − f̂(0)M2

δ (t, ξ)|f̂(ξ)|2

+ 2Re f̂(ξ−)Mδ(t, ξ)f̂(ξ+)
¯̂
f(ξ)

[

Mδ(t, ξ) −Mδ(t, ξ
+)

]

}

dσdξ.

=
(

Q(f,Mδf),Mδf
)

L2
+O(‖Mδf‖2

L2)

+
1

2(2π)3

∫

R3

∫

S2

b
( ξ

|ξ| · σ
){

f̂(0)M2
δ (t, ξ+)|f̂(ξ+)|2 − f̂(0)M2

δ (t, ξ)|f̂(ξ)|2

+ 2Re f̂(ξ−)Mδ(t, ξ)f̂(ξ+)
¯̂
f(ξ)

[

Mδ(t, ξ) −Mδ(t, ξ
+)

]

}

dσdξ.

Hence, it remains to show that

∣

∣

∣

∣

∫

R3

∫

S2

b
{

f̂(0)M2
δ (t, ξ+)|f̂(ξ+)|2 − f̂(0)M2

δ (t, ξ)|f̂ (ξ)|2dσdξ
∣

∣

∣

∣

≤ Cf‖Mδf‖2
L2 ,

and

(3.3)

∣

∣

∣

∣

∫

R3

∫

S2

b
{

Re f̂(ξ−)Mδ(t, ξ)f̂(ξ+)
¯̂
f(ξ)

[

Mδ(t, ξ) −Mδ(t, ξ
+)

]

}

dσdξ

∣

∣

∣

∣

≤ Cf‖Mδf‖2
L2 .
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The first estimate can be obtained as for the cancellation lemma in [1] because

|
∫

R3

∫

S2

b
{

f̂(0)M2
δ (t, ξ+)|f̂(ξ+)|2 − f̂(0)M2

δ (t, ξ)|f̂(ξ)|2|

= (2π)|
∫

R3

∫ π/2

−π/2
sin θ b(cos θ)f̂(0)M2

δ (t, ξ)|f̂ (ξ)|2
[ 1

cos3(θ/2)
− 1

]

dθdξ|

≤ C0‖f‖L1‖Mδf‖2
L2 .

To prove the second estimate, we need to show that

(3.4) |Mδ(t, ξ
+) −Mδ(t, ξ)| ≤ N02

(NT0+4)/2 sin2 θ

2
Mδ(t, ξ

+).

For this, recall

ξ+ =
ξ + |ξ|σ

2
, |ξ+|2 = |ξ|2 cos2 θ

2
,

ξ

|ξ| · σ = cos θ,

and the collsion kernel is supported in |θ| ≤ π/2. Then

|ξ|2
2

≤ |ξ+|2 ≤ |ξ|2, |ξ|2 − |ξ+|2 = |ξ−|2 = sin2 θ

2
|ξ|2.

Denote
M̃δ(t, s) = (1 + s)

Nt−4

2 × (1 + δs)−N0 , s = |ξ|2, s+ = |ξ+|2,
so that

Mδ(t, ξ) = M̃δ(t, |ξ|2).
Then, there exists s+ < s̃ < s such that

M̃δ(t, s) − M̃δ(t, s+) =
∂M̃δ

∂s
(t, s̃)(s− s+).

Note that s− s+ = s sin2 θ
2 and

∂M̃δ

∂s
(t, s) =

{

(Nt − 4)
1

2(1 + s)
−N0

δ

1 + δs

}

M̃δ(t, s).

By using
s

1 + s
,

δs

1 + δs
≤ 1,

and
∣

∣

∣

∣

∣

M̃δ(t, s̃)

M̃δ(t, s+)

∣

∣

∣

∣

∣

≤ 2(NT0+4)/2,

we have

|M̃δ(t, s) − M̃δ(t, s+)| ≤ N02
(NT0+4)/2 sin2 θ

2
M̃δ(t, s

+),

which gives (3.4). Now the second estimate in (3.3) can be proved as follows,
∣

∣

∣

∣

∫

b
{

Re f̂(ξ−)Mδ(t, ξ)f̂ (ξ+)
¯̂
f(ξ)

[

Mδ(t, ξ) −Mδ(t, ξ
+)

]

}

dσdξ

∣

∣

∣

∣

≤ C

∫

R3

∫

S2

b(cos θ) sin2 θ

2
|f̂(ξ−)|Mδ(t, ξ

+)|f̂(ξ+)|Mδ(t, ξ)|f̂(ξ)|dσdξ

≤ C

∫

R3

∫ π/2

−π/2
b(cos θ) sin2 θ

2
sin θ|f̂(ξ−)|Mδ(t, ξ

+)|f̂(ξ+)|Mδ(t, ξ)|f̂(ξ)|dθdξ

≤ C‖f‖L1‖Mδf‖2
L2 .

�
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If Mδ(t,Dv) is replaced by the differential operator Dk
v , then the commutator is given by Leib-

niz formula. Therefore, in some sense, this lemma is a microlocal version of the computation
given in [7]. We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, we note from Definition 3.1 that any weak solution f enjoys
the following properties; M2

δ f ∈ L∞([0, T0];W
2,∞(R3)),

(3.5) Mδf ∈ C([0, T0];L
2(R3))

and that

1

2

∫

R3

f(t)M2
δ (t)f(t)dv − 1

2

∫ t

0

∫

R3

f(τ)
(

∂tM
2
δ (τ)

)

f(τ)dvdτ(3.6)

=
1

2

∫

R3

f0M
2
δ (0)f0dv +

∫ t

0

(

Q(f, f)(τ),M2
δ (τ)f(τ)

)

L2
dτ.

holds for any t ∈]0, T0]. The proof will be given at the end of this section.

On the other hand, it follows from (3.1) and (3.2) that

(3.7) ‖ (log Λ)
m+1

2 Mδf‖2
L2 ≤ Cf

{

(−Q(f, f),M2
δ f)L2 + ‖Mδf‖2

L2

}

.

Since

(∂tMδ)(t, ξ) = N log < ξ > Mδ(t, ξ),

we obtain
∣

∣

∣

∣

∫ t

0

∫

R3

f(τ)
(

∂tM
2
δ (τ)

)

f(τ)dvdτ

∣

∣

∣

∣

≤ 2N

∫ t

0
‖ (log Λ)

1

2 (Mδf)(τ)‖2
L2dτ.

This, together with (3.6) and (3.7), implies

‖(Mδf)(t)‖2
L2 + 1

2Cf

∫ t
0 ‖ (log Λ)

m+1

2 (Mδf)(τ)‖2
L2dτ ≤

‖Mδ(0)f0‖2
L2 + 2N

∫ t
0 ‖ (log Λ)

1

2 (Mδf)(τ)‖2
L2dτ +

∫ t
0 ‖(Mδf)(τ)‖2

L2dτ.

For m > 0, by interpolation inequality implies that for any ε > 0,

‖(Mδf)(t)‖2
L2 +

( 1

2Cf
− ε

)

∫ t

0
‖ (log Λ)

m+1

2 (Mδf)(τ)‖2
L2dτ

≤ ‖Mδ(0)f0‖2
L2 +Cε,N

∫ t

0
‖(Mδf)(τ)‖2

L2dτ.

By choosing ε = 1
4Cf

, there exists Cf,N > 0 depending only on Cf ,N, T0 and being independent

of δ ∈]0, 1[, such that for any t ∈]0, T0],

‖Mδ(t)f(t)‖2
L2 ≤ ‖Mδ(0)f0‖2

L2 + Cf,N

∫ t

0
‖Mδ(τ)f(τ)‖2

L2dτ.

Then Gronwall inequality yields

‖(Mδf)(t)‖2
L2 ≤ eCf,N t‖Mδ(0)f0‖2

L2 .

Since ‖Mδ(t)f(t)‖2
L2 = ‖(1 − δ△)−N0f(t)‖2

HNt−4(R3)
, and

‖Mδ(0)f0‖2
L2 = ‖(1 − δ△)−N0f0‖2

H−4(R3) ≤ ‖f0‖2
H−4(R3) ≤ C0‖f0‖2

L1 ,

we obtain

‖(1 − δ△)−N0f(t)‖2
HNt−4(R3) ≤ C̃eCf,N t‖f0‖2

L1 ,
10



where the constant C̃ > 0 is independent of δ. Finally, for any given t > 0, since N can be
arbitrarily large, by letting δ → 0, we have

f(t) ∈ H+∞(R3).

And this completes the proof of Theorem 1.1.
The rest of this section is devoted to prove (3.5) and (3.6). In Definition 3.1, taking ϕ(t, v) =

ψ(v) ∈ C∞
0 (R3) we get

∫

R3

f(t)ψdv −
∫

R3

f(s)ψdv =

∫ t

s
dτ

∫

R3

Q(f(τ), f(τ))ψdv , 0 ≤ s ≤ t ≤ T0 .

We can put ψ = M2
δ f(t),M2

δ f(s) because they belong to L∞([0, T ];W 2,∞(R3)). Taking the
sum, we obtain

∫

R3

f(t)M2
δ f(t)dv −

∫

R3

f(s)M2
δ f(s)dv =

∫

R3

f(t)
(

M2
δ (t) −M2

δ (s)
)

f(s)dv

+

∫ t

s
dτ

∫

R3

Q(f(τ), f(τ))
(

M2
δ f(t) +M2

δ f(s)
)

dv .

Since the integrand of the first term on the right is estimated by |t− s|C ′
δ||f0||L1f(t) and since

the collision integral term is bounded by Cδ′′||f0||L1 ||f ||2
L1

2

, we obtain (3.5), namely Mδf ∈
C([0, T0];L

2(R3)). In Definition 3.1 , we may write the term

∫ t

0
dτ

∫

R3

f(τ, v)∂τϕ(τ, v)dv = lim
h→0

∫ t

0
dτ

∫

R3

(f(τ, v) + f(τ + h, v))
ϕ(τ + h, v) − ϕ(τ, v)

2h
dv

for ϕ(t, v) ∈ C1(R+;C∞
0 (R3)), by noting f ∈ C(R+;D′). Putting into the right hand side

ϕ(t) ≡M2
δ (t)f(t)

we see that the right hand side equals

lim
h→0

{
∫ t

0
dτ

∫

R3

(Mδf)2(τ + h) − (Mδf)2(τ)

2h
dv

+

∫ t

0
dτ

∫

R3

f(τ)f(τ + h)
(Mδ)

2(τ + h) − (Mδ)
2(τ)

2h
dv

}

.

It follows from (3.5) that

lim
h→0

∫ t

0
dτ

∫

R3

(Mδf)2(τ + h) − (Mδf)2(τ)

2h
dv

= lim
h→0

1

2h

{
∫ t+h

t
dτ −

∫ h

0
dτ

}
∫

R3

(Mδf)2(τ)dv =
1

2

∫

R3

(Mδf)2(t)dv − 1

2

∫

R3

(Mδf)2(0)dv.

Hence we obtain (3.6) because the Lebesgue convergence theorem shows

lim
h→0

∫ t

0
dτ

∫

R3

f(τ)
(Mδ)

2(τ + h) − (Mδ)
2(τ)

2h
f(τ + h)dv =

1

2

∫ t

0

∫

R3

f(τ)
(

∂tM
2
δ (τ)

)

f(τ)dvdτ.
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4. Gevrey regularity for linear Cauchy problem

In this section, we will consider the Gevrey class property of the solutions to the Boltzmann
equation for potentials satisfying the inverse power laws. The following analysis only applies to
the linearized problem and the nonlinear problem will be pursued in the future. Consider the
Cauchy problem for the linearized Boltzmann equation

(4.1)
∂g

∂t
= Lg = Q(µ, g) +Q(g, µ), v ∈ R

3, t > 0 ; g|t=0 = g0,

where µ is the normalized Maxwellian distribution given in the introduction. The definition of
the weak solutions is similar to that in Definition 3.1.

Definition 4.1. For an initial datum g0(v) ∈ L1
2(R

3), g(t, v) is called a weak solution of the
Cauchy problem (4.1) if it satisfies:

g(t, v) ∈ C(R+;D′(R3)) ∩ L1([0, T0];L
1
2(R

3)) ∩ L∞([0, T0];L
1(R3)); g(0, v) = g0;

∫

R3 g(t, v)ϕ(t, v)dv −
∫

R3 g0(v)ϕ(0, v)dv −
∫ t
0 dτ

∫

R3 g(τ, v)∂τϕ(τ, v)dv

=
∫ t
0 dτ

∫

R3 L(g)(τ, v)ϕ(τ, v)dv,

for any test function ϕ(t, v) ∈ C1(R+;C∞
0 (R3)). The right hand side of the last integral above

is defined as the one in Definition 3.1 and it makes a sense for any ϕ ∈ L∞([0, T0];W
2,∞(R3)).

Notice that in the linear case, the nonnegativity g ≥ 0 cannot be assumed, so that the
mass-energy conservation law, though it holds, does not implies g(t, ·) ∈ L1

2.

From now on, we are going to show that the weak solution g(t, ·) is ∈ G
1

α (R3) for 0 < t ≤ T0.
The existence of weak solutions in the above class will be discussed at the end of this section.

Under the assumption (1.5) on the collision cross-section, the following sub-elliptic estimate
is known, cf. [1]:

(4.2) ‖Λαf‖2
L2 ≤ Ch

{

(−Q(h, f), f)L2 + ‖f‖2
L2

}

,

for any f ∈ H2 and h ≥ 0, h ∈ L1
1 ∩ L logL. Here, the constant Ch depends only on ‖h‖L1

1
and

‖h‖L log L. For 0 < δ < 1, set

Gδ(t, ξ) =
et〈|ξ|〉

α

1 + δet〈|ξ|〉
α .

Then if g ∈ L1([0, T0];L
1
2(R

3)), we have

Gδ(t,Dv) 〈|Dv|〉−4 g ∈ L1([0, T0];H
2(R3)) ; G2

δ(t,Dv) 〈|Dv |〉−8 g ∈ L1([0, T0];W
2,∞(R3)),

and

‖ΛαGδ(t,Dv) 〈|D|〉−4 g‖2
L2 ≤ Cµ

{

(−Q(µ,Gδ 〈|D|〉−4 g), Gδ 〈|D|〉−4 g)L2(4.3)

+‖Gδ(t,Dv) 〈|D|〉−4 g‖2
L2

}

,

where the constant Cµ is independent on δ.
As in the previous section, the following lemma gives the estimate on the commutator of the

pseudo-differtial operator Gδ(t,Dv) 〈|Dv|〉−4 and the collision operator Q(µ, ·).
Lemma 4.1. For the g and notations given above, we have

|(Q(µ,Gδ 〈|D|〉−4 g), Gδ 〈|D|〉−4 g)L2 − (Q(µ, g), G2
δ 〈|D|〉−8 g)L2 |(4.4)

≤ Cµ‖Gδ 〈|D|〉−4 g‖L2‖ΛαGδ 〈|D|〉−4 g‖L2 ,

and

(4.5) |(Q(g, µ), G2
δ 〈|D|〉−8 g)L2 | ≤ Cµ‖g‖L1

2
‖Gδ 〈|D|〉−4 g‖L2 ,
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where Cµ is independent of 0 < δ < 1.

Proof. For (4.4), similar to the proof of Lemma 3.1, we choose Gδ(t,Dv) 〈|D|〉−4 g ∈ H2(R3) as
the test function. Without loss of generality and simplicity of notations, we drop the regularizied
operator 〈|D|〉−4 in the following calculation because it does not create extra difficulty. In fact,
the main issue to estimate following term as (3.3),

∣

∣

∣

∣

∫

b
( ξ

|ξ| · σ
){

Re µ̂(ξ−)ĝ(ξ+)Gδ(t, ξ)¯̂g(ξ)
[

Gδ(t, ξ) −Gδ(t, ξ
+)

]

}

dσdξ

∣

∣

∣

∣

.

Notice that the weight Gδ(t, ξ) is an exponential function so that an estimate like (3.4) fails.
Instead, we will show the following estimate

(4.6) |Gδ(t, ξ
+) −Gδ(t, ξ)| ≤ C sin2 θ

2
〈ξ〉αGδ(t, ξ

−)Gδ(t, ξ
+),

where the constant C > 0 depends only on α and T0. For this, set

G̃δ(s) =
s

1 + δs
.

Note that d
dsG̃δ(s) > 0 and

Gδ(t, ξ) = G̃δ

(

et(1+|ξ|2)α/2
)

.

By recalling |ξ|2 = |ξ+|2 + |ξ−|2 and |ξ−|2 = |ξ|2 sin2 θ
2 , we have

|Gδ(t, ξ
+) −Gδ(t, ξ)| =

∣

∣

∣

∫ 1

0

exp t(1 + |ξ|2 + τ(|ξ+|2 − |ξ|2))α/2

(

1 + δ exp t(1 + |ξ|2 + τ(|ξ+|2 − |ξ|2))α/2
)2

× tα

2
(1 + |ξ|2 + τ(|ξ+|2 − |ξ|2))α/2−1dτ

∣

∣

∣
|ξ−|2

≤ CGδ(t, ξ)(1 + |ξ|2)α/2 sin2 θ

2
,

where we have used 1
2 |ξ|2 ≤ |ξ|2 + τ(|ξ+|2 − |ξ|2) ≤ |ξ|2. Notice that for 0 < α < 1, 0 < δ < 1,

and for any a, b ≥ 0, we have

(1 + a+ b)α ≤ (1 + a)α + (1 + b)α , (1 + δea)(1 + δeb) ≤ 3(1 + δea+b).

Then

G̃δ

(

et(1+|ξ+|2+|ξ−|2)α/2
)

≤ G̃δ

(

et(1+|ξ+|2)α/2+t(1+|ξ−|2)α/2
)

≤ 3Gδ(t, ξ
+)Gδ(t, ξ

−).

Hence
∣

∣

∣

∣

∫

R3

∫

S2

b
{

Re µ̂(ξ−)ĝ(ξ+)Gδ(t, ξ)¯̂g(ξ)
[

Gδ(t, ξ) −Gδ(t, ξ
+)

]}

dσdξ

∣

∣

∣

∣

≤ C

∫

R3

∫

S2

b sin2 θ

2
|Gδ(t, ξ

−)µ̂(ξ−)|Gδ(t, ξ
+)|ĝ(ξ+)| 〈ξ〉αGδ(t, ξ)|ĝ(ξ)|dσdξ

≤ C‖Gδµ‖L1‖Gδg‖L2‖ΛαGδg‖L2 ,

which gives (4.6) and then (4.4).
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We now turn to prove (4.5). By using Bobylev identity, and µ̂(ξ) = µ̂(ξ+)µ̂(ξ−), µ̂(0) = 1,
we have

|(Q(g, µ), G2
δg)L2 | =

∣

∣

∣

∣

∫

b
(

ĝ(ξ−)µ̂(ξ+) − ĝ(0)µ̂(ξ)
)

G2
δ(t, ξ)

¯̂g(ξ)dσdξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

b
(

ĝ(ξ−) − ĝ(0)µ̂(ξ−)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

b ĝ(0)
(

µ̂(ξ−) − µ̂(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

b
(

ĝ(ξ−) − ĝ(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

.

For the first term in the last inequality, since

|µ̂(ξ−) − µ̂(0)| ≤ |ξ−|2 ≤ |ξ|2 sin2 θ

2
,

we have
∣

∣

∣

∣

∫

b ĝ(0)
(

µ̂(ξ−) − µ̂(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

≤ ‖g‖L1

∣

∣

∣

∣

∫

b(cos θ) sin2 θ

2
Gδ(t, ξ)|ξ|2µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dθdξ

∣

∣

∣

∣

≤ CT0
‖g‖L1‖Gδg‖L2 ,

where CT0
= 4‖Gδ(2T0,D)|D|2µ‖L2 . While for the second term, when 0 < α < 1/2, the

estimate

|ĝ(ξ−) − ĝ(0)| ≤ ‖ ▽ ĝ‖L∞ |ξ−| ≤ ‖g‖L1
1
|ξ| sin θ

2
,

gives
∣

∣

∣

∣

∫

R3

∫

S2

b
(

ĝ(ξ−) − ĝ(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

≤ ‖g‖L1
1

∣

∣

∣

∣

∫

R3

∫

S2

b(cos θ)
∣

∣ sin
θ

2

∣

∣Gδ(t, ξ)|ξ|µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dθdξ

∣

∣

∣

∣

≤ CT0
‖g‖L1

1
‖Gδg‖L2 .

On the other hand, when 1/2 ≤ α < 1, the above simple calculation does not work. Instead,
we need to use the symmetry in the integral according to the geometric structure of

ξ+ =
ξ + |ξ|σ

2
, ξ− =

ξ − |ξ|σ
2

, cos θ = |ξ|−1 〈ξ, σ〉 .

For a fixed ξ 6= 0, denote the unit vector σ = Rθ

( ξ
|ξ|

)

as a rotation of the unit vector ξ
|ξ| by an

angle θ. Moreover, denote σ̄ = R−θ

( ξ
|ξ|

)

and

ξ̄+ =
ξ + |ξ|σ̄

2
, ξ̄− =

ξ − |ξ|σ̄
2

.

Then we have, cf. Figure 1,

|ξ+| = |ξ̄+|, |ξ−| = |ξ̄−|, |ξ|−1 〈ξ, σ̄〉 = cos θ.
14



−θ/2

ξ+

ξ ξ

ξ

ξ

ξ

θ/2

ξ+

ξ

ξξ 2

2

σ 2σ

With these notations, the integral can be estimated as follows,
∫

R3

∫

S2

b
( ξ

|ξ| · σ
)

(

ĝ(ξ−) − ĝ(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

=

∫

R3

∫

S2

b
( ξ

|ξ| · σ̄
)

(

ĝ(ξ̄−) − ĝ(0)
)

Gδ(t, ξ)µ̂(ξ̄+)Gδ(t, ξ)¯̂g(ξ)dσ̄dξ

=
1

2

∫

R3

∫

S2

b(cos θ)
(

ĝ(ξ−) + ĝ(ξ̄−) − 2ĝ(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ.

Here we have used the fact that dσ̄ = dσ and µ(ξ+) = µ(ξ̄+). Notice that ξ− and ξ̄− are
symmetric with respect to ξ so that we can denote them by

ξ− = ~a+~b, ξ̄− = ~a−~b,
with

|~a| = sin
θ

2
|ξ−| = sin2 θ

2
|ξ|, |~b| = sin

θ

2
|ξ+| = sin

θ

2
cos

θ

2
|ξ|.

Thus,

|ĝ(ξ−) + ĝ(ξ̄−) − 2ĝ(0)| = |ĝ(~a+~b) − 2ĝ(~a) + ĝ(~a−~b) + 2(ĝ(~a) − ĝ(0))|
≤ ‖g‖L1

2
|~b|2 + 2‖g‖L1

1
|~a|.

Finally, for 1/2 ≤ α < 1, we have
∣

∣

∣

∣

∫

R3

∫

S2

b
(

ĝ(ξ−) − ĝ(0)
)

Gδ(t, ξ)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dσdξ

∣

∣

∣

∣

≤ (‖g‖L1
1

+ ‖g‖L1
2
)

∣

∣

∣

∣

∫

R3

∫

S2

b(cos θ)
∣

∣ sin2 θ

2

∣

∣Gδ(t, ξ)(|ξ| + |ξ|2)µ̂(ξ+)Gδ(t, ξ)¯̂g(ξ)dθdξ

∣

∣

∣

∣

≤ CT0
(‖g‖L1

1
+ ‖g‖L1

2
)‖Gδg‖L2 .

Therefore, we have obtained (4.5) and then completes the proof of the lemma. �

We are now ready to prove the second main result in this paper.
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Proof of Theorem 1.2. By the same argument as in Section 3, we see thatG2
δ(t,Dv) 〈|Dv |〉−8 g ∈

L∞([0, T0];W
2,+∞(R3)) whoes norm is estimated by Cδ sup[0,T0] ‖g(t)‖L1 , and moreover

Gδ(t,Dv) 〈|Dv |〉−4 g ∈ C([0, T0];L
2(R3)),

by noting g ∈ L1([0, T0], L
1
2). Hence, setting

ϕ(t) = G2
δ(t,Dv) 〈|Dv|〉−8 g(t, v)

in the last equation of Definition 4.1 we obtain, by means of the same argument as for (3.6),

1
2

∫

R3 |Gδ(t) 〈|D|〉−4 g(t)|2dv − 1
2

∫

R3 |Gδ(0) 〈|D|〉−4 g0|2dv(4.7)

−1
2

∫ t
0

∫

R3 g(τ)
(

∂tG
2
δ(τ)

)

〈|D|〉−8 g(τ)dvdτ =
∫ t
0

(

Lg(τ), G2
δ (τ) 〈|D|〉−8 g(τ)

)

L2dτ,

for any t ∈ [0, T0]. On the other hand, it follows from (4.3), (4.4) and (4.5) that

(4.8) ‖ΛαGδ 〈|D|〉−4 g‖2
L2 ≤ Cµ

{

(−Lg,G2
δ 〈|D|〉−8 g)L2 + ‖Gδ 〈|D|〉−4 g‖2

L2 + ‖g‖2
L1

2

}

.

Combining (4.7) and (4.8) implies

‖Gδ(t) 〈|D|〉−4 g(t)‖2
L2 +

1

2Cµ

∫ t

0
‖ΛαGδ(τ) 〈|D|〉−4 g(τ)‖2

L2dτ ≤

‖Gδ(0) 〈|D|〉−4 g0‖2
L2 +

∣

∣

∣

∣

∫ t

0

∫

R3

g(τ)
(

∂tG
2
δ(τ)

)

〈|D|〉−8 g(τ)dvdτ

∣

∣

∣

∣

+

∫ t

0
‖Gδ(τ) 〈|D|〉−4 g(τ)‖2

L2dτ +

∫ t

0
‖g(τ)‖2

L1
2

dτ.

Since
|∂tGδ(t, ξ)| ≤ Gδ(t, ξ) < ξ >α,

we have
∣

∣

∣

∣

∫ t

0

∫

R3

g(τ)
(

∂tG
2
δ(τ)

)

〈|D|〉−8 g(τ)dvdτ

∣

∣

∣

∣

≤ 2

∫ t

0
‖ΛαGδ(τ) 〈|D|〉−4 g(τ)‖L2‖Gδ(τ) 〈|D|〉−4 g(τ)‖L2dτ,

and
‖Gδ(0) 〈|D|〉−4 g0‖2

L2 ≤ ‖ 〈|D|〉−4 g0‖2
L2 ≤ C‖g0‖2

L1 .

Thus, for any ε > 0, we have

‖Gδ 〈|D|〉−4 g(t)‖2
L2 +

( 1

2Cµ
− ε

)

∫ t

0
‖ΛαGδ(τ) 〈|D|〉−4 g(τ)‖2

L2dτ

≤ C0‖g0‖2
L1 + Cε

∫ t

0
‖Gδ(τ) 〈|D|〉−4 g(τ)‖2

L2dτ + C1

∫ t

0
‖g(τ)‖2

L1
2

dτ.

By choosing ε = 1
4Cµ

, the above inequality shows that there exists a constant C2 > 0 independent

of δ ∈]0, 1[, such that for any t ∈]0, T0]

‖Gδ(t) 〈|D|〉−4 g(t)‖2
L2 ≤ C0‖g0‖2

L1 + C2

{
∫ t

0
‖Gδ(τ) 〈|D|〉−4 g(τ)‖2

L2dτ +

∫ t

0
‖g(τ)‖2

L1
2

dτ

}

.

Then the Gronwall inequality yields

‖Gδ(t) 〈|D|〉−4 g(t)‖2
L2 ≤ C0e

C2t‖g0‖2
L1 + C2e

C2t

∫ t

0
e−C1τ‖g(τ)‖2

L1
2

dτ,

where the positive constants C0, C2 are independent of δ. Hence, by noticing

e−t〈|ξ|〉α 〈|ξ|〉8 ≤ Cαt
− 8

α ,
16



for any fixed 0 < t ≤ T0 fixed, we have

e
1

2
t〈|Dv|〉

α

g(t, v) ∈ L2.

And this completes the proof of Theorem 1.2.
The rest of this section is devoted to

Proof of Proposition 1.1. The construction of the weak solutions which meet the requirement
of Theorem 1.2 is based on the following estimate of the operator L in the weighted space
L2

ℓ = L2
ℓ(R

3).

Proposition 4.1. Assume 0 < α < 1/2 and let ℓ ∈ N. Then, there exists a positive constant C
such that for any g ∈ L2

ℓ , it holds that

(Lg, g)L2
ℓ
≤ C‖g‖L2

ℓ
(‖g‖L1

1
+ ‖g‖L2

ℓ
).

Actually, this is just part of the coercivity estimate of L stated in Remark 4.1 below, but is
enough for the present purpose. Notice that the restriction 0 < α < 1/2 comes from (4.18).
The proof of this proposition will be given at the end of this section, and we now proceed to the
proof of Proposition 1.1.

Let Lδ denote the operator L with a cutoff kernel

bδ(cos θ) = χ(|θ| > δ)b(cos θ),

where χ is the usual characteristic function. Although this is not a bounded operator on L2 = L2
0,

so is the operator LR,δ = IRLδIR where IR is a smooth cutoff function

IR ∈ C∞
0 (R3), 0 ≤ IR(x) ≤ 1, IR(v) =

{

1 (|v| ≤ R),
0 (|v| ≥ R+ 1).

The proof is easy and hence omitted. Thus, LR,δ is a generator of C0 semi-group etLR,δ on L2.
For any g0 ∈ L2, define

hR,δ(t) = etLR,δg0.

Since LR,δ is a bounded operator, hR,δ(t) enjoys the strong t-regularity

hR,δ ∈ C∞([0,∞)];L2),

and gives a unique strong solution to the Cauchy problem

(4.9)
dhR,δ

dt
= LR,δhR,δ in L2 (t ≥ 0), hR,δ(0) = g0.

Moreover, the following holds.

Lemma 4.2. For any ℓ ∈ N and g0 ∈ L2
ℓ , hR,δ(t) is in C∞([0,∞);L2

ℓ ) and satisfies (4.9)
strongly in L2

ℓ .

Proof. Put Wℓ(v) = (1 + |v|)ℓ. Since Wℓ IR ∈ L∞(R3) and since LR,δ is a bounded operator,
the series

WℓhR,δ = Wℓe
tIRLδIRg0 = Wℓg0 +

∞
∑

k=1

tk

k!
WℓIR(IRL

δIR)kg0

converges in the norm of L2 as well as the series obtained by the term-by-term differentiation
in t. This completes the proof of the lemma.
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On the other hand, it is easy to see, in the course of its proof, that Proposition 4.1 applies
also to LR,δ with the same constant C which is independent of R, δ. This and Lemma 4.2 then
yield

d

dt
‖hR,δ‖2

L2
ℓ

= 2(
dhR,δ

dt
, hR,δ)L2

ℓ
= 2(LR,δhR,δ , hR,δ)L2

ℓ
(4.10)

≤ C‖hR,δ‖L2
ℓ
(‖hR,δ‖L1

1
+ ‖hR,δ‖L2

ℓ
).

From now on, assume ℓ > 5/2 so that L2
ℓ ⊂ L1

1. Then (4.10) yields

‖hR,δ(t)‖L2
ℓ
≤ eCt‖g0‖L2

ℓ
,(4.11)

for all t ≥ 0.
To simplify the notation, put

Xℓ = L∞([0, T ]; L2
ℓ), Yℓ = L2([0, T ]; L2

ℓ).

It follows from (4.11) that

hR,δ ∈ Xℓ ∩ Yℓ, ‖hR,δ‖Xℓ
≤ eCT ‖g0‖L2

ℓ
, ‖hR,δ‖Yℓ

≤ TeCT ‖g0‖L2
ℓ
,

for any T > 0.
Now, fix δ > 0 and let R → ∞. It is clear from the above that there exist a function hδ and

a subsequence {hR,δ} (with abuse of notation) such that for any T > 0,

hδ ∈ Xℓ ∩ Yℓ, ‖hδ‖Xℓ
≤ eCT ‖g0‖L2

ℓ
, ‖hδ‖Yℓ

≤ TeCT ‖g0‖L2
ℓ
,

hR,δ → hδ weakly* in Xℓ and weakly in Yℓ.

Consider the weak formulation of (4.9):

(4.12) −(g0, φ(0))L2 −
∫ T

0
(hR,δ(τ), φτ (τ))L2dτ =

∫ T

0
(hR,δ(τ),IRL

∗
δIRφ(t))L2dτ,

where φ is any test function in C∞
0 ([0, T ]×R

3) subject to the final condition φ(T ) = 0 and L∗ is
the adjoint operator of L defined in the same sense as in Definition 3.1. Take the limit of (4.12)
as R→ ∞. Clearly,

W−1
ℓ IRL

∗
δIRφ→ W−1

ℓ L∗
δφ strongly in Y0,

so that we have

(4.13) −(g0, φ(0))L2 −
∫ T

0
(hδ(τ), φτ (τ))L2dτ =

∫ T

0
(Wℓhδ(τ),W

−1
ℓ L∗

δφ(t))L2dτ.

Now, let δ → 0. Then, there exist a function g and a subsequence {hδ} (again with abuse of
notation) such that

g ∈ Xℓ ∩ Yℓ, ‖g‖Xℓ
≤ eCT ‖g0‖L2

ℓ
, ‖g‖Yℓ

≤ TeCT ‖g0‖L2
ℓ
,

hδ → g weakly* in Xℓ and weakly in Yℓ.

This g is a desired weak solution. To see this, note that

W−1
ℓ L∗

δφ→W−1
ℓ L∗φ strongly in Y0,

and take the limit of (4.13), to deduce

(4.14) −(g0, φ(0))L2 −
∫ T

0
(g(τ), φτ (τ))L2dτ =

∫ T

0
(Wℓg(τ),W

−1
ℓ L∗φ(τ))L2dτ.

Finally, set

φ(t, v) =

∫ T

t
η(s)dsψ(t, v), η ∈ C∞([0, T ]), ψ ∈ C∞

0 ([0, T ] × R
N ).

18



Then (4.14) is deduced to
∫ T

0
η(t)

{

(g(t), ψ(t))L2 − (g0, ψ(0))L2 −
∫ t

0
(g(τ), ψτ (τ))L2dτ

−
∫ t

0
(Wℓg(τ),W

−1
ℓ L∗ψ(τ))L2dτ

}

dt = 0,

which implies
{· · · } = 0 a.a. t.

This is just the last equation in Definition 4.1, which, then, gives for any test function of the
form ψ(t, v) = ψ̄(v) ∈ C∞

0 (RN ),

(g(t), ψ̄)L2 = (g0, ψ̄)L2 +

∫ t

0
w(τ)dτ,

where w(t) = (Wℓg(t),W
−1
ℓ L∗ψ̄)L2 ∈ L1(0, T ). Thus, g ∈ C(R+,D′). To summarize, g meets all

the requirement stated in Definition 4.1. The proof of Proposition 1.1 is now complete, except
for

Proof of Proposition 4.1. First, consider L1g = Q(µ, g). Recall Wℓ(v) = (1 + |v|)ℓ and use
the notation W ′

ℓ = Wℓ(v
′), etc, to deduce

(L1g,g)L2
ℓ

= (L1g,W
2
ℓ g)L2 =

∫

R6×S2

b(µ′∗g
′ − µ∗g)W

2
ℓ gdvdv∗dσ

=

∫

R6×S2

bµ∗g{(W ′
ℓ)

2g′ −W 2
ℓ g}dvdv∗dσ

=

∫

R6×S2

bµ∗g(WℓW
′
ℓg

′ −W 2
ℓ g)dvdv∗dσ +

∫

R6×S2

bµ∗g(W
′
ℓ −Wℓ)W

′
ℓg

′dvdv∗dσ

= A1 +A2.

We note that

A1 = −
∫

R6×S2

bµ∗(W
2
ℓ g

2 −WℓgW
′
ℓg

′)dvdv∗dσ

= −1

2

∫

R6×S2

bµ∗(Wℓg −W ′
ℓg

′)2dvdv∗dσ − 1

2

∫

R6×S2

bµ∗{(Wℓg)
2 − (W ′

ℓg
′)2}dvdv∗dσ

= A11 +A12.

Clearly,

(4.15) A11 ≤ 0

while A22 can be computed just by the cancellation lemma in [1] with γ = 0, yielding

A12 = −1

2

∫

R3

µ∗{S ∗v (Wℓg)
2}dv∗,

where ”∗v” is the convolution in v and S is the function introduced in [1], which is a constant
function in our case, that is,

S = 2π

∫ π/2

0
sin θ

[

(cos θ)−3 − 1
]

b(cos θ)dθ,

whence

(4.16) |A12| =
S

2

∫

R3

µ∗

{

∫

R3

(Wℓg)
2dv

}

dv∗ = C‖Wℓg‖2 = C‖g‖2
ℓ .
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In order to evaluate A2, first, we compute

|W ′
ℓ −Wℓ| = ||v′| − |v||

ℓ−1
∑

k=0

W ′
ℓ−1−kWk(4.17)

≤ C|v′ − v|(W ′
ℓ−1 +Wℓ−1)

≤ Cθ(|v| + |v∗|)(W ′
ℓ−1 +Wℓ−1),

where we used

|v′ − v|2 =
1

2
|v − v∗|2(1 − cos θ),

which comes from (1.4). Therefore, recalling that µ is a Maxwellian, we have

µ∗|W ′
ℓ −Wℓ| ≤ Cθµ

1/2
∗ (|v| + 1)(W ′

ℓ−1 +Wℓ−1) ≤ Cθµ
1/2
∗ (W ′

ℓ +Wℓ)

≤ Cθµ
1/4
∗ Wℓ(µ

1/4
∗ W−1

ℓ W ′
ℓ + 1) ≤ Cθµ

1/4
∗ Wℓ,

because
µr(v∗)Wℓ(v

′)

Wℓ(v)
≤ C

Wℓ(v
′)

Wℓ(v∗)Wℓ(v)
≤ C, (r > 0),

by virtue of the conservation law |v|2 + |v∗|2 = |v′|2 + |v′∗|2.
Now, we need to assume that 0 < α < 1/2 so that

(4.18)

∫

S2

θb(k · σ)dσ < +∞ (k ∈ S2),

can hold for the collision cross section B satisfying (1.5). Then, we have

|A2| ≤ C

∫

R3

µ
1/4
∗

{

∫

R3

(Wℓg)(W
′
ℓg

′)dv
}

dv∗.

By the Schwarz inequality,

|
∫

R3

(Wℓg)(W
′
ℓg

′)dv|2 ≤
∫

R3

|Wℓg|2dv
∫

R3

|(Wℓg)(v
′)|2dv = ‖g‖2

L2
ℓ

∫

R3

|(Wℓg)(v
′)|2dv,

while the change of variables

(4.19) v 7→ v′ =
v + v∗

2
+

|v − v∗|
2

σ

for fixed v∗ and σ whose Jacobian is shown in [1] to satisfy

(4.20)
∣

∣

∣

∂v

∂v′

∣

∣

∣
=

4

cos2(θ/2)
≤ 8, θ ∈ [0,

π

2
],

yields
∫

R3

|(Wℓg)(v
′)|2dv ≤ C

∫

R3

|(Wℓg)(v
′)|2dv′ = C‖g‖2

L2
ℓ
,

whence follows

|A2| ≤ C‖g‖2
ℓ .(4.21)

.
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We shall now estimate L2g = Q(g, µ). Write

(L2g,g)L2
ℓ

= (L2g,W
2
ℓ g)L2 =

∫

R6×S2

b(g′∗µ
′ − g∗µ)W 2

ℓ gdvdv∗dσ

=

∫

R6×S2

bg∗µ{(W ′
ℓ)

2g′ −W 2
ℓ g}dvdv∗dσ

=

∫

R6×S2

bg∗µWℓ(W
′
ℓg

′ −Wℓg)dvdv∗dσ +

∫

R6×S2

bg∗µ(W ′
ℓ −Wℓ)W

′
ℓg

′dvdv∗dσ

= A3 +A4.

In order to evaluate A3, we again invoke Bobylev’s idenity [3] with ĝ(ξ) = F(g), Φ(ξ) =
F(Wℓg), Ψ(ξ) = F(Wℓµ), to deduce

A3 =

∫

R6×S2

b(
v − v∗
|v − v∗|

· σ){g′∗(W ′
ℓµ

′) − g∗(Wℓµ)}Wℓgdvdv∗dσ

=

∫

R3×S2

b(
ξ

|ξ| · σ){ĝ(ξ−)Ψ(ξ+) − ĝ(0)Ψ(ξ)}Φ(ξ)dξdσ,

where

ξ+ =
1

2
(ξ + |ξ|σ), ξ− =

1

2
(ξ − |ξ|σ).

Split A3 as follows.

A3 =

∫

R3×S2

b(
ξ

|ξ| · σ)ĝ(ξ−){Ψ(ξ+) − Ψ(ξ)}Φ(ξ)dξdσ

+

∫

R3×S2

b(
ξ

|ξ| · σ){ĝ(ξ−) − ĝ(0)}Ψ(ξ)Φ(ξ)dξdσ = A31 +A32.

Without loss of generality, we may take Wℓ(v) = (1 + |v|2)ℓ. Then, since µ̂(ξ) = (2π)3/2µ(ξ) for
the absolute Maxwellian (1.9), we have

Ψ(ξ) = F(Wℓµ) = (I − ∆ξ)
ℓµ̂(ξ) = P (ξ)µ(ξ),

where P (ξ) is a polynomial in ξ of order 2ℓ. Noticing that

|ξ+ − ξ| = |ξ|| sin θ
2
| |ξ|√

2
≤ |ξ+| ≤ |ξ|,

with (ξ · σ)/|ξ| = cos θ, θ ∈ [0, π/2], we get

|Ψ(ξ+) − Ψ(ξ)| ≤ |P (ξ+)||µ(ξ+) − µ(ξ)| + |P (ξ+) − P (ξ)|µ(ξ)

≤ |P (ξ+)||µ1/2(ξ+) − µ1/2(ξ)||µ1/2(ξ+) + µ1/2(ξ)| + |P (ξ+) − P (ξ)|µ(ξ)

≤ C(1 + |ξ|2ℓ)θ|ξ|µ1/4(ξ) ≤ Cθµ1/8(ξ),

which yields, together with (4.18),

|A31| ≤ C

∫

R3

|ĝ(ξ−)|µ1/8(ξ)|Φ(ξ)|dξ(4.22)

≤ C‖ĝ‖L∞
ξ
‖µ1/8(ξ)‖L2

ξ
‖Φ‖L2

ξ
≤ C‖g‖L1‖Wℓg‖L2 .

On the other hand, recalling the estimate

|ĝ(ξ−) − ĝ(0)| ≤ |(∇ξ ĝ)(ξ̃)||ξ−| ≤ C|ξ||θ|‖∇ξ ĝ‖L∞
ξ

≤ C|ξ||θ|‖|v|g‖L1 ,
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we get

|A32| ≤ C‖|v|g‖L1

∫

R3

|Ψ(ξ)||Φ(ξ)|dξ(4.23)

≤ C‖|v|g‖L1‖Wℓµ‖L2‖Wℓg‖L2 ≤ C‖g‖L1
1
‖g‖L2

ℓ
.

It remains to evaluate A4. It follows from (4.17) that

µ|W ′ −W | ≤ Cθµ1/2(1 + |v∗|)){W ′
ℓ−1 + 1}

≤ Cθµ1/4(v){Wℓ(v∗) +Wℓ(v
′)}

≤ Cθµ1/8(v)Wℓ(v∗)
{

1 +
µ1/8(v)Wℓ(v

′)

Wℓ(v∗)

}

≤ Cθµ1/8(v)Wℓ(v∗),

the last inequality coming again from the conservation law |v|2 + |v∗|2 = |v′|2 + |v′∗|2. Conse-
quently, proceeding just as in (4.21) for A2, we obtain

|A4| ≤ C

∫

µ1/8(v)
{

∫

(W∗g∗)(Wg)′dv∗

}

dv ≤ C‖Wg‖2,(4.24)

where, instead of (4.19), the change of variables

(4.25) v∗ 7→ v′ =
v + v∗

2
+

|v − v∗|
2

σ

was used for fixed v and σ, for which the Jacobian has the same estimate (4.20) because v′ is
symmetric with respect to v and v∗ both in (4.19) and (4.25).

Putting together (4.15), (4.16), (4.21), (4.22), (4.23), and (4.24) completes the proof of Propo-
sition 4.1.

Remark 4.1: A11 has the coercivity estimate,

−A11 ≥ C1‖|Dv |α(Wℓg)‖L2 − C2‖g‖2
L2

ℓ
,

which comes from [1, §6] and leads to a generalized version of the sub-elliptic esimate (4.2) in
the weighted space L2

ℓ .
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