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Inductive electromagnetic means that are currently employed in the exploration of the Earth’s subsurface and embedded voluminous 
bodies often call for an intensive use, pri-mary at the modeling stage and later on at the inversion stage, of analytically demanding tools of 
field calculation. Under the aim of modeling implementation, this contribution is concerned with some interesting aspects of the low-

frequency interaction of arbitrarily ori-entated (i.e. three-dimensional) time-harmonic magnetic dipoles, with 3-D perfectly con-ducting 
spheroidal bodies embedded in an otherwise homogeneous conductive medium. For many practical applications involving buried obstacles 
such as Earth’s subsurface elec-tromagnetic probing at low-frequency or any other physical cases (e.g. geoelectromagnet-ics), non-
axisymmetric spheroidal geometry approximates sufficiently such kind of metallic shapes. On the other hand, our analytical approach deals 
with prolate spheroids, since the corresponding results for the oblate spheroidal geometry can be readily obtained through a simple 
transformation. The particular physical model concerns a solid impene-trable (metallic) body under a magnetic dipole excitation, where the 
scattering boundary value problem is attacked via rigorous low-frequency expansions for the incident, scattered and total electric and 
magnetic fields in terms of positive integral powers of (ik), that is (ik)n for n P 0, where k stands for the complex wavenumber of the 
exterior medium. The pur-pose of the modeling is to contribute to a simple yet versatile tool to infer information on an unknown body from 
measurements of the three-component electric and magnetic fields nearby. Our goal is to obtain the most important terms of the low-

frequency expansions of the electromagnetic fields, that is the static (for n = 0) and the dynamic (n = 1, 2, 3) terms. In particular, for n = 1 
there are no incident fields and thus no scattered ones, while for n = 0  the Rayleigh electromagnetic expression is easily obtained in terms 
of infinite series. Emphasis is given on the calculation of the next two non-trivial terms (at n = 2 and at n = 3) of the aforementioned fields. 
Consequently, those are found in closed form from exact solutions of coupled (at n = 2, to the one at n = 0) or uncoupled (at n = 3) Laplace 
equations and they are given in compact fashion, as infinite series expansions for n = 2  or finite forms for n = 3. Nevertheless, the difficulty 
of the Poisson’s equation that has to be solved for n = 2 is presented, whereas our analytical approach demands the use of the well-known 
cut-off method in order to obtain an analytical closed solution. Finally, this research adds useful reference results to the already ample 
library of scattering by simple shapes using analytical methods.
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1. Introduction

The main field of application of the present research, especially in down-hole mineral exploration using inductive elec-

tromagnetic means, is Earth’s subsurface electromagnetic probing, where we are often faced with the problem of retrieving

an anomaly of certain kind, specified as metallic ores, from three-dimensional magnetic fields, which are measured along a

borehole when a low-frequency [1] time-harmonic source is placed nearby, usually fixed at the surface of the Earth. By deci-

phering such fields, interesting information concerning main parameters such as orientations, sizes, shapes, magnetic and

electric properties, as well as distribution of conductivity of the metallic bodies, are identified in order to bring insight to

the field behavior. However, this is not an easy task, since the inverse problem cannot be tackled in robust fashion unless

proper models of the field interaction are available.

Nowadays, there are many computational codes and corresponding inversion algorithms available to that matter as illus-

trated early on in [2], which approach simply enough the three-dimensional field interaction and the inversion problem,

while several complementary investigations are presented in [3]. Nevertheless, simple methodologies and much material

on exploration by electromagnetic means and models thereof, which are described in the classical book [4], remain useful,

while a recent and detailed contribution by Ref. [5] illustrates this type of approach. In addition, under the low-frequency

hypothesis [1], a close link with the present investigation is offered by three important Refs. [6–8], where low-contrast cases

(it is assumed in this case that the body is a non-metallic obstacle of finite conductivity) based on the well-known Green’s

function [9,10], were approached by hybrid means from integral formulations of the fields conveniently approximated [7]

and from expansions of the Green’s formula or of the resulting fields [6,8]. More specific, Ref. [7] provides us with interesting

results, which are concerned with a penetrable sphere illuminated by a dipolar magnetic field within a conductive host med-

ium via a Mie series expansion, while in [6] and [8] the problem deals with the general case of ellipsoidal [11] penetrable

obstacles and it is faced via expansions of the Green’s function or of the electromagnetic fields inside and outside the body,

within the framework of the localized non-linear approximation. On the other hand, for high-contrast cases the body is con-

sidered to be metallic, hence impenetrable, whereas in view of this aspect, a recent work [12] for perfectly conducting ellip-

soids is successfully dealt with the first term (the static one case) of the low-frequency expansion. In [4] a low-frequency

expansion is found by the manipulation of Debye potentials, but the approach does not accommodate for a perfectly con-

ducting sphere via an asymptotic analysis. Moreover, in addition to the interest for practical applications, like mining explo-

ration as in our case, or so-called unexploded ordinance (UXO) investigations [13] or like the exploration of natural

structures such as water-filled cavities and other possibly conductive materials in subsoil at shallow depths, one can also

find useful results to the already ample library of scattering by simple shapes (e.g. spheroids) using analytical methods in

Refs. [14,15]. Here we must point out a recent numerical work of electromagnetic imaging of a three-dimensional perfectly

conducting object using a boundary integral formulation [16]. Within this frame of numerical approaches we also refer to

two purely numerical papers, one dealing with the characterization of spheroidal metallic objects using electromagnetic

induction [17] and the other one dealing with a spheroidal-mode approach for unexploded ordinance (UXO) inversion under

time-harmonic excitations in the magneto-quasistatic regime [18], wherein both of them important inversion algorithms are

developed. However, these methods, as well as those mentioned in the beginning of our reference sequence, involve the use

of elaborate computer codes for each case under consideration. There is always room and need for analytical methods, which

capture (albeit only roughly) the essential features of the electromagnetic process under consideration in an analytical for-

mula, which contains the appropriate geometrical and physical dimensionless groups. Even the low-frequency analytical

expansions in the spherical case were not available until three years ago when the low-frequency solution for a perfectly

conducting sphere in a conductive medium with dipolar excitation was published [19] or when a mathematical formulation

concerning the electromagnetic induction response to spheroidal anomalies embedded in a weakly conducting host medium

was introduced [20]. However, this work [20] covers only the case of constant incident magnetic and electric fields, whereas

even though the scattered fields are given in a compact closed fashion, the corresponding part of this work, which concerns

the perfectly conducting spheroidal bodies case, provides us only with a small part of the scattered field. Nevertheless, for

their application this part is adequate and their results are recovered from our generalized analytical method (for three-

dimensional and any – not necessary constant – incident electromagnetic fields) as special cases in a separate application

paragraph.

Here, the goal is to obtain a versatile set of mathematical and numerical tools in order to infer information on an unknown

subsurface body, which it scatters off when illuminated by a known primary source, let us say a time-harmonic magnetic

dipole, operated at low-frequency on the surface of the Earth in an arbitrary direction and producing three-dimensional inci-

dent waves. In order to put those tools together, we work within the framework of the well-known low-frequency diffusive

scattering theory [1], i.e., by expanding the electromagnetic fields (incident, as well as scattered) in an Rayleigh-like manner

of positive integral powers of (ik), k being the complex wavenumber of the exterior medium at the operation frequency, and

by appropriately calculating the 3-D vector fields at each n of the expansion (ik)n for nP 0. Our aim is to construct a simple

yet robust model of the fields to identify the anomaly when magnetic fields are collected nearby. High-contrast cases, for

which the ratio between the conductivity of the body and the one of the embedding homogeneous medium is high, are

approximated via the introduction of bounded perfectly impenetrable (high conductive) bodies, and the scattering problem

is transformed into a succession, one at each n, of possibly coupled boundary value problems formulated according to sec-

ond-order Laplace’s partial differential equations with proper perfectly reflecting boundary conditions, resulting (after sev-

eral cumbersome but rigorous analytical calculations) in closed-form solutions and providing with the proper analytical
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tools for solving the forward and the inverse problems. Consequently, here one pursues the mathematical analysis in the

infinitely conducting case, which can be illustrated in realistic situations of mineral exploration by considering simple

shapes for the buried objects.

Only simplified shapes can effectively be retrieved for analytical work at low frequencies. For obvious reasons most of the

literature concern spherical obstacles, a fact that does not hold true for the case of general buried bodies. But even if the

obstacles are spherical, deposition of impurities or other kind of substances will establish a preferable direction, which af-

fects the geometry of the spherical obstacles. Despite the fact that the most general consideration and the real challenge con-

cern the ellipsoidal approximation, the simplest and important case is the spheroid [11]. Thus, we shall limit ourselves to the

non-axisymmetric spheroidal case in order to obtain the most important terms of the low-frequency expansions of the elec-

tromagnetic fields, that is, the static (for n = 0) and the dynamic (n = 1,2,3) terms in the three-dimensional space of the con-

ductive medium using the appropriate boundary conditions on the surface of the body, i.e. cancellation of the normal

component of the total magnetic field and cancellation of the two tangential components of the total electric field. In par-

ticular, for n = 1 there are no incident fields as shown from the corresponding low-frequency electric and magnetic expan-

sions. Thus, we limit ourselves to the spheroid case for n = 0, 2, 3, where for n = 0 the Rayleigh electromagnetic term is

obtained with straightforward calculations, while most emphasis is given on the calculation of the next two non-trivial

terms (at n = 2 and at n = 3) of the electromagnetic fields. Those are found in closed form from exact solutions of coupled

at n = 2, to the one at n = 0 (leading to a kind of Poisson’s equation) or uncoupled at n = 3 Laplace equations. Hence, our re-

sults are given in a three-dimensional compact spheroidal fashion, as infinite series expansions (n = 0,2) and finite forms

(n = 3).

The prolate spheroidal shape seems to occur more frequently than the oblate one in practical applications. Therefore, we

restrict our attention to prolate spheroids, since the results for the oblate spheroid can be obtained through a well-known

transformation [11], where the geometrical as well as the analytical correspondence is established.

The rest of the paper itself is organized as follows. In Section 2, the theoretical basis via an analytic mathematical for-

mulation is sketched, while in Section 3 some interesting information concerning the spheroidal (prolate and oblate) har-

monic eigenfunctions [10] is provided. In addition, this section provides us with the necessary analytical tools for the

geometrical reduction of the prolate spheroidal system to the spherical one. In Section 4, the main results of the forward

problem of the calculation of the electromagnetic fields are displayed and discussed, while the mathematical degeneracy of

our results (in view of Section 3) to the corresponding and already known expressions for the sphere-problem [19] is dem-

onstrated. Moreover, in order to supplement this paper with an analytical application of our generalized method, in addi-

tion to the aforementioned reduction of our results to the corresponding spherical ones [19], we invoke Section 5, which is

concerned with a simple application of a part of our general spheroidal results handled in such a manner so as to recover

the already known, but simplified expressions derived in the recent Ref. [20]. An outline of our work and future steps fol-

lows in Section 6. Finally, an appendix is devoted to some useful material in order to make this work complete and

independent.

2. Mathematical development

Proceeding to the analysis, the particular physics concerns a solid impenetrable body of surface S under a magnetic dipole

excitation. More specifically, we are focused onto the case of a 3-D bounded, highly conductive body considered in the

sequel (Section 3) as a metallic prolate spheroidal obstacle, which is buried in a less conductive, homogeneous, linear and

isotropic, nonmagnetic, medium with conductivity r+ and permeability l+ (which is in fact l0), where in terms of the imag-

inary unit i

kþ � k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ixlþrþ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞ ð1Þ

stands for the wavenumber, at low circular frequency x and for permittivity e+ � r+/x, the time-dependence exp(�ixt) of
all field quantities being implied from now on. In what follows we shall refer to smooth, bounded or not bounded, three-

dimensional domains VþðR3Þ of electromagnetic action in the external space, where every field or property will be generally

written in terms of the position vector r ¼ x1x̂1 þ x2x̂2 þ x3x̂3 expressed via the Cartesian basis x̂j, j = 1, 2, 3 in Cartesian

coordinates (x1,x2,x3). This dependence in every symbol will be omitted for convenience in writing. Here, one is dealing with

a single voluminous anomaly, described as an impenetrable three-dimensional spheroid of arbitrary position and orientation

with respect to the surface of the Earth. This body is illuminated by a low-frequency localized vector source, which is mod-

eled with little restriction as a magnetic dipole m with arbitrary location at r0 and arbitrary orientation, meaning

m ¼P3
j¼1mjx̂j. The electromagnetic incident fields Hi, Ei are scattered by the solid body, creating the corresponding scat-

tered fields Hs, Es whose magnetic components are sought, while the total magnetic and electric fields Ht, Et, which are col-

lected along a single line passing outside the body, are given by the summation of both of the incident and scattered fields,

i.e.

Ht ¼ Hi þHs and Et ¼ Ei þ Es; r 2 VþðR3Þ � fr0g: ð2Þ
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The boundary value problem is attacked via low-frequency expansions [1] in terms of integral powers of (ik), that is

Hx ¼
X1

n¼0

Hx
nðikÞ

n and Ex ¼
X1

n¼0

Ex
nðikÞ

n; x ¼ i; s; t ð3Þ

for all the electromagnetic fields, incident (i), scattered (s) and total (t). As a consequence of the low-frequency assumption

and in terms of the gradient operator r operated at r or r0, whenever the case may be (here for reasons of writing conve-

nience we shall define asr �rr and similarly for the Laplace operator D � Dr, otherwise it will be designated), the rigorous

and well-known Maxwell’s equations [1], i.e.r � Ex = ixl+Hx and r�Hx ¼ ð�ixeþ þ rþÞEx ¼eþ�rþ=x
rþEx, which connect the

magnetic and the electric fields, are reduced as follows (with the aid of Eq. (1))

rþr� Ex
n ¼ �Hx

n�2; nP 2 and r�Hx
n ¼ rþEx

n; nP 0; ð4Þ
whereas r �Hx

n ¼ r � Ex
n ¼ 0, nP 0 in r 2 VþðR3Þ � r0f g for x = i, s, t. Thus, we come up with several first-order differential

relationships for the magnetic and electric fields, which are divergence free.

In view of the definitions R = r � r0 and R = j r � r0j, the electromagnetic incident fields generated by the magnetic dipole

m assume the forms [1]

Hi ¼ 1

4p
k2 þ ik

R
� 1

R2

� �
m� k2 þ 3ik

R
� 3

R2

� �
R � R �m

R2

� �
eikR

R
ð5Þ

and

Ei ¼ xlþk
4p

1þ ik
R

� �
m� R

R

� �
eikR

R
; ð6Þ

whereas the symbol ‘‘�” denotes juxtaposition. Some extended algebraic calculations on the incident fields (5) and (6) pro-

duced by the magnetic dipole, which are based on the Taylor’s expansion of the exponential functions and by virtue of Eq.

(1), yield low-frequency relations as powers of (ik) for the incident fields, where it is proved that the first four powers of the

fields, that is the static term for n = 0 and the dynamic terms for n = 1, 2, 3, are sufficient enough to describe the problem. In

detail, the primary (incident) fields enjoy the expressions

Hi ¼ Hi
0 þHi

2ðikÞ
2 þHi

3ðikÞ
3

h i
þ OððikÞ4Þ ð7Þ

and

Ei ¼ Ei
2ðikÞ

2
h i

þ OððikÞ4Þ; ð8Þ

where in terms of the gradient differential operator r �rr (operated at r), we obtain the non-trivial terms

Hi
0 ¼ m

4p
� 3R � R

R2
� eI

� �
1

R3
¼ m

4p
� r�r1

R

� �
; ð9Þ

Hi
2 ¼ � m

4p
� R � R

R2
þ eI

� �
1

2R
¼ m

4p
� 1
2

r1

R
� R �

~I

R

 !
; ð10Þ

Hi
3 ¼ m

4p
� �2

3
eI

� �
; ð11Þ

for the magnetic incident fields, while

Ei
2 ¼ � m

4prþ � R

R3
¼ m

4prþ �r1

R
ð12Þ

for the electric incident field, where ~I stands for the unit dyadic. In view of the resultr� r ¼ ~I and identity (A.1), we utilized

two basic relations in order to derive the second forms of expressions (9), (10) and (12), those being

rr

1

R
� r1

R
¼ � R

R3
and rr

1

R
� r1

R
¼ �rr0

1

R
: ð13Þ

Let us notice that magnetic terms of order n vary like 1/R3�n and the electric ones vary like 1/R4�n when range R increases to

infinity. We also observe that for the incident magnetic field the dynamic term for n = 1 is not present, while for the incident

electric field the only term that survives is the dynamic term for n = 2, reflecting exactly the same physical and mathematical

treatment to the scattered fields. Hence, we are forced to calculate the corresponding non-trivial scattered fields by solving

four mixed Maxwell’s type problems for each n = 0, 2, 3.

Straightforward calculations on Maxwell’s Eq. (4) for x = s and elaborate use of the identity (A.8), result in a set of bound-

ary value problems possibly coupled to one another, from the static one at n = 0 to dynamic ones at higher values of n up to

n = 3, which are given in terms of the harmonic potentials Us
0, U

s
2 and Us

3 via
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DHs
0 ¼ 0 ) Hs

0 ¼ rUs
0 ðr �Hs

0 ¼ 0;r�Hs
0 ¼ 0Þ; ð14Þ

DHs
2 ¼ Hs

0 ) Hs
2 ¼ Us

2 þ
1

2
ðrUs

0Þ and rþEs
2 ¼ r�Hs

2 ðr �Hs
2 ¼ r � Es

2 ¼ 0Þ; ð15Þ

DHs
3 ¼ 0 ) Hs

3 ¼ rUs
3 ðr �Hs

3 ¼ 0;r�Hs
3 ¼ 0Þ; ð16Þ

where the fields Hs
0, H

s
2, E

s
2 and Hs

3 are to be calculated, while Hs
1 ¼ Es

0 ¼ Es
1 ¼ Es

3 ¼ 0 as a direct consequence of the type of the

incident fields. Note that DUs
0 ¼ DUs

3 ¼ 0, while DUs
2 ¼ 0. Here, we must point out that the inhomogeneous vector Laplace Eq.

(15), coupled with the solution of (14), is solved by writing down the second-order scattered magnetic field as the summa-

tion of a general vector harmonic function Us
2 and of a particular solution 1

2
ðrUs

0Þ, whose form is an immediate result of the

use of identity (A.9). This set of problems must be solved with the proper boundary conditions being applied on the body

surface S for the total fields at each order n, that is, in view of the outward unit normal vector n̂, cancellation of the normal

component of the total magnetic field ðn̂ �Ht ¼ 0Þ and of the tangential component of the electric field ðn̂� Et ¼ 0Þ, which in

combination with Eqs. (2) and (3), yields

n̂ � ðHi
n þHs

nÞ ¼ 0; n ¼ 0;2;3 and n̂� ðEi
2 þ Es

2Þ ¼ 0 for r 2 S: ð17Þ

Hence, the boundary value problems that have to be solved for the magnetic field are the following ones: the static one

(n = 0), reduced to a potential problem with Neumann boundary condition, at n = 2, where the problem is far more compli-

cated due to the coupling of the static term and the solution is provided by the summation of a general and a particular one,

and at n = 3, where we arrive again at a potential problem with Neumann boundary condition. Here, we mention that the

scattered electric field for n = 2 is given by the curl of the corresponding magnetic field as shown from Eq. (15). At this stage

we are ready to apply the particular prolate and oblate spheroidal geometry of our boundary value problem.

3. Spheroidal harmonic eigenfunctions and eigenexpansions

Let us now specialize our previous analysis to the spheroidal case, by considering in the beginning a three-dimensional

prolate spheroidal obstacle, which is buried and must be identified. Given a fixed positive number c > 0, which we consider to

be the semifocal distance of our system, we define the transformed prolate spheroidal coordinates (s,f,u), 1 6 s < +1,

�1 6 f 6 1 and 0 6 u < 2p (see Fig. 1), which are given by the following relations (notice that r = (x1,x2,x3) and

r0 = (x10,x20,x30))

x1 ¼ csf; x2 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosu; x3 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
sinu; ð18Þ

while the outward unit normal vector on the surface S of the particular spheroid s = ss = a1/c (with main axis a1 = css,
a2 ¼ a3 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p
and eccentricity e = 1/ss) is furnished by the Cartesian-basis formula

n̂ � ŝ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
x̂1 þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosux̂2 þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
sinux̂3

� �
for s ¼ ss ð19Þ

Fig. 1. The system of prolate spheroidal coordinates.
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and the differential operator of gradient r and Laplace D, in this geometry, assumes the form

rr � r ¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
ŝ
@

@s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
f̂
@

@f

� �
þ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p /̂
@

@u
ð20Þ

and

Dr � D ¼ 1

c2ðs2 � f2Þ
@

@s
ðs2 � 1Þ @

@s

� �
þ @

@f
ð1� f2Þ @

@f

� �� �
þ 1

c2ðs2 � 1Þð1� f2Þ
@2

@u2
; ð21Þ

respectively. Especially, as s? 1+ theprolate spheroiddegenerates to theparticular focal segment S0 = {(t,0,0):t 2 [�c,c],c > 0},

while as s? +1 it approaches a sphere located at infinity. The orthonormal vectors ŝ; f̂; /̂ denote the coordinate vectors of the

system, ŝ given by (19) and

f̂ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ð�s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
x̂1 þ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
cosux̂2 þ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
sinux̂3Þ; ð22Þ

/̂ ¼ � sinux̂2 þ cosux̂3 ð23Þ

for every 1 6 s < +1, �1 6 f 6 1 and 0 6 u < 2p. The unit dyadic is provided by the expression

eI ¼ x̂1 � x̂1 þ x̂2 � x̂2 þ x̂3 � x̂3 ¼ ŝ� ŝþ f̂� f̂þ /̂� /̂ ð24Þ

in Cartesian and prolate spheroidal coordinates.

On the other hand, we introduce the interior uðiÞms
‘ and the exterior uðeÞms

‘ harmonic eigenfunctions of degree ‘

(‘ = 0,1,2, . . .) and of order m (m = 0,1,2, . . . ,‘) in terms of the associated Legendre functions [10] Pm
‘ of the first and Qm

‘ of

the second kind (see also appendix) via the formulae

uðiÞms
‘ ¼ Pm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ and uðeÞms

‘ ¼ Qm
‘ ðsÞP

m
‘ ðfÞfmsðuÞ; ð25Þ

respectively, which both are regular on the axis of symmetry, while the angular dependence is given by

fmsðuÞ ¼
cosmu; s ¼ e

sinmu; s ¼ o

�
) fms0 ðuÞ ¼ �m sinmu; s ¼ e

m cosmu; s ¼ o

�
for every u 2 ½0;2pÞ; ð26Þ

with s denoting the even (e) or the odd (o) part of the eigenfunctions. Then, every harmonic function u in prolate spheroidal

geometry is written as follows:

Du ¼ 0 ) u ¼
X1

‘¼0

X‘

m¼0

X

s¼e;o

AðiÞms
‘ uðiÞms

‘ þ AðeÞms
‘ uðeÞms

‘

h i
; ð27Þ

where AðiÞms
‘ and AðeÞms

‘ are constant coefficients. In addition, for the region of observation and of interest here for the boundary

conditions, which is for r < r0, we utilize the eigenexpansion

1

R
� 1

jr� r0j
¼
X1

‘¼0

X‘

m¼0

X

s¼e;o

qms
‘ Pm

‘ sð ÞPm
‘ ðfÞfmsðuÞ

	 

; ð28Þ

where at r0 = (s0,f0,u0) we get

qms
‘ � qms

‘ ðr0Þ ¼
ð2‘þ 1Þ

c
ð‘�mÞ!
ð‘þmÞ!

� �2
ð�1ÞmemQm

‘ ðs0ÞP
m
‘ ðf0Þfmsðu0Þ; ð29Þ

while em = 1 form = 0 and em = 2 formP 1. In what follows, in order to solve the boundary value problems (14)–(17), we use

many useful recurrence relations for the Legendre and the trigonometric functions, as well as certain identities concerning

the differential operators, which can be found in the appendix.

Concluding the needed information, the corresponding results for the oblate spheroidal geometry are obtained through

the simple transformation [11]

s! ik and c ! �i�c; ð30Þ

where 0 6 k < +1 and �c > 0 are the new characteristic variables. The asymptotic case of the needle can be reached by a pro-

late spheroid where 0 < a3 = a2 � a1 < +1, while in the case where 0 < a3 � a2 = a1 < +1 the oblate spheroid takes the shape

of a circular disk.

The spheroidal geometry degenerates to the spherical one [11] in the limit, as the semifocal distance c tends to zero,

c? 0+. For the corresponding analytical reduction, the limiting process involves an appropriate combination of c with the

coordinate variables such as r � krk ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ f2 � 1

p
for s > 1 and jfj 6 1 as well as the following limits:

lim
c!0þ

cs ¼ r and lim
c!0þ

1

2c
ln
sþ 1

s� 1
¼ 1

r
: ð31Þ
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That way we recover the radial component r (as well as 1/r) of the spherical coordinate system

r ¼
X3

i¼1

xix̂i ¼ rfx̂1 þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosux̂2 þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
sinux̂3; 0 < r < þ1; �1 6 f 6 1; u 2 ½0;2pÞ ð32Þ

and it is obvious that the spherical normal unit vector on the surface of the corresponding spherical buried obstacle is

lim
c!0þ

ŝ ¼ r̂ ¼ r

r
: ð33Þ

In order to obtain the corresponding mathematical form for the sphere-case, we need the definitions (A.11)–(A.17) of the

associated Legendre functions of the first and of the second kind, which leads to

lim
c!0þ

c‘Pm
‘ ðsÞ ¼ p‘

‘!

ð‘�mÞ! r
‘ and lim

c!0þ
c�ð‘þ1ÞQm

‘ ðsÞ ¼ q‘ð�1Þm ð‘þmÞ!
‘!

r�ð‘þ1Þ ð34Þ

with the aim of the reduction formulas (31), whereas

p‘ ¼
ð2‘Þ!
2‘ð‘!Þ2

and q‘ ¼
1

2‘

X½‘=2�

j¼0

ð�1Þjð2‘� 2jÞ!
j!ð‘� jÞ!ð‘� 2jÞ!ð2‘� 2jþ 1Þ ; where ð2‘þ 1Þp‘q‘ ¼ 1: ð35Þ

Finally, introducing a certain scaling for the constant coefficients appearing into the expansion (27), according to which cðiÞms
‘

are multiplied by c‘ and cðeÞms
‘ are multiplied by c�(‘+1) for every ‘P 0, m 6 ‘ and s = e, o, we regain the corresponding expan-

sion in spherical harmonic eigenfunctions and we are able to recover the corresponding spherical electromagnetic fields.

4. Spheroidal low-frequency electromagnetic fields

Our purpose is to derive closed analytical expressions for the non-vanishing scattered magnetic fields Hs
0, H

s
2 and Hs

3, as

well as for the scattered electric field Es
2, since Hs

1 ¼ Es
0 ¼ Es

1 ¼ Es
3 ¼ 0. In order to achieve that, we must solve independently

the problems (14) and (16) to obtain Hs
0 and Hs

3, respectively and then proceed to the problem (15) to obtain Hs
2 and, thus, E

s
2,

which is much more complicated due to its coupling with (14). The proper boundary conditions for the total electromagnetic

fields (2) on the surface s = ss of the metallic object given by (17) fit the aforementioned boundary value problems and the

expressions (9)–(12) for the incident fields, as well as the unit dyadic representation (24), are properly used, in view of the

eigenexpansion (28), (29). The position of the magnetic dipole m at r = r0 is also taken into consideration utilizing Eq. (18),

while the harmonic potentials Us
0,U

s
2 and Us

3 follow the previous analysis based on relations (25)–(27). Under this aspect and

with respect to relation (20) (with Eqs. (19), (22), and (23)), we perform a number of long and tedious calculations in order to

obtain the electromagnetic fields, by making extensive use of Ref. [12] and of the appendix in the end of the article.

The particular steps for the extraction of the final forms of the magnetic and the electric fields described above at each

n = 0, 2, 3 (for n = 1 there does not exist any kind of fields, while for nP 4 any additional terms do not offer an approximation

of great importance) demand the action of the gradient differential operator r �rr on the solid harmonic eigenfunctions

(interior and exterior) as it is easily demonstrated by the boundary value problems (14)–(16). Hence, we apply relationship

(20) to the harmonic eigenfunctions (25), where by virtue of the recurrence expressions (A.20) and (A.21) for the correspond-

ing derivations at f and s respectively, we conclude to

ruðiÞ0e
0 ¼ 0 for ‘ ¼ m ¼ 0 and s ¼ e; ð36Þ

ruðiÞms
‘ ¼ cfmsðuÞ

ð2‘þ 1Þ
Pm
‘ ðfÞŝ

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ‘ð‘�mþ 1ÞPm
‘þ1ðsÞ � ð‘þ 1Þð‘þmÞPm

‘�1ðsÞ
	 


(

þ Pm
‘ ðsÞf̂

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ‘ð‘�mþ 1ÞPm
‘þ1ðfÞ � ð‘þ 1Þð‘þmÞPm

‘�1ðfÞ
	 


)

þ fms0 ðuÞ/̂
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p Pm
‘ ðsÞP

m
‘ ðfÞ for ‘P 1; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o; ð37Þ

as far as the gradient on the interior solid harmonics is concerned, while

ruðeÞ0e
0 ¼ � ŝ

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p for ‘ ¼ m ¼ 0 and s ¼ e; ð38Þ

ruðeÞms
‘ ¼ cfmsðuÞ

ð2‘þ 1Þ
Pm
‘ ðfÞŝ

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ‘ð‘�mþ 1ÞQm
‘þ1ðsÞ � ð‘þ 1Þð‘þmÞQm

‘�1ðsÞ
	 


(

þ Qm
‘ ðsÞf̂

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p ‘ð‘�mþ 1ÞPm
‘þ1ðfÞ � ð‘þ 1Þð‘þmÞPm

‘�1ðfÞ
	 


)

þ fms0 ðuÞ/̂
c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p Qm
‘ ðsÞP

m
‘ ðfÞ for ‘P 1; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o; ð39Þ
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as far as the gradient on the exterior solid harmonics is concerned, where r 2 VþðR3Þ � r0f g. It is obvious that expressions

(36)–(39) are also valid for r = r0, so as to be provided with the corresponding relationships of the rr0 acting on harmonics

defined at the location of the magnetic dipole. Nevertheless, since the region of observation and scattering is located outside

the metallic body, we are obliged to utilize the exterior harmonic eigenfunctions (25) for the potential problems, however

the gradient on interior harmonics will be used in our analysis via the incident fields (9)–(12) with the eigenexpansion (28)

and (29). Thus, we are now ready to proceed to the calculation of the scattered fields Hs
0, H

s
2, E

s
2 and Hs

3 (we remind that

Hs
1 ¼ Es

0 ¼ Es
1 ¼ Es

3 ¼ 0Þ and to recover the corresponding scattered fields for the spherical case (one assumes the model of

a spherical buried body), which can be found separately in [19]. We begin from the easiest case for n = 3, we continue to

the fields for n = 0 and we conclude with the most cumbersome case for n = 2.

4.1. The potential field problem at n = 3 and calculation of Hs
3 (Es

3 ¼ 0)

The most trivial calculations concern the scattered magnetic field Hs
3. This is due to the fact that the incident field (11) for

n = 3 is a constant vector, while here we have to solve the potential boundary value problem (16) with the Neumann bound-

ary condition (17) on S for n = 3, which for n̂ � ŝ is

Hs
3 ¼ rUs

3 with DUs
3 ¼ 0; where ŝ � ðHi

3 þHs
3Þ ¼ 0 on s ¼ ss: ð40Þ

Then, the exterior harmonic structure of the potential Us
3, with the aim of definitions (25)–(27), yields

Hs
3 ¼

X1

‘¼0

X‘

m¼0

X

s¼e;o

aðeÞms
‘ r Qm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ

	 

; r 2 VþðR3Þ � fr0g; ð41Þ

where aðeÞms
‘ for ‘ = 0, 1, 2, . . ., m = 0, 1, 2, . . . ,‘ and s = e,o stand for the constant coefficients that have to be determined. Thus,

in terms of the primary field (11), in view of Eq. (24) and taking the three projections of the magnetic dipole on the Cartesian

coordinate system, i.e.m ¼P3
j¼1mjx̂j, then boundary condition (40), Eqs. (38), (39) and relations (19), (40) leave us with the

boundary expression on s = ss

�2

3

1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2s � f2
q m1f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

q
þm2ss

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosuþm3ss

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
sinu

� �
� aðeÞ0e0

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

8
><
>:

þ
X1

‘¼1

X‘

m¼0

X

s¼e;o

aðeÞms
‘ fmsðuÞ

cð2‘þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p ‘ð‘�mþ 1ÞQm
‘þ1ðssÞ � ð‘þ 1Þð‘þmÞQm

‘�1ðssÞ
	 


Pm
‘ ðfÞ

9
>=
>;

¼ 0: ð42Þ

At this stage we are able to evaluate the unknown constant coefficients for Hs
3 after we proceed with the proper orthogonal-

ity arguments for the trigonometric functions (26) and those provided by (A.18) for the associated Legendre functions of the

first kind. By definition of the last ones (see Eqs. (A.11) and (A.13)), we can write P0(f) = 1, P1(f) = f, P1
1ðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
and di-

rectly arrive from (42) at

aðeÞms
‘ ¼ 0; for ‘ ¼ 0;2;3 . . . ; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o; ð43Þ

while for ‘ = 1, m = 0, 1 and s = e,o as we conclude with the three coefficients that do not vanish

aðeÞ0e1 ¼ cm1

4p
2

3Q 0
1ðssÞ

and aðeÞ1e1 ¼ cm2

4p
2ss

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p
Q10

1 ðssÞ
; aðeÞ1o

1 ¼ cm3

4p
2ss

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p
Q10

1 ðssÞ
; ð44Þ

where the primes denote s-derivation of the associated Legendre functions Q1 and Q1
1 of the second kind (see Ref. [10] and

appendix) at the surface s = ss. Consequently, the problem for n = 3 is solved and it remains to substitute the constant coef-

ficients (43) and (44) into the harmonic expression (41), which due to the fact that only three constants survive and after

some trivial manipulation based on relation (39) for ‘ = 1, assumes the following finite prolate spheroidal dyadic form

Hs
3 ¼ 2

3

m

4p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p @fðsÞ
@s

fþ @gðs;uÞ
@s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q� �
� ŝþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � f2
p �fðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
þ gðs;uÞf

� �
� f̂þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 1
p @gðs;uÞ

@u
� /̂

( )

ð45Þ

for every r 2 VþðR3Þ � r0f g, where ss = a1/c and the new functions f and g are expressed via the Cartesian basis x̂j, j = 1, 2, 3

fðsÞ ¼ x̂1
Q1ðsÞ
Q 0

1ðssÞ
and gðs;uÞ ¼ ðx̂2 cosuþ x̂3 sinuÞ ssffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2s � 1
p Q1

1ðsÞ
Q10

1 ðssÞ
: ð46Þ
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As we stated previously, the primes mean derivation with respect to the argument s of the associated Legendre functions of

the second kind at the surface of the spheroid s = ss, while let us remind that the scattered electric field vanishes, i.e. Es
3 ¼ 0.

We cross-check our results for the scattered field Hs
3 by following the limiting procedure as c? 0+ described earlier with-

in Eqs. (31)–(35), so as to recover the already known scattered field Hs
3;sphere for the corresponding sphere-case problem from

[19]. In order to avoid complicated calculations through the reduction process, we leave aside the expressions (45), (46) and

we use the initial form (41) with the coefficients (43) and (44). It is not the purpose of this paper to show analytically howwe

proceed with the reduction (we provided the proper tools (31)–(35)), since it contains straightforward calculations. Hence,

some trivial algebra and the analogous rsphere of the gradient operator in spherical coordinates [11,19] lead us to

lim
c!0þ

Hs
3 ¼ �ðm � x̂1Þ

4p
a3

3
rsphereðr�2P1ðfÞÞ ¼

m � x̂1ð Þ
4p

1

3

a
r

� �3
2fr̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
f̂

� �
� Hs

3;sphere; ð47Þ

where x̂1 is the main spherical projection-axis of the operated magnetic dipole m, (r,f) for rP 0 and jfj 6 1 are the spherical

coordinates (the azimuthal angle u 2 [0,2p) is absent here) and a is the radius of the specified buried spherical obstacle. The

scattered field (47) for n = 3 is identical to the already known one from Ref. [19], thus the prolate spheroidal relations (45)

and (46) are reduced in a suitable analytical manner.

At this point we must mention that the corresponding results for the oblate spheroidal geometry, as well as for the needle

and the disk, can be obtained with the aid of the transformation (30) and the use of the definitions described below (30),

respectively.

4.2. The potential field problem at n = 0 and calculation of Hs
0 ¼ (Es

0 ¼ 0)

A much more complicated analysis based on the previous steps has to be followed in order to obtain the scattered field in

the case where n = 0, that is the static term Hs
0, which is an immediate consequence of the complexity of the corresponding

incident field Hi
0, given by (9). This primary field admits the double action of the gradient operator (at the position r– r0) on

the quantity 1/R for R = jr � r0j. If we act in the same way as previously, we confront once more a potential boundary value

problem of the form (14) and we also apply the Neumann boundary condition (17) on S for n = 0, whereas for n̂ � ŝ it is sta-

ted by

Hs
0 ¼ rUs

0 with DUs
0 ¼ 0; where ŝ � ðHi

0 þHs
0Þ ¼ 0 on s ¼ ss: ð48Þ

Similarly, the exterior harmonic potential Us
0, with the aim of relations (25)–(27), enters into Eq. (48) to provide us with

Hs
0 ¼

X1

‘¼0

X‘

m¼0

X

s¼e;o

bðeÞms
‘ r Qm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ

	 

; r 2 VþðR3Þ � fr0g; ð49Þ

where bðeÞms
‘ for ‘ = 0, 1, 2, . . ., m = 0, 1, 2, . . . ,‘ and s = e,o denote the constant coefficients that have to be evaluated by the

appropriate boundary condition (48), which is the matching of the magnetic boundary condition at the surface s = ss of
the spheroid, i.e. cancellation of the normal derivative of the total potential ðŝ � ðHi

0 þHs
0Þ ¼ 0 on s = ss), where initially we

shall calculate the two summands separately. Then, in view of expressions (38) and (39), as well as of identity (A.21), we

come up with

ŝ �Hs
0



s¼ss ¼

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p �bðeÞ0e
0 þ

X1

‘¼1

X‘

m¼0

X

s¼e;o

bðeÞms
‘ ðs2s � 1ÞQm0

‘ ðssÞPm
‘ ðfÞfmsðuÞ

( )
; ð50Þ

where the prime indicates derivation with respect to the s-variable. Yet, the expression of the incident field does not appear

easily amenable to further processing and an alternative approach has been followed. We do not apply twice the operator

r �rr on 1/R, as indicated by Eq. (9), but we firstly evaluate the inner product ŝ �r with respect to relations (19) and

(20) to obtain

ŝ �Hi
0

�
s¼ss

¼ 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p ðs2 � 1Þ @

@s
rr

1

r� r0j j

� �
� m
4p

� �

s¼ss
; ð51Þ

since the dyadicr�r 1
R is symmetric, while the second relation of (13) helps us to avoid the double-derivation by changing

the argument of derivation of 1/R. Thus, Eq. (51) can be rewritten as

ŝ �Hi
0

�
s¼ss

¼ � 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p ðs2 � 1Þ @

@s
rr0

1

r� r0j j

� �
� m
4p

� �

s¼ss
; ð52Þ

which, upon introduction of eigenexpansion (28), becomes

ŝ �Hi
0

�
s¼ss

¼ � 1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p ðs2s � 1Þ
X1

‘¼0

X‘

m¼0

X

s¼e;o

ðrr0q
ms
‘ ðr0ÞÞPm0

‘ ðssÞPm
‘ ðfÞfmsðuÞ

h i
� m
4p

( )
; ð53Þ
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where qms
‘ � qms

‘ ðr0Þ is provided by relation (29), whose gradientrr0q
ms
‘ ðr0Þ is a known quantity which can be determined by

Eqs. (38) and (39) with the aid of (25) at r = r0, while the prime coincides once more with the derivative of Pm
‘ ðsÞ for s = ss.

Hence, we achieved to reduce the difficulty of this boundary condition (48) using this technique, where by combination of

(50) and (53), it suggests

�bðeÞ0e
0 þ

X1

‘¼1

X‘

m¼0

X

s¼e;o

ðs2s � 1Þ bðeÞms
‘ Qm0

‘ ðssÞ �
m

4p
� ðrr0q

ms
‘ ðr0ÞÞPm0

‘ ðssÞ
h i

Pm
‘ ðfÞfmsðuÞ

n o
¼ 0: ð54Þ

Orthogonality arguments of the eigenproducts Pm
‘ ðfÞfmsðuÞ for ‘P 0, 0 6m 6 ‘ and s = e,o results in

bðeÞms
‘ ¼ Pm0

‘ ðssÞ
Qm0

‘ ðssÞ
m

4p
�rr0q

ms
‘ ðr0Þ

� �
; for ‘ ¼ 0;1;2 . . . ; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o; ð55Þ

noticing that bðeÞ0e
0 ¼ 0. Eventually,we substitute the constant coefficients fromEq. (55) to the potential field (49), we introduce

Eq. (20) and we expand the quantity qms
‘ ðr0Þ by virtue of the relation (29), in order to obtain the prolate spheroidal expression

for Hs
0 in terms of the unit normal vectors ŝ, f̂ and /̂ given by (19), (22) and (23), i.e. the infinite series scattered field

Hs
0 ¼

X1

‘¼1

X‘

m¼0

X

s¼e;o

ð2‘þ 1Þ
c2

ð�1Þmem
ð‘�mÞ!
ð‘þmÞ!

� �2 Pm0

‘ ðssÞ
Qm0

‘ ðssÞ
m

4p
�rr0ðQ

m
‘ ðs0ÞP

m
‘ ðf0Þfmsðu0ÞÞ

h i

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
Qm0

‘ ðsÞPm
‘ ðfÞŝ�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Qm

‘ ðsÞP
m0

‘ ðfÞf̂
� �

fmsðuÞ þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p Qm
‘ ðsÞP

m
‘ ðfÞfms0 ðuÞ/̂

( )
;

r 2 VþðR3Þ � fr0g;
ð56Þ

where the primes denote derivation with respect to the argument, e0 = 1 and em = 2 for m– 0, while ss = a1/c and the mag-

netic dipole is assumed to be m ¼P3
j¼1mjx̂j. Obviously, the operator rr0 is formulated by (20) in the case of

r(s,f,u) = r0(s0,f0,u0), that is

rr0 ðQ
m
‘ ðs0ÞP

m
‘ ðf0Þfmsðu0ÞÞ ¼

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f20

q Qm
‘ ðs0ÞP

m
‘ ðf0Þfms0 ðu0Þ/̂0 þ

1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � f20

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � 1

q
Qm0

‘ ðs0ÞPm
‘ ðf0Þŝ0

�
8
><
>:

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f20

q
Qm

‘ ðs0ÞP
m0

‘ ðf0Þf̂0
�
fmsðu0Þ

9
>=
>;
; ð57Þ

all calculated at the position of the magnetic dipole r = r0.

The limiting process as c? 0+ is described via Eqs. (31)–(35) and if we wish to recover the already known scattered field

Hs
0;sphere for the corresponding sphere-case potential problem from [19], we are forced to follow the very same procedure de-

scribed in Section 4.1, since expressions (41) and (49) are identical. However, we can in effect bypass the analytical reduction

steps based on complicate, though straightforward application of formulae (31)–(35). Hence, some trivial algebra and the

analogous rsphere of the gradient operator in spherical coordinates [11,19], applied both at r and r0, provide us with

lim
c!0þ

Hs
0 ¼ �ðm � x̂1Þ

4p

X1

‘¼1

X‘

m¼0

‘ema2‘þ1

ð‘þ 1Þ
ð‘�mþ 1Þ!
ð‘þmÞ!

Pm
‘þ1ðf0Þ
r‘þ2
0

� 1

r‘þ2
r̂ð‘þ 1ÞPm

‘ ðfÞ cos mðu�u0Þ½ � þ f̂

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Pm0

‘ ðfÞ cos mðu�u0Þ½ � þ m/̂ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p Pm
‘ ðfÞ sin mðu�u0Þ½ �

( )

� Hs
0;sphere;

ð58Þ
where relations (A.26)–(A.29) from the appendix have been used, while the Cartesian vector x̂1 stands for the main direction

of a sphere where the magnetic dipole m is located, (r,f,u) for rP 0, jfj 6 1 and u 2 [0,2p) are the spherical coordinates. On

the other hand, r0, f0 and u0 correspond to r = r0 and a is the radius of the buried spherical body under identification. The

scattered field (58) for n = 0 matches exactly with the one obtained in Ref. [19], thus the prolate spheroidal relations (56)

and (57) are reduced properly.

Similarly, we point out that the corresponding results for an oblate spheroidal obstacle, as well as for the needle and the

disk case, can be recovered via the transformation (30) and the use of the definitions described there.

4.3. The potential field problem at n = 2 and calculation of Hs
2 and Es

2

Let us now concentrate upon the potential problem at n = 2, where a very difficult and cumbersome manipulation of the

boundary value problem (15) with (17) results into the dynamic scattered fields Hs
2 and Es

2. There exist two reasons that are

10



responsible for this difficulty. The first one is the coupling of the particular model with the zero-order field Hs
0 (static term),

while the second one refers to the extra electric field Es
2, which enters our problemwith the corresponding additional bound-

ary conditions. However, the importance of the Hs
2 (as well as Es

2Þ term is of major significance, since those fields provide

purely imaginary-valued field components in the conductive medium (see Section 4.4 in combination with Eq. (1)) and

therefore those are needed as they contribute to at least most of the imaginary part (quadrature) of the scattered field Hs.

On the other hand, the real part (in-phase) is being essentially made of the static Hs
0 contribution, as it is directly obvious

in Section 4.4. The mathematical problem that has to be solved is presented by the modeling (15) and (17), which in terms

of the normal unit vector ŝ provided by (19) is presented as

Hs
2 ¼ Us

2 þ
1

2
ðrUs

0Þ with DU
s
2 ¼ 0;DUs

0 ¼ 0; where ŝ � ðHi
2 þHs

2Þ ¼ 0 on s ¼ ss ð59Þ

and

Es
2 ¼ 1

rþ r�Hs
2 ¼ 1

rþ r�Us
2 þ

1

2
rUs

0 � r

� �
; where ŝ� ðEi

2 þ Es
2Þ ¼ 0 on s ¼ ss; ð60Þ

where the second equality for the scattered electric field in (60) comes from an immediate application of the identity (A.3),

while even though the divergence-free character of Es
2 is obvious, this is not the case for the scattered magnetic field Hs

2,

whose property

r �Hs
2 ¼ 0 ) r �Us

2 þ
3

2
Us

0 þ
1

2
ðr �rUs

0Þ ¼ 0; ð61Þ

which is a consequence of (A.2) acting onto (59) and ofr � r = 3, stands for the extra condition that must be satisfied in addi-

tion with the three (one scalar and two components of a vector) boundary conditions (59) and (60).

As shown in relation (59), the scattered magnetic field at order n = 2 is made of two sets of functions. As far as the first one

is concerned, which coincides with the particular solution of the form 1
2
ðrUs

0Þ, it is readily ensured from identity (A.9), as well

as from the harmonic character of the position vector r and from the harmonic potential Us
0, that

D
1

2
ðrUs

0Þ
� �

¼ rUs
0 � Hs

0; ð62Þ

since r� r ¼ eI, where the coupling with the n = 0 problem is demonstrated through Eq. (62) for the non-harmonic part of

the field Hs
2. Hence, in view of formulae (48) and (49) and in terms of the constant coefficients bðeÞms

‘ for ‘ = 0,1,2, . . .,

m = 0,1,2, . . . ,‘ and s = e,o, provided by (55), we identify the potential Us
0 as

Us
0 ¼

X1

‘¼0

X‘

m¼0

X

s¼e;o

Pm0

‘ ðssÞ
Qm0

‘ ðssÞ
m

4p
�rr0q

ms
‘ ðr0Þ

� �
Qm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ

( )
; r 2 VþðR3Þ � r0f g; ð63Þ

whereas

rr0q
ms
‘ ðr0Þ ¼

ð2‘þ 1Þ
c

ð‘�mÞ!
ð‘þmÞ!

� �2
ð�1Þmemrr0 ðQ

m
‘ ðs0ÞP

m
‘ ðf0Þfmsðu0ÞÞ; ‘P 0; m 6 ‘; s ¼ e; o ð64Þ

and the quantity rr0 ðQ
m
‘ ðs0ÞP

m
‘ ðf0Þfmsðu0ÞÞ is given by (57) evaluated at the position of the magnetic dipole r(s,f,u) = r0(s0, -

f0,u0), while we recall that e0 = 1 and em–0 = 2. Note that for ‘ =m = 0 there exists no field, however we retain this term with-

out affecting the nature of the Us
0 field for reasons of convenience and coherence in our forthcoming calculations. The

function fms defined both at u and u0 secures the azimuthal dependence via Eq. (26), while let us remind that all the infor-

mation on the associated Legendre functions of the first Pm
‘ and of the second Qm

‘ kind can be retrieved from the appendix.

The second set of functions of the dynamic field Hs
2 is constructed via the harmonic character of Us

2 for external domains,

which yields

U
s
2 ¼

X1

‘¼0

X‘

m¼0

X

s¼e;o

h
ðeÞms
‘ Qm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ

	 

; r 2 VþðR3Þ � r0f g; ð65Þ

where

h
ðeÞms
‘ ¼ cðeÞms

‘ x̂1 þ dðeÞms
‘ x̂2 þ eðeÞms

‘ x̂3 for ‘ ¼ 0;1;2; . . . ; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o; ð66Þ

denote the vector character of the unknown constant coefficients h
ðeÞms
‘ . Thus, according to the expansions (63) and (65) and

in terms of the spheroidal representation of the position vector

r ¼
X3

j¼1

xjx̂j ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
ŝ� f

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
f̂

� �
; 1 6 s < þ1; �1 6 f 6 1; ð67Þ
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the full solution (59) for the scattered magnetic field is expressed as

Hs
2 ¼

X1

‘¼0

X‘

m¼0

X

s¼e;o

h
ðeÞms
‘ þ r

Pm0

‘ ðssÞ
2Qm0

‘ ðssÞ
m

4p
�rr0q

ms
‘ ðr0Þ

� �" #
Qm

‘ ðsÞP
m
‘ ðfÞfmsðuÞ

( )
; ð68Þ

while the generated scattered electric field (60) assumes the form

Es
2 ¼ 1

rþ

X1

‘¼0

X‘

m¼0

X

s¼e;o

rðQm
‘ ðsÞP

m
‘ ðfÞfmsðuÞÞ � h

ðeÞms
‘ þ r

Pm0

‘ ðssÞ
2Qm0

‘ ðssÞ
m

4p
�rr0q

ms
‘ ðr0Þ

� �" #
ð69Þ

by straightforward application of the identities (A.3) and (A.5), where both the electromagnetic fields for n = 2 are defined at

the exterior domain VþðR3Þ � r0f g. In order to represent the fields (68) and (69) in spheroidal coordinates, we introduce the

spheroidal relation of h
ðeÞms
‘ , i.e.

h
ðeÞms
‘ ¼ cðeÞms

‘ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
þ dðeÞms

‘ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosuþ eðeÞms

‘ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
sinu

� �
ŝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � f2
p

þ �cðeÞms
‘ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
þ dðeÞms

‘ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
cosuþ eðeÞms

‘ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
sinu

� �
f̂ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � f2
p

þ �dðeÞms
‘ sinuþ eðeÞms

‘ cosu
� �

/̂

for ‘ ¼ 0;1;2; . . . ; m ¼ 0;1;2; . . . ; ‘ and s ¼ e; o ð70Þ

for 1 6 s < +1, �1 6 f 6 1 and 0 6 u < 2p, which is a consequence of relationships (19), (22) and (23) that are inserted in Eq.

(66). The three sets cðeÞms
‘ , dðeÞms

‘ and eðeÞms
‘ (‘ = 0,1,2, . . ., m = 0,1,2, . . . ,‘, s = e,o) of scalar coefficients introduced above have to

be constructed in accord with the primary (incident) field data (10) and (12), with the value of the particular solution 1
2
ðrUs

0Þ
and with the boundary conditions (59) and (60). We recall from the analytical point of view the additional imposition (61),

which is adequate, as a physical property of Hs
2, for the confirmation of our results beyond the difficult task of the reduction

to the spherical case for n = 2.

The procedure that is followed for the evaluation of those unknown sets of constant coefficients is considered below,

where only the main steps are being emphasized in view of the large amount of calculations that have to be performed. Con-

sequently, we have to enforce the three aforementioned scalar boundary conditions (59) and (60) to the total magnetic and

electric fields Ht
2 (10) with (68) and Et

2 (12) with (69) on the particular surface s = ss = a1/c, i.e. the s-component of

ŝ � ðHi
2 þHs

2Þ ¼ 0 defined as B.C.1 and the f, u-components of ŝ� ðEi
2 þ Es

2Þ ¼ 0 specified as B.C.2 and B.C.3, respectively. These

boundary conditions are sufficient enough to provide us with the unknown constant coefficients cðeÞms
‘ , dðeÞms

‘ and eðeÞms
‘ for

‘ = 0,1,2, . . ., m = 0,1,2, . . . ,‘ and s = e,o as far as the imposed condition of divergence-free scattered magnetic field (61) is en-

sured. As one can suppose, the field problem for n = 2 has an enormous additional difficulty and mathematical complexity,

thus we are forced to define certain analytical quantities frequently used into our forthcoming calculations. Hence, one step

before we apply the boundary conditions and in terms of the position of the magnetic dipole r0 = (x10,x20,x30) = (s0,f0,u0), we

introduce the Cms
‘ , Dms

‘ , Ems
‘ coefficients as

Cms
‘

Dms
‘

Ems
‘

8
><
>:

9
>=
>;

¼ 1

ð2‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2�1ss
2�1ss

8
><
>:

9
>=
>;

m

4p
�

x̂1

x̂2

x̂3

0
B@

1
CA

8
><
>:

9
>=
>;
qms

‘ ðr0ÞPm
‘ ðssÞ � Qm

‘ ðssÞ
cðeÞms
‘

dðeÞms
‘

eðeÞms
‘

8
>><
>>:

9
>>=
>>;

2
664

3
775 ð71Þ

and the Cms0

‘ , Dms0

‘ , Ems0

‘ coefficients as

Cms0

‘

Dms0

‘

Ems0

‘

8
>><
>>:

9
>>=
>>;

¼ 1

ð2‘þ 1Þ

ss
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2�1ðs2s � 1Þ
2�1ðs2s � 1Þ

8
><
>:

9
>=
>;

m

4p
�

x̂1

x̂2

x̂3

0
B@

1
CA

8
><
>:

9
>=
>;
qms

‘ ðr0ÞPm0

‘ ðssÞ � Qm0

‘ ðssÞ
cðeÞms
‘

dðeÞms
‘

eðeÞms
‘

8
>><
>>:

9
>>=
>>;

2
664

3
775; ð72Þ

which contain the coefficients under calculation. Moreover, we define the Bms
‘ , Bms0

‘ constants

Bms
‘

Bms0

‘

( )
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2ð2‘þ 1Þ

ssQm
‘ ðssÞ

Qm0
‘ ðssÞ

Pm0

‘ ðssÞ

Pm0

‘ ðssÞ

8
<
:

9
=
;

m

4p
�rr0q

ms
‘ ðr0Þ

� �
; ð73Þ

as well as the Mms
‘ and Mms

‘;j, j = 1, 2, 3 constants as

Mms
‘ ¼ m

4p
� r0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2c
qms

‘ ðr0ÞPm0

‘ ðssÞ ð74Þ

12



and

Mms
‘;1

Mms
‘;2

Mms
‘;3

8
><
>:

9
>=
>;

¼ qms
‘ ðr0Þ

2ð2‘þ 1Þ
m

4p
�

x̂1

x̂2

x̂3

0
B@

1
CA

8
><
>:

9
>=
>;

ss
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2�1ðs2s � 1Þ
2�1ðs2s � 1Þ

8
><
>:

9
>=
>;
Pm0

‘ ðssÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p

2�1ss
2�1ss

8
><
>:

9
>=
>;
Pm
‘ ðssÞ

2
664

3
775; ð75Þ

respectively. The definitions (71)–(75) are valid for every ‘ = 0,1,2, . . ., m = 0,1,2, . . . ,‘ and s = e,o and necessary in order to

simplify the appearing formulae during our analytical work in progress. In addition

m ¼
X3

j¼1

mjx̂j; while Pm0

‘ ðssÞ ¼
dPm

‘ ðsÞ
ds

Þs¼ss and Qm0

‘ ðssÞ ¼
dQm

‘ ðsÞ
ds

Þs¼ss ; ð76Þ

while recalling that em = 1 for m = 0 and em = 2 for mP 1 we bring back Eq. (29)

qms
‘ ðr0Þ ¼

ð2‘þ 1Þ
c

ð‘�mÞ!
ð‘þmÞ!

� �2
ð�1ÞmemQm

‘ ðs0ÞP
m
‘ ðf0Þfmsðu0Þ: ð77Þ

Continuing, at every three-dimensional position r ¼ ðs; f;uÞ 2 VþðR3Þ � fr0g, we apply the boundary conditions (59) and

(60) (suitably using expansion (28) with (77)) on the prolate spheroidal surface s = ss as we discussed earlier to obtain

X1

‘¼0

X‘

m¼0

X

s¼e;o

�
ðð2‘þ 1ÞBms

‘ �Mms
‘ ÞPm

‘ ðfÞfmsðuÞ þ ðMms
‘;1 � Cms

‘ Þðð2‘þ 1ÞfPm
‘ ðfÞÞfmsðuÞ

þ ð2‘þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Pm
‘ ðfÞ

� �
ðMms

‘;2 � Dms
‘ Þð2 cosufmsðuÞÞ þ ðMms

‘;3 � Ems
‘ Þð2 sinufmsðuÞÞ

h i�
¼ 0 ð78Þ

as far as the first boundary condition B.C.1 is concerned, while the application of relation (60) provides us with two by far

more complicated explicit expressions for the rest of the boundary conditions that have to be enforced. In terms of the deriv-

atives Pm0

‘ ðfÞ for f 2 [�1,1] those are

X1

‘¼0

X‘

m¼0

X

s¼e;o

Bms0

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1ÞfPm

‘ ðfÞÞ � Bms
‘ ðð2‘þ 1Þð1� f2ÞPm0

‘ ðfÞÞ
� �

fmsðuÞ
�

þ �Cms0

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Pm
‘ ðfÞÞ þ Cms

‘ fðð2‘þ 1Þð1� f2ÞPm0

‘ ðfÞÞ
� �

fmsðuÞ

þ Dms0

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1ÞfPm

‘ ðfÞÞ þ Dms
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1Þð1� f2ÞPm0

‘ ðfÞÞ
� �

2 cosufmsðuÞ

þ Ems0

‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1ÞfPm

‘ ðfÞÞ þ Ems
‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðð2‘þ 1Þð1� f2ÞPm0

‘ ðfÞÞ
� �

2 sinufmsðuÞ
�

¼ 0 ð79Þ

for the f-component, identified as (B.C.2) and

X1

‘¼0

X‘

m¼0

X

s¼e;o

�
�ð2‘þ 1ÞBms

‘ Pm
‘ ðfÞ þ Cms

‘ ðð2‘þ 1ÞfPm
‘ ðfÞÞ

	 

fms0 ðuÞ þ ð2‘þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
Pm
‘ ðfÞ

� �
Dms0

‘ 2 sinufmsðuÞ
h

þDms
‘ 2 cosufms0 ðuÞ � Ems0

‘ 2 cosufmsðuÞ þ Ems
‘ 2 sinufms0 ðuÞ

i�
¼ 0 ð80Þ

for the u-component, specified as (B.C.3), where the derivatives fms0(u) follow the definition (26). The boundary conditions

(78)–(80) carry the unknown constant coefficients, which must be determined. However, their form is not appropriate to

obey orthogonality rules neither in the f-dependence nor in the u-dependence. Nevertheless, by extensive and careful

use of the recurrence relations (A.19), (A.20), (A.22), (A.24) and (A.25) for the associated Legendre functions Pm
‘ ðfÞ for

f 2 [�1,1], as well as by application of the expressions (A.26)–(A.29) to the angular functions fms(u) for u 2 [0,2p), we man-

age to transform Eqs. (78)–(80) to a set of boundary relations of the form
P1

‘¼0

P‘
m¼0

P
s¼e;oðconst:ÞP

m
‘ ðfÞfmsðuÞ, which are

ready to admit orthogonality manipulation of the set of functions Pm
‘ ðfÞfmsðuÞ for every ‘ = 0,1,2, . . ., m = 0,1,2, . . . ,‘ and

s = e,o. Hence, in view of this statement, an appropriate rearrangement of the indexes of the constants and some very cum-

bersome and difficult elaboration lead us to the following three relations, which interconnect the coefficients to each other,

i.e. ð‘þmþ 1ÞCms
‘þ1 þ ð‘�mÞCms

‘�1 þ ðDm�1s
‘�1 � ð�1ÞjEm�1�s

‘�1 Þ � ðDm�1s
‘þ1 � ð�1ÞjEm�1�s

‘þ1 Þ þ ð‘þmþ 1Þð‘þmþ 2ÞðDmþ1s
‘þ1

þ ð�1ÞjEmþ1�s
‘þ1 Þ � ð‘�m� 1Þð‘�mÞðDmþ1s

‘�1 þ ð�1ÞjEmþ1�s
‘�1 Þ ¼ ðð2‘þ 1ÞBms

‘ �Mms
‘ Þ þ ð‘þmþ 1ÞMms

‘þ1;1

þ ð‘�mÞMms
‘�1;1 þ ðMm�1s

‘�1;2 � ð�1ÞjMm�1�s
‘�1;3Þ � ðMm�1s

‘þ1;2 � ð�1ÞjMm�1�s
‘þ1;3Þ þ ð‘þmþ 1Þð‘þmþ 2ÞðMmþ1s

‘þ1;2

þ ð�1ÞjMmþ1�s
‘þ1;3Þ � ð‘�m� 1Þð‘�mÞðMmþ1s

‘�1;2 þ ð�1ÞjMmþ1�s
‘�1;3Þ ð81Þ
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as a consequence of (B.C.1) (relationship (78)), while

ð‘þmþ 1Þð‘þmþ 2Þ
ð2‘þ 3Þ ðCms0

‘þ2 þ ð‘þ 3ÞCms
‘þ2Þ þ

ð‘�m� 1Þð‘�mÞ
ð2‘� 3Þ ðCms0

‘�2 � ð‘� 2ÞCms
‘�2Þ

þ ð2‘þ 1Þ
ð2‘� 1Þð2‘þ 3Þ ðð‘

2 � 3m2 þ ‘ÞCms
‘ � 2ð‘2 þm2 þ ‘� 1ÞCms0

‘ Þ

þ ð2‘þ 1Þð‘�mÞð‘þmþ 1Þ
ð2‘� 1Þð2‘þ 3Þ ð2mþ 1ÞðDmþ1s0

‘ þ ð�1ÞjEmþ1�s0

‘ Þ � ð2‘2 þ 2‘� 3m� 3ÞðDmþ1s
‘ þ ð�1ÞjEmþ1�s

‘ Þ
h i

þ ð2‘þ 1Þ
ð2‘� 1Þð2‘þ 3Þ ð2m� 1ÞðDm�1s0

‘ � ð�1ÞjEm�1�s0

‘ Þ þ ð2‘2 þ 2‘þ 3m� 3ÞðDm�1s
‘ � ð�1ÞjEm�1�s

‘ Þ
h i

� ð‘�m� 2Þð‘�m� 1Þð‘�mÞ
ð2‘� 1Þ ðDmþ1s0

‘�2 þ ð�1ÞjEmþ1�s0

‘�2 Þ � ð‘� 2ÞðDmþ1s
‘�2 þ ð�1ÞjEmþ1�s

‘�2 Þ
h i

þ ð‘�mÞ
ð2‘� 1Þ ðDm�1s0

‘�2 � ð�1ÞjEm�1�s0

‘�2 Þ � ð‘� 2ÞðDm�1s
‘�2 � ð�1ÞjEm�1�s

‘�2 Þ
h i

þ ð‘þmþ 1Þð‘þmþ 2Þð‘þmþ 3Þ
ð2‘þ 3Þ ðDmþ1s0

‘þ2 þ ð�1ÞjEmþ1�s0

‘þ2 Þ þ ð‘þ 3ÞðDmþ1s
‘þ2 þ ð�1ÞjEmþ1�s

‘þ2 Þ
h i

� ð‘þmþ 1Þ
ð2‘þ 3Þ ðDm�1s0

‘þ2 � ð�1ÞjEm�1�s0

‘þ2 Þ þ ð‘þ 3ÞðDm�1s
‘þ2 � ð�1ÞjEm�1�s

‘þ2 Þ
h i

¼ ð‘þmþ 1Þð‘þmþ 2Þð‘þmþ 3Þ
ð2‘þ 3Þð2‘þ 5Þ Bms0

‘þ3 þ
ð‘�m� 2Þð‘�m� 1Þð‘�mÞ

ð2‘� 3Þð2‘� 1Þ Bms0

‘�3

� �

� ð‘þmþ 1Þ ð‘þm� 1Þð‘�mþ 3Þ þ ð2m� 1Þ2
ð2‘� 1Þð2‘þ 5Þ Bms0

‘þ1 � ð‘þ 2ÞBms
‘þ1

" #

� ð‘�mÞ ð‘þm� 2Þð‘�mþ 2Þ þ ð2m� 1Þ2
ð2‘� 3Þð2‘þ 3Þ Bms0

‘�1 þ ð‘� 1ÞBms
‘�1

" #
ð82Þ

for (B.C.2) (relation (79)) and

mð�1Þjðð‘þmþ 1ÞCm�s
‘þ1 þ ð‘�mÞCm�s

‘�1Þ � ð‘þmþ 1Þð‘þmþ 2Þ ðEmþ1s0

‘þ1 � ð�1ÞjDmþ1�s0

‘þ1 Þ þ ðmþ 1ÞðEmþ1s
‘þ1 � ð�1ÞjDmþ1�s

‘þ1 Þ
h i

þ ð‘�m� 1Þð‘�mÞ ðEmþ1s0

‘�1 � ð�1ÞjDmþ1�s0

‘�1 Þ þ ðmþ 1ÞðEmþ1s
‘�1 � ð�1ÞjDmþ1�s

‘�1 Þ
h i

� ðEm�1s0

‘�1 þ ð�1ÞjDm�1�s0

‘�1 Þ � ðm� 1ÞðEm�1s
‘�1 þ ð�1ÞjDm�1�s

‘�1 Þ
h i

þ ðEm�1s0

‘þ1 þ ð�1ÞjDm�1�s0

‘þ1 Þ � ðm� 1ÞðEm�1s
‘þ1 þ ð�1ÞjDm�1�s

‘þ1 Þ
h i

¼ mð�1Þjð2‘þ 1ÞBm�s
‘ ð83Þ

as far as boundary condition (B.C.3) (Eq. (80)) is concerned. Boundary relations (81)–(83) hold true for ‘ = 0,1,2, . . .,m = 0,1,2,

. . . ,‘ and s = e,o (whenever a negative index appears, the relative constant is set to nil), while we operate on system of Eqs.

(81)–(83) by defining �s and j as follows:

s ¼ e ) �s ¼ o ) j ¼ 2 and s ¼ o ) �s ¼ e ) j ¼ 1 ð84Þ

for reasons of notational convenience. The complicated recurrence relations (81)–(83) contain the constant coefficients cðeÞms
‘ ,

dðeÞms
‘ and eðeÞms

‘ with different upper and lower indexes. Thus, writing separately (for s = e and for s = o) six even–odd equa-

tions of the form (81)–(83), substituting Eqs. (71)–(75) and gathering in pertinent fashion the constants, we are forced to

solve the non-homogeneous linear system of equations

eAm
‘ x

m
‘ ¼ b

m
‘ for ‘ ¼ 0;1;2; . . . and m ¼ 0;1;2; . . . ; ‘; ð85Þ

where the 6 � 50 matrix ~Am
‘ of the coefficients of the unknowns is stated by

eAm
‘ ¼

Ae
BC1;1 Ae

BC1;2 � � � Ae
BC1;49 Ae

BC1;50

Ae
BC2;1 Ae

BC2;2 � � � Ae
BC2;49 Ae

BC2;50

Ae
BC3;1 Ae

BC3;2 � � � Ae
BC3;49 Ae

BC3;50

Ao
BC1;1 Ao

BC1;2 � � � Ao
BC1;49 Ao

BC1;50

Ao
BC2;1 Ao

BC2;2 � � � Ao
BC2;49 Ao

BC2;50

Ao
BC3;1 Ao

BC3;2 � � � Ao
BC3;49 Ao

BC3;50

2
66666666664

3
77777777775

; ð86Þ
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while the 50 � 1 vector xm
‘ of the unknown coefficients that interests us, is assumed to be

xm‘ ¼
½cðeÞme

‘�2 � � � cðeÞme
‘þ2 cðeÞmo

‘�2 � � � cðeÞmo
‘þ2 dðeÞm�1e

‘�2 � � � dðeÞm�1e
‘þ2 dðeÞmþ1e

‘�2 � � � dðeÞmþ1e
‘þ2 dðeÞm�1o

‘�2 � � � dðeÞm�1o
‘þ2

dðeÞmþ1o
‘�2 � � � dðeÞmþ1o

‘þ2 eðeÞm�1e
‘�2 � � � eðeÞm�1e

‘þ2 eðeÞmþ1e
‘�2 � � � eðeÞmþ1e

‘þ2 eðeÞm�1o
‘�2 � � � eðeÞm�1o

‘þ2 eðeÞmþ1o
‘�2 � � � eðeÞmþ1o

‘þ2 �>
ð87Þ

and the 6 � 1 vector b
m
‘ of the known constants yields

b
m
‘ ¼ be

BC1 be
BC2 be

BC3 bo
BC1 bo

BC2 bo
BC3

	 
>
: ð88Þ

The elements of the matrices eAm
‘ and b

m
‘ are known complicated expressions resulting from (81)–(83). It is obvious that in

order to solve analytically the system (85)–(88), we are obliged to limit ourselves to some necessary simplifications so as to

obtain the solution of Hs
2 and Es

2 in a closed form. Consequently, in view of the assumptions that we have to make, we apply

the well-known ‘‘cut-off” method, usual in obtaining closed solutions. This method is based on the selective choice of certain

constant coefficients of different indexes so as to have to solve as many equations as the unknowns. Thus, if we choose to

keep six sets of coefficients, e.g. cðeÞms
‘�1 , dðeÞm�1s

‘�1 and eðeÞm�1s
‘�1 for ‘ = 0,1,2, . . .,m = 0,1,2, . . . ,‘ and s = e,o, then we solve a system of

six equations with six unknowns to obtain the solution in closed form. On the other hand, if we introduce the inverted matrix

of ~Am
‘ as eAm>

‘ , then there exist the following theorem, which provides us with the full unique solution of the system (85)–

(88). In details, if the aforementioned system has not a solution then the linear and non-homogeneous system

ðeAm>
‘

~Am
‘ Þxm‘ ¼ ~Am>

‘ bm
‘ for ‘ ¼ 0;1;2; . . . and m ¼ 0;1;2; . . . ; ‘ ð89Þ

has the unique solution

xm‘ ¼ ðeAm>
‘
eAm

‘ Þ
�1 eAm>

‘ bm
‘ for ‘ ¼ 0;1;2; . . . and m ¼ 0;1;2; . . . ; ‘; ð90Þ

whenever the homogeneous system

ðeAm>
‘
eAm

‘ Þxm‘ ¼ 0 for ‘ ¼ 0;1;2; . . . and m ¼ 0;1;2; . . . ; ‘ ð91Þ

assumes the zero-solution xm
‘ ¼ 0 for every ‘ = 0,1,2, . . . and m = 0,1,2, . . . ,‘. Finally, the scattered electromagnetic fields Hs

2

and Es
2 in prolate spheroidal geometry are given by collecting all previous results and substituting them into Eqs. (68) and

(69), with the aim of (67) and (70) to obtain the corresponding spheroidal expressions.

Now, we are left to satisfy the divergence-free relation (61), where straightforward calculations on the potentials (63),

(65) and combined use of the relations of the appendix, as well as utilization of Eqs. (20), (66) and (67), provides us with

the desirable result. In addition, the task of reducing our results to the spherical ones is not easy and it is not with the pur-

pose of the present work to enter into so many calculations, since the confirmation of the divergence-free scattered magnetic

field secures sufficiently enough our analytical results. However, one can follow the very same limiting procedure, as the

semifocal distance tends to zero, described via relationships (31)–(35) taking

lim
c!0þ

Hs
2 � Hs

2;sphere and lim
c!0þ

Es
2 � Es

2;sphere; ð92Þ

whereas the spherical scattered fields Hs
2;sphere and Es

2;sphere are given in [19] and it is not worth to write down these relations,

which assume very complicated closed forms.

4.4. The scattered electromagnetic fields Hs and Es for n = 0;2;3

Recapitulating, for the degree of interest here n = 0, 2, 3, where we obtain the most interesting parts of the electromag-

netic fields, the scattered magnetic field is expressed as

Hs ¼ Hs
0 þHs

2ðikÞ
2 þHs

3ðikÞ
3

h i
þ OððikÞ4Þ; r 2 VþðR3Þ � fr0g; ð93Þ

while the scattered electric field assumes the form

Es ¼ Es
2ðikÞ

2
h i

þ OððikÞ4Þ; r 2 VþðR3Þ � fr0g; ð94Þ

where the fields Hs
0, H

s
2, H

s
3 and Es

2 have being evaluated within Sections 4.1–4.3 in closed form. Here, we insert the wave-

number k from (1) into the relations (93) and (94), whereas some trivial analysis leads to

Hs ¼ Hs
0 þ ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
Hs

3

" #
þ ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
Hs

3 �Hs
2

" #
iþ OððikÞ4Þ ð95Þ

and

Es ¼ ½�ðxlþrþÞEs
2�iþ OððikÞ4Þ; ð96Þ

respectively for every r 2 VþðR3Þ � fr0g. We observe that the electric field is purely imaginary, while the magnetic field is a

complex number, indicating that the electromagnetic fields at n = 2 are adequate for the full solutions, since the contribution

of the Hs
3 is of minor significance.
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5. Analytical application of the method

In order to demonstrate the usefulness of our generalized analytical results we supplement the paper by an example of

application of our methodology. That way, one can realize that this work does belong to the applied mathematics area, but

also covers the corresponding engineering science field. In this sense, the start point is Ref. [20], which refers to electromag-

netic induction response to spheroidal anomalies. A significant part of this work is devoted to the response to a perfectly

conducting spheroidal body by considering separately the two cases of an axial and a transverse constant magnetic incident

field, produced by the corresponding magnetic dipole. Under those physical circumstances, in this paper [20], simple ana-

lytical solutions are obtained. However, these results are concerned with some special reduced cases of our general method.

Hence, in order to recover the results given in [20] from our general three-dimensional expressions, we shall follow the

straightforward analytical procedure of extracting the already simplified results from ours.

Under this aim, we consider the full incident magnetic field (7), where in order to be in accordance with the application

Ref. [20] and in view of the non-trivial terms (9)–(11), the constant part of (7), called as Hi
cst , takes the form

Hi
cst ¼ Hi

3ðikÞ
3 ¼ ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞHi

3 ¼ �2

3
ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞ m

4p
; ð97Þ

with the aim of Eqs. (1) and (11) (note that m � eI ¼ mÞ. Expression (97) stands for the constant analogous of the incident

magnetic field (7). Here, we must recall the three-dimensional representation of the magnetic dipole m ¼P3
j¼1mjx̂j. Con-

sequently, we observe that the constant magnetic incident field comes from our general magnetic incident field using the

n = 3 term from Eq. (11), which is also responsible for the corresponding magnetic scattered field. This field, indicated as

Hs
ðiÞ!cst , is derived from the general form (93) or (95), that is

Hs
ðiÞ!cst ¼ Hs

3ðikÞ
3 ¼ ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞHs

3; r 2 VþðR3Þ � fr0g; ð98Þ

whereas Hs
3 has been found in the general form provided by relationships (45) and (46). Thus, we are ready to take the two

explicit cases under consideration as in paper [20].

5.1. Calculation of the axial response to a perfectly conducting prolate or oblate spheroid

We firstly assume the case of the prolate spheroid as described previously in Section 4.1. Here, the constant incident mag-

netic field is directed along the x̂1 axis and aligned along the long axis of the prolate spheroid, i.e.,m ¼ m1x̂1 and relation (97)

is written as follows:

Hi;ax:
cst ¼ �2

3
ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞm1

4p
x̂1: ð99Þ

The particular direction of the magnetic dipole, in view of expressions (46), results in

m

4p
� fðsÞ ¼ m1

4p
Q1ðsÞ
Q 0

1ðssÞ
and

m

4p
� gðs;uÞ ¼ 0; r 2 VþðR3Þ � fr0g; ð100Þ

where substituting Eq. (100) to our general magnetic scattered field (98) and in terms of the Hs
3 field from (45), we obtain

Hs;ax:
ðiÞ!cst ¼

2

3
ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞm1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � f2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p Q 0
1ðsÞ

Q 0
1ðssÞ

fŝ� Q1ðsÞ
Q 0

1ðssÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
f̂

� �
; ð101Þ

for every r 2 VþðR3Þ � fr0g, where ss = a1/c. Expression (101) for the axial scattered field produced by an axial constant mag-

netic field, which assumes an axisymmetric form, is identical to the corresponding expression derived in Ref. [20, relation

B11, p. 2206], of course with the introduction of a different notation. Hence, their results can be taken from ours much more

general for the particular case of a constant axial incident magnetic field.

Finally, the corresponding results for the oblate spheroidal geometry are obtained by substitution of the transformation

(30) into Eq. (101), while the spherical limit is analysed extensively within our previous paragraphs.

5.2. Calculation of the transverse response to a perfectly conducting prolate or oblate spheroid

For once more we take the case of a prolate spheroidal obstacle described in Section 4.1. Here, the constant incident mag-

netic field is directed along the x̂2 axis in the coordinate system of the spheroid, i.e., m ¼ m2x̂2 and relation (97) reduces to

Hi;tr:
cst ¼ �2

3
ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞm2

4p
x̂2: ð102Þ
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Now, this particular direction of the magnetic dipole and in view again of expressions (46), leave the corresponding compo-

nents of the functions f(s) and g(s,u), that is

m

4p
� fðsÞ ¼ 0 and

m

4p
� gðs;uÞ ¼ m2

4p
ssffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p Q1
1ðsÞ

Q10

1 ðssÞ
cosu; r 2 VþðR3Þ � fr0g: ð103Þ

We now compute the corresponding scattered field by inserting Eq. (103) into the general magnetic scattered field (98),

whereas in terms of the Hs
3 field from (45), we conclude that

Hs;tr:
ðiÞ!cst ¼

2

3
ðxlþrþÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlþrþ

2

r
ð1þ iÞm2

4p

� ssffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2s � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � f2

p Q1
1ðsÞ

Q10

1 ðssÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
cosuŝþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � f2
p Q1

1ðsÞ
Q10

1 ðssÞ
f cosuf̂� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 1
p Q1

1ðsÞ
Q10

1 ðssÞ
sinu/̂

" #
; ð104Þ

where r 2 VþðR3Þ � fr0g and ss = a1/c. Relationship (104) for the transverse scattered field produced by a transverse constant

magnetic field, which assumes a non-axisymmetric form, is for once again identical to the corresponding expression derived

in Ref. [20, relation B20, p. 2207], with the introduction of the proper notation. Hence, their results can be taken from ours

much more general for the particular case of a constant transverse incident magnetic field.

Obviously, the corresponding results for an oblate spheroidal buried obstacle are obtained by substitution of the trans-

formation (30) into Eq. (101), while the spherical limit is analysed extensively within our previous paragraphs.

The application of our results to more simple forms, already evaluated by other authors [20], shows the generality of our

method. More specific, the kind of incident field that we use is the most general three-dimensional, thus non-axisymmetric,

type of fields, where all kind of incident fields are taken into account, constant or not constant, for an arbitrary direction and

location of the magnetic dipole. Our generalized method is unique and permits general manipulation of the low-frequency

equations.

6. Conclusions

The large amount of vector data, the electromagnetic and geometrical complexity of the Earth, the many configurations

of sources and receivers, the uncertainty resulting from datasets containing both the contribution of the primary field (ob-

served if the ore bodies were, hypothetically, taken out) and the contribution of the secondary field (resulting from the

interaction of that primary field with the ore bodies), explain the continuous interest of elaborating within the frame of

analytical and numerical methods of solving forward and inverse electromagnetic scattering problems. One is confronted

with a near-field problem, where planar skin depths are significantly larger than source-body or body-sensor distances and

only diffusion phenomena occur (conduction currents are predominant). As far as the spheroidal shape is concerned, it is

highly versatile and easily matches single obstacles of smooth surface and arbitrary proportions, while simplified shapes

provide a proper first model when probing ore bodies in the Earth. On the other hand, the assumption of perfectly conduct-

ing spheroidal bodies is primary realistic in view of the high conductivity of most mineral ores, their huge conductivity

ratio with their surrounding medium, and the low operation frequencies. Present investigations confirm that simple mod-

els as ours appear reliable when used to model the response of a general three-dimensional spheroid to a localized vector

source in a homogeneous conductive medium both for low-contrast cases and high-contrast cases. Our devised modeling

tools are based on a rigorous low-frequency analysis of the electromagnetic fields, where both their real and imaginary part

are of equivalent significance in the development of a reliable model, while the first three non-zero terms of the analytical

expansion of the magnetic fields and the corresponding first non-zero term of the one of the electric field are sufficient

enough for further numerical elaboration or implementation in view of a future inversion scheme. In view of this aspect,

mathematical and computational work is currently in progress in several directions, such as different and more compli-

cated geometries.
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Appendix

In the interest of making this work complete and independent we provide some useful material, which was used during

our calculations and can be found in [10].

We begin with the introduction of certain identities. Let u, v and f, g denote two scalar and two vector fields, respectively.

Then, if we define by ~S a dyadic, the basic identities used in this project concern the action of the gradient or the Laplace

operator on the following expressions:
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r� ðuf Þ ¼ uðr� f Þ þru� f ; ðA:1Þ
r � ðuf Þ ¼ ur � f þru � f ; ðA:2Þ
r� ðuf Þ ¼ ur� f þru� f ; ðA:3Þ
rðf � gÞ ¼ ðr� f Þ � g þ ðr� gÞ � f ; ðA:4Þ
rðuvÞ ¼ urv þ vru; ðA:5Þ
r� ðeS � f Þ ¼ ðr� eSÞ � f þ ðr� f Þ � ~S>; ðA:6Þ
r� ðf � gÞ ¼ ðr� f Þ � g þ f � ðr� gÞ½ �213; ðA:7Þ
r�r� f ¼ rr � f � Df ; ðA:8Þ
Dðuf Þ ¼ fDuþ uDf þ 2ru � ðr� f Þ; ðA:9Þ

whereas the symbol ‘‘�” denotes juxtaposition, eS> is the inverted dyadic and the symbol ()213 denotes left transposition for a

triadic.

The associated Legendre functions of the first Pm
‘ ðxÞ and of the second Qm

‘ ðxÞ kind [10] are linear independent solutions of

the associated Legendre differential equation

ð1� x2Þy00ðxÞ � 2xy0ðxÞ þ ‘ð‘þ 1Þ � m2

1� x2

� �
yðxÞ ¼ 0 ðA:10Þ

for every ‘ = 0,1,2, . . . and m = 0,1,2, . . . ,‘, which is valid for jxj < 1 and x > 1. These functions are defined as follows:

Pm
‘ ðxÞ ¼ ð1� x2Þm=2 dm

dxm
P‘ðxÞ; jxj < 1 ðA:11Þ

and

Pm
‘ ðxÞ ¼ ðx2 � 1Þm=2 dm

dxm
P‘ðxÞ; x > 1; ðA:12Þ

where the Legendre polynomials P‘(x) are furnished by the Rodrigues formula

P‘ðxÞ ¼
1

2‘‘!

d‘

dx‘
ðx2 � 1Þ‘; x 2 R ðA:13Þ

for every ‘ = 0,1,2, . . . and m = 0,1,2, . . . ,‘. Equivalent, for the same values of ‘ and m

Qm
‘ ðxÞ ¼ ð1� x2Þm=2 dm

dxm
Q ‘ðxÞ; jxj < 1 ðA:14Þ

and

Qm
‘ ðxÞ ¼ ðx2 � 1Þm=2 dm

dxm
Q ‘ðxÞ; x > 1; ðA:15Þ

and here the Legendre functions of the second kind appear in the form

Q ‘ðxÞ ¼ P‘ðxÞQ0ðxÞ �
X½‘=2�

j¼1

ð2‘� 4jþ 3Þ
ð2j� 1Þð‘� jþ 1Þ P‘�2jþ1ðxÞ; x 2 R; ðA:16Þ

with

Q0ðxÞ ¼
1

2
ln

1þ x
1� x

; jxj < 1 and Q0ðxÞ ¼
1

2
ln

xþ 1

x� 1
; x > 1: ðA:17Þ

The functions Pm
‘ ðxÞ, jxj < 1, ‘P 0, m 6 ‘ satisfy the orthogonality relation

ðPm
‘ ðxÞ; P

m
‘0 ðxÞÞ ¼

Z þ1

�1

Pm
‘ ðxÞP

m
‘0 ðxÞdx ¼ 2

2nþ 1

ð‘þmÞ!
ð‘�mÞ! d‘‘

0 ; ‘P 0; ‘0 P 0 ðA:18Þ

with d‘‘0 being the Kronecker delta and m = 0,1,2, . . . ,‘. This integral becomes singular for the set of functions Qm
‘ ðxÞ, jxj < 1,

‘P 0, m 6 ‘.

The associated Legendre functions of the first kind satisfy

ð2‘þ 1ÞxPm
‘ ðxÞ ¼ ð‘þmÞPm

‘�1ðxÞ þ ð‘�mþ 1ÞPm
‘þ1ðxÞ; x 2 R; ðA:19Þ

while

ð2‘þ 1Þð1� x2Þ d
dx

Pm
‘ ðxÞ ¼ ð‘þ 1Þð‘þmÞPm

‘�1ðxÞ � ‘ð‘�mþ 1ÞPm
‘þ1ðxÞ; jxj < 1 ðA:20Þ
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or

ð2‘þ 1Þðx2 � 1Þ d
dx

Pm
‘ ðxÞ ¼ ‘ð‘�mþ 1ÞPm

‘þ1ðxÞ � ð‘þ 1Þð‘þmÞPm
‘�1ðxÞ; x > 1 ðA:21Þ

and

ð2‘þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Pm
‘ ðxÞ ¼ ð‘þmÞð‘þm� 1ÞPm�1

‘�1 ðxÞ � ð‘�mþ 1Þð‘�mþ 2ÞPm�1
‘þ1 ðxÞ ¼ Pmþ1

‘þ1 ðxÞ � Pmþ1
‘�1 ðxÞ; jxj < 1:

ðA:22Þ

or

ð2‘þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Pm
‘ ðxÞ ¼ ð‘�mþ 1Þð‘�mþ 2ÞPm�1

‘þ1 ðxÞ � ð‘þmÞð‘þm� 1ÞPm�1
‘�1 ðxÞ ¼ Pmþ1

‘þ1 ðxÞ � Pmþ1
‘�1 ðxÞ; x > 1:

ðA:23Þ

These recurrence relations hold true also for the associated Legendre functions of the second kind Qm
‘ ðxÞ, x 2 R for the values

of ‘ = 0,1,2, . . . and m = 0,1,2, . . .,‘. By definition

Pl
jðxÞ � 0; l > j and Pl

jðxÞ ¼ Q l
jðxÞ � 0; l < 0; j < 0; x 2 R; ðA:24Þ

Pm
‘ ð	1Þ ¼ 0; m–0 and P‘ð1Þ ¼ 1; P‘ð�1Þ ¼ ð�1Þ‘; ‘P 0: ðA:25Þ

Finally, as far as the trigonometric functions sinmu and cosmu are concerned for 0 6m 6 ‘ and ‘ = 0,1,2, . . ., the following

expressions hold true

sinu sinmu ¼ 1

2
cosðm� 1Þu� cosðmþ 1Þu½ �; ðA:26Þ

cosu cosmu ¼ 1

2
cosðm� 1Þuþ cosðmþ 1Þu½ �; ðA:27Þ

cosu sinmu ¼ 1

2
sinðmþ 1Þuþ sinðm� 1Þu½ �; ðA:28Þ

sinu cosmu ¼ 1

2
sinðmþ 1Þu� sinðm� 1Þu½ �; ðA:29Þ

where u 2 [0,2p) stands for the azimuthal angle, taken for the first-period of the trigonometric circle, while the orthogonal-

ity here is obvious for the functions sinmu and cosmu.
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