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CONVERGENCE AND PERFORMANCES OF THE PEELING
WAVELET DENOISING ALGORITHM

CÉLINE LACAUX, AURÉLIE MULLER, RADU RANTA, AND SAMY TINDEL

Abstract. This note is devoted to an analysis of the so-called peeling algorithm in
wavelet denoising. Assuming that the wavelet coefficients of the signal can be modeled
by generalized Gaussian random variables, we compute a critical thresholding constant
for the algorithm, which depends on the shape parameter of the generalized Gaussian
distribution. We also quantify the optimal number of steps which have to be performed,
and analyze the convergence of the algorithm. Several versions of the obtained algo-
rithm were implemented and tested against classical wavelet denoising procedures on
benchmark and simulated biological signals.

1. Introduction

Among the wide range of applications of wavelet theory which have emerged during
the last 20 years, the processing of noisy signals is certainly one of the most important
one. Especially attractive to the community has been the thresholding algorithm, and the
great amount of efforts in this direction is well represented by the enthusiastic discussion
in [7], by the application oriented presentation [1] or by the sharp uniform central limit
theorems in [8]. This fundamental algorithm can be summarized in the following way:
recall that the wavelet decomposition of a function z ∈ L2(R) is usually written as:

z(t) =

2j0−1∑

k=0

αj0kφj0k(t) +

∞∑

j=j0

2j−1∑

k=0

βjkψjk(t), (1)

where the coefficients α, β are obtained by projection in L2(R):

αj0k = 〈φj0k, z〉L2(R) , and βjk = 〈ψjk, z〉L2(R) .

The functions ψ and φ are respectively called mother and father wavelets, and enjoy
some suitable scaling and algebraic properties (see e.g. [5, 12] for a complete account on
wavelet decompositions). In this context, the thresholding algorithm assumes that, if z
can be decomposed into z = x + n, where x is the useful signal and n its noisy part,
then the wavelet coefficients corresponding to n will typically be very small. A reasonable
estimation for the signal x is thus:

x̂(t) =
2j0−1∑

k=0

αj0k 1{|αj0k |≥τ} φj0k(t) +
J∑

j=j0

2j−1∑

k=0

βjk 1{|βjk|≥τ} ψjk(t),
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where τ is a suitable threshold (which may also depend on the resolution j and, in practice,
is often null for the coefficients αj0 of the father wavelet / scale function) and where J
corresponds to the maximal resolution one is allowed to consider. It is then proved in the
aforementioned references [1, 7] that this kind of estimator satisfies some nice properties
concerning the asymptotic behavior of the approximation error, in terms of the total
number of wavelet coefficients (which is denoted by N in the sequel).

One of the drawbacks of the thresholding algorithm is that it may also spoil the origi-
nal signal x. The critical issue is the value of the threshold(s) τ : too low it is inefficient,
too high it distorts the information from x. In order to improve the performances of
wavelet-based denoising algorithms by adapting them to the processed signals, the fol-
lowing iterative method, called peeling algorithm, has been introduced and shown to be
particularly useful for biomedical applications in [4, 9]. It still relies on an a priori de-
composition of the observed signal z into z = x + n, where x is the signal itself, and n
is a noise. The algorithm intends then to separate x from n iteratively, and the kth step
of the procedure produces an estimated signal xk, and a noise nk, initialized for k = 0
as n0 = z. These functions will always be assimilated with the vector of their wavelet
coefficients. Then the (k + 1)th step is as follows:

(1) Compute σ2
k = ‖nk‖2

N
, where we recall that N denotes the total number of wavelet

coefficients involved in the analysis.
(2) Set a thresholding level Tk+1 as Tk+1 = h(σk), where h is usually linear, which

means that Tk+1 = F σk for a certain coefficient F .
(3) Compute ∆xk+1 as:

∆xk+1(q) = nk(q) 1{|nk(q)|≥Tk+1},

for all the coefficients q of the wavelet decomposition. The vectors xk+1, nk+1 are
then defined as xk+1 = xk + ∆xk+1, and nk+1 = nk − ∆xk+1.

(4) Loop this procedure until a stop criterion of the form ‖nk‖2 − ‖nk+1‖2 ≤ ε is
reached, for a certain positive constant ε. Notice that one can choose ε = 0.

This iterative procedure tends to retrieve a higher quantity of (approximate) signal x from
the noisy input z, correcting some of the failures of the original thresholding algorithm in
some special situations.

On the basis of these promising experimental results, the peeling algorithm has been
further investigated in [14, 15], and it has been first observed in those references that the
peeling problem could be handled through a fixed point algorithm. This possibility stems
basically from the fact that the sequence {Tk; k ≥ 0} is decreasing (as ‖nk‖2 ≥ ‖nk+1‖2),
which means that the previous algorithm can be reduced to the following:

(1) Set T0 = +∞ and Tk+1 = fN (Tk), where fN is of the form:

fN(x) = F

[∑
q≤N z

2(q) 1{|z(q)|<x}

N

]1/2

. (2)

For a suitable constant F , this defines a converging decreasing sequence (Tk), such
that limk→∞ Tk = Tf > 0.

(2) Stop the loop when Tk+1 = Tf , and then set

x̂(q) = z(q) 1{|z(q)|≥Tf}. (3)
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It is shown in [14] that this algorithm is almost surely convergent, and a further analysis
of the coefficient F is performed in [15].

However, in spite of the efforts made in the aforementioned references [14, 15], a prob-
abilistic analysis of the algorithm is still missing. The current article proposes to make
a step in this direction, and we proceed now to describe the results we have obtained.
First of all, let us say a few words about the model we have chosen for our signal z. This
signal is of course characterized by the family of its wavelets coefficients, which will be
denoted from now on by {z(q); q ≤ N}, and it is usual in signal processing to model these
coefficients by independent generalized Gaussian variables (see e.g. [13]), all defined on
a common complete probability space (Ω,F , P ). To be more specific, we will assume the
following:

Hypothesis 1.1. The wavelet coefficients {z(q); q ≤ N} of our signal z form an i.i.d
family of generalized Gaussian variables, whose common density (pσ,u(x))x∈R is given by

pσ,u(x) = αe−|βx|u, with β =
1

σ

(
Γ(3/u)

Γ(1/u)

)1/2

, α =
βu

2Γ(1/u)
, (4)

where Γ stands for the usual Gamma function Γ(ξ) =
∫∞
0
e−xxξ−1dx. Notice that the

coefficient σ > 0 above is the standard deviation of each random variable z(q), and that
u > 0 represents the shape parameter of the probability law (u = 2 for the Gaussian, u = 1
for the Laplace pdf).

It should be stressed at this point that this model does not take into account the
possible decomposition of z into a signal plus a noise, since we model directly the wavelet
coefficients of z. It is however suitable for the main example we have in mind, namely a
situation where the family {z(q); q ≤ N} is sparse. Indeed, when u < 2 in expression (4),
the distribution of the z(q)’s becomes heavy tailed, which means that one expects a few
large coefficients and many small ones. This is the situation we are mostly interested
in, but our analysis below is valid for any coefficient u > 0 once our basic model is
assumed to be realistic. It should also be stressed that in the end, our algorithm is also of
thresholding type, as may be seen from equation (3). This means in particular that it is
certainly suitable to retrieve signal from a noisy input, on the same basis as the original
thresholding algorithm.

With these preliminary considerations in mind, here are the two main results which
will be presented in this paper:

(1) We have seen that the sequence of thresholds {Tk; k ≥ 0} involved in the peeling
algorithm converges almost surely. However, it is easily checked that it can converge
either to a strictly positive quantity Tf , either to 0. This latter limit is not suitable for
our purposes, since it means that no noise will be extracted from our signal. One of the
main questions raised by the peeling algorithm is thus to find an appropriate constant F
in (2) such that (i) The algorithm yields a convergence to a non trivial threshold Tf > 0.
(ii) F is small enough, so that a sufficient part of the original signal is retrieved.

The previous attempts in this direction were simply (see [9]) to take F = 3σ with
experimental arguments; after the analysis performed in [15], this quantity was reduced
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to F = Fm, a quantity which is defined by

Fm =

√
3Γ(1/u)

u
(ue)1/u. (5)

However, the latter bound has been obtained thanks to some rough estimates, and we
have thus decided here to go one step further into this direction. Indeed, our first task will
be to determine precisely, and on a mathematical ground, a constant Fc = Fc(u, σ) such
that: if F > Fc, the algorithm yields a convergence, with high probability, to a strictly
positive constant Tf = Tf(ω), whose fluctuations around a typical non-random value x∗

will be determined. In particular, we will see that our constant Fc is always lower than
Fm. Whenever F < Fc, we also show that Tk converges to 0 with high probability (see
Proposition 3.5).

(2) In the regime F > Fc, we determine that the optimal number of steps for the peeling
algorithm is of order log(N), where we recall that N is the total number of wavelet
coefficients involved in the analysis. After this optimal number of steps, Theorem 3.3
quantifies also sharply the oscillations of Tf with respect to its theoretical value mf .

It is important to show that our theoretical results can really be applied to real data.
We have thus decided first to compare the performances of our algorithm with other
wavelet denoising procedures, on some classical benchmark signals proposed in [6]. It will
be seen that our algorithm performs well with respect to other methods, independently
of the value of the shape parameter in (4) and of the form of the benchmark signal.
Interestingly enough, this assertion is true even if Hypothesis 1.1 is not always satisfied
by the benchmark signals under consideration.

A second step in our practical part of the study is the following: since the peeling
algorithm has been introduced first in a medical context, we give an illustration of its
performances on ECG type signals. More specifically, we shall consider a simulated ECG
signal, and observe the denoising effect of our algorithm on a perturbed version of those
electrocardiograms. It will be observed again that the algorithm under analysis is a good
compromise between denoising and preservation of the original signal.

Let us mention some open problems that have been left for a subsequent publication:
first, let us recall that the so-called block thresholding has improved the behavior of
the original thresholding algorithm in a certain number of situations (see e.g. [2] for a
nice overview). It would be interesting to analyze the effect of this procedure in our
peeling context. In relation to this problem, one should also care about some reasonable
dependence structure among wavelet coefficients, beyond the independent case treated in
this article. Finally, we have assumed in this paper that the parameters of the distribution
pσ,u were known, which is typically not true in real world applications. One should thus
be able to quantify the effect of parameter estimation on the whole denoising process.

Here is how our article is structured: we show how to compute optimal constants for
the peeling algorithm at Section 2. Then the probabilistic analysis of the algorithm is
leaded at Section 3. Finally, some numerical experiment on simulated and pseudo-real
data are performed at Section 4.
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2. Critical constants for the peeling algorithm

This section is devoted to the computation of an optimal constant F in equation (2),
ensuring a convergence of the threshold Tk to a non trivial Tf , and still allowing to retrieve
a maximal amount of approximate signal from our noisy input z.

Let us start this procedure by changing slightly the setting of the peeling algorithm.
Indeed, it will be essential for our convergence theorems at Section 3, to be able to express
the fixed point algorithm in terms of empirical processes. To this purpose, we resort to a
simple change of variables by setting:

Uk = T 2
k , and Y (q) = z(q)2.

Note that U0 = +∞. It is then readily checked that the fixed point algorithm of Section 1
is equivalent to the following:

(1) Uk+1 = gN(Uk), where gN is of the form:

gN(x) =
F 2

N

∑

q≤N

Y (q) 1{Y (q)<x}.

For a suitable constant F , this defines a converging decreasing sequence (Uk), such
that limk→∞ Uk = Uf .

(2) Stop the loop when Uk+1 = Uf , and then set

x̂(q) = z(q) 1{|z(q)|≥
√

Uf}.

The fixed point Uf = Uf (ω) is then solution of the equation gN(x) = x. We wish to find
the critical (minimal) F which ensures Uf to be strictly positive.

A preliminary step towards this aim is to consider a natural deterministic problem
related to the equation gN(x) = x. Indeed, for a fixed value of x ∈ R+, the law of large
numbers asserts that the random variable gN(x) converges almost surely to the quantity

gσ,u(x) = F 2

∫ x

0

wp̂σ,u(w) dw,

where p̂σ,u is the common density of the random variables Y (q) = z(q)2, given explicitly
under Hypothesis 1.1 by

p̂σ,u(w) =
pσ,u(

√
w)√

w
1{w>0} = α

1√
w
e−(β

√
w)u

1{w>0}. (6)

This result is only a simple convergence result, and not an almost sure uniform convergence
of gN towards gσ,u. However, as will be shown in the Section 3, the fixed point Uf is close
in some sense to a fixed point of gσ,u. Therefore, our study of the fixed points of gN can
be reduced to the study of gσ,u. Our aim is now to give some sharp conditions on the
coefficient F ensuring that the equation gσ,u(x) = x has at least one solution x > 0.

According to (6) we obtain, for x > 0:

gσ,u(x) = F 2α

∫ x

0

√
we−(β

√
w)u

dw,
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with β = 1
σ

(
Γ(3/u)
Γ(1/u)

)1/2

and α = βu
2Γ(1/u)

. Furthermore, a simple change of variables argu-

ment yields:

gσ,u(x) = F 2σ2Γinc((β
√
x)u, 3/u) (7)

where Γinc(x, a) = 1
Γ(a)

∫ x

0
e−tta−1dt is the incomplete Gamma function.

Observe that the trivial change of variables w = σ2y in the integral above yields the
expression:

gσ,u(x) = σ2g1,u(x/σ
2) (8)

Hence, solving gσ,u(x) = x is equivalent to solve g1,u(v) = v, for v = x/σ2. We shall
consider our equation in this reduced form, since σ has only a scale role in the fixed point
problem of gσ,u and can be omitted in the study. In the sequel, we thus solve the problem
in its reduced form: g1,u(x) = x. Furthermore, for notational sake, we simply denote g1,u

by g.

The resolution of the equation g(x) = x boils down to the joint study of g and of
a function d defined by d(x) = g(x) − x. These studies are a matter of elementary
considerations, and it is easily deduced that g has the following form, as a function from
R+ to R+:

(1) g is increasing and limx→∞ g(x) = F 2 , g∞.

(2) g is convex on [0, β−2u−2/u] and concave on [β−2u−2/u,+∞), where β =
(

Γ(3/u)
Γ(1/u)

)1/2

.

More precisely, it is easy to prove the existence of a critical value Fc such that:

(1) If F < Fc, the only fixed point of g is 0.
(2) If F = Fc, g has exactly two fixed points (0 and x∗c > β−2u−2/u).
(3) If F > Fc, g has exactly three fixed points (0, l1, and x∗), such that 0 < l1 < x∗

and β−2u−2/u < x∗.

These facts are well illustrated by Figure 1 (for σ = 1).

2 4 6 8 10
x

2

4

6

8

10
y

super-critical : F=1.15 Fc

critical : F=Fc

sub-critical : F=0.9 Fc

Figure 1: Curves corresponding to g, in the critical case (F = Fc), and in supercritical
and subcritical cases (F = 1.15Fc and F = 0.9Fc), for σ = 1 and u = 2.

Let us turn now to the computation of the critical coefficient Fc and the critical fixed
point x∗c . In fact, once the study of our function d is performed, it is also easy to show
that F ≡ Fc and r ≡ x∗c are solutions of the system:

g′(r) = 1, and g(r) = r,
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u 0.1 0.5 1 2 3 4
Fc 4.0215 2.7830 2.42537 2.16169 2.0472 1.98181

Table 1: Critical constant Fc for different shapes u.

where we recall that the coefficient F enters into the definition of g. This system is
equivalent, in the generalized Gaussian case, to:

{
F 2α

√
re−(β

√
r)u − 1 = 0

F 2Γinc((β
√
r)u, 3/u) − r = 0,

where it should be reminded that Γ and Γinc designate respectively Gamma and incomplete
Gamma functions. The latter system can be solved with the Mathematica software, and
the solutions for different u are illustrated in Figure 2. Some typical values of Fc in terms

1 2 3 4
u

2.0

2.5

3.0

3.5

4.0

F

Fc

Fm

Figure 2: The values of critical Fc and Fm for σ = 1 and u ∈ [0, 4].

of u are also given in Table 1. In particular, it can be observed that Fc is smaller than
the bound Fm proposed by [15], which has been recalled at equation (5).

3. Probabilistic analysis of the algorithm

3.1. Comparison Noisy dynamics/ Deterministic dynamics. The exact dynamics
governing the sequence {Un; n ≥ 0} is of the form Un+1 = gN(Un). In order to compare
this with the deterministic dynamics, let us recast this relation into:

Un+1 = g(Un) + εn,N , where εn,N = gN(Un) − g(Un).

Notice that the errors εn,N are far from being independent, which means that the relation
above does not define a Markov chain. However, a fairly simple expression is available
for Un:

Proposition 3.1. For n ≥ 0, set g◦n for the nth iteration of g. Then, for n ≥ 0, we have:

Un = g◦n(U0) +Rn, with Rn =
n−1∑

p=0

εp,N

n−p∏

q=2

g′(Cp+q),

where the random variable Cj (j ≥ 2) is a certain real number within the interval

[g◦(j−1)(U0); Uj−1]. In the definition of Rn, we have also used the conventions
∏1

q=2 aq = 1
and R0 = 0.
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Proof. It is easily seen inductively that R0 = 0, R1 = ε0,N and for n ≥ 1

Rn+1 = g′(Cn+1)Rn + εn,N .

Hence, by a backward induction, we obtain:

Rn =
n∑

j=1

εn−j,N

j−2∏

l=0

g′(Cn−l) =
n−1∑

p=0

εp,N

n−p∏

q=2

g′(Cp+q),

which ends the proof. �

A useful property of the errors εp,N is that they concentrate exponentially fast (in terms
of N) around 0. This can be quantified in the following:

Lemma 3.2. Assume that the wavelets coefficients are distributed according to a general-
ized Gaussian random variable with parameter u > 0, whose density is given by (4), and
recall that F is defined by equation (2). Then for every 0 < γ < (β/F )u, there exists a
finite positive constant K > 0 such that for all N ≥ 1 and for all λ ∈ [0, γNu/4],

E

[
eλ|εp,N |u/2

]
≤ K. (9)

Moreover, for all N ≥ 1, for all p ≥ 0 and l > 0,

P (|εp,N | ≥ l) ≤ Ke−γlu/2Nu/4

. (10)

Proof. Recall that εp,N is defined by:

εp,N = gN(Up) − g(Up) =
F 2

N

(
N∑

j=1

Y (j) 1{Y (j)<Up} − g(Up)

)
,

for a collection {Y (i); i ≤ N} of i.i.d random variables, where Y (i) can be written as
Y (i) = z(i)2 and z(i) is a generalized Gaussian random variable with parameter u > 0,
whose density is given by (4). For a fixed positive x, the fluctuations gN(x) − g(x) are
easily controlled thanks to the classical central limit theorem or large deviations principle.
The difficulty in our case arises from the fact that Up is itself a random variable, which
rules out the possibility of applying those classical results. However, uniform central limit
theorems and deviation inequalities have been thoroughly studied, and our result will be
obtained by translating our problem in terms of empirical processes like in [16].

In order to express εp,N in terms of empirical processes, consider x ∈ [0,∞] and define
hx : R+ → R+ by hx(u) = F 2u 1{u<x}. Next, for f : R+ → R, set

GNf =
1

N1/2

N∑

i=1

[f(Y (i)) − E[f(Y (i))]] ,

and with these notations in mind, notice that

GNhx =
1

N1/2

N∑

i=1

[hx(Y (i)) − g(x)] .

It is now easily seen that
εp,N = N−1/2

GNhUp,

and the key to our result will be to get good control on GNhx in terms of N , uniformly
in x ∈ [0,∞].
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Let us consider the class of functions G = {hx; x ∈ [0,+∞]}. According to the termi-
nology of [16], the uniform central limit theorems are obtained when G is a Donsker class
of functions. A typical example of Donsker setting is provided by some VC classes (see
[16, Section 2.6.2]). The VC classes can be briefly described as sets of functions whose
subgraphs can only shatter a finite collection of points, with a certain maximal cardinality
M , in R

2. For instance, the collections of indicators

F =
{
1[0,x); x ∈ [0,+∞]

}
.

is a VC class. Thanks to [16, Lemma 2.6.18], our class G is also of VC type, since it can
be written as

G = F · h = {fh; f ∈ F} ,
where h : R+ → R+ is defined by h(u) = h∞(u) = F 2u.

In order to state our concentration result, we still need to introduce the envelope G of
G, which is a function G : R+ → R defined as

G(u) = sup{f(u); f ∈ G}, u ∈ R+.

Note that in our particular example of application, we simply have G = h. Let us also
introduce the following notation:

N [GN ;G, λ,m] ≡ E
∗ [eλ supf∈G |GNf |m] , and N [h;λ,m] ≡ E

[
eλ|h(Y )|m] ,

where E∗ is the outer expectation (defined in [16] for measurability issues), Y is the square
of a generalized Gaussian random variable with parameter u > 0, λ > 0 and m ≥ 0.

Then, since G is a VC class with measurable envelope, G is a Donsker class and [16,
Theorem 2.14.5 p. 244] leads to:

N [GN ;G, λ,m] ≤ cN [h;λ,m],

with c a finite positive constant which does not depend on N, λ and G. Furthermore, since
Y is the square of a generalized Gaussian random variable with parameter u, it is readily
checked that

N [h;λ,m] <∞
for λ small enough (namely λ < (β/F )u) and m = u/2. Recalling now that εp,N =
N−1/2GNhUp, we have obtained:

E

[
eλ|N1/2εp,N |u/2

]
≤ N [GN ;G, λ, u/2] ≤ cN [h; γ, u/2] = K <∞

for λ ≤ γ < (β/F )u, which easily implies our claim (9).

Let l > 0. Then,

P (|εp,N | ≥ l) = P

(
eγNu/4|εp,N |u/2 ≥ eγlu/2Nu/4

)
.

The concentration property (10) is thus an easy consequence of (9) Markov’s inequality.
�
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3.2. Supercritical case: F > Fc. In this section, we assume that F > Fc. Then it is
easily deduced from the variations of d given above that g1,u ≡ g has the following form,
as a function from R+ to R+ (see Figure 1):

(1) g is increasing and limx→∞ g(x) = F 2 , g∞.
(2) g has exactly two fixed points apart from 0, called ℓ1 and x∗, with ℓ1 < x∗.
(3) There exists ℓ2 ∈ (ℓ1, x

∗) such that g′(l2) ≤ 1 and g is concave on [ℓ2,∞).
(4) Let δ > 0 such that l1 < l2 + δ < x∗. Then, g(l2 + δ) > l2 + δ.

With these properties in mind, we can study the convergence of the deterministic
sequence {xn; n ≥ 0} defined recursively by x0 = ∞ and xn+1 = g(xn). Indeed, it is easily
checked that xn is decreasing to x∗ as n → ∞. Furthermore, let Mx∗ = sup{g′(x); x ≥
x∗} = g′(x∗), and recall that Mx∗ < 1. Then

|xn+1 − x∗| = xn+1 − x∗ = g(xn) − g(x∗) ≤Mx∗ (xn − x∗) ,

which means that a geometric convergence occurs: inductively, it is readily checked that,
for n ≥ 1:

|xn − x∗| ≤ Mn−1
x∗ (g∞ − x∗) , (11)

where we recall that g∞ = limx→∞ g(x).

We are now ready to prove the convergence result for the peeling algorithm, in terms
of a concentration result for the noisy dynamics around the deterministic one:

Theorem 3.3. Assume F > Fc (where these quantities are defined at Section 2) and
that the wavelets coefficients are distributed according to a generalized Gaussian random
variable with parameter u > 0, whose density is given by (4). Let α < 1/2, C = −1

ln(Mx∗)
+η

with η > 0. For any N ∈ N∗, let n = n(N) = [Cα lnN ] + 1. Then, there exist A, γ̃ two
positive finite constants such that for all N ∈ N∗, and any F lying in an arbitrary compact
interval [0, F0], we have

P
(
|Un − x∗| ≥ N−α

)
≤ Ae−eγN(1/2−α)u/2

.

Remark 3.4. This theorem induces three kind of information about the convergence of
our algorithm: (i) For a fixed number of wavelet coefficients N , the optimal number
of iterations n for the peeling algorithm is of order ln(N). (ii) Once n is fixed in this
optimal way, Un is close to the fixed point x∗ of g, the magnitude of |Un−x∗| being of order
N−(1/2−ε) for any ε > 0. (iii) The deviations of Un from x∗ are controlled exponentially
in probability.

Proof of Theorem 3.3. Observe first that, owing to Proposition 3.1 and inequality (11),
we have

|Un − x∗| = |gn (U0) − x∗ − Rn| ≤Mn−1
x∗ (g∞ − x∗) + |Rn| ,

for any n ≥ 1. Let then δ̂ > 0 and let us fix n ≥ 1 such that

Mn−1
x∗ (g∞ − x∗) ≤ δ̂

2
, (12)

i.e. n ≥ 1 + ln(δ̂/(2g∞ − 2x∗))/ ln(Mx∗). Then it is readily checked that:

P

(
|Un − x∗| ≥ δ̂

)
≤ P

(
|Rn| ≥

δ̂

2

)
, (13)



PEELING WAVELET DENOISING ALGORITHM 11

and we will now bound the probability in the right hand side of this inequality. To this
purpose, let us introduce a little more notation: for n, k ≥ 1, let Ωk be the set defined by

Ωk = {ω ∈ Ω; inf {j ≥ 0 /Uj ≤ ℓ2 + δ} = k} ,
and set also Ω̃n =

⋃n
k=1 Ωk. Then we can decompose (13) into:

P

(
|Un − x∗| ≥ δ̂

)
≤ P

(
Ω̃n

)
+ P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
. (14)

We will now treat these two terms separately:

Step 1: Upper bound for P(Ω̃n). Let us fix k ≥ 1 and first study P (Ωk). To this purpose,
observe first that

Ωk ⊂ {Uk ≤ l2 + δ < Uk−1} .
Recall that ℓ2 + δ satisfies g(ℓ2 + δ) > ℓ2 + δ. Hence, since Uk = gN(Uk−1) and invoking
the fact that g is an increasing function, the following relation holds true on Ωk:

gN(Uk−1) ≤ l2 + δ and g(l2 + δ) < g(Uk−1).

We have thus proved that

Ωk ⊂ {gN(Uk−1) − g(Uk−1) ≤ l2 + δ − g(l2 + δ)} ,
where l2 + δ − g(l2 + δ) ≡ −L < 0. Since gN(Uk−1) − g(Uk−1) = εk−1,N by definition, we
end up with:

P(Ωk) ≤ P (|εk−1,N | ≥ L) .

A direct application of Lemma 3.2 yields now the existence of γ,K ∈ (0,∞) such that
for all k ≥ 1 and all N ≥ 1

P(Ωk) ≤ Ke−γLu/2Nu/4

.

Hence

P(Ω̃n) ≤
n∑

k=1

P(Ωk) ≤ Kne−γLu/2Nu/4

. (15)

Step 2: Upper bound for P(Ω̃c
n ∩ {|Rn| ≥ δ̂

2
}). We have constructed the set Ω̃n so that,

for all 2 ≤ k ≤ n + 1, the random variables Ck introduced at Proposition 3.1 satisfy
0 ≤ g′ (Ck) ≤ ρ < 1 on Ω̃c

n. Thus

P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
≤ P

(
n−1∑

p=0

|εp,N | ρn−1−p ≥ δ̂

2

)
≤ P

(
n−1∑

p=0

|εp,N | νp ≥Mn,δ̂

)
, (16)

where we have set

νp =
ρn−1−p(1 − ρ)

1 − ρn
, and Mn,δ̂ =

δ̂(1 − ρ)

2(1 − ρn)
,

so that {νp; 0 ≤ p ≤ n− 1} is a probability measure on {0, . . . , n− 1}.
We introduce now a convex non-decreasing function au which only depends on the shape

parameter u, and which behaves like exp(xu/2) at infinity. Specifically, if u ≥ 2, we simply
define au on R+ by

au(x) = exu/2

.
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When u < 2, setting su = (2/u− 1)2/u, then x 7→ exp(xu/2) is concave on [0, su] and
convex on [su,+∞). Then, we modify a little the definition of au in order to obtain a
convex function: we set

au(x) = exu/2

1[su,∞) + es
u/2
u 1[0,su) (17)

where su = (2/u− 1)2/u.

Since au is a non-decreasing function, for all λ > 0, relation (16) implies that:

P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
≤ P

(
au

(
λ

n−1∑

p=0

|εp,N | νp

)
≥ au

(
λMn,δ̂

) )

≤ 1

au

(
λMn,δ̂

)E

[
au

(
λ

n−1∑

p=0

|εp,N |νp

)]
,

where we have invoked Markov’s inequality for the second step. Hence, applying Jensen’s
inequality, for all λ > 0, we obtain:

P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
≤ 1

au

(
λMn,δ̂

)
n−1∑

p=0

νpE (au (λ|εp,N |)) .

Furthermore, owing to the definition (17) of au,

E (au (λ|εp,N |)) ≤ E

(
eλu/2|εp,N |u/2

)
+ e2/u−1

for all p ≥ 0, all N ≥ 1 and all λ > 0.

Then, applying Lemma 3.2, we have:

P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
≤ K + e2/u−1

au

(
λMn,δ̂

)

for any λ ≤ γ2/uN1/2. Since Mn,δ̂ ≥ (1− ρ)δ̂/2 and since au is a non-decreasing function,

by choosing λ = γ2/uN1/2, we obtain:

P

(
Ω̃c

n ∩
{
|Rn| ≥

δ̂

2

})
≤ K1

au

(
γ1δ̂N1/2

)

with γ1 = (1 − ρ)γ2/u/2 > 0 and K1 = K + e2/u−1.

Choose now δ̂ = N−α, with α < 1/2. Observe that for N large enough, γ1δ̂N
1/2 > su

and thus au

(
γ1δ̂N

1/2
)

= eγ
u/2
1 N(1/2−α)u/2

. Hence, there exists a finite positive constant K ′

such that for all N ≥ 1 and p ≥ 0,

P

(
Ω̃c

n ∩
{
|Rn| ≥

1

2Nα

})
≤ K ′e−eγN(1/2−α)u/2

(18)

with γ̃ = γ
u/2
1 .
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Step 3: Conclusion. Putting together (13), (14), (15) and (18), choosing δ̂ = N−α with
α < 1/2, we end up with:

P
(
|Un − x∗| ≥ N−α

)
≤ nKe−γLu/2Nu/4

+K ′e−eγ N(1/2−α)u/2

,

for any n such that n ≥ 1−α ln(N/(2g∞−2x∗))/ ln(Mx∗). Choose now n = [Cα lnN ]+1.
If the following condition holds true:

lim
N→+∞

(n + α ln(N/(2g∞ − 2x∗))/ ln(Mx∗)) = +∞

i.e. if C > −1/ ln (Mx∗), then for N0 large enough,

n = [Cα lnN ] + 1 ≥ 1 − α ln(N/(2g∞ − 2x∗))/ ln(Mx∗).

We thus choose C = −1/ ln (Mx∗)+η with η > 0. Hence, for N ≥ N0 and n = [Cα lnN ]+
1, we have:

P
(
|Un − x∗| ≥ N−α

)
≤ nKe−γLu/2Nu/4

+K ′e−eγ N(1/2−α)u/2

.

Therefore, since (1/2 − α)u/2 ≤ u/4 we have proved that there exists a positive finite
constant A such that for all N ∈ N

∗,

P
(
|Un − x∗| ≥ N−α

)
≤ Ae−eγN(1/2−α)u/2

,

which is the desired result. �

3.3. Subcritical case: F < Fc. We show in this section that the choice of the constant
Fc for the peeling algorithm is optimal in the following sense: if one chooses a parameter
F < Fc, then the threshold sequence converges to 0 with high probability. Specifically,
we get the following result:

Proposition 3.5. Consider F < Fc and assume that our signal z satisfies Hypothesis 1.1.
Let N ∈ N∗, α < 1/2, and n ≥ QN , where

QN = max

(
1 +

α ln(N) + ln(2g∞)

ln 1/κ
; 1

)
.

Then, there exist A, γ̃ two positive finite constants (independent of N and n) such that

P
(
Un ≥ N−α

)
≤ Ae−eγN(1/2−α)u/2

. (19)

Proof. In the subcritical case, the following property holds true for the function g ≡ g1,u

defined by (8): there exists a constant κ ∈ (0, 1) such that, for all x ≥ 0, 0 ≤ g(x) ≤ κx.
We thus have the following relation for the noisy dynamics of Un:

Un = g(Un−1) + εn−1,N ≤ κUn−1 + εn−1,N .

Iterating this inequality, we have:

Un ≤ κn−1U1 +

n−1∑

j=1

κj−1εn−j,N . (20)

According to the fact that U1 = g∞ + ε0,N , we end up with:

Un ≤ κn−1g∞ +

n∑

j=1

κj−1εn−j,N , (21)

a relation which is valid for any n ≥ 1.
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Consider now α < 1/2 and assume that n ≥ QN , which ensures κn−1g∞ ≤ N−α/2.
Then invoking (21), we have

P
(
Un ≥ N−α

)
≤ P

(
n∑

j=1

κj−1εn−j,N ≥ N−α

2

)
.

We are thus back to the setting of the proof of Theorem 3.3, Step 2. Along the same lines
as in this proof (changing just the name of the constants there), the reader can now easily
check inequality (19).

�

Remark 3.6. We have chosen here to investigate the case of a probability P(Un ≥ N−α)
and of a logarithmic number of iterations n, in order to be coherent with Theorem 3.3.
However, in the simpler subcritical setting, one could have considered a number of itera-
tions of order N , opening the door to a possible almost sure convergence of Un to 0. We
have not entered into those details for sake of conciseness. In the same spirit, we have not
tried to solve the (much harder) problem of the behavior of our algorithm in the critical
case F = Fc.

4. Denoising algorithms implementation

The previous sections aimed at giving an optimal criterion of convergence for the peel-
ing algorithm, in terms of the constant Fc, and under the assumption of a signal whose
wavelets coefficients are distributed according to a generalized Gaussian random distri-
bution. We now wish to test the algorithm we have produced in terms of denoising
performances, on an empirical basis.

To this purpose, we shall compare various peeling algorithms (detailed at Section 4.1
below) and two traditional wavelet denoising procedures, namely Universal and SURE
shrinkage (see [6]). The comparison will be held in two types of situations: first we
consider the benchmark simulated signals proposed in the classical reference [6]. Then we
move to a medical oriented application, by observing the denoising effect of our algorithms
on ECG type signals. In both situations, we shall see that peeling algorithms enable a
good balance between smoothing and preserving the original shape of the noisy signal.

4.1. Thresholds. Theorem 3.3 and Remark 3.4 induce us to implement the three follow-
ing procedures:

(1) The first one exploits only implicitly the peeling approach and can be reduced to a
hard (or soft) thresholding in (3), where Tf is obtained in the three following ways: recall
that, according to the value of the shape parameter u, we have computed a critical value
Fc above which the peeling algorithm converges to a non trivial limit (see e.g. Table 1)
with high probability. We thus consider two supercritical cases, namely F05 = 1.05Fc and
F15 = 1.15Fc. In these two cases, we compute τ ∗ = (x∗)1/2, where x∗ is the fixed point of
the function gσ,u defined by (7), as analyzed at Section 2. We call respectively Tc,05 and
Tc,15 these two values, which serve as a threshold in (3). A third value of the threshold
is also considered by taking F = Fm in (7), where Fm is defined by (5), and computing
then the corresponding threshold Tcm. This allows a comparison with the older reference
[15]. Let us stress the fact that for this first approach, no iterations are performed.
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Figure 3: Final thresholds for the 7 peeling algorithms for u = [0.1 . . . 4]. For comparison,
universal threshold Tu = 4.29 for N = 10000.

(2) The second procedure computes the final thresholds using a fixed number of iterations
in the peeling algorithm. According to one of the conclusions in Theorem 3.3, we take this
number of iterations equal to logN . As in the first approach, 3 thresholds were obtained,
for F = 1.05Fc, F = 1.15Fc and F = Fm. Theoretically, this implementation yields some
thresholds T̂c,05, T̂c,15 and T̂cm which should be close to their respective exact counterparts
Tc,05, Tc,15 and Tcm (within the conditions stated by Theorem 3.3).

(3) The third implementation is the one proposed in [15] (fixed point descent with a
sufficient convergence condition F = Fm). The resulting threshold will be noted as Tm.

The relations between the 7 thresholds mentioned above are represented at Figure 3
for different shape parameters u. The lines represent the theoretical values Tc,05, Tc,15 and

Tcm, while the shaded zones represent a superposition of the estimated T̂c,05, T̂c,15 and

T̂c,m obtained over 100 simulations (generalized gaussian vectors of N = 10000 points,
zero mean and unitary standard deviation). The averaged values of these estimations are
very close to the theoretical values, which confirms that peeling algorithms implemented
with logN iterations converge to some thresholds very close to the theoretical values
(see Theorem 3.3 again). Moreover, the fixed point implementation taken from [15] gives

almost the same final threshold as T̂cm (the respective curves and shaded zone are merely
superposed) and therefore is not figured here.

4.2. Denoising: simulated signals. To assess the denoising performances of the peel-
ing algorithm, we used the 4 classical benchmarks proposed in [6], namely Blocks, Bumps,
HeaviSine, Doppler (figure 4), with 4 lengths (N = [2048, 4096, 8192, 16384]). The
signals were normalized to have unitary power. Twenty types of zero-mean random
noise n were generated according to generalized gaussian with shape parameters un =
[0.2, 0.4, 0.6 . . .3.8, 4]. The noise was then scaled to obtain signal to noise ratios SNR =
[1, 2, 3], i.e., [ 0, 3, 4.8] decibels. Furthermore, the wavelet decomposition of the signal
has been performed based on the sym 8 wavelet, and the noise was added to the wavelet
coefficients of the noise-free signals to obtain the “measured signal” wavelet coefficients
z. Each of these noisy signals were simulated 500 times to obtain averaged results. A
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(a) (b)

(c) (d)

Figure 4: Benchmark signals: (a) Blocks, (b) Bumps, (c) HeaviSine,, (d) Doppler

statistical hypothesis testing showed that the wavelet coefficient of the signals under con-
sideration could be assimilated to generalized Gaussian random variables, with the notable
exception of the Bumps process.

The shape parameter uz of the total signal z, which determines the thresholds of the
peeling algorithms, was estimated using the absolute empirical moments m1 and m2,
(with mr = E[|z|r], see [11, 10]), while the mean µz and the standard deviation σz were
estimated using classical empirical estimators.

Denoising was performed by soft thresholding (instead of the hard one described by
equation (3)) using the 7 algorithms described at Section 4.1, as well as the classical Uni-
versal and SURE thresholding [6], for comparison. More elaborated wavelet denoising
methods (either based on redundant wavelet transforms or on block approaches [3, 17, 18])
were not considered for the comparison, since their nature is different: all the algorithms
tested in this paper are term-by-term approaches for orthogonal wavelet transform thresh-
olding.

The denoised estimate x̂ of the original signal was reconstructed by inverse wavelet
transform. We recall here that Universal thresholding aims to completely eliminate
Gaussian noise (and therefore it risks to distort the signal), while SURE thresholding
estimates the original signal my minimizing the Stein Unbiased Risk Estimator of the
mean squared error between x and x̂, assuming also a Gaussian noise (thus basically
aiming a minimum distortion of the signal, as the peeling algorithms). The denoising
performance was evaluated using the signal to noise ratio after denoising:

SNRden = 10 log10

∑N
i=1(x(i))

2

∑N
i=1(x(i) − x̂(i))2

As expected, the results obtained for T̂c,05, T̂c,15, T̂cm and Tm are very similar to those
obtained by Tc,05, Tc,15, Tcm, so only results of the three latter are detailed here 1. Synthetic

1These three algorithms are of course much faster than their iterative versions.
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Figure 5: Signal to noise ratios after denoising as a function of the noise distribution. The
presented graphs are obtained for noisy signals with SNR=3dB.

comparisons are presented at Figure 5 for different shape parameters un of the noise
distribution, for all the 4 benchmark signals and for N = 4096 (to ease the presentation,
detailed tables of results are omitted, since the values can be read with enough precision
on the graphs). An illustrative example on the Block signal is also provided at Figure 6.

Several interesting observations can be made. Obviously, the noise type (shape pa-
rameter un) greatly influences the performances of all algorithms: they are lower for
heavy-tailed noise distributions, which indicates that this type of noise is more difficultly
eliminated from measured signals. As one could expect from its development, SURE
thresholding is the best choice for Gaussian noise, for which it also attains its best per-
formance (this algorithm continue to have a very good performance for higher un). The
Universal thresholding attains its best performance for Laplacian noise u = 1 and it has
very good results for super-Gaussian noises (un < 2). On the contrary, its performances
are the worst for high values of the shape parameter of the noise (except for the very low
frequency signal HeaviSine, for which all algorithms are similar for sub-Gaussian noises
un > 2).

The peeling algorithms need a more detailed analysis: they are better than SURE for
super-Gaussian noises, with the theoretical Tc,15 (or, equivalently, theoretical Tcm and

iterative T̂cm, T̂c,15 and Tm) being slightly better than Tc,0.5. The order between the two
peeling algorithms tend to change for sub-Gaussian noise (un > 2), especially for impulsive
Blocks and Bumps. To conclude, it seems that for super-Gaussian noises, Universal
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Denoising example for Blocks: (a) original signal, (b) noisy signal
(Laplacian noise un=1, SNR=10dB), (c) Universal (SNRden=17.7dB), (d) SURE
(SNRden=16.9dB), (e) Tc,05 (SNRden=18.6dB), (f) Tcm (SNRden=18.5dB)

thresholding and peeling algorithms are the best choice, while for sub-Gaussian noises the
results are almost similar, with SURE thresholding having the best performances when
the noise is almost Gaussian. In all, the peeling algorithm with Tc,15 works in a satisfying
way, independently of the shape parameter u.

4.3. Denoising: real and pseudo-real signals. A last point should be reminded: peel-
ing algorithms were mainly developed for biomedical applications [4, 9]. Therefore, we
have chosen to evaluate the performance of the newly developed versions on biological
signals (normal electrocardiogram – ECG and normal background electroencephalogram
EEG). However, when dealing with real signals for denoising, one is faced with the fol-
lowing problem: it is impossible to assert that the denoising is accurate when the original
signal is unknown. It is also very hard to be provided with a non noisy signal which can
be perturbed artificially.

In order to cope with this situation, we have chosen to work with a commonly used
ECG simulator, implemented in Matlab. In this way, one can produce a clean ECG type
signal, spoil it with an artificial noise, and then try to recover the original signal by some
denoising procedures. The simulated EEG was generated according to the procedure
described in [19] (see the url for the Matlab code).

This is the protocol we have followed for our experiment. Numerical results globally
confirm those obtained on the benchmark signals, both for the simulated ECG and EEG.
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Figure 7: Denoising example for a simulated ECG: x original signal, z noisy signal
(Laplacian noise un=1, SNR=0dB), x̂Uni Universal thresholding (SNRden=4.8dB), x̂Sure

Sure thresholding (SNRden=3.7dB), x̂c,05 Tc,05 thresholding (SNRden=5.9dB) and x̂c,15

Tc,15 thresholding (SNRden=5.3dB).

They are not reproduced here for sake of conciseness, but an illustrative example is given
at Figure 7.

Two-dimensional versions of the tested algorithms were applied on real benchmark im-
ages also (Lena, House, Barbara, Peppers), with similar performances to those obtained
for the 1-D signals. Therefore, the detailed results are not presented here.
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