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Scene Segmentation via Low-dimensional Semantic
Representation and Conditional Random Field

Wen Yang, Bill Triggs, Dengxin Dai, Gui-Song Xia

Abstract—In the past few years, significant progresses have
been made in scene segmentation and semantic labeling by
integrating informative context information with random field
models. However, many methods often suffer the computational
challenges due to training of the random field models. In this
work, we present a fast approach to obtain semantic scene
segmentation with high precision, which captures the local,
regional and global information of images. The approach works
in three steps as follows: First, an intermediate space with low-
dimension semantic “topic” representation for image patches is
introduced, by relying on the supervised Probabilistic Latent
Semantic Analysis. Secondly, a concatenated pattern is taken to
combine the vectors of posterior topic probabilities on different
feature channels and to incorporate them into a conditional
random field model. Finally, a fast max-margin training method
is employed to learn the thousands of parameters quickly and
to avoid approximation of the partition function in maximum
likelihood learning. The comparison experiments on four multi-
class image segmentation databases show that our approach can
achieve more precise segmentation results and work faster than
that of the state-of-the-art approaches.

Index Terms—Scene segmentation, image labeling, logistic
regression, conditional random field.

I. INTRODUCTION

Semantic scene segmentation plays an increasingly impor-
tant role in the fields of low-level, mid-level and high-level
computer vision tasks for various and different goals. It jointly
performs multi-class scene segmentation and object recogni-
tion, also called image labeling, which requires to assigning
every pixel by one of the predefined semantic classes, such
as buildings, trees, water, car, and etc. After several decades
of research on image segmentation, it is still a challenging
problem due to the well-known “aperture problem” of local
ambiguity. Recently, many innovative works are proposed to
partially solve this problem by employing the informative
contextual information, and this is often achieved by building
a random field model over the images to encode the unary and
pairwise probabilistic preferences.

Early labeling algorithms work at pixel level directly, but
most recently works operate at higher-level (often superpixels
or patches, which are small groups of similar pixels) due to
the efficiency and consistency. In this work, we prefer to chose
the patch-based representation: one for the convenience of
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utilizing considerable local descriptors, the other is for the ease
of inference on the Conditional Random Field (CRF) model.

Our goal in this work is to combine multiple theoretical
ideas in order to obtain a easy-to-use high performance seg-
mentation method. In a nutshell, given an image the proposed
approach works as follows: First, we use a logistic regression
classifier (LRC) to form our low-dimensional feature represen-
tation for each image patch. Then, we build a CRF model to
integrate the local, regional and global information. Finally, we
efficiently train and test the CRF model, by using a fast max-
margin solver and energy optimization algorithm. We evaluate
our method on two partially labeled data sets: the 9-class
and 21-class MSRC image databases (Criminisi 2004 [1]) as
well as two fully labeled datasets: 7-class Corel and Sowerby
databases (He et al. 2004 [2]).

The main contributions of this paper are as follows:
∙ Propose a low dimensional semantic “topic” representa-

tion for each image patch, and use a concatenated mode to
combine different modalities for characterizing the patch;

∙ Introduce an improved global object labels distribution to
indicate the spatial context, and use a Markov Random
Field (MRF) neighborhood system to incorporate the re-
gional information which implicitly attempt ot model the
relative location information of different object classes;

∙ Use FastPD optimization [3] and cutting plane algorithm
via “1-slack” formulation to efficiently and exactly solve
the maximum margin learning of parameters for our CRF
model [4], [5], [6].

In the rest of this paper, we first review the previous and
related works in Section II. We then describe how to extract
and represent the local and context information in Section III,
and propose our two-stage segmentation model and learning
method in Section IV. In Section V, we demonstrate the ex-
perimental results and present several interesting discussions.
The conclusions and future work are given in Section VI.

II. PREVIOUS AND RELATED WORK

This section briefly summarizes different methods that have
been explored for scene segmentation and semantical labeling.
He et al. [2] proposed a multiscale CRF to combine the
local, regional and global label features, however, it needs
inefficient stochastic sampling for learning the model and
inferencing the labels, and further research in [7] presented a
discriminative image segmentation framework that integrates
bottom-up and top-down cues to include a considerably wider
range of object classes than earlier methods. Kumar et al. [8]
presented a two-layer CRF to encode the long-range and
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short-range interactions. The boosted random fields [9] used
Boosting to learn the graph structure and local evidence of
a conditional random field. Shotton et al. [10] described
a discriminative model of object classes by incorporating
texture, layout, and context information efficiently. Verbeek
et al. [11] learned a CRF from partially labeled data and
incorporated top-down aggregated features to improve the
segmentations. Yang et al. [12] implemented the multiple class
object-based segmentation by using the appearance and bag of
keypoints models integrated over mean-shift patches. Schroff
et al. [13] incorporated globally learnt class models into a
random forest classifier with multiple features, and imposed
spatial smoothing via a CRF model for a further increase in
performance. In [14], the authors presented a CRF that models
local information and global information, and demonstrates
high performance in image labeling of two small fully labeled
data sets.

Many researches of image labeling focus on the utilization
of high-level semantic representation and informative context
information. Recent work by Rabinovich et al. [15] incorpo-
rates semantic context by constructing a conditional Markov
random field over image regions that encodes co-occurrence
preferences over pairwise classes. In [16], the authors com-
bined the advantages of Probabilistic Latent Semantic Analysis
(PLSA) model and spatial random fields to improve the overall
accuracy. Cao et al. [17] used Latent Dirichlet Allocation at
the region level to perform segmentation and classification and
enforce the pixels within a homogeneous region to share the
same latent topic. The latent topic random field model [18]
learned a novel context representation in the joint label and
image space by capturing co-occurring patterns within and
between image features and object labels, and in [19], the au-
thors further explored a hybrid model framework for utilizing
partially labeled data that integrates a generative topic model
for image appearance with discriminative label prediction.
Csurka et al. [20] proposed a simple framework to semantic
segmentation which uses the Fisher kernel to derive high-level
descriptors for computing the patch level class-relevance and
use classification at the image level to take into account the
objects context. Tu [21] introduced an auto-context model to
improve the scene parsing performance significantly by taking
effective context information. However, the training time takes
a few days. Shotten et al. [22] presented a semantic texton
forests method to infer the distribution over categories at each
pixel, and use an inferred image-level prior to obtain state
of the art performance, which needs a trade-off between the
memory usage and the training time.

Earlier works mostly consider simple object location in-
formation, such as the absolute location of objects in the
scene. In [23], the authors applied the objects relative location
relations to capture the spatial context, such as above, below,
inside and around. Gould et al. [24] proposed a novel image-
dependent relative location feature which can model compli-
cated spatial relationships, and achieved results above state of
the art through a two-step classifier with this relative location
preference.

Most similar to us is the work of Verbeek and Triggs [11]
which build a CRF segmentation model to capture the global

context of image as well as the local information. However,
there are several important differences with respect to our
work. First, we add a new feature channel of texton based on
the feature extraction scheme of [11] and replace the absolute
position information in [11] with a more informative position
feature which represents the global spatial configuration of
labels. Second, unlike [11], which uses a histogram of visual
words representation for each patch, we represent each patch
as concatenated vectors of posterior “topic” probabilities,
which helps to remove the redundancy that maybe present
in the basic “bag of features” model. Moreover, a lower
dimensional latent topic representation speeds up computation.
Third, we incorporate the regional information into our CRF
model through a MRF neighborhood system, which implicitly
includes the relative location information of different object
classes. We finally employ the recently proposed FastPD [3]
algorithm and cutting plane algorithm [6] to efficiently imple-
ment the maximum margin learning of parameters exactly for
our CRF model, and demonstrate significant improvements in
accuracy, speed and applicability.

III. MODELING LOCAL AND CONTEXT INFORMATION

In this section, we first describe the extraction of visual
features in more detail. Then, we present a low-dimensional
semantic representation using supervised PLSA. Next, we in-
troduce our improved object labels spatial layout information.
We finally show how to obtain the regional and global context
information.

A. Local Patch Descriptors

Many different approaches to patch description have been
proposed in the literature, which emphasize different image
properties such as pixel intensities, color, texture, and edges.
Here, we compute three types of features for each patch:
SIFT [25], color and textons, which is similar to that of
Verbeek and Triggs [11], except that we use a new texton
channel to replace the absolute position information. Textons
are computed based on an efficient implementation of comput-
ing gabor features named “simple Gabor feature space” [26]
which leads to a remarkable computational enhancements.
Simple Gabor feature space is also an efficient structure for
representing and detecting small and simple image patches.
To further enhance the robustness of color descriptors under
photometric and geometrical changes for different scenes,
we use a consolidated representation for each patch through
concatenating the normalized hue descriptor and opponent
angle [27]. The former is robust to scenes with saturated
colors, while the latter is suitable for scenes with less saturated
colors.

B. Low-dimensional semantic representation

Bag-of-features model has recently shown very good per-
formance for image categorization which was originated from
“bag of words” model in natural language processing (NLP)
or information retrieval. We can also apply this representation
on patch representation and classification. Each patch is thus
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encoded by a binary vector with a single bit set corresponding
to the observed visual word. However, it will lead to the big
dimensions of features. For example, if we quantize SIFT,
color and texton descriptors using visual codebooks of 1000
centers by kmeans, and use the concatenated binary indicator
vector of its three visual words as in [11], we will obtain a
3000-dimension features for each patch, which results in a
very high computational cost in later CRF model training.

Another impressive model related to bag-of-features strat-
egy is the latent topic model, such as the probabilistic Latent
Semantic Analysis [28] or its bayesian form, the Latent Dirich-
let Allocation (LDA) [29]. They consider visual words as gen-
erated from latent aspects (or topics) and expresses images as
combinations of specific distributions of topics, which partially
meet the desire for low dimensional image representations.
In [30], Quelhas et al. use PLSA, to generate the compact
representation. They argue that PLSA has the dual ability to
generate a robust, low dimensional scene representation, and
to automatically capture meaningful scene aspects or themes.
PLSA is also used by Bosch et al. in image classification [31].
Li et al. [32] propose two variations of LDA to generate
the intermediate theme representation to learn and recognize
natural scene categories, and report satisfactory categorization
performances on a large set of complex scenes. Rasiwasia
et al. [33] introduce a low-dimensional semantic “theme”
image representation which correlates well with human scene
understanding, and achieve performance close to the state of
the art methods on scene categorization with much smaller
training complexity. There are also some more complicated
topic models, such as Harmonium model based on undirected
graphical models [34], Pachinko Allocation Model based on
directed acyclic graph [35], and their variants. We prefer to use
PLSA for its efficiency computation and comparable accuracy
in practice [16].

In standard PLSA, each topic 𝑡 is characterized by its dis-
tribution 𝑃 (𝑤∣𝑡) over the 𝑊 words of the dictionary, and each
document 𝑑 is characterized by its vector of mixing weights
𝑃 (𝑡∣𝑑) over topics. Then the probability model 𝑃 (𝑤∣𝑑) is
defined by the mixture,

𝑃 (𝑤∣𝑑) =
𝑇∑

𝑡=1

𝑃 (𝑤∣𝑡)𝑃 (𝑡∣𝑑) (1)

Generally speaking, both 𝑃 (𝑤∣𝑡) and 𝑃 (𝑡∣𝑑) are estimated
by EM algorithm, However, here we assume 𝑃 (𝑤∣𝑡) is ob-
tained by simply count the occurrence of words and topics in
the training images. So the EM reduces to use in the inference
stage, which is also called “fold-in” techniques [16]. It is used
to estimate the topic probabilities for new test images after the
likelihoods of words given topics are learned on the training
set. In this case, the semantic topics are explicitly defined,
PLSA can be thought of as a data-driven technique that use the
fact that a given group of words or observations all originated
from the same document or image to infer a context specific
prior via statistical inversion [36].

By considering image patches as distributions of topics,
we can use the topic distribution as the patch feature rep-
resentation. The number of object classes defines the dimen-

sionality of the intermediate topic space.Each topic induces
a probability density on the space of low-level features, and
each patch is represented as the vector of posterior topic
probabilities. In particular, we firstly use a supervised PLSA
classifier to predict the topic distribution of each patch relates
to the predefined object semantics, and then we obtain the
concatenated probability outputs of the three individual PLSA
classifier for SIFT, Color and Texton descriptor (To cope
with the huge possible distinct output index combinations,
we also make the usual Naı̈ve Bayes assumption that the
three feature channels are conditionally independent given the
underlying class label). Now, we can reduce the dimension
of 3000-dimension patch representation to three times of
topics number (for MSRC-9 and MSRC-21 class dataset,
they are only 27 and 63 dimensions, respectively), Further,
we can use a multi-modal PLSA in [11] to obtain a more
compressed representation. For the multi-modal PLSA model,
the formulation assume the three modalities are independent
given the topic,

𝑃 (𝑤∣𝑑) =
𝑇∑

𝑡=1

𝑃 (𝑤𝑠𝑖𝑓𝑡∣𝑡)𝑃 (𝑤𝑐𝑜𝑙𝑜𝑟∣𝑡)𝑃 (𝑤𝑔𝑎𝑏𝑜𝑟∣𝑡)𝑃 (𝑡∣𝑑) (2)

By using multi-modal PLSA, we can further reduce the
dimension of features on each patch to only the number of
topics.

C. Spatial layout distributions of scene categories

We have described a patch by integrating the color, structure
and texture information. However, we do not include spatial
position information of patches. There are different ways to
involve the spatial layout information, such as the absolutely
position information in [11], the position features are obtained
by quantizing using a uniform 𝑚×𝑚 grid cells superimposed
over the image, the index of the cell in which the patch falls as
its position features. [14] proposed a scene similarity weighted
global spatial labels information, the idea behind which is
that similar scenes tend to share a similar configuration of
category distributions. It computes the scene similarities using
a global color features based on Euclidean distance criteria and
shows good performance and recognizes the scene appearances
by incorporating the global image features and the spatial
layout of labels. Inspired by the work of [14], we adopt a
modified version of global location information by using a
spatial pyramid matching method to obtain the scene similar-
ity. In principle, spatial pyramid matching (SPM) scheme is
possible to integrate geometric information directly into the
original pyramid matching framework [37] by treating image
coordinates as two extra dimensions in the feature space [38].

Firstly, we apply the spatial pyramid matching method to
compute the scene similarities using the obtained sift and
color descriptors on the regular grid from each image. Let
𝑋 and 𝑌 be two sets of vectors in a d-dimensional feature
space, 𝑙 denotes one resolution from a sequence of grids at
resolutions 0, . . . , 𝐿, 𝐻 𝑙

𝑋 and 𝐻 𝑙
𝑌 are the histogram of 𝑋 and

𝑌 at this resolution, respectively. 𝐻 𝑙
𝑋(𝑗) and 𝐻 𝑙

𝑌 (𝑗) denote
the numbers of points from 𝑋 and 𝑌 that fall into the 𝑖𝑡ℎ cell
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of the grid, so the final similarity of two different scenes can
be computed as follows,

𝑤𝐺(𝑋,𝑌 ) =
1

2𝐿
min(𝐻𝑋(𝑗),𝐻𝑌 (𝑗)) +

𝐿∑
𝑙=1

1

2𝐿 − 𝑙 + 1

𝐷∑
𝑖=1

min(𝐻 𝑙
𝑋(𝑗),𝐻 𝑙

𝑌 (𝑗)) (3)

Then, the pixelwise spatial label distribution is computed
using a weighted combination of the training data [9]:

𝑃 (𝑙𝑝 = 𝑐∣𝑓𝐺) =
𝐾∑

𝑘=1

𝑤𝐺(𝑌, 𝑌𝑘)𝐵
𝑐
𝑘(𝑝) (4)

Here, 𝐵𝑐
𝑡 (𝑝) is the hand-labeled data of a training image

𝑌𝑘. If the hand-labeled category at a pixel 𝑝 is category 𝑐,
𝐵𝑐

𝑘(𝑝) indicates “1”; otherwise, it indicates “0”. 𝑤𝐺(𝑌, 𝑌𝑘) is
obtained by spatial pyramid matching as a weight function that
reflects the scene similarity. In [14], the authors considered
the contributions of all the training images to the pixelwise
distribution, which is suitable for the small dataset, such
as sowerby and corel dataset they used. However, for the
more comprehensive and complex datasets, such as MSRC-
9 class and MSRC-21 class dataset, using all the training data
will leads to high computational effort and also decrease the
performance slightly. Therefore, we employ the KNN idea to
compute the pixelwise spatial label distribution. In more detail,
it selects the 𝐾 most similar images to the new test image
within the training database (using the similarity metric based
on SPM above).Then it predicts the pixelwise spatial label
distribution of the test image by weighting the category label
distribution within the 𝐾 similarest training images.

Finally, the patchwise spatial distribution is obtained as the
average distribution of 𝑃 (𝑙𝑝∣𝑓𝐺) within patch 𝑖

𝑃 (𝑙𝑖∣𝑓𝐺) = 1

∣𝑆𝑃 𝑖∣
∑

p∈SPi

𝑃 (𝑙𝑝∣𝑓𝐺) (5)

In our case, ∣𝑆𝑃𝑖∣ is a constant which equals to the size of
the patch.

D. Regional and Global Information

To describe the relationship of the central patch and its
neighbours, we use the MRF neighbour system as Fig. 1,
which shows in turn the first order, the second order and the
whole fifth neighborhood system. The shape of a neighbor
set may be regarded as the hull enclosing all the sites in the
set [39].The context information for a given neighborhood
is computed by taking the topic distribution of each patch
and concatenating them together directly, resulting in a high-
dimensional feature vector depends on the number of topics.
For example, considering a 5-order neighbours system for
MSRC-9 data, we will get a 225 dimensions feature vector for
each patch. The neighbour system features implicitly includes
relative position information of different objects.

For taking the image-level context into account, we also
use the averaged topic probability on the whole image as

Fig. 1: The first, second and fifth-order MRF neighborhood
system

the global aggregated features [11]. Intuitively, regional and
global contexts should be complementary, as they capture
different types of dependencies. The regional context partially
includes the relative position information of different topics,
and can yield spatially varying priors. The image-level context
can capture the dependence of all the patches within the image
on the same underlying scene, but it can only produce priors
that are constant over the entire image.

IV. SCENE SEGMENTATION BASED ON CRF MODEL

Our labeling framework is a two-stage method. Fig.2 shows
the flowchat of labeling process. At the first stage, LRC is
trained to predict the posterior probability vectors of each
patch. Essentially, it firstly uses the supervised PLSA to com-
pute the topics probabilities of each patch with respect to the
three different feature channels-SIFT, color and gabor. Then,
a LRC is applied to classify each patch by concatenating the
three predicted topic distribution by PLSA and the predicted
spatial labels distribution as features. At the second stage, we
use a CRF to learn correlations between neighboring output
labels helps resolve ambiguities, where the input to the CRF
is the combination of local, regional and global features.

The first stage method treats the labeling problem as un-
structured, we can also employ other standard discriminative
classifiers, such as SVM, adaboost or random forest, and we
use logistic regression for its simplicity and higher computa-
tional speed. At the second stage we apply a CRF classifier to
include the spatial couplings (pairwise CRF potentials) and we
refer it as LRC/CRF. Naturally, we can use LRC again, which
also gives a competitive performance with lower computation
cost, and we refer it as LRC/LRC.

Fig. 2: Pipeline of our two-stage semantic scene segmentation
method

A. The Regularized Logistic Regression

Logistic regression is a simple yet effective classification
algorithm which naturally fits within the probabilistic frame-
work of a CRF model. Since the logistic model decomposes
over individual patches, training and evaluation are both very
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efficient. Given feature data x and weights (w,b), the prob-
ability model of logistic regression classifier is

𝑃 (y∣x,w) =
1

1 + exp(−y(w𝑇x+ b))
(6)

where y is the class label. Moreover, to obtain good
generalization abilities, a regularization term w𝑇w/2 can be
added. So the regularized logistic regression [40] is as follows,

min
w

𝑓(w) ≡ 1

2
w𝑇w + 𝐶

𝑛∑
𝑖=0

log(1 + exp(−y𝑖w
𝑇x𝑖)) (7)

where 𝐶 > 0 is the balanced parameter for the two terms
in the above equation. In [40], the authors apply a trust
region Newton method to maximize the log-likelihood of the
logistic regression model, and show that it is faster than the
commonly used quasi Newton approach and yields excellent
performances.

B. CRF model

Typically, a logistic regression model is not sufficiently
expressive and some explicit pairwise dependence is required.
Indeed, most recent works on probabilistic image segmen-
tation use conditional random fields to encode conditional
dependencies between neighboring pixels and superpixels.
The CRF formulation allows a smoothness preference to be
incorporated into the model. Furthermore, pairwise features
also encapsulate local relationships between regions.

Standard CRF has the following distribution form [41]:

𝑃 (𝑋∣𝑌 ) =
1

𝑍
𝑒𝑥𝑝

⎧⎨⎩−
⎡⎣∑
𝑖∈𝒱

𝜙𝑖(𝑓𝑖) +
∑

(𝑖,𝑗)∈ℰ
𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗)

⎤⎦⎫⎬⎭
(8)

where 𝑌 is an input data, 𝑋 is the corresponding labels, 𝑍
is the partition function, 𝒱 is a set of nodes of the image, and ℰ
is the pairs of adjacent nodes. 𝜙(⋅) is the unary potential term,
and 𝜓(⋅) is the pairwise term. In practice, log-linear models
(e.g., MRF and CRF) form the most common model family
for labeling problems. Generally, the energy function of these
models is a linear combination of a set of feature functions.In
this paper we label images at the level of small patches, using
CRF to incorporate the purely local (single patch) feature
functions, the regional neighbors of the current patch and more
global “context capturing” feature functions that depend on
aggregates of observations over the whole image. Our energy
formulation can be written as follows,

𝐸(𝑋,𝑌 ) =
∑
𝑖∈𝒱

𝑊∑
𝑤=1

(
𝛼𝑤𝑙𝑦

𝑙𝑜𝑐
𝑖𝑤 +

𝑁∑
𝑛=1

𝛽𝑛𝑤𝑙𝑦
𝑟𝑒𝑔
𝑖𝑤𝑛 + 𝛾𝑤𝑙𝑦

𝑔𝑙𝑜
𝑤

)
+

∑
(𝑖,𝑗)∈ℰ

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗) (9)

Where 𝑦𝑖 denotes a W-dimensional feature vector, 𝑥𝑖 ∈
{1, . . . , 𝑙, . . . , 𝐿} denotes the label of node 𝑖. (𝑖, 𝑗) denotes
the set of all adjacent (4-neighbor) pairs of patches 𝑖, 𝑗. The

parameters 𝛼𝑤𝑙 , 𝛽𝑛𝑤𝑙 and 𝛾𝑤𝑙 are 𝑊 × 𝐿,𝑁 ×𝑊 × 𝐿 and
𝑊 ×𝐿 matrices of coefficients to be learned, respectively. For
the pairwise potential, we choose a simple Potts model which
has a clique potential for any pair of neighboring pixels 𝑖 and
𝑗 given by

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗) = 𝜎[𝑥𝑖 ∕= 𝑥𝑗 ] (10)

Where [⋅] is one if its argument is true and zero otherwise. 𝜎
is the parameter to be learnt. The results of [11] indicate that
the simple Potts model gives the best performance in sevral
forms of pairwise potential.

C. Parameters estimation of CRF model

Currently, the most widely used learning algorithms in-
clude cross-validation and some partition function approxima-
tions [4]. Here we will investigate two classes of CRF learn-
ing methods: maximum likelihood method and max margin
method.

CRF model defines a conditional distribution of output label
given the input. Applying the Maximum Likelihood principle
to the conditional distribution, we obtain the conditional
maximum likelihood (CML) criterion. The Maximum likeli-
hood learning of discriminative models may suffer from the
overfitting and difficult model selection problems. Here we use
a stochastic gradient descent method [42] to provide a faster
convergence rate for maximizing the log likelihood. The sum-
product loopy belief propagation method is used to handle the
partition function (using the Bethe free energy approximation
for partially labeled images described in paper [11]).

Max margin learning method employs the energy function
of CRF model as a discriminative function. The advan-
tage of the margin-based approach is that the learning can
be formulated as a quadratic programming problem. Also,
we can introduce the kernel trick to create a set of more
powerful feature functions. However, this approach results
in exponentially many constraints in the optimization. The
Maximum Margin Markov Network(𝑀3𝑁 ) method combines
maximum-margin and output correlation constraints into a
single quadratic programming optimization problem, and using
dual extragradient method to accelerate the training speed [43].
Szummer [4]presented an efficient algorithm to train ran-
dom field model (MRF and CRF) for images based on the
structured support vector machine (SVMstruct) framework of
Tsochantaridis et al. [44] and the maximum-margin network
learning of Taskar et al. [45] [46]. It start from a standard
large-margin framework, and then leverage graph cut [47] to
perform inference to efficiently learn parameters of random
fields which are not tractable to train exactly using maximum
likelihood training.

Following the idea of [4], we use a 1-slack cutting-plane
training method instead of the n-slack method [4] used.
Joachims [6] pointed out the 1-slack algorithm is substantially
faster than n-slack algorithm on all problems, for multi-class
classification and HMM by several orders of magnitude. In
addition, we will apply the FastPD algorithm [3] instead of
the alpha-expansion graph cut in [47] as the final energy op-
timization method. The FASTPD algorithm generalizes prior
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state-of-the-art methods such as alpha-expansion, while it can
also be used for efficiently minimizing NP-hard problems with
complex pair-wise potential functions. It can be proved that
Fast-PD is as powerful as alpha-expansion, in the sense that
it computes exactly the same solution, but with a substantial
speedup- of a magnitude ten - over existing techniques [48].
Moreover, contrary to alpha-expansion, the derived algorithms
generate solutions with guaranteed optimality properties for a
much wider class of problems, e.g. even for MRF with non-
metric potentials, they are capable of providing per-instance
suboptimality bounds in all occasions, including discrete
Markov Random Field with an arbitrary potential function.

For the convenience of description, we rewrite the pseu-
docode for the max-margin learning algorithm [4], [6] as
follows,

TABLE I: Pseudocode for 1-slack margin scaling learning
algorithm

Input:
-input labeling pairs (y(𝑛),x(𝑛)) training set(𝑛 = 1, . . . , 𝑁)
-empty set of competing low energy labelings:𝑆 = ∅
-initial parameters:w = w0, the penalized parameter 𝐶,

and the desired precision 𝜀
Repeat until w is unchanged

Loop over all training samples n
Step1: Find the MAP labeling of sample 𝑛

x∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝐸x(y𝑛,x;w)

Step2:If x∗ ∕= x(𝑛), add x∗ to the constraint set
𝑆∗ ← {𝑆(𝑛) ∪ x∗}

Step3: Update the parameters w to ensure the ground truth
has the lowest energy
minw,𝜉≥0

1
2
∥ w ∥2 +𝐶𝜉 s.t .∀x ∈ 𝑆𝑛∀𝑛

1
𝑛
[𝐸x(y(𝑛),x;w)− 𝐸x(y(𝑛),x(𝑛);w)] ≥ 1

𝑛

∑𝑁
𝑛=1△(x(𝑛),x)− 𝜉

V. EXPERIMENTAL RESULTS

In this section we present our experimental results, and
compare the performance of our method to recently published
state-of-the-art results on four datasets: the 21-class and 9
class MSRC datasets of [1]; and the 7-class Sowerby and
Corel datasets used in [2]. For all datasets, we randomly
partition the images into balanced training and test data
sets as done in [24], and report minimum, maximum and
average performance simultaneously. As an implementation
of logistic regression classifier, we use the LIBLINEAR
package [49] (http://www.csie.ntu.edu.tw/∼cjlin/liblinear/). As
an implementation of max-margin solver when training the
CRF model, we refer to the very recent SVMstruct package
[6](http://svmlight.joachims.org/svm struct.html).

A. Datasets and Experimental Settings

We first describe our experimental setup. We then report
the results of our evaluations on the two MSRC datasets, the
Sowerby and corel datasets.

We start with the MSRC 21-class database which consists of
591 images labeled with 21 classes: building, grass, tree, cow,
sheep, sky, airplane, water, face, car, bicycle, flower, sign, bird,
book, chair, road, cat, dog, body, boat. Following the protocol

of previous works on this database [10], we ignore void pixels
during both training and evaluation. For the MSRC-9 database
we follow the procedure of [11] by splitting the database
evenly into 120 images for training and 120 images for testing.
We assign pixels to one of the nine classes: building, grass,
tree, cow, sky, plane, face, car and bike. We used 20×20 pixels
patch with 10 pixels interval to partition the whole image
for the MSRC datasets, and the ground truth label of each
patch was taken to be the most frequent pixel label within
it. To ensure no bias in favor of our method, we compare the
accuracies to other algorithms on pixel level at evaluation time.
For the MSRC-9 class and MSRC-21 class datasets, we quan-
tize SIFT, color and gabor descriptors using visual codebooks
of 1000 and 2000 centers by K-means, respectively. Clusters
with too small number of elements are further pruned out, and
these elements are reassigned to the nearest cluster within the
remain clusters. We experimentally set the parameter 𝐾 as
30 for the two MSRC datasets when computing the pixelwise
spatial label distribution, and 𝐾 = 60 for the other two small
datasets. Regarding the neighborhood system, we take 2 order
(8 neighbors) for the two MSRC datasets for the trade-off
between classification accuracy and computation cost,and use
5 order (24 neighbors) for the sowerby and corel datasets.
We finally report average results over 20 random train-test
partitions on MSRC-9 and 5 random train-test partitions on
MSRC-21 class datasets.

We then consider the somewhat simpler 7-class Corel
and Sowerby databases with fully labeled ground truth. The
Sowerby dataset consists of 104 images of 96 × 64 pixels
of urban and rural scenes labeled with 7 different classes:
sky, vegetation, road marking, road surface, building, street
objects and cars. The subset of the Corel dataset contains 100
images of 180 × 120 pixels of natural scenes, also labeled
with 7 classes: rhino/hippo, polar bear, water, snow, vegetation,
ground, and sky. Here we use 10 × 10 pixel patches with an
overlap of respectively 2 and 5 pixels for the Sowerby and
Corel datasets as done in [11]. We follow the procedure of [2]
by training on 60 images and testing on the rest. We repeat
the evaluation on ten different random train/test partitions and
report the average performance for the test set.

B. From labeled patches to pixel labeling

In our labeling algorithms, learning and inference take place
at the patch level. When mapping the patch-level segmentation
to pixel-level labelings, we take two different post-processing
method. For the LRC/LRC method, the predictions of patches
are “soft” labels(the probabilities belong to all object classes),
we thus employ a MRF smoothing post-processing, while the
output of LRC/CRF are hard labels, we apply an oversegmen-
tation based mapping.

For the MRF model based smoothing, we first compute the
class posteriors at the pixel level as the weighted average of
the four nearest patch posteriors, where the weights depend
on the distance between the considering pixel and the centers
of patches. Then, we thus obtain a probability map per class.
Finally, we get the label of each pixel with a MRF smoothing
process on the probability maps. We employ a simply potts
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model with graph cut based optimization for fast inference
(here the smooth factor is fixed as 0.7). Note that we can
also apply the MRF smoothing process on the patch-level
before mapping into pixel-level. However, we find that the
MRF smoothing running on the pixel level gives a slightly
higher performance, and more importantly improves the visual
appearance of the segmentation.

Smoothing contraints may result in unsolicited coupling
effects at segment boundaries. Therefore, another mapping
method is to combine the nearest mapping result (we compute
the class label at the pixel level as the nearest patch label) with
a low level over-segmentation since segment boundaries can be
expected to coincide with the image edges, which can reduce
the block effect of the nearest mapping and also improve the
accuracy slightly. Here we compute the over-segmentation
with the Edge Detection and Image Segmentation (EDISON)
System of Mean Shift [51] implementation as suggested
in [20]. Firstly, each image is segmented into a set of
homogeneous regions using the publicly available code
(http://www.caip.rutgers.edu/riul/research/code/EDISON/).
The parameters of the segmentation are chosen to mostly
over-segment the images. We set the minimum segment area
as 20 pixels, and use 5 dimensional pixel representations
include the Lab color information and the pixel coordinates.
The computation of over-segmentation is very fast, for the
MSRC-21 datasets, it is less than 1 second per image with
about average of 424 segments output.

C. Qualitative results on four datasets

Fig.3 demonstrates some good labeling results, while Fig.4
presents some results of the five object classes with poor
performance. Table.II shows the confusion matrix obtained by
applying our method on the MSRC-21 dataset with the same
partition in [10]. Accuracy values in the table are computed
as percentage of image pixels assigned to the correct class
label, ignoring pixels labeled as void in the ground truth.
The accuracy of the first stage LRC is 72.67% on patch
level, and after involving the regional and global information,
the accuracies for the second stage using CRF is 75.91%,
also on patch-level. After mapping into pixel-level with over-
segmentation labeling, the accuracies is 76.93%. The highest
accuracies are those classes with low visual variability and
enough training samples, such as grass, sky and tree, while
the lowest accuracies are for classes with high variability and
less training samples, such as boat, bird, dog, sign and body.

With a careful reading at the confusion matrices of
LRC/LRC and LRC/CRF, we can find that the latter is more
consistent and the mistakes made are more “reasonable”
although there is only 0.02-0.07% difference of averaged
labeling accuracy on the patch level between these two
methods. The labeling results in Fig.4 also reflect the same
findings. Obviously, for the sign and bird image, the result
of LRC/CRF (column e) presents more correct labelings than
LRC/LRC (column c).Comparing with MRF based smoothing
post-precessing, the over-segmentation based mapping looks
like much crisper and more “reasonable”, the strongly spatial
smoothing in the former brings about the opposite effect here.

TableIII gives the comparison of pixel-level accuracy with
other algorithms on MSRC-21 class datasets. Using our two
stage classifier LRC/CRF achieves 76.8% on five folds average
(Note here our result obtained with a five folds average as done
in [24], from 75.5% to 78.0%. Other works are only reported
on a single fold.

One of the most fascinating parts of our algorithm is the
speed of training and testing. Our algorithm runs on a 3.4
Ghz machine with 3.8GB memory. The total training time
and testing time per image are listed in TableIV. For using
LRC in the second stage, the training time is about 7-8
minutes, and the testing time is around 0.026 seconds. For
using CRF model, the training time with max-margin learning
is about 30-35 minutes, the testing time per image is less than
0.02 second by applying FastPD as inference algorithm. Note
that the training time in TableIV does not contain the time
consume on feature extraction and codebook formation. The
MRF smoothing post-processing takes about 2-4 seconds per
image, while the oversegmentation mapping post-processing
costs about 1-2 seconds.

TABLE IV: Comparison of speed to other algorithms on
MSRC-21 dataset

Method Training time Test time

TextonBoost [10] 2 days 30 sec/image
PLSA-MRF [16] 1 hour 2 sec/image

STF-ILP [22] 2 hours <0.125 sec/image
AC(ACP) [21] a few days 30-70 sec/image
Our LRC/LRC 7-8 min <0.03 sec/image
Our LRC/CRF 30-35 min <0.02 sec/image

Results for the 9-class MSRC database are shown in Table
V, our LRC/CRF classifier surpass the state of the art method
slightly by 0.1% on this dataset. We also report the lowest and
the highest accuracy within the 20 randomly partitions of the
dataset, 86.6% and 90.7%, respectively.

Table VI shows a comparison of results on Sowerby and
Corel datasets. For Corel datasets, we do not use the pre-
processing as described in [10], [24]. The accuracies within
the ten randomly partition tests on Sowerby datasets are from
86.8% to 91.2%, and from 71.5% to 81.3% for Corel datasets,
respectively. Fig.5 shows examples of the labeling results
which obtained by the first stage LRC, the LRC/LRC and the
LRC/CRF. The first stage LRC causes many isolated labels
since it predicts the label of each patch independently. We
can still find that the max-margin based CRF gives more
“reasonable” results in most cases.

D. Discussion

This section analyzes and discusses some details of our
segmentation method.

1) Classification based on concatenated bag of features
and concatenated PLSA outputs: As described before, the
dimension of features is significantly reduced by our topic
probabilities based feature representation comparing with con-
catenated words representation in [11], but how about the
classification performance of these two representations for
our semantic segmentation. We evaluate the performance of
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(a) Image (b) LRC-I (c) LRC-II (d) LRC-II (e) CRF-II (f) CRF-II (g) GT

Fig. 3: Labeling samples for the MSRC-21 class datasets, below is the color-coding legend for the 21 object classes.Column
(a) shows the original images to be labeled. Columns (b) shows the predictions of the first stage using LRC with the nearest
interpolation mapping to pixels. Columns (c) and (d) show the predictions of the second stage using LRC with the nearest
interpolation mapping and MRF smoothing mapping. Columns (e) and (f) show the predictions of the second stage using CRF
with the nearest mapping and oversegmentation mapping. Columns (g) shows the hand labeling ground truth.

these two representations using the MSRC-9 dataset. Firstly,
we use sift, color(hue descriptor) and gabor descriptor, and
quantize them to 1000, 100 and 400 words, respectively. Each
patch is then represented by the concatenated words (CW)
or concatenated class probabilities (CP) predicted by PLSA
classifier. Finally, we apply the logistic regression classifier
to give the classification results. Table VII illustrates the
dimensions of features, the classification accuracies and the
computation cost. It shows the computation cost of CP is
much lower than the CW. Another interesting point is that we

do not observe a drop in classification performance which is
often experienced as a result of dimensionality reduction [38].
On the contrary, we get a slight lift in classification accuracy.
This might be achieved by making better use of the available
labeling information. Moreover, a lower dimensional feature
representation speeds up computation, as seen in TableVII.

We also compare the performance of logistic regression
classifier with multi-modal PLSA used in [16]. Table VIII
gives the details. We find that the performance of multi-modal
PLSA classifier is lower than the logistic regression classifier
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(a) Image (b) LRC-I (c) LRC-II (d) LRC-II (e) CRF-II (f) CRF-II (g) GT

Fig. 4: Some difficult examples where labeling works less well, with corresponding color-coded output object-class
maps.Column (a) shows the original images to be labeled. Columns (b) shows the predictions of the first stage using LRC
with the nearest interpolation mapping to pixels. Columns (c) and (d) show the predictions of the second stage using LRC
with the nearest interpolation mapping and MRF smoothing mapping. Columns (e) and (f) show the predictions of the second
stage using CRF with the nearest mapping and oversegmentation mapping. Columns (g) shows the hand labeling ground truth.

when combining the two or three different descriptor, though
they also assume that the different modalities are modeled
as being independent given the patch label. We observe that
LRC classifier with concatenating all the three feature channels
gives the highest performance 77.1% in this comparison, while
using multi-modal PLSA (mPLSA) with all the three channels
leads to a slightly decrease (1.9%) in performance compared
with combining only sift and color descriptor.

2) Comparison of Max-Likelihood and Max-Margin learn-
ing: We use the stochastic gradient descent (SGD) method to
train the CRF model under the maximum likelihood learning
framework, and select a suitable parameter 𝜂0 (gradient gain
step) is the key to the computational speed and performance (to
be set as high as possible while maintaining stability [42]). In
our experiments, we use sum-product loopy belief propagation
(SP LBP) to approximate the partition function and infer the
labels. We set the gradient gain step 𝜂0 as 0.0001, and the
maximum number of iterations for SGD is 40. The best result
appears at the 35th iteration in this experiment.

As for the Max-margin learning method, we investigate
several different energy optimization methods [52] (to infer
the labels in step 1 of TableI), such as graph cuts (alpha-
expansion for the non submodular case), FastPD, max-product
LBP(MP LBP), and tree-reweighted message passing) as well

as the well-known older Iterated Conditional Modes (ICM)
algorithm.

In this experiment, we explore two formulations of the
energy function as follows,

Energy Formulation 1(EF-I):

𝐸(𝑥, 𝑦;w) = 𝑤1

∑
𝑖∈𝒱

− log𝑃𝑠𝑖𝑓𝑡(𝑦𝑖∣𝑥𝑖)+

𝑤2

∑
𝑖∈𝒱

− log𝑃𝑐𝑜𝑙𝑜𝑟(𝑦𝑖∣𝑥𝑖) + 𝑤3

∑
(𝑖,𝑗)∈ℰ

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗) (11)

In this case, 𝑤1, 𝑤2 and 𝑤3 are the coefficients that mod-
ulate the effects of different potentials (two unary potentials
(sift, color) and one pairwise potential),the energy in unary
term is the negative log likelihood of sift or color descriptor
given the label (i.e., − log𝑃 (𝑌 ∣𝑋). 𝑃 (𝑦𝑖∣𝑥𝑖) is the likelihood
probability computed from the PLSA classifier. We just need
to learn the coefficients 𝑤1 , 𝑤2 and 𝑤3 , which modulate the
effects of the different potentials.

Energy Formulation 2(EF-II):
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TABLE II: Pixel level accuracy of segmentation for the MSRC-21 class dataset. The overall pixel-wise accuracy is 76.93%
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building 62.8 1.7 10.5 0.1 0 3.2 0.2 2.1 2.6 0.4 3.5 0 0 0.1 2.3 1.4 7.6 0 0 1.2 0.3
grass 0.9 94.5 1.4 0.1 0.3 0.1 0.1 0.6 0 0 0 0.3 0 0 0 0 1.6 0 0 0.2 0

tree 2.2 6.7 82.1 0 0 2.6 0.2 0 0 0 0 4.2 0 0 0 0 0.6 0 0 1.3 0.1
cow 0 21.4 0.3 70.1 4.0 0 0 0.8 0 0 0 0.1 0 0 0 0 0.5 0.4 0.1 2.2 0

sheep 0 19.8 0 0.1 79.7 0 0 0 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0
sky 1.7 0.1 0.5 0 0 92.2 0.1 0 0 0 0 0 0 5.1 0 0 0.3 0 0 0 0

aeroplane 23.6 10.4 0.8 0.8 0 5.0 56.4 0 0 0 0 0 0 0 0 0 3.0 0 0 0 0
water 3.3 3.4 6.3 0 0 2.8 0.2 66.5 0 0 0 0 0 2.8 0.9 0 13.4 0 0 0.4 0.1

face 4.2 0.4 4.0 0 0 1.1 0 0.3 72.4 0 0 0.3 0 0 3.9 0.1 0.1 0 6.9 6.2 0
car 12.1 0 2.0 0 0 0.1 0 0.0 0 62.6 0 0 0 0.6 0 0.2 15.0 5.8 0 0 1.6

bike 5.7 0.3 0.8 0 0 0 0 0 0 0.4 70.1 0 0 0 0 9.0 13.6 0 0 0 0
flower 0 0.4 1.9 0 0 0 0 0 0 0 0 97.6 0 0 0 0 0 0 0 0.1 0

sign 40.4 0.1 1.4 0 0 1.6 0 0 0 0 0 4.2 42.7 0 9.0 0 0.3 0.1 0 0.3 0
bird 4.6 11.5 3.5 0.9 0.8 3.2 3.0 5.9 0 3.5 0 6.5 0 43.5 0 7.8 4.3 0 0 0 1.0

book 3.1 0.1 0 0 0 0.2 0 0 0.2 0 0 0 0 0 96.1 0 0.1 0 0 0.2 0
chair 0.4 19.3 7.3 4.4 0 0 0 3.6 0 0 2.1 0 0.9 1.2 2.4 53.5 4.8 0 0 0 0
road 4.0 2.0 1.1 0 0 1.7 0.0 8.6 0.1 0.7 1.0 0 0 0 0 0.1 80.2 0 0 0.4 0

cat 3.0 0.1 0.3 0 0 0.6 0 5.4 0 0 0.4 0 0 4.0 0 0 12.1 74.1 0 0 0
dog 2.4 5.1 3.0 7.4 0 0.5 0 16.1 7.2 0 4.0 0 0 1.7 0.4 0 10.7 3.8 35.1 2.7 0

body 7.1 6.5 10.7 0.7 0 0.4 0 6.3 4.1 0 0 1.0 0 0.4 5.7 1.9 3.8 0 4 45.8 1.4
boat 29.8 0.1 0 0 0 2.2 0.5 28.8 0 1.5 5.7 0 0 1.8 0 0 9.6 0 0 2.2 17.9

TABLE III: Comparison of pixel-level accuracy to other algorithms on the MSRC-21 class dataset
Algorithm TextonBoost [10] PLSA-MRF [16] Meanshift [12] STF-ILP [22] AC(ACP) [21] RLP-CRF [24]* Our LRC/CRF*

Accuracy 72.2% 73.5% 75.1% 72% 74.5%(77.7%) 76.5% 76.8%
* For these two works, results are reported over five separate random partitions, other works are only reported on a single fold.

𝐸(𝑥, 𝑦;𝛼,𝑤𝑝) =
∑
𝑖∈𝒱

𝑁∑
𝑛=1

(𝛼𝑛𝑙𝑦𝑖𝑛) + 𝑤𝑝

∑
(𝑖,𝑗)∈ℰ

𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗)

(12)
where 𝑦𝑖 denotes a 𝑁 -dimensional concatenated probability

vector of PLSA output using sift and color descriptor, 𝑥𝑖 ∈
{1, ⋅ ⋅ ⋅ , 𝑙, ⋅ ⋅ ⋅ , 𝐿} denote the label of node 𝑖, and 𝛼𝑛𝑙 is 𝑁×𝐿
matrix of coefficients to be learned. Here,𝐿 = 9(for MSRC-
9 class data, the number of object classes we consider is 9),
𝑁 = 18, thus in this case, we need to learn 162 parameters
for the unary term and 𝑤𝑝 for the pairwise term.

The pairwise terms are both the simple Potts model, and
for simplicity, we just take the sift (1000 words) and color
descriptor (100 words) as features in this experiment, the
patch-level labeling accuracy and running time are shown in
Table IX. Experimental results show that margin-maximization
approaches can be more accurate than likelihood-maximization
approaches for training discriminative classifiers, and perfor-
mance of the second energy formulation outperforms the first
one by 2-3%. Among the several energy optimization methods
[52], the FastPD algorithm gives the competitive performance
and the lowest computation cost.

3) Benefits of the position information and context informa-
tion: Fig.6 shows the effects of using different neighborhood
systems in MSRC-9 and MSRC-21 class datasets. Here we
first explain the meaning of each label in x-axis of Fig.6,

∙ N0-I: LRC with concatenated output of the three in-
dependent PLSA classifier on the sift, color and gabor
descriptor;

∙ N0-II: N0-I + the spatial layout labels information;
∙ N0: N0-II + the image-level global aggregate information;
∙ N1-N5: N0 + regional information with 1-5 order neigh-

borhood system.
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Fig. 6: Patch-level performance of different neighbour system
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TABLE V: Comparison of pixel-level labeling accuracy to other algorithms on MSRC-9 class dataset(%)
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Schroff et al. [50] 56.7 84.8 76.4 83.8 81.1 53.8 68.5 71.4 72.0 75.2
PLSA-MRF [16]a 74.0 88.7 64.4 77.4 95.7 92.2 88.8 81.1 78.7 82.3
CRF [11]a 73.6 91.1 82.1 73.6 95.7 78.3 89.5 84.5 81.4 84.9
LTRF [19] 78.1 92.5 85.4 86.7 94.6 77.9 83.5 74.7 88.3 86.7
RF-CRF [13] – – – – – – – – – 87.2
RLP-CRF [24]b – – – – – – – – – 88.5
Our LRC/CRF-avea 82.4 93.9 85.2 81.8 93.8 76.0 92.6 90.2 88.5 88.6
Our LRC/CRF-min 79.5 90.8 87.9 77.7 90.7 72.6 91.2 82.6 95.2 86.6
Our LRC/CRF-max 86.6 94.7 87.7 87.7 91.8 83.5 98.8 92.4 86.3 90.7
a For these three works, results are reported over 20 random train-test partitions
b For this work, result is reported over 5 random train-test partitions

Fig. 5: Labeling results for the Sowerby and Corel data sets with the legends. Column (a) shows the original images to be
labeled. Columns (b) shows the predictions of the first stage using LRC with the nearest interpolation mapping to pixels.
Columns (c) show the predictions of the second stage using LRC with the MRF smoothing mapping. Columns (d) shows the
predictions of the second stage using CRF with the oversegmentation mapping. Columns (e) shows the hand labeling ground
truth.

With the introduction of spatial layout labels information,
the performances are significantly improved on both datasets.
With the LRC, it achieves 4.4% and 8.65% performance
gain for MSRC-9 and MSRC-21 datasets, respectively. Using
CRF also gives 3.44% and 6.46% improvement in these two
datasets.

The performance increment from the image-level global
aggregate information by CRF is lower than LRC. With LRC,
it respectively increases the accuracy by 0.93% and 2.1%
for MSRC-9 and MSRC-21 datasets. Using the CRF, the
improvements of accuracy are 0.58% and 0.74% , respectively.
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TABLE VI: Comparison of pixel level labeling accuracy to other algorithms on the Sowerby and Corel datasets
`````````Method

Performance Sowerby Corel
Accuracy Training time Test time Accuracy Training time Test time

Shotton et al. [10] 88.6% 5h 10s 74.6% 12h 30s
He et al. [2] 89.5% Gibbs Gibbs 80.0% Gibbs Gibbs

Verbeek,et al. [11] 87.4% 20min 5s 74.6% 15min 3s
Toyoda et al. [14] 90.0% – – 83.0% – –
Gould et al. [24]* 87.5% – – 77.3% – –

Our LRC/CRF* 89.1% 7∼8min <0.02s 77.0% 6∼7min <0.02s
* For these two works, results are reported over 10 random train-test partitions, other works are only reported on a single fold.

TABLE VII: Patch-level performances under concatenated words and concatenated predicted class probabilities, with sift,
color and gabor descriptor.

Performance CW-SC CW-SCG CP-SC CP-SCG
local local+global local local+global local local+global local local+global

Dimensions 1100 2200 1500 3000 18 36 27 54
Accuracy(%) 62.2 75.1 63.2 77.5 74.7 76.8 77.1 79.6
Cpu time(s) 7.67 197.06 14.05 1696.34 4.80 6.46 5.77 8.42

TABLE VIII: Patch-level accuracies under PLSA, mPLSA and LRC on topic vectors learned from labeled patches, with
various combinations of the three modalities SIFT, Color and Gabor

Descriptor SIFT Color Gabor SC SG CG SCG
Classifier PLSA PLSA PLSA LRC mPLSA LRC mPLSA LRC mPLSA LRC mPLSA

Accuracy(%) 60.1 59.1 52.8 74.7 73.8 65.5 56.4 73.6 70.3 77.1 71.9
Cpu time(s) 0.79 0.27 0.53 4.80 41.87 4.97 51.43 4.92 22.59 5.77 59.46

TABLE IX: Patch-level performances of CRF learning by likelihood maximization (ML) method and margin-maximization
(MM) method, with sift and color descriptors on MSRC-9 class data.

Method ML-SP LBP MM-ICM MM-MP LBP MM-TRWS MM-GC MM-FastPD
EF-I EF-II EF-I EF-II EF-I EF-II EF-I EF-II EF-I EF-II* EF-I EF-II

Accuracy(%) 76.3 78.9 75.4 77.9 76.8 79.3 77.0 79.5 76.9 – 76.9 79.6
Cpu time(s) 6954.52 7288.38 307.38 205.35 5041.94 3290.16 2471.39 2122.88 140.81 – 100.24 150.88

* alpha-expansion got a situation in this case because of the computed energy breaks through the third constraint on the smoothing term [47], i.e.the
triangle rule: 𝑉 (𝛼, 𝛽) ≤ 𝑉 (𝛼, 𝛾) + 𝑉 (𝛾 + 𝛽).It is mostly due to the updating of weights using Max-margin learning with SVM struct is arbitrary.
In addition, the constraints on the pairwise term added by SVM struct are SOFT constraints (i.e. they have a slack variable). So, they can be violated.
i.e. even if given the positive constraints on the pairwise term weights, it can still get negative weights in some case.

Let us now focus on the effect of different neighborhood
systems, we can observe that using more than 2-order neighbor
system, the performance is near saturation for MSRC-9 class
dataset. For the MSRC-21 class dataset, the performance
lifts off on the 4-order system. The 1-order neighborhood
information gives the maximum gain in both datasets, 2.2%
for MSRC-9 and 0.6% for MSRC-21.

It is also interesting to note that after adding the spatial
layout labels information and image-level global aggregate
information, the performances obtained by LRC and CRF in
the second stage are very close.

Note that in the case of N0-I, the performance for MSRC-
9 has reached 82.1%, which is 5% outperform the 77.1%
in TableVIII although they use the similar three descriptors,
because here we use a combination of hue descriptor and
opponent angle as the color descriptor, and we also test with
a larger codebook size (1000).

VI. CONCLUSION

Segmentation of images into disjoint regions and interpreta-
tion of the regions for semantic meanings are two central tasks

in an image analysis system. We have presented a fast high per-
formance approach to semantic image labeling that incorporate
the local, regional and global features. Our model encodes
regional and global information as local features enabling us
to use much simpler probabilistic models, such as logistic
regression, while still achieving state-of-the-art performance.
The results show to significantly improve the results by patch-
based classification algorithms and demonstrate comparable
performance to state of the art [21] [24]. We also show
that existing software that is high in quality and easy to use,
specifically the well known “LIBLINEAR” package [49] and
“SVMStruct” package [6], can be used together to achieve
high performance and high speed on semantic segmentation
task that so far has been addressed only using complex custom
methods that are effectively out of reach for practitioners.
From this situation, we feel that many useful optimization
techniques have not been fully exploited for computer vision
applications.

One limit of our method is that the dimensionality of
patch representation will increase linearly with the number
of object classes in the dataset. It might seem that this low
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dimensional semantic representation will be also ineffective
to very large scale problems with thousands of object classes.
Another limitation of our approach is that the images are
represented as rectangular patches at a single scale which
could not capture many classes whose appearance and co-
occurrence varies significantly with scale. One way to capture
this would be to learn separate topic models for the patch
appearances or label mixtures at each scale, and use these as
features. We intend to explore this in future work.
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