
HAL Id: hal-00433600
https://hal.science/hal-00433600

Preprint submitted on 20 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Labeling of SAR Images with Hierarchical
Markov Aspect Models

Wen Yang, Dengxin Dai, Bill Triggs, Gui-Song Xia

To cite this version:
Wen Yang, Dengxin Dai, Bill Triggs, Gui-Song Xia. Semantic Labeling of SAR Images with Hierar-
chical Markov Aspect Models. 2009. �hal-00433600�

https://hal.science/hal-00433600
https://hal.archives-ouvertes.fr


1

Semantic Labeling of SAR Images with
Hierarchical Markov Aspect Models

Wen Yang, Dengxin Dai, Bill Triggs, Gui-Song Xia

Abstract—Scene segmentation and semantic labeling of Syn-
thetic Aperture Radar (SAR) images is one of the key problems
in interpreting SAR data. In this paper, a new approach for
semantic labeling of SAR imagery is proposed based on hier-
archical Markov aspect model (HMAM) with weak supervision.
The motivation for this work is to incorporate the multiscale
spatial relation between adjacent image patches into supervised
semantic labeling of large high resolution SAR image. Firstly,
the large SAR image is divided into hundreds of subimages, and
the semantic keywords of each training subimage are given by
the user. Then, the HMAM is presented by building markov
aspect model based on quadtree which can explore multi-scale
cues, spatial coherence and thematic coherence simultaneously.
Next, we use the trained HMAM model to classify each patch of
the unlabeled subimages into a given semantic classes. Finally,
we regroup all the labeled subimages into the large SAR scene
labeling result. We also elaborately build the ground truth map
for a whole scene of TerraSAR-X image to evaluate the labeling
results quantitatively. The experimental results on TerraSAR-X
dataset show that our labeling method is effective and efficient,
and the HMAM can improve labeling performance significantly
with only a modest increase in learning and inference complexity
than aspect model.

Index Terms—Synthetic Aperture radar (SAR), Image labeling,
Hierarchical markov aspect model, Probabilistic latent semantic
analysis (PLSA).

I. INTRODUCTION

Over the last decade we have witnessed an explosion
in the number and throughput of airborne and spaceborne
SAR imaging sensors. At the same time, advance in data
transmission and store have made it increasingly possible
to acquire and order SAR image data at a relative lower
cost. The evergrowing large volumes of SAR images place
a heavy demand on providing an effective and efficient image
analyzing method for understanding SAR imagery. In this
work, we are interested in semantic labeling of a large SAR
image with weak supervision, which is aimed at partitioning
a SAR image into their constituent semantic-level regions
and assign appropriate class label to each region. SAR image
labeling has several additional difficulties. Firstly, SAR image
suffers from a noise-like phenomenon known as speckle which
results in large variation of the backscatter across neighbor-
ing pixels within a single distributed target, even in a flat
region, such as the road surface. Secondly, a scene of SAR
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image is usually very large, which poses a higher efficiency
requirement to image labeling algorithm. Thirdly, researchers
unable to validate their ideas adequately because there is no a
publicly available SAR imagery labeling ground truth dataset.
Finally, this task is still challenging because of the well-
known “aperture problem” of local ambiguity. For example, a
homogenous dark region in SAR image maybe a piece of calm
water, radar shadow, or road surface. Fig.1 shows two similarly
dark regions. These two patches are not easily distinguishable
without using context cues. Actually, one of them is the radar
shadow owning to obscuration by the buildings within the
illuminating radar beam, the other is water surface.

Statistical distribution models with the maximum likelihood
classification methods are well known and widely used in
SAR image segmentation and classification. However, they are
usually pixel-based methods which cannot handle the abundant
information of SAR imagery and produce a characteristic and
inconsistent salt-and-pepper labeling map. Many works built
their models on Markov random field (MRF) to involve spatial
relationship, often with remarkable improvement. Venkatacha-
lam et al. [1] applied the wavelet-domain Hidden Markov Tree
(HMT) models as a reliable initial segmentation, and then
refined the classification using a multiscale fusion technique.
Tison et al. [2] proposed a classification method based on
Markovian modeling that uses a new statistical model with
the Fisher function, which is suitable for high-resolution SAR
images over urban areas. Deng et al. [3] used a function-based
parameter to weight the two components in a MRF model and
produced accurate unsupervised segmentation results for SAR
sea ice images. For further reduce the impacts of speckle on
classification performance with the pixel-based methods, many
region-based methods had been proposed. Yang et al. [4] pro-
posed a region-determined hierarchical MRF model for SAR
image classification based on watershed over-segmentation
algorithm, and demonstrated better results than the pixel-based
hierarchical MRF model. Xia et al. [5] presented a precise
segmentation of SAR images using MRF model on region
adjacency graph (MRF-RAG), and a rapid clustering method
for SAR image segmentation was further proposed in [6],
which embedded a MRF model in the clustering space and
used graph cuts for optimization. Wu et al. [7] proposed
a region-based classification method for polarimetric SAR
images using a Wishart MRF (WMRF) model to overcome
the isolated pixels and small regions in classification maps
using pixel-based methods due to speckle in polarimetric SAR
images. However, These works only tested their methods on
small SAR images and most of them had not yet listed their
quantitative results.
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Supervised SAR image classification using advanced clas-
sifiers originally arise from machine learning domain has
shown exceptional growth in recent years, such as neural
networks [8][9] adaboost [10][11], Support vector machine
(SVM) [12][9] and random forests [13]. These methods can
handle limited training samples and usually achieve the state
of the art labeling performance. However, training samples
with pixel-level detailed labeling are still necessary for using
these methods.

Recently, many research works on labeling natural images
focus on the utilization of high-level semantic representation
and informative context information, such as the Probabilistic
Latent Semantic Analysis (PLSA) [14] or its bayesian form,
the Latent Dirichlet Allocation (LDA) [15]. They consider
visual words as generated from latent aspects (or topics) and
expresses images as combinations of specific distributions of
topics, which are well appropriate to the semantic labeling task
by capturing thematic coherence (image-wide correlations)
and can resolve some cases of visual “polysemy”. Liénou et
al. [16] proposed to exploit the LDA model to semantically
annotate large high-resolution satellite images. The experi-
mental results on panchromatic QuickBird images with 60-
cm resolution demonstrated that using simple features such as
mean and standard deviation for the LDA-image representation
can lead to satisfying labeling results. However, as a model
proposed for document analysis, aspect model has its own
limitation on image labeling. Firstly, there are no apparent vi-
sual words in image. Researchers often obtain visual words by
clustering the features extracted from image patches at a single
scale which leads to failure in capturing the instinct multi-
scale cues in image. Moreover, aspect models assume that
the labels of adjacent patches are independent, thus ignoring
the strong correlations that are found in real image. Verbeek
and Triggs [17] developed two spatial extensions of PLSA,
but multi-scale cues were not considered. Cao et al. [18]
used Latent Dirichlet Allocation at the region level to perform
segmentation and classification and enforce the pixels within a
homogeneous region to share the same latent topic. There are
also some more complicated topic models, such as Harmonium
model based on undirected graphical models [19], Pachinko
Allocation Model based on directed acyclic graph [20], and
their variants. However, these models all need the sophisticate
parameter estimation and model inferencing algorithm.

In this paper, our goal is to design an effective and efficient
labeling algorithm which can handle the semantic labeling
of large-scale SAR images. We develop a further extension
of markov aspect model-HMAM, based on quadtree which
can explore multi-scale cues, spatial coherence and thematic
coherence simultaneously. The later experimental results will
demonstrate the priority of our method. The contributions are
threefold: Firstly, an efficient SAR images labeling method
based on aspect model is introduced which only needs
keywords-labeled training samples, as shown in Fig.2). It
avoids the labor-intensive and time-consuming work to label
every pixel in SAR images for obtaining detailed pixel-level
training data. Secondly, we propose a hierarchical Markov
aspect model (HMAM) based on quadtree which can fully
exploit the multiscale spatial context information; Thirdly, we

build a whole scene TerraSAR-X image ground truth map,
with which practitioners can evaluate their labeling algorithms
quantitatively.

Fig. 1: Top: two ambiguous image patches and their his-
tograms. Bottom: two images that contain the patches. Multi-
scale cues and image context are helpful for labeling the
patches.

Fig. 2: Two keywords-labeled training images and the corre-
sponding ground truth labelings.

The rest of this paper is organized as follows. Section II
reviews the aspect models and semantic labeling methods
based on aspect models. Section III presents the hierarchical
Markov image model on quadtree. Section IV is devoted to
the labeling results on high resolution TerraSAR-X image, and
we draw our conclusion in section V.
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II. ASPECT MODEL AND IMAGE LABELING

In this section, firstly, aspect model, the foundation on which
our algorithm is built, is reviewed. Then, SAR image labeling
method based on aspect model is described.

A. Aspect Model

Aspect model such as PLSA and LDA are statistical tools
originally designed to analyze nature language from docu-
ment collection 𝐷 = {𝑑1, . . . , 𝑑𝑁} [14]. PLSA is a popular
generative model which introduces a set of latent variables
𝑧𝑘 ∈ {𝑧1, . . . , 𝑧𝐾} to explain data generation process. Each
document 𝑑𝑖 owns a specific mixing weight 𝑃 (𝑧𝑘∣𝑑𝑖) over
latent variables and each latent variable has a particular
distribution 𝑃 (𝑤𝑗 ∣𝑧𝑘) over the 𝑉 words of dictionary. 𝑉 is the
total number of clusters (words) obtained by clustering image
features. Here, document is represented as a bag of words
sampled from a document-specific mixture of aspect model
distribution, the per-document word-probability 𝑝(𝑤𝑗 ∣𝑑𝑖):

𝑃 (𝑤𝑗 ∣𝑑𝑖) =
𝐾∑

𝑘=1

𝑃 (𝑤𝑗 ∣𝑧𝑘)𝑃 (𝑧𝑘∣𝑑𝑖) (1)

As a result the occurrence probability of document collec-
tion 𝐷 is:

𝑃 (𝐷) =

𝑁∑
𝑖=1

𝑉∑
𝑗=1

𝑃 (𝑑𝑖)

𝐾∑
𝑘=1

𝑃 (𝑤𝑗 ∣𝑧𝑘)𝑃 (𝑧𝑘∣𝑑𝑖) (2)

where 𝑃 (𝑑𝑖) is used to denote the probability that a word
occurrence will be observed in document 𝑑𝑖. LDA is the
Bayesian form of PLSA by adding a Dirichlet prior to the
mixing weights, which provides additional regularization by
encouraging the latent aspect (or ’topic’) mixtures to be
sparse and by averaging over their weights, but this only
makes a significant difference for small documents and many
topics [17][21].

In this paper, we prefer to use PLSA since it is computation-
ally more efficient than LDA and it has comparable accuracy
in practice. The learning and inference for PLSA model can be
completed by expectation maximization (EM) algorithm [22].

B. Image Labeling based on Aspect Model

Generally, it is difficult to process a whole scene SAR
imagery due to its huge size. Here, we treat a SAR imagery
as a document collection 𝐷 by partitioning it into hundreds
of subimages and regarding each subimage as a document
𝑑. From each subimage we extract non-overlapping patches
on a grid, representing them by feature descriptors. Visual
words are obtained through clustering the extracted image
features. Label inference performed at the patch level, but
the results are propagated to pixel level for visualization and
performance evaluation. We treat topics as scene categories
(e.g. building, water). Labeling procedure is to be divided
into two stages: training and inference. In training stage, the
topic specific distribution 𝑃 (𝑤∣𝑧) can be counted directly from
pixel-level training data if they are available. It also can be
learnt from the set of keywords-labeled training images shown

as Fig. 2. In this situation, we learn 𝑃 (𝑤∣𝑧) from keywords-
labeled images simply by setting 𝑃 (𝑧𝑘∣𝑑𝑖) to zero for class
𝑘 that is not emerged in the keywords list of document 𝑑𝑖.
So only the images that are labeled with a topic contribute to
learning its topic vector. The remaining 𝑃 (𝑧𝑘∣𝑑𝑖) has a non-
negative and sum-to-one value. Section IV shows even such
weak supervision allows good topic models to be learnt. In
inference stage, the topic specific distribution 𝑃 (𝑧∣𝑤, 𝑑𝑡𝑒𝑠𝑡)
are computed. This is achieved by running EM in a similar
way to learning stage, but now only the coefficients 𝑃 (𝑧∣𝑑𝑡𝑒𝑠𝑡)
are updated in each M-Step with the learnt 𝑃 (𝑤∣𝑧) kept
fixed. These 𝑃 (𝑧∣𝑤, 𝑑𝑡𝑒𝑠𝑡)are then used to label test images by
likelihood maximization. The pipeline of the labeling method
is illustrated in Fig.3. Firstly, we partition the whole SAR
scene into hundreds of subimages. From each subimage we
extract overlapping patches on a grid, representing them by
corresponding feature descriptors. We could also apply the
algorithms at pixel level by extracting a patch around each
pixel, but this would be computationally expensive. Then, we
model each subimage as a mixture of latent aspects with an
aspect model which can be learnt from image-level keywords.
Next, we use EM algorithm to learn the model and apply an
efficient inferring algorithm to label the test subimages with
the trained model. Finally, we reconstruct the large SAR scene
labeling result from the labeled subimages.

III. HIERARCHICAL MARKOV ASPECT MODEL

Image patches often cause ambiguity when only based on
local information. Fortunately, multi-scale cues and image con-
text can make it clear what these patches are. Therefore, image
labeling requires information coming from different scales
and contextual information. Aspect model ignore the spatial
structure of the image, modeling its patches independently at
a single scale. In this section, we first discuss Markov image
modeling and inference on patch-based quadtree. Then, the
definition of HMAM on patch-based quadtree is described in
detail.

A. Markov Image Modeling on patch-based Quadtree

To make it is feasible to define aspect model at multi-
scale, we employ quadtree image representation proposed
in [23] with some modifications. First, our finest resolution
cell is a pre-selected patch of 𝑆 × 𝑆 pixels; Second, we
only adopt several levels of quadtree for image modeling.
We address this modified quadtree as patch-based quadtree
which is illustrated in Fig.4. Now, we introduce how we
model an image on this quadtree. The observed data 𝑌 are
a multiresolution representation of the observed image, where
the finest resolution on quadtree is consist of non-overlapping
patches of 𝑆 × 𝑆 pixels partitioned from original image and
the coarser-resolution is consist of patches with double size
on each side. Each node on quadtree represent a patch in
image. Thus, 𝑌 is a stochastic process indexed by the nodes
of a quadtree as shown in Fig.4, where the set of nodes in
the quadtrees is denoted 𝐵. The class label quadtree 𝑋 is
defined on the same multiresolution lattice as 𝑌 . Each level
in the quadtree corresponds to a different spatial resolution
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Fig. 3: The pipeline of SAR imagery labeling method based on aspect model.
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level, where the top level represents the coarsest level 0, and
level 𝐿 the finest level. As usual in statistical approaches, 𝑥
and 𝑦 are viewed as occurrences of random fields 𝑋 and 𝑌 ,
where 𝑌 is the space of observe states and 𝑋 is the space of
class labels. As shown in Fig.4, any nodes 𝑏 except those at
the coarsest level has a unique parent node 𝑏−. Conversely,
the set of the four children of any node 𝑏 is denoted 𝑏+. The
set of descendants of 𝑏, including 𝑏 itself, is denoted 𝑑(𝑏).

The inference of 𝑋 is performed by an extension of Viterbi
algorithm [24]. This algorithm is noniterative and requires two
passes on the tree. Now, we deduce the posterior marginal
𝑃 (𝑥𝑏∣𝑦) for our patch-based quadtree. We yield the expression
of the patch posterior marginal 𝑃 (𝑥𝑏∣𝑦) as a function of the
posterior marginal at parent node 𝑏−:

𝑃 (𝑥𝑏∣𝑦) =
∑
𝑥𝑏−

𝑃 (𝑥𝑏∣𝑥𝑏− , 𝑦)𝑃 (𝑥𝑏− ∣𝑦)

=
∑
𝑥𝑏−

𝑃 (𝑥𝑏∣𝑥𝑏− , 𝑦𝑑(𝑏))𝑃 (𝑥𝑏− ∣𝑦) (3)

=
∑
𝑥𝑏−

𝑃 (𝑥𝑏, 𝑥𝑏− ∣𝑦𝑑(𝑏))∑
𝑥𝑏−

𝑃 (𝑥𝑏, 𝑥𝑏− ∣𝑦𝑑(𝑏))
𝑃 (𝑥𝑏− ∣𝑦)

This yields a top-down recursion provided that the posterior
marginal 𝑃 (𝑥0∣𝑦) at the coarsest level, as well as probabilities
𝑃 (𝑥𝑏, 𝑥𝑏− ∣𝑦𝑑(𝑏)) are made available. Because of the noncausal
structure at the coarsest level of the patch-based model,
we obtain posterior probability 𝑃 (𝑥0∣𝑦) using loopy belief
propagation (LBP) algorithm [25] at this level. Another part
is obtained as :

𝑃 (𝑥𝑏, 𝑥𝑏− ∣𝑦𝑑(𝑏)) = 𝑃 (𝑥𝑏− ∣𝑥𝑏)𝑃 (𝑥𝑏∣𝑦𝑑(𝑏)) (4)

where the first factor is derived as:

𝑃 (𝑥𝑏− ∣𝑥𝑏) = 𝑃 (𝑥𝑏∣𝑥𝑏−)𝑃 (𝑥𝑏−)/𝑃 (𝑥𝑏) (5)

where 𝑃 (𝑥𝑏∣𝑥𝑏−) is the pre-defined transaction probability,
and 𝑃 (𝑥𝑏) is computed by a simple top-down recursion:

𝑃 (𝑥𝑏) =
∑
𝑥𝑏−

𝑃 (𝑥𝑏∣𝑥𝑏−)𝑃 (𝑥𝑏−) (6)

𝑃 (𝑥𝑏∣𝑦𝑑(𝑏)) in formula (4) is obtained through a bottom-up
procedure:

𝑃 (𝑥𝑏∣𝑦𝑑(𝑏)) ∝ 𝑃 (𝑥𝑏, 𝑦𝑑(𝑏))

=
∑
𝑥𝑏+

𝑃 (𝑦𝑑(𝑏)∣𝑥𝑏, 𝑥𝑏+)𝑃 (𝑥𝑏+ ∣𝑥𝑏)𝑃 (𝑥𝑏)

=
∑
𝑥𝑏+

𝑃 (𝑥𝑏)
∏
𝑡∈𝑏+

[
𝑃 (𝑦𝑑(𝑡)∣𝑥𝑡

)𝑃 (𝑥𝑡∣𝑥𝑏)
]

∝ 𝑃 (𝑦𝑏∣𝑥𝑏)𝑃 (𝑥𝑏)
∏
𝑡∈𝑏+

∑
𝑥𝑡

[
𝑃 (𝑥𝑡∣𝑦𝑑(𝑡))

𝑃 (𝑥𝑡)
𝑃 (𝑥𝑡∣𝑥𝑏)

]
(7)

B. Hierarchical Markov Aspect Model

We propose modeling the topic (aspect) of visual words in
image as a hidden Markov Tree. Specifically, we assume that
neighboring patches are more likely to have the same topics,
parent are more likely take the same topic with their children
and vice versa. We build one patch-based quadtree with 𝐿
level for each subimage 𝑑 and extract features from the patches
at each scale 𝑙 ∈ (0, 1, . . . , 𝐿) separately. Every scale-specific
feature descriptor is vector quantized into 𝑉 bins using centers
learnt by k-means from the same scale of all the quadtrees.
The model fitting of HMAM consists of four steps:

1) Initialization: we run basic PLSA training/test procedure
at every scale 𝑙 independently until convergence, then,
record them as 𝑃 𝑙(𝑧∣𝑤, 𝑑).

2) Inference on quadtree: we use 𝑃 𝑙(𝑧∣𝑤, 𝑑) to initialize
𝑃 𝑙(𝑦𝑏∣𝑥𝑏, 𝑑) and then run quadtree inference. It is obvi-
ous that this substitution is reasonable. Here, 𝑧 in aspect
model and 𝑥 in Markov modeling both indicate scene
categories (e.g. building area, water area), and 𝑤 and 𝑦
both represent observed data in a particular subimage 𝑑.
So, we have

𝑃 (𝑧∣𝑤, 𝑑) = 𝑃 𝑙(𝑥𝑏∣𝑦𝑏, 𝑑)
∝ 𝑃 𝑙(𝑥𝑏, 𝑦𝑏, 𝑑) (8)
∝ 𝑃 𝑙(𝑦𝑏∣𝑥𝑏, 𝑑)

3) Maximization step: firstly, we deliver 𝑃 𝑙
𝑀𝑃𝑀 (𝑥𝑏∣𝑦𝑏, 𝑑)

, the inference results of step (2), to 𝑃 𝑙
𝑀𝑃𝑀 (𝑧∣𝑤, 𝑑)

which has the same structure with 𝑃 𝑙(𝑧∣𝑤, 𝑑). Then,
we estimate 𝑃 𝑙(𝑤∣𝑧) and 𝑃 𝑙(𝑧∣𝑑) from 𝑃 𝑙

𝑀𝑃𝑀 (𝑧∣𝑤, 𝑑)
based on likelihood maximization, which are formulated
as follows:

𝑃 𝑙(𝑤𝑗 ∣𝑧𝑘) =
∑𝑁

𝑖=1 𝑛
𝑙(𝑑𝑖, 𝑤𝑗)𝑃

𝑙
𝑀𝑃𝑀 (𝑧𝑘∣𝑤𝑗 , 𝑑𝑖)∑𝑀

𝑚=1

∑𝑁
𝑖=1 𝑛

𝑙(𝑑𝑖, 𝑤𝑚)𝑃 𝑙
𝑀𝑃𝑀 (𝑧𝑘∣𝑤𝑚, 𝑑𝑖)

(9)

𝑃 𝑙(𝑧𝑘∣𝑑𝑖) =
∑𝑀

𝑗=1 𝑛
𝑙(𝑑𝑖, 𝑤𝑗)𝑃

𝑙
𝑀𝑃𝑀 (𝑧𝑘∣𝑑𝑖, 𝑤𝑗)

𝑛𝑙(𝑑𝑖)
(10)

4) Expectation step: we apply Bayes formula and obtain,

𝑃 𝑙(𝑧𝑘∣𝑑𝑖, 𝑤𝑗) =
𝑃 𝑙(𝑤𝑗 ∣𝑧𝑘)𝑃 𝑙(𝑧𝑘∣𝑑𝑖)∑𝐾
𝑐=1 𝑃

𝑙(𝑤𝑗 ∣𝑧𝑐)𝑃 𝑙(𝑧𝑐∣𝑑𝑖)
(11)

Then, we check whether the algorithm is convergent. We
terminate the recursion if it is true, and turn to setp 2),
otherwise.

Top-down and bottom-up inference procedure in HMAM
make knowing parent is farmland alter the conditional distri-
bution of its children and vice versa. The posterior probability
inferred at the coarsest level introduce image context explicitly
and children who have the same parent also introduce image
context implicitly. Image labeling method based on HMAM is
similar to the labeling method described in section II. We can
perform image labeling task in that framework with HMAM
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Fig. 4: Quadtree structure and notations on the tree.

instead of aspect model. 𝑃𝐿(𝑧∣𝑤, 𝑑𝑡𝑒𝑠𝑡) are adopted for vi-
sualization and performance quantification. In the following,
we address the labeling methods based on aspect model and
our HMAM learnt from pixel-level training data as PAM and
PHAM, and for the methods learnt from keywords-labeled
training data we refer them as KAM and KHAM.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section demonstrates our dataset and analyze the
performance (accuracy and speed) of the proposed labeling
methods on TerraSAR-X dataset in detail.

A. Datasets and Experimental Settings

Our experimental datasets are built on a whole scene
TerraSAR-X image (48189 × 25255 pixels) of Foshan in
central Guangdong province, China, acquired in 24/05/2008
( c⃝Infoterra GmbH/DLR) at “stripmap” mode. The spatial
resolution is about 3× 3m. The pixel-level ground truth is la-
beled manually according to the corresponding optical remote
sensing imagery (SPOT5) and related geographic information.
Pixels are assigned to four classes: building, woodland, farm-
land and water. Pixels we are not sure which class they should
belong to are labeled as “void”. About 13% of the pixels are
unlabeled (“void”) in the experimental images. We ignore void
pixels during both training and evaluation. In our experiments,
the whole imagery is partitioned into 1800 subimages (docu-
ments) of 960×960 pixels with 80 (2𝐿×𝑆) pixels overlapping.
The overlapping pixels can maintain Markov property over the
whole SAR imagery. These pixels are not taken into account
in performance evaluation and final illustration of labeling
results. We partition the dataset into 400 subimages for training
and 1400 subimages for test, and report average results over
10 random train-test partitions. The patch is labeled to the
class with which the posterior probability associated is the
maximum and its ground truth is taken to be the most frequent
pixel label within it. The labeling results are evaluated at
pixel-level by linearly interpolating the 4 adjacent patch-level
posteriors to pixels.

Four widely used features for SAR image segmentation,
GLCM [26], Gabor filters [27], Gauss Markov random fields
(GMRF) Texture [28] and histogram are employed in our
experiments. The features used here are implemented with
the following parameters. Histogram is used with 32 bins.
For GLCM and GMRF we use the same parameters setting
as [29]. Grey levels are quantized to 32, inter-pixel distance
set to 1, and orientation set to 4. Four statistics are selected:

Contrast, Entropy, Correlation, and Homogeneity. Gabor tex-
ture descriptors are used with 6 scales and 8 orientations
based on an efficient implementation named “simple Gabor
feature space” [30]. These four descriptors are quantized
into 400 centers by K-means respectively. We set 𝑆 = 20
to balance the tradeoff between robust representation and
pixel-level labeling accuracy. Three pyramid levels are used
(i.e., 𝐿 = 2). More levels are tried, but with less further
improvement. The transition probabilities are{

𝑃 (𝑥𝑏 = 𝑗∣𝑥𝑏− = 𝑖) = 𝛼 if 𝑖 = 𝑗
𝑃 (𝑥𝑏 = 𝑗∣𝑥𝑏− = 𝑖) = 1−𝛼

𝑀−1 otherwise (12)

where 𝑀 is the number of classes, and we set 𝛼 = 0.9
which is chosen experimentally.

For performance evaluation of our labeling methods, two
commonly used techniques, Maximum Likelihood (ML) and
support vector machine (SVM) [31] classifiers are also adopted
as benchmarks. As an implementation of SVM, we use the
easy-to-use “LIBSVM” package with public available code
[32]. For fairly, the same train-test partitions and features are
applied to SVM and in which the radial basis function (RBF)
kernel is selected and the optimal parameters are selected by
grid search with 5-fold cross-validation. Gamma distribution
has been widely used in SAR imagery modeling. Here, we take
the conditional probability of pixel intensity for each class as
a specific Gamma distribution which is used to label pixels by
ML.

B. Qualitative results on TerraSAR-X dataset

Fig.5 demonstrates two labeling results (each 8800× 6400
pixels) of KHAM with the corresponding groud truth on
TerraSAR-X images, while Fig.6 presents four group labeling
resutls on subimages using KAM and KHAM. The regions in
Fig.5 are obtained both by merging 88 subimages (overlapping
pixels are ignored), and we can find that our method has
some mosaic effect which mainly because our patch-based
representation. There is also some incorrect labeling on narrow
river regions, combining with some river detection techniques
may alleviate this deficiency.

TABLE.I shows a comprehensive comparison on classifica-
tion accuracy using different classifier with different features.
Accuracy values in the table are computed as percentage of
image pixels assigned to the correct class label, ignoring pixels
labeled as void in the ground truth. Here, we not list the
performance of ML classifier with gamma distribution, which
obtains the worst accuracy in this experiment, it is only 55.6%.
It is mainly due to two reasons. The first is pixel scattering
intensity cannot be characterized accurately due to speckle
noise. Comparatively speaking, patch-based representation are
more robust and informative, that is also why we focus
our attention mainly on patch-based representation in our
experiments. Another factor is that one semantic class may
cover several types of homogenous regions which are different
from each other explicitly in statistical characterization. The
highest accuracy arrives at 85.3% using PHAM with histogram
features.
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Fig. 5: TerraSAR-X image labeling results, the first column shows two regions (each 8800× 6400 pixels), the second column
illustrates the corresponding ground truth, the last column is our labeling results of KHAM.

TABLE I: Labeling accuracies of different labeling methods
with different features(%)

M
et

ho
d

Feature

SV
M

PA
M

K
A

M

PH
A

M

K
H

A
M

GLCM 64.5 70.3 69.1 73.4 71.9
Gabor 65.8 71.1 69.5 74.9 73.5
GMRF 69.1 74.8 74.5 78.7 77.6

Hist 70.3 82.7 81.0 85.3 84.1

C. Discussions
This section analyzes and discusses some details of our

labeling method.

1) Benefits of Aspect Model: The first main conclusion
from TABLE I is that our labeling methods are all significantly
outperform SVM. With the same pixel-level training data,
PAM exceeds SVM in labeling accuracy at least more than
5.3% no matter what features to use. Although used keywords-
labeled training data, KAM also outperforms SVM by 3.7%.
This is mainly due to our methods take the advantages of
aspect models which can capture thematic coherence (image-
wide correlations) and can resolve some cases of visual pol-
ysemy. We may also benefit from bag-of-features (clustering)
techniques which can discover image primitives and reduce
noise effects at a certain degree.

2) Benefits of Incorporating Multi-scale Cues and Image
Context: The second main conclusion from TABLE I is that
HMAM is superior to aspect model at a single scale in image
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Fig. 6: Subimages labeling results with KAM and KHAM, the first row shows four subimges (800× 800 pixels), the second
and the third rows illustrate their labeling results with KAM and KHAM, respectively, and the final row shows their ground
truth.

labeling. With the help of multi-scale cues and image context,
PHAM increases labeling results by 3% for PAM, and KHAM
also increases labeling results by 3% for KAM. TABLE II and
III indicate that multi-scale information and image context are
more important for building area, while provide less help for
farmland, woodland and water regions. It is maily because
different patches in farmland basically have the same statistical
properties, and the same case in woodland and water area.
Therefore, there is little complementary information between
neighboring patches in these scenes, and also the same case

between parent and children. However, patches in building
area may different from each other significantly. Hence, some
patches with high probabilities can disambiguate their neigh-
bors, parent, or children. All in all, multi-scale cues and image
context are more useful in dealing with complex scenes. Fig.6
illustrates four groups of subimage labelings of KAM and
HKAM, from which we can see the incorporation of multi-
scale cues and image context can really disambiguate some
patches.
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TABLE II: Labeling results of KAM(%)

Terrain Class Building Woodland Farmland Water
Building 84.6 6.5 4.4 4.5

Woodland 20.0 63.7 13.1 3.0
Farmland 8.0 6.6 83.4 2.0

Water 7.5 1.4 3.0 88.2

TABLE III: Labeling results of KHAM(%)

Terrain Class Building Woodland Farmland Water
Building 89.4 3.3 3.9 3.3

Woodland 20.8 64.8 12.1 2.3
Farmland 8.2 4.7 83.8 3.4

Water 6.2 1.3 3.3 89.3

3) Benefits of learning from keywords-labeled data: The
third main conclusion from TABLE I is that KAM and KHAM
can achieve comparative performance to PAM and PHAM re-
spectively, while the former only use keyword-labeled training
data. It is a great merit for SAR imagery labeling, because it is
expensive and labor-intensive to manually label each pixel in
SAR images while it is convenient to obtain keywords-labeled
training data. This property ensure the generalization of our
methods to large-scale SAR imagery labeling.

4) Feature Comparison and Speed: Consequently, it is
important to select the features that are most informative
for separating land-cover classes. From TABLE I, we learn
that histogram is a simple but informative descriptor for
SAR imagery labeling. Texture-based features such as GLCM,
Gabor and GMRF achieve lower performance than histogram
in our experiments. TABLE IV lists the computing speed of
our methods and the benchmark methods. Currently, our un-
optimized matlab implementation runs on a 2.4 GHz Pentium-
class machine with 4G memory. TABLE IV also conclude that
our methods are efficient both in training and test. Compared
to PAM and KAM, PHAM and KHAM require more training
and test time. The increased expenses are directly proportional
to 𝐿.

5) Labeling as function of the proportion of training data:
We now consider how the performances of our labeling
methods drop as the proportion of training data decreases.
We vary the proportion of training data versus the whole
data (training+test) from 0.1 to 0.9. PAM, KAM, PHAM, and
KHAM have the very similar tendency. Here, we only illustrate
the experimental results of KHAM in Fig.7. We can conclude
from Fig.7 that our labeling methods can achieve satisfactory

TABLE IV: Training and test speeds of different labeling
methods

Method Training Time Test Time
ML - <0.01 sec/image

SVM 15 sec/image <0.01 sec/image
PAM - <0.1 sec/image
KAM < 0.1 sec/image <0.1 sec/image

PHAM <0.05 sec/image 0.3 sec/image
KHAM 0.3 sec/image 0.3 sec/image
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Fig. 7: Labeling accuracy of KHAM when learning from
increased proportion of training data.

performance even with small training dataset.

V. CONCLUSION

In this study, we have addressed the challenge of labeling
a whole scene of SAR imagery, and presented a solution
by weakly supervised learning semantic classes from training
samples that are labeled with image-level keywords rather
than with detailed pixel-level detailed labeling. The proposed
HMAM is shown to be promising for semantic labeling of
SAR imagery, and it outperforms other used methods due
to its complementary as aspect model use global relevance
estimates while quadtree can further explore image context
and multi-scale cues. We compared four different features and
observed that using the simple histogram feature for the PLSA-
image representation can achieve the highest performance in
our experiments. Future work will focus on multiple features
combination with multi-modal aspect model to further improve
the labeling performance.
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