
HAL Id: hal-00433533
https://hal.science/hal-00433533v1

Preprint submitted on 19 Nov 2009 (v1), last revised 11 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random walks with occasionally modified transition
probabilities

Harry Kesten, Olivier Raimond, Bruno Schapira

To cite this version:
Harry Kesten, Olivier Raimond, Bruno Schapira. Random walks with occasionally modified transition
probabilities. 2009. �hal-00433533v1�

https://hal.science/hal-00433533v1
https://hal.archives-ouvertes.fr


RANDOM WALKS WITH OCCASIONALLY MODIFIED

TRANSITION PROBABILITIES

HARRY KESTEN, OLIVIER RAIMOND, AND BRUNO SCHAPIRA

Abstract. We study recurrence properties and the validity of the (weak) law
of large numbers for (discrete time) processes which, in the simplest case, are

obtained from simple symmetric random walk on Z by modifying the distri-
bution of a step from a fresh point. If the process is denoted as {Sn}n≥0,
then the conditional distribution of Sn+1 − Sn given the past through time
n is the distribution of a simple random walk step, provided Sn is at a point
which has been visited already at least once during [0, n − 1]. Thus in this
case P{Sn+1 − Sn = ±1|Sℓ, ℓ ≤ n} = 1/2. We denote this distribution by
P1. However, if Sn is at a point which has not been visited before time n,
then we take for the conditional distribution of Sn+1 − Sn, given the past,
some other distribution P2. We want to decide in specific cases whether Sn

returns infinitely often to the origin and whether (1/n)Sn → 0 in probability.
Generalizations or variants of the Pi and the rules for switching between the
Pi are also considered.

1. Introduction

There have been a number of investigations of recurrence/transience of ”slightly
perturbed” random walks. Roughly speaking we are thinking of processes (in dis-
crete time) whose transition probabilities are ”usually” equal to a given transi-
tion probability, but ”occasionally” make a step according to a different transition
probability. Arguably the most challenging of these problems is the question of
recurrence vs transience of ”once reinforced” simple random walk on Z

d. In the
vertex version of this process, the walk moves at the ℓ-th step from a vertex x to
a neighbor x + y with a probability proportional to a weight w(ℓ, x + y). All these
weights start out with the value 1, but then w(ℓ, x + y) is increased to 1 + C for a
given constant C > 0 at the first time ℓ at which the walk visits x + y. After this
change the weight of x + y does not change, that is, w(m, x + y) = 1 + C for all m
greater than the time of the first visit to x + y by the process. In general little is
known so far about recurrence or transience of such processes (except on Z; see [5]
for some recent results). Other examples include excited or cookie random walks
on Z

d, introduced by Benjamini and Wilson [1], which at first visits to a site have a
bias in some fixed direction and at further visits make a simple random walk step.
These processes have now been well studied in dimension 1 (see [4] and [13] for
recent results and references therein), but much less is known in higher dimension.

Benjamini proposed the study of random walks which are perturbed in a some-
what different manner. We describe a slightly generalized version of his setup. Let
P1, P2, . . . , Pk, be k ≤ ∞ probability distributions on R or on Z, with zero-mean if
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they have finite first moment, or symmetric. Intuitively speaking we now consider a
process Sn = S0 +

∑n
ℓ=1 Xℓ, n ≥ 0, for which the Xℓ are chosen in two steps. First

we choose an index i(ℓ) ∈ {1, 2, . . . , k} and then, given the past through time ℓ− 1
and i(ℓ), the conditional distribution of Xℓ is taken to be Pi(ℓ)(·). More formally,
if we set Hn = σ((Sℓ, i(ℓ))ℓ≤n), then we have for all n ≥ 0:

(1.1) the conditional law of Xn+1 given Hn ∨ σ(i(n + 1)) is Pi(n+1).

Condition (1.1) is not enough to describe the law of (Sn, i(n))n≥0. This law will
be completely described once the way the sequence i(n) is chosen will be given,
or equivalently once the conditional law of i(n + 1) given Hn will be given. One
way is to choose i(n + 1) such that it is Hn-measurable, in which case there ex-
ists f : ∪n≥1(R × {1, . . . , k})n → {1, . . . , k} such that i(n + 1) = f((Sk, i(k))k≤n).
In general, there can be added an extra randomness in the choice of i(n + 1),
in which case, the conditional law of i(n + 1) given Hn is a law µn which is
a function of (Sk, i(k))k≤n. Such laws can be described by mean of a random
variable An+1 uniformly distributed on [0, 1], independent of Hn, and a function
F : [0, 1] × ∪n≥1(R × {1, . . . , k})n → {1, . . . , k}, such that µn is the conditional
law of F (An+1, (Sk, i(k))k≤n) given Hn. Note also that there exists a measurable
function G : [0, 1] × {1, . . . , k} → R such that if B is a random variable uniformly
distributed on [0, 1], then Pi is the law of G(B, i). This function G will be fixed
later on.

A convenient way to construct processes satisfying (1.1) will be to start from
independent sequences of independent random variables uniformly distributed on
[0, 1], (An)n≥1 and (Bn)n≥1, an independent random variable (S0, i(0)), and a
measurable function F : [0, 1]×∪n≥1(R×{1, . . . , k})n → {1, . . . , k} (which describes
how we choose the law to be used for the next jump). We then define (Sn, i(n))
recursively: for n ≥ 0,

{
i(n + 1) = F (An+1, (Sk, i(k))k≤n)
Sn+1 − Sn = G(Bn+1, i(n + 1)).

(1.2)

Note that all processes (Sn, i(n))n≥0 satisfying (1.1) are equal in law to a process
(Sn, i(n))n≥0 defined by (1.2) for a particular choice of function F . The law of
this process is thus given by the law of (S0, i(0)), the function F and the sequence
{P1, ..., Pk}.

Another way to construct (Sn, i(n)) is as follows. This construction will be used
in the last section of this paper. Fix S0 in some way and let {Y (i, n), 1 ≤ i ≤
k, n ≥ 1} be a family of independent random variables such that each Y (i, n) has
distribution Pi. These Y (i, n) can be chosen before any i(ℓ) is determined. Now
define inductively

j(i, ℓ) = 1 + number of times Pi has been used during [1, ℓ],

and take

Xn+1 = Sn+1 − Sn = Y
(
i(n + 1), j(i(n + 1), n)

)
.

We chose this terminology because we think of the sequence Y (i, 1), Y (i, 2), . . . as
a supply of variables with distribution Pi, and every time i(ℓ) = i we ”use” one
of these variables. When we come to pick the Y variable at time n + 1 according
to Pi(n+1) we use the first Y (i(n + 1), ·) which has not been used yet. This is
automatically independent of all Y ’s used by time n. Note also that by induction
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on n,

Sn = S0 +
n∑

ℓ=1

Xℓ = S0 +
k∑

i=1

Y (i, j(i, n)).

We define

F0 = σ-field generated by S0,

and

Fn+1 = σ-field generated by S0,Fn, i(n + 1), j
(
i(n + 1), n

)
,

and Y
(
i(n + 1), j(i(n + 1), n)

)
.

Once we have observed the variables which generateFn we first determine i(n+1)
by some rule. This rule may be randomized, but will actually be deterministic in
our examples. Then j

(
i(n+1), n

)
is also determined by i(n+1) and Fn- measurable

functions. Finally we determine Y
(
i(n + 1), n

)
. and that completes the generators

of Fn+1. The only conditions on the rule for choosing i(n+1) are that, conditionally
on Fn, all the random variables i(n + 1) and {Y (i, j), j > j(i, n), 1 ≤ i ≤ k}, are
independent, with each Y (i, j) with j > j(i, n) having conditional distribution Pi.

Note that if all Pi, i ≤ k, have finite first moment (and zero-mean), then Sn

automatically satisfies the strong law of large numbers, i.e. Sn/n → 0 almost
surely, as soon as the tails of the Pi are dominated by some fixed distribution with
finite first moment (see Lemma 1 in [11]). However the question of recurrence or
transience of Sn is much more delicate, even when k = 2. In particular in [3],
Durett, Kesten and Lawler exhibit examples where Sn is transient (see also [12] for
some necessary conditions for transience).

Benjamini’s questions concerned the case when k = 2, P1 puts mass 1/2 on each
of the points +1 and −1, while P2 is a symmetric distribution on Z in the domain of
normal attraction of a symmetric Cauchy law (in particular P2 does not have finite
first moment). As for the i(n), Benjamini made the following choices: i(n + 1) = 2
if Sn is at a ”fresh” point, i.e., if at time n the process is at a point which it has not
visited before. If Sn is at a position which it has visited before take i(n + 1) = 1.
Thus his process is a perturbation of simple random walk; it takes a special kind
of step from each fresh point but is simple random walk otherwise. His principal
questions were whether the process {Sn} is recurrent and whether it satisfies the
weak law of large numbers, i.e., whether (1/n)Sn → 0 in probability.

In Section 2 we first present a method to attack the generalized version of Ben-
jamini’s problem. This rests on finding a positive function which is simultaneously
superharmonic for all Pi, 1 ≤ i ≤ k, outside some compact set. We do not know
how general this method works, but we have only succeeded in very limited cases.
In fact, we do not know how to handle Benjamini’s question on Z by this method.
We can only deal with a setup which is close to Benjamini’s setup in spirit. P2

has to be taken a specific distribution on R and the definition of a ”fresh” point
has to be correspondingly modified. The method does, however, allow for small
perturbations of P2 (see Proposition 2.3).

In Section 3.1 we present another method. This one allows us to answer Ben-
jamini’s first question affirmatively (see Example 3.7). Our principal tool in this
method is a coupling between the Sn of Benjamini’s process and a Cauchy random
walk. The latter is a random walk with i.i.d. steps, all of which have a symmetric
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distribution P on Z which is in the domain of normal attraction of the symmet-
ric Cauchy law. Unfortunately, so far our method works only for very specific P ,
including the distribution of the first return position to the horizontal axis of sym-
metric simple random walk on Z

2. It seems that even asymptotically small changes
in P cannot be handled by this method. In Section 3.2 we present an analogous
method in a continuous setting, i.e., when P is a distribution on R, and prove in
particular that if P is the usual Cauchy law (with density 1/π(1 + y2)), then {Sn}
is recurrent (see Proposition 3.15).

The coupling method presented in section 3 permits also to give sufficient criteria
for the process {Sn} to be transient.

In section 4 we prove a weak law of large numbers for Benjamini’s process.

Acknowledgements We are grateful to Itai Benjamini for suggesting the prob-
lems considered in this paper and for his insightful comments which helped solve
some of them. We also thank Ofer Zeitouni who pointed out a gap in a previous
version and Vladas Sidoravicius for several helpful conversations about this article.
HK thanks the Mittag-Leffler Inst. for its hospitality and support of the research
in this paper.

2. Superharmonic functions

In this section we will make a few restrictions on the distributions Pi. (2.1) and
(2.2) seem reasonable if we want to obtain recurrence our process. (2.3) is a simple
uniformity assumption which is automatic if k is finite. Firstly, we disallow two
successive steps which come from a distribution Pi which is concentrated at the
origin. In other words,

we cannot have for some n that Pi(n−1) and
Pi(n) are both concentrated at the origin.

(2.1)

Secondly we require that for all i ∈ {1, 2, . . . , k},

(2.2)

∫
yPi(dy) = 0 if Pi has compact support.

Finally we assume

there exists some L0 < ∞ such that for all 1 ≤ i ≤ k,
supp (Pi) is either unbounded or contained in [−L0, L0].

(2.3)

We point out that in Benjamini’s case the state space for his process is Z. We shall
formulate our first theorem in the real valued case only, and leave the modifications
for the integer valued case to the reader (see also Section 3.1). This theorem is
essentially Foster’s recurrence criterion (see Theorem 2.2.1 p.26 in [7]).

Theorem 2.1. Let k < ∞ and let (Pi, i ≤ k) be a sequence of probability distri-
butions. Also let (Sn, i(n)) be a process satisfying (1.1). Assume that (2.1), (2.2)
and (2.3) hold. Let g be a Borel function on R satisfying (2.4) and (2.5) below.

(2.4) 0 ≤ g(x) < ∞ on R;

(2.5) g(x) → ∞ as |x| → ∞.

Assume that there exists a compact set K such that
∫

g(x + y)Pi(dy) ≤ g(x) for all x /∈ K and all 1 ≤ i ≤ k.(2.6)
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Then {Sn}n≥0 visits K infinitely often with probability 1.

Remark: Except for (2.1), and the condition that the function F used to spec-
ify the successive i(n) be measurable, there are no requirements on the rules for
choosing the i(j).

Proof. Even though S0 can be taken in a random way, we can simply condition on
S0 and can therefore regard S0 as a fixed finite number. We shall indeed make this
assumption for this proof. We will also use the first construction of (Sn, i(n)) given
in the introduction by (1.2).

Define T to be the entrance time of K, that is

T = inf{n ≥ 0 : Sn ∈ K}.
Then T = ∞ if Sn never visits K. It suffices to prove that for each choice of S0, T
is finite with probability 1 (w.p.1). Now set

U(n) = g(Sn∧T ).

Hypothesis (2.6) states that {U(n)}n≥0 is a supermartingale, and (2.4) that it is
non-negative. Therefore, by the (super)martingale convergence theorem, U(n) has
w.p.1 a limit, U(∞) say, as n tends to infinity. Moreover, by Fatou’s lemma

E{U(∞)} ≤ lim inf
n→∞

E{U(n)} ≤ U(0) = S0.

(Recall that we took S0 to be fixed and finite.) In particular, U(∞) is finite w.p.1,
which implies that w.p.1 there exists a random integer L ∈ ∞ such that

U(n) ∈ [−L, L] for all large n.

On the event {T = ∞}, it holds U(n) = g(Sn) for all n. Since (2.5) holds, it
therefore suffices to show for each fixed integer L ≥ 1 that

(2.7) the event {Sn ∈ [−L, L] for all large n} has probability 0.

In fact, by obvious monotonicity in L, it suffices to prove (2.7) for all L so large
that for each i the support of Pi is either unbounded or contained in [−L, L] (see
(2.3)).

To prove (2.7) we fix L > 0 and define for 1 ≤ i ≤ k,

δi = δi(L) := Pi{[−2L, 2L]c}.
Let Gn = Hn∨σ(i(n+1)). Then (Gn)n≥0 is a filtration. Denote the event {|Sn−1| >
L or |Sn| > L} by En. Note that En ∈ Gn and that En ⊃ {|G(Bn, i(n))| > 2L}
(see a few lines before (1.2) for G) Then

P{En | Gn−1} ≥ P{|G(Bn, i(n))| > 2L | Gn−1} = δi(n).

Lévy’s extension of the Borel-Cantelli lemma (Theorem 12.15 in [16]) states that
a.s., ∑

n

P{En | Gn−1} < ∞ ⇐⇒
∑

n

1En
< ∞.

It follows that a.s. on the event {∑n δi(n) = ∞}, En holds infinitely often (i.o.),
so that {S(n) /∈ [−L, L], i.o.} occurs. Thus, if for a certain i, δi > 0, then on the
event {i(n) = i, i.o.}, we have {S(n) /∈ [−L, L], i.o.} occurs. Consequently,

P{Sn ∈ [−L, L] for all large n}
= P{Sn ∈ [−L, L] and δi(n) = 0 for all large n}.
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The preceding paragraph shows that for the purpose of proving (2.7) we can
ignore the indices i with δi > 0. More precisely, let I0 = {i ∈ [1, k] : δi = 0}. Then
we have shown that

P{Sn ∈ [−L, L] for all large n}
= P{Sn ∈ [−L, L] and i(n) ∈ I0 for all large n}

≤
∞∑

m=1

P{Sn ∈ [−L, L] and i(n) ∈ I0 for n ≥ m}.

We must now show that

(2.8) P{Sn ∈ [−L, L] and i(n) ∈ I0 for all n ≥ m} = 0

for each m. We shall do this by applying the martingale central limit theorem to
an auxiliary sequence of random variables {Zn}. First we introduce a sequence of
random variables {Yk, k ≥ 0} which are independent of each other and of all the
(Ak, Bk). Each Yk will have the same distribution, H say, which has support in
[−L, L] \ {0}, has zero mean and nonzero variance σ2. Now fix m and define

Zn =

{
G(Bn, i(n)) if i(ℓ) ∈ I0 for all m ≤ ℓ ≤ n
Yn if i(ℓ) /∈ I0 for some m ≤ ℓ ≤ n.

We shall say that i(n) = 0 in the last case, that is, when i(ℓ) /∈ I0 for some
ℓ ∈ [m, n]. Accordingly we shall write P0 for H . We shall further write for n ≥ m

Wn = Sm−1 +

n∑

ℓ=m

Zℓ.

On the event in (2.8), Zn = G(Bn, i(n)), and hence (by (1.2)) Sn = Wn, for all
n ≥ m. It therefore suffices for (2.8) to prove that

(2.9) P{Wn ∈ [−L, L] for all n ≥ m} = 0.

We claim that {Wn, n ≥ m} is a martingale with respect to the σ-fields

G̃n := Gn ∨ σ{W1, W2, . . . , Wn}.
Moreover, its increments Zn, n ≥ m, are bounded. This can be seen as follows.

The conditional distribution of Zn+1 given G̃n is simply the distribution Pi for
some i ∈ {0} ∪ I0. Which value of i ∈ {0} ∪ I0 is to be used is determined

by i(ℓ), ℓ ≤ n + 1, and is therefore an G̃n-measurable determination. After this

determination the conditional distribution of Zn+1 = Wn+1 − Wn given G̃n equals
the unconditional distribution Pi(n+1) with the chosen i(n + 1) ∈ {0} ∪ I0. In any
case this distribution has mean zero and bounded support (by requirement (2.2)
and the definitions of I0 and H). This proves our claim.

Now define

τ(λ) = inf{n ≥ m :
∑

m≤ℓ≤n

Z2
ℓ ≥ λ}.

We first show that these stopping times are finite w.p.1. Indeed, it follows from
(2.1) that there exists constants C1, C2 > 0 (independent of ℓ) such that for all ℓ

(2.10) P{Z2
i(ℓ) + Z2

i(ℓ+1) ≥ C1 | G̃ℓ−1} ≥ C2.

To see this, let I1 = {i ∈ [0, k] : Pi({0}) = 1}. If i /∈ I1, then there exist some

C̃1, C̃2 > 0 such that Pi{Y 2(i, ℓ) ≥ C̃1} ≥ C̃2. Since I1 is finite we can choose C̃1, C̃2
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equal to some C1, C2 > 0 independent of i and ℓ. Note that 0 /∈ I1, because P0 = H
puts no mass on {0} at all. Now (2.1) states that P{i(ℓ) ∈ I1 and i(ℓ+1) ∈ I1} = 0,
and by the last few sentences this implies (2.10). The relation (2.1) was only
assumed for values i(n − 1), i(n) ∈ [1, k], but (2.1) and (2.10) remain valid if we
also allow i(n − 1) = 0 or i(n) = 0, because P0 = H puts no mass at the origin,
as just pointed out. Now (2.10) implies that the indicator functions of the events
{Z2

i(2ℓ) + Z2
i(2ℓ+1) ≥ C1} for m ≤ ℓ ≤ m + n/2 can be coupled with i.i.d. Bernoulli

random variables Vℓ, m ≤ ℓ ≤ m+n/2 with P{Vℓ = 1} = 1−P{Vℓ = 0} = C2, such
that I[Z2

i(2ℓ) + Z2
i(2ℓ+1) ≥ C1] ≥ Vℓ. Finally this shows that for C2(n−m) > 2λ/C1

P{τ(λ) > n} ≤ P
{ n∑

ℓ=m

Z2
ℓ < λ

}

≤ P
{
{Z2

i(2ℓ) + Z2
i(2ℓ+1) ≥ C1} for at most

C2(n − m)/2 values of ℓ ∈ [m, n]
}

≤ P
{ n∑

ℓ=m

Vℓ ≤ C2(n − m)/2
}
→ 0 as n → ∞.

Thus the probability of τ(λ) ≤ n tends to 1 as n → ∞ with λ fixed. This finally
establishes that each τ(λ) is finite w.p.1.

We can now apply the central limit theorem for martingales. We use the version
of Theorem 3.2 in [8] with their Xn,i replaced by our

1√
λ

Zm+iI[0 ≤ i ≤ τ(λ) − m]

and their η = 1. This merely requires us to check that

1

λ

τ(λ)∑

ℓ=m

Z2
ℓ → 1 in probability as λ → ∞.

But this relation is trivial, since, by the definition of τ(λ),

λ ≤
τ(λ)∑

ℓ=m

Z2
ℓ =

τ(λ)−1∑

ℓ=m

Z2
ℓ + Z2

τ(λ) ≤ λ + Z2
τ(λ) ≤ λ + 4L2,

where, for the last inequality we used the elementary bound |Zℓ| ≤ 2L. This last
bound also shows that

(2.11) τ(λ) ≥ λ

4L2
,

which we shall soon need. The conclusion of the central limit theorem is that the
distribution of

1√
λ

τ(λ)∑

ℓ=m

Zℓ
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converges to a standard normal distribution as λ → ∞. In particular, for any fixed
m

P{Wn ∈ [−L, L] for all n ≥ m}

≤ P{m > τ(λ)} + P





1√
λ

Wτ(λ) =
1√
λ

[
Sm−1 +

τ(λ)∑

ℓ=m

Zℓ

]
∈

[
− L√

λ
,

L√
λ

]





can be made arbitrarily small by taking λ large. Note that the first probability on
the right here vanishes for large λ by virtue of (2.11). This proves the desired (2.9)
and hence (2.8) and (2.7). �

The next proposition gives an example to which Theorem 2.1 can be applied. In
this case we will get interval-recurrence for a walk {Sn} which makes a jump of ±1
with probability 1/2, respectively a jump whose size has density g0(y) = I[|y| ≥
1]/(2y2), when Sn = x for an x such that Sℓ visited (x − a, x + a) at some time
ℓ < n, respectively did not visit (x − a, x + a) before time n. Here a is any fixed
strictly positive number. We point out that concavity of the log function implies

1

2
[gA(x + 1) + gA(x − 1)] ≤ gA(x) if |x| ≥ A + 1.

Thus we can apply Theorem 2.1 with P1 the distribution which puts mass 1/2 at
±1, and P2 the distribution which has density 1/(y2) on |x| ≥ 1.

Proposition 2.2. For A ≥ 1 let

(2.12) gA(y) =

{
log |y| if |y| ≥ A
0 if |y| < A.

Assume that Y has density 1/(2y2) on {y : |y| ≥ 1}. Then there exists an A0 ≥ 1
and for each A ≥ A0 there exists an x0 = x0(A) such that for A ≥ A0 and |x| ≥ x0

it holds

(2.13) E{gA(x + Y )} ≤ gA(x) − A log A

2x2
.

Proof. Fix A0 ≥ 4 such that

A0 log A0 ≥ 2 + 2A0

and let x ≥ 2A + 1 ≥ 2A0 + 1. Then, since Y has a symmetric density which
vanishes on (−1, 1), and gA(x − y) vanishes for y ∈ (x − A, x + A), we have for
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x ≥ 2A + 1

E{gA(x + Y )} =

∫ x−A

1

[gA(x − y) + gA(x + y)]
1

2y2
dy

+

∫ x+A

x−A

[gA(x − y) + gA(x + y)]
1

2y2
dy

+

∫ ∞

x+A

[gA(x − y) + gA(x + y)]
1

2y2
dy

=

∫ x−A

1

log(x2 − y2)
1

2y2
dy

+

∫ x+A

x−A

log(x + y)
1

2y2
dy

+

∫ ∞

x+A

log(y2 − x2)
1

2y2
dy.

We now subtract

gA(x) =

∫ x−A

1

(2 log x)
1

2y2
dy +

∫ x+A

x−A

(2 log x)
1

2y2
dy

+

∫ ∞

x+A

(2 log x)
1

2y2
dy.

This yields
E{gA(x + Y )} − gA(x) = I1 + I2 + I3,

where

I1 =

∫ x−A

1

log
(x2 − y2

x2

) 1

2y2
dy,

I2 =

∫ x+A

x−A

[log(x + y) − log x]
1

2y2
dy −

∫ x+A

x−A

(log x)
1

2y2
dy,

and

I3 =

∫ ∞

x+A

log
(y2 − x2

x2

) 1

2y2
dy.

The inequality (2.13) is therefore equivalent to

(2.14) I1 + I2 + I3 ≤ −A log A

2x2
.

To prove (2.14) we begin with an estimate of I2, which is the easiest of the three
terms in the left hand side of (2.14).

∫ x+A

x−A

(log x)
1

2y2
dy =

[ 1

2(x − A)
− 1

2(x + A)

]
log x

=
A log x

x2 − A2
=

A log x

x2
+ o

( 1

x2

)
.

Here and in the sequel, o(g(A, x)) stands for an expression which satisfies

o(g(A, x))

g(A, x)
→ 0 as x → ∞

while A remains fixed. Similarly O(g(A, x))/g(A, x) remains bounded as x → ∞
while A remains fixed.
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Further, for y ∈ (x − A, x + A), we have

log
x

2
≤ log(2x − A) ≤ log(x + y) ≤ log(2x + A)

for large x, so that

[
log(x + y) − log x

]
= log 2 + O(

1

x
),

and hence

I2 =
[ 1

2(x − A)
− 1

2(x + A)

]
log 2 − A log x

x2
+ o

( 1

x2

)

=
A log 2

x2
− A log x

x2
+ o

( 1

x2

)
.

Next we turn to an estimate for I1. Substitution of z = y/x and integration by
parts gives

I1 =
1

2x

∫ 1−A/x

1/x

log(1 − z2)
1

z2
dz

=
1

2x

[
− 1

z
log(1 − z2)

]1−A/x

1/x
− 1

2x

∫ 1−A/x

1/x

[ 1

1 − z
+

1

1 + z

]
dz

= − 1

2x

[ 1

1 − A/x
log

(2A

x
− A2

x2

)
− x log(1 − 1

x2
)
]

− 1

2x

[
− log(1 − z) + log(1 + z)

]1−A/x

1/x

= − 1

2x

[
log

(2A

x

)
+

A

x
log

(2A

x

)
− A

2x
+

1

x

]

− 1

2x

[
− log

A

x
+ log

(
2 − A

x

)
− 1

x
− 1

x

]
+ o

( 1

x2

)

= − 1

2x

[
2 log 2 − A log x

x
+

A log(2A) − 1 − A

x

]
+ o

( 1

x2

)
.

Finally, in I3 we substitute z = x/y and integrate by parts to obtain

I3 =
1

2x

∫ x/(x+A)

0

[
log(1 − z2) − log z2

]
dz

=
1

2x

[
z log(1 − z2) − 2z − log(1 − z) + log(1 + z) − 2z log z + 2z

]x/(x+A)

0

=
1

2x

[
− (1 − z) log(1 − z) + (1 + z) log(1 + z) − 2z log z

]x/(x+A)

0

=
1

2x

[A log x

x
− A log A

x
+ 2 log 2 − A

x
− A log 2

x
+

2A

x

]
+ o

( 1

x2

)

=
1

2x

[
2 log 2 +

A log x

x
− A log A − A + A log 2

x

]
+ o

( 1

x2

)
.

By combining I1 − I3 we find that

E{gA(x + Y )} − gA(x)} ≤ −A logA − A − 1/2

x2
+ o

( 1

x2

)
.

It is clear now that there exists an x0(A) such that the term o(x−2) in the right
hand side here is at most 1/(4x2) for all x ≥ x0. By our choice of A the inequality
(2.13) is then valid for x ≥ x0, and by symmetry even for |x| ≥ x0. �
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Remark. Similar calculations can show that if Y has a symmetric density equiv-
alent to 1/|y|1+α when |y| → ∞, for some α ∈ (1, 2), then there exists A > 0 such
that

E{gA(x + Y )} ≤ gA(x),

for all |x| sufficiently large, where gA is as in (2.12).

Now let gA be as in (2.12), but let the distribution of Y be G(·). Write G0 for the
distribution used in Proposition 2.2, namely the distribution with density 1/(2y2)
on (−∞,−1]∪ [1,∞), and with zero density on [−1, 1]. Let E0 denote expectation
with respect to G0 and let Y0 be a random variable with distribution G0.

In the next proposition we shall show that if Y has a symmetric distribution
with distribution function G, and G is close to G0, in the sense of (2.17) below,
then we still have for A ≥ A0 and |x| ≥ x0(A) that

(2.15) E{gA(x + Y )} ≤ gA(x) − A log A

4x2
.

Thus the application of Theorem 2.1 explained just before Proposition 2.2 has some
robustness.

To formulate this robustness we introduce the signed measure with distribution
H := G − G0. Thus H(B) = G(B) − G0(B) for any Lebesgue measurable set
B ⊂ R.

Proposition 2.3. Let

(2.16) Y have a symmetric distribution

(with respect to the origin, so that G(−u) = 1−G(u−) for u ≥ 0). Assume further
that

(2.17) lim sup
y→∞

[y log y]2|G(y) − G0(y)| < ∞.

Then (2.15) holds.

Proof. Just as in Proposition 2.2 we have for large |x|
E{gA(x + Y )} − gA(x) = J1 + J2 + J3,

where now

J1 =

∫

(0,x−A]

log
(x2 − y2

x2

)
G(dy),

J2 =

∫

(x−A,x+A]

[log(x + y) − log x]G(dy) −
∫

(x−A,x+A]

log x G(dy),

and

J3 =

∫

(x+A,∞)

log
(y2 − x2

x2

)
G(dy).

Note that we started the integral in J1 at y = 0 rather than at y = 1 as in I1.
It does not matter whether we include the origin in he domain of integration for
J1, because the integrand vanishes at y = 0. We shall now estimate Ji − Ii for
i = 1, 2, 3. First take i = 1. Integration by parts shows

J1 = log
(x2 − (x − A)2

x2

)
G(x − A) +

∫

(0,x−A]

2y

x2 − y2
G(y)dy.
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If we replace G by G0 in the right hand side here, then we obtain I1. Therefore

J1 − I1 = log
(x2 − (x − A)2

x2

)
[G(x − A) − G0(x − A)]

+

∫

(0,x−A]

2y

x2 − y2
[G(y) − G0(y)]dy.

(2.18)

Now by (2.17) there exists a constant C3 such that

[x log x]2
∣∣G(x) − G0(x)

∣∣ ≤ C3 for all large x.

Thus for x greater than some x1 = x1(A)

x2
∣∣∣ log

(x2 − (x − A)2

x2

)
[G(x − A) − G0(x − A)]

∣∣∣ ≤ 1.

Moreover, for suitable constants Ci and for large x, the integral in the right hand
side of (2.18) is bounded in absolute value by

C4

x2
+ C3

∫ x−A

C5

2y

(x − y)(x + y)

1

[y log y]2
dy

≤ C4

x2
+

2C3

x

∫ x−A

C5

1

y(x − y)(log y)2
dy

=
C4

x2
+

2C3

x2

∫ x−A

C5

1

(log y)2
[1

y
+

1

(x − y)

]
dy

≤ C4

x2
+

2C3

x2

∫ x/2

C5

2

(log y)2y
dy +

2C3

x2

∫ x−A

x/2

1

(log y)2(x − y)
dy

≤ C6

x2
.

Thus, it holds for all large x

(2.19) |J1 − I1| ≤
1 + C6

x2
.

The reader can verify that C3 − C6 can be taken independent of A ≥ 1. We shall
use this fact a little later on.

Next, again by integration by parts,

J2 − I2 =

∫

(x−A,x+A]

[log(x + y) − log x][G(dy) − G0(dy)]

−
∫

(x−A,x+A]

(log x)[G(dy) − G0(dy)]

= [log(x + y) − log x][G(y) − G0(y)]x+A
x−A

−
∫

(x−A,x+A]

1

(x + y)
[G(y) − G0(y)]dy − (log x)[G(y) − G0(y)]x+A

x−A.(2.20)

The first term in the right hand side here is for large x at most

log 3
∣∣G(x + A) − G0(x + A)

∣∣ + log 3
∣∣G(x − A) − G0(x − A)

∣∣ ≤ C7

[x log x]2
,
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by virtue of (2.17). Also by (2.17), the integral in the right hand side of (2.20) is
bounded by a constant times

∫

(x−A,x+A]

1

y3(log y)2
dy = o

( 1

x2

)
.

Still under (2.17) also the last term in (2.20) is o
(
x−2

)
.

Finally, for large x,
∣∣J3 − I3|

=
∣∣∣
∫

(x+A,∞)

log
(y2 − x2

x2

)
[G(dy) − G0(dy)]

∣∣∣

≤ (log x2)
∣∣∣
∫

(x+A,∞)

[G(dy) − G0(dy)]
∣∣∣ +

∣∣∣
∫

(x+A,∞)

log(y2 − x2)[G(dy) − G0(dy)]
∣∣∣

≤ o
( 1

x2

)
+

∣∣∣ log(y2 − x2)[G(y) − G0(y)]∞x+A

∣∣∣ +
∣∣∣
∫ ∞

x+A

2y

y2 − x2

[
G(y) − G0(y)

]
dy

∣∣∣

≤ o
( 1

x2

)
+

∣∣∣
∫ ∞

x+A

[ 1

y − x
+

1

y + x

] C3

[y log y]2
dy

∣∣∣

≤ o
( 1

x2

)
+

2C3

[x log x]2

∫ 2x

x+A

dy

y − x
+

2C3

x

∫ ∞

2x

1

[y log y]2
dy

= o
( 1

x2

)
.

By combining the various estimates and using Proposition 2.2 we see that

E{gA(x + Y )} = E{gA(x + Y0)} + J1 − I1 + J2 − I2 + J3 − I3

≤ gA(x) − A log A

2x2
+

2 + C6

x2

for large x. As we observed right after (2.19), C6 is independent of A. We can
therefore choose A0 so large that 2 + C6 ≤ (A/4) log A. Then, for A ≥ A0 and x
large, (2.15) follows. �

3. Coupling method

In this section one wants to construct the process {Sn} coupled to another pro-
cess. If such a coupling exists, then {Sn} automatically is recurrent (transience
properties will also be considered). The problem now is whether the required cou-
pling exists. The next subsections describe the desired coupling.

3.1. Discrete case.

3.1.1. Successfull coupling. The following properties, which a Markov chain with
transition matrix Q on Z

2 may or may not have, will be useful. If (U, V ) is a
Markov chain on Z

2 starting from (0, 0), with transition matrix Q, let

T = T (Q) := inf{n > 0 : V (n) = 0}.
If

T is a.s. finite,(3.1)

then the law P of UT is well defined. This P equals ϕ(Q) for some function ϕ.
The following definition may differ slightly from the definition the reader knows. A
process on Z is said to be recurrent if for any u ∈ Z the process visits u infinitely
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often. We say that a law P on Z is recurrent, if the random walk whose steps have
distribution P is recurrent.

Another property is invariance under horizontal translations, that is,

Q[(u, v), (u′, v′)] = Q[(0, v), (u′ − u, v′)] for all (u, u′, v, v′).(3.2)

The next property is that Q can be coupled with a certain given transition matrix
Q0 on Z

2 in such a way that ”paths chosen according to Q lie below paths chosen
according to Q0.” The precise meaning of this is that (3.5) below holds. Assume
that Q and Q0 are translation invariant in the sense of (3.2). We say that Q can be

successfully coupled with Q0 if there exists a transition matrix Q̂ on Z
3 such that

(3.3)
∑

w′

Q̂((u, v, w), (u′, v′, w′)) = Q0((u, v), (u′, v′)) for all (u, v, w, u′, v′),

(3.4)
∑

v′

Q̂((u, v, w), (u′, v′, w′)) = Q((u, w), (u′, w′)) for all (u, v, w, u′, w′),

and

Q̂((u, v, w), (u′, v′, w′)) = 0 for all (u, v, w, u′, v′, w′)(3.5)

such that |w| ≤ |v| + 1 and |w′| > |v′| + 1.

In this case we say that Q is successfully coupled with Q0 by Q̂. Condition (3.5)

implies that if (U, V, W ) is a Markov chain with transition matrix Q̂ such that
|W0| ≤ |V0| + 1, then a.s. for all n ≥ 0, |Wn| ≤ |Vn| + 1. Condition (3.3) (resp.
(3.4)) implies that (U, V ) (resp. (U, W )) is a Markov chain with transition matrix
Q0 (resp. Q). Note finally, even though this will not be needed, that (3.3) with
(3.4) implies that U is a Markov chain.

Let (U, W ) be a Markov chain on Z
2 with transition matrix Q. In order to prove

recurrence properties, we shall need a kind of irreducibility condition. Set

B := {(U, W ) visits the horizonal axis at some time ≥ 1(3.6)

and does so first at the origin } ,

and for p > 0, write C(p) = C(p, Q) for the property

Q∗
±{B} ≥ p ,(3.7)

where Q∗
+ (resp. Q∗

−) denotes the law of the Markov chain (U, W ) when it starts
at (U0, W0) = (0, 1) (resp. when it starts at (U0, W0) = (0,−1)). This property
will be used to prove certain stopping times (the τi below) are finite. We remind
the reader that recurrence is defined in the lines right after (3.1).

Lemma 3.1. Let Q and Q0 be two translation invariant transition matrices on Z
2

such that Q is successfully coupled with Q0. Assume that (3.1) holds for Q0. If
ϕ(Q0) is recurrent, and (3.7) holds for Q for some p > 0, then (3.1) holds for Q
and ϕ(Q) is recurrent.

Proof. Assume that Q is successfully coupled with Q0 by some Q̂. Let (U, V, W ) be

a Markov chain on Z
3 with transition matrix Q̂ starting at (0, 0, 0) and denote by

P the law of this Markov chain. Let u be arbitrary in Z. Since ϕ(Q0) is recurrent,
(Un, Vn) = (u, 0) infinitely often P-a.s. But since Q is successfully coupled with Q0,
it must hold at every time n at which (Un, Vn) = (u, 0), that |Wn| ≤ 1. This implies
that the event En :=

{
Un = u, Wn ∈ {−1, 0, +1}

}
occurs infinitely often P-a.s. Let
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σ(1) < σ(2) . . . be the sequence of the successive times at which Et occurs and
define the σ-fields

Kt = σ((Un, Wn); n ≤ t), Lt = Kσ(t).

Further, define the events

Bn = {Wσ(n) = 0} = {(Uσ(n), Wσ(n)) = (u, 0)},
and

B̃n = Bn ∪ Bn+1

= Bn ∪ {Wσ(n) = +1, Wσ(n+1) = 0} ∪ {Wσ(n) = −1, Wσ(n+1) = 0}.
(3.8)

We shall complete the proof by showing that

(3.9) B̃n occurs infinitely often P-a.s.

Clearly this suffices for recurrence, since

∪n≥1B̃n = ∪n≥1Bn.

Now B̃n ∈ Ln+1. Moreover it holds

P{B̃n | Ln} = 1{Wσ(n)=0} + P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=1}

+ P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=−1}

≥ 1{Wσ(n)=0} + Q∗
+{B}1{Wσ(n)=1} + Q∗

−{B}1{Wσ(n)=−1}

(by Markov property and translation invariance)

≥ p (by (3.7)).

Consequently, ∑

n≥1

P{B̃n | Ln} ≥
∑

n≥1

p = ∞.

The conditional Borel-Cantelli lemma (Theorem 12.15 in [16]) now implies that
(3.9) holds. �

This lemma proves recurrence of (the trace on the horizontal axis of) a Markov
chain which uses only one transition matrix Q. Benjamini’s process is built up
by concatenating excursions from Markov chains with more than one transition
matrix. We shall use arguments very similar to the preceding lemma, but involving
different transition matrices, in Theorem 3.5.

3.1.2. Coupling of a modified walk with a Markov process in Z
2. Throughout this

subsection we let (Qi, 0 ≤ i ≤ k), with k ≤ ∞, be a sequence of transition matrices
on Z

2, translation invariant in the sense of (3.2), and such that for all i ∈ [1, k],

Qi is successfully coupled with Q0 by some Q̂i. We assume that (3.1) holds for all
Qi, i ≤ k. Note that by Lemma 3.1, if Q0 satisfies (3.1) and if ϕ(Q0) is recurrent,
then the Qi for 1 ≤ i ≤ k automatically satisfy (3.1) as well. Set Pi = ϕ(Qi) for all
i ≤ k, and let F and G be the functions as defined in the introduction. We denote
by (Sn, i(n)) the process defined by (1.2).

Let us now define the coupling between the (generalized version of) the Benjamini
process {Sn} and the Markov process with transition matrix Q0 on Z

2. In order to
carry this out, we note that for all i, there exists Gi : Z

3 × [0, 1] → Z
3, such that if

R is a uniformly distributed random variable on [0, 1], then

Q̂i((u, v, w), (u′, v′, w′)) = P[Gi((u, v, w), R) = (u′, v′, w′)].
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Here and in the sequel we write P for the measure governing the choice of one or
several uniform random variables on [0, 1]. It will be clear from the context to

which random variables this applies. Let Nk := {1, ..., k} and define F̂ : Z × Nk ×
∪n≥1(Z × Nk)n × [0, 1] → Nk, by

(3.10) F̂ ((w, i), (uℓ, iℓ)0≤ℓ≤n, a) = i if |w| ≥ 1.

and by

(3.11) F̂ ((0, i), (uℓ, iℓ)0≤ℓ≤n, a) = F (a, (uℓ, iℓ)0≤ℓ≤n).

This function F̂ determines the index i in Qi which will govern the steps in our
modified random walk over a certain random time interval, as we make more precise
now. Let (Aℓ)ℓ≥1 and (Bℓ)ℓ≥1 be two independent sequences of i.i.d., uniformly
distributed random variables on [0, 1]. Let U0 and I0 be random variables (respec-
tively on Z and on Nk), independent of (Aℓ)ℓ≥1 and (Bℓ)ℓ≥1. We will assume that
(U0, I0) and (S0, i(0)) have the same distribution. Let

Fn = σ((Aℓ, Bℓ); ℓ ≤ n) ∨ σ(U0, I0).

Define Ûℓ = (Uℓ, Vℓ, Wℓ) and Iℓ for ℓ ≥ 1 by the following: set τ0 = 0, V0 = W0 = 0
and for n ≥ 1

(3.12) τn+1 = inf{ℓ > τn : Wℓ = 0}.

In Lemma 3.3 we shall show that if ϕ(Q0) is recurrent, and the Qi satisfy (3.7),
then these stopping times are P-a.s. finite. For m ≥ 0, set

(3.13) Im+1 = F̂
(
(Wm, Im), (Uτℓ

, Iτℓ
){τℓ≤m}, Am+1

)
,

with F̂ as defined in (3.10), and

(3.14) Ûm+1 = GIm+1(Ûm, Bm+1).

Note that (Ûm, (τl){τl≤m}, Im) is Fm-measurable. Note also that (3.10) implies that
Im+1 = Im when |Wm| ≥ 1. This ensures that for all m ∈ [τℓ +1, τℓ+1], Im = Iτℓ+1.

Lemma 3.2. The process (Un, Vn)n≥0 is a Markov chain with transition matrix
Q0.

Proof. For n ≥ 0 and (u′, v′) in Z
2,

P{(Un+1, Vn+1) = (u′, v′) | Fn} =
∑

w′,i

P{Ûn+1 = (u′, v′, w′) and In+1 = i | Fn}

=
∑

w′,i

P{Gi(Ûn, Bn+1) = (u′, v′, w′) and

F̂ ((Wn, In), (Uτℓ
, Iτℓ

){τℓ≤n}, An+1) = i | Fn}
=

∑

w′,i

Q̂i(Ûn, (u′, v′, w′))P{In+1 = i | Fn}

= Q0((Un, Vn), (u′, v′)),

from which we deduce the Markov property. �
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Lemma 3.3. Let (Um, Im) be the process defined by (3.13) and (3.14). Assume
that all Qi, 1 ≤ i ≤ k, satisfy (3.7) and are successfully coupled with Q0. Finally,
assume that (3.1) holds for Q0 and that ϕ(Q0) is recurrent. Then P-a.s. it holds
τn < ∞ for all n ≥ 0. In particular all Qi, 1 ≤ i ≤ k, satisfy (3.1), and we set
Pi = ϕ(Qi). Moreover
(a) For all n ≥ 0, the law of Uτn+1 − Uτn

given Gn := Fτn
∨ σ(Iτn+1) is PIτn+1 .

(b) For all n ≥ 0,

(3.15) Iτn+1 = Iτn+1 = F (Aτn+1, (Uτℓ
, Iτℓ

){τℓ≤n}).

(c) For (i, u) ∈ {1, ..., k} × Z, write Pi,u for the law of the Markov chain on Z
2

with transition matrix Qi, starting from (u, 0) and stopped at the first time the w-
coordinate returns to 0. For all n ≥ 0, given Gn, the law of the excursion from the
U -axis

(Uτn+ℓ, Wτn+ℓ
)0≤ℓ≤τn+1−τn

is PIτn ,Uτn
.

Proof. The proof is by induction on n. First take n = 0. Then τ1 < ∞ a.s. by
virtue of Lemma 3.1. Now part (a) for n = 0 is contained in part (c) for n = 0. Part
(b) for n = 0 follows from (3.10), (3.11) and (3.13). In particular, it follows from
(3.10) and from the definition of the τ ’s that Im can only change when Wm = 0, so
that Im is constant on the intervals [τn +1, τn+1] for n = 0. Equation (3.15) follows
from (3.10) and (3.13). The proof of part (c) for n = 0 is very similar to the one of
Lemma 3.2. We skip the details.

Now assume that τN < ∞ and parts (a)-(c) have been proven for n ≤ N . Then
given Gn, on the event {IτN+1 = i}, τN+1 − τN is equal in law to τ1 for the Markov
chain with transition matrix Qi started at (UτN

, 0). Lemma 3.1 implies that this
τ1 is finite a.s. Thus τN+1 < ∞ P-a.s. Now statements (a)-(c) for n = N + 1 can
be proven as in the case n = 0. Again we skip the details. �

The following lemma is almost immediate from Lemma 3.3 and the strong
Markov property. The lemma shows that a sample path of Benjamini’s process
can be built up from a sequence of excursions, by identifying the initial point of
each excursion with the endpoint of the preceding excursion. This leads to our
principal recurrence result, Theorem 3.5, which deduces recurrence of a Benjamini
process from simple and known recurrence properties of some of the excursions.

Lemma 3.4. The processes {Sn, i(n)}n≥0 defined by (1.2) and (Uτn
, Iτn

)n≥0 have
the same distribution.

3.1.3. Recurrence properties and examples.

Theorem 3.5. Let (Qi, 0 ≤ i ≤ k) be a sequence of transition matrices on Z
2 which

are translation invariant in the sense of (3.2). Assume that for all 1 ≤ i ≤ k, Qi is
successfully coupled with Q0. Assume further that Q0 satisfies (3.1), P0 = ϕ(Q0) is
recurrent and that all Qi, 1 ≤ i ≤ k, satisfy (3.7) for some p > 0, independent of i.
Then for any process {Sn, i(n)}n≥0 that satisfies (1.1) with Pi = ϕ(Qi), {Sn}n≥0

is recurrent.

Proof. Let {Sn, i(n)}n≥0 be a process satisfying (1.1). Without loss of generality
we can assume that S0 = 0. Such process can be defined by (1.2) for some functions

F and G. Let (Ûm, Im) be the process defined by (3.13) and (3.14) with F̂ defined
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by (3.10) and (3.11), and with Û0 = (0, 0, 0). Let P be the measure governing the
choice of the independent uniformly distributed random variables used to define

the process (Ûm, Im). We still denote by τn, n ≥ 0, the successive return times to
0 of W , as defined in (3.12). Lemma 3.4 states that (Sn, i(n))n≥0 is equal in law to
(Uτn

, Iτn
)n≥0.

We now prove that {Uτn
} is recurrent on Z. To this end observe that (U, V )

is a Markov chain with transition matrix given by Q0 and that P0 = ϕ(Q0) is
recurrent. This implies that for any fixed u, (Uℓ, Vℓ) = (u, 0) for infinitely many ℓ
with P-probability 1. Moreover, by construction, |W | ≤ |V | + 1. So

(Uℓ, Wℓ) ∈ {(u, 0), (u,−1), (u, 1)} infinitely often,

still with P-probability 1. Denote by σn, n ≥ 0, the successive return times to
{(u, 0), (u,−1), (u, 1)} of (U, W ).

From here on we can follow the proof of Lemma 3.1 (which is the case k = 1).
We redefine

Kt := σ((Un, Wn, In); n ≤ t), Lt = Kσ(t),

and we replace the condition (3.7) by (with the event B as in (3.6))

Qi,±1{B} ≥ p ,(3.16)

where Qi,1 (resp. Qi,−1) denotes the law of the Markov chain with transition matrix
Qi when it starts at (0, 1) (resp. at (0,−1)). We further redefine the events

Bn = {Wσ(n) = 0} = {(Uσ(n), Wσ(n)) = (u, 0)},
and B̃n = Bn ∪ Bn+1. The proof will be complete if we show that

B̃n occurs infinitely often P-a.s.

Now B̃n ∈ Ln+1 and on {Iσ(n) = i}, it holds

P{B̃n | Ln} = 1{Wσ(n)=0} + P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=1}

+P{Wσ(n+1) = 0 | Ln}1{Wσ(n)=−1}

≥ 1{Wσ(n)=0} + Qi,1{B}1{Wσ(n)=1} + Qi,−1{B}1{Wσ(n)=−1},

by using that given Ln and on {Iσ(n) = i}, the law of (Uσ(n)+k, Wσ(n)+k)k stopped
at the first positive time W reaches 0, is the same as the law of the Markov chain
with transition matrix Qi starting at (u, Wσ(n)) and stopped at the first time W
reaches 0, and then by using the translation invariance of Qi. Next (3.16) implies

P{B̃n | Ln} ≥ p.

We conclude by using the conditional Borel-Cantelli lemma as in the proof of
Lemma 3.1. �

We state now an analogous result which can give examples of transient processes.
We say that a process is transient if almost surely it comes back a finite number of
times to each site. A law is said to be transient if the associated random walk is
transient.

Theorem 3.6. Let (Qi, 0 ≤ i ≤ k) be a sequence of transition matrices on Z
2

which are translation invariant in the sense of (3.2) and satisfy (3.1). Assume
that for all 1 ≤ i ≤ k, Q0 is successfully coupled with Qi. Assume further that
P0 = ϕ(Q0) is transient. Then for any process {Sn, i(n)}n≥0, which satisfies (1.1)
with Pi = ϕ(Qi), {Sn}n≥0 is transient.
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The proof of this result is analogous to the proof of Theorem 3.5 and left to the
reader. Note the asymmetry. The hypothesis is that Q0 is successfully coupled
with Qi, instead of Qi with Q0.

Theorem 3.5 solves in particular the recurrence part in Benjamini’s original ques-
tion. This is explained in the following example. Here and in the remainder of this
paper ”Cauchy law” will always be short for ”symmetric Cauchy law”.

Example 3.7. Let Q0 be the transition matrix of a simple random walk on Z
2:

Q0((u, v), (u′, v′)) = 1/4 if (u′, v′) ∈ {(u, v±1), (u±1, v)}. We call P0 := ϕ(Q0) the
”discrete Cauchy law”. Observe that P0 is recurrent. Benjamini’s process uses in an
arbitrary order jumps of law P0 and jumps of law P1, with P1(1) = P1(−1) = 1/2.
Proving Benjamini’s process is recurrent using Theorem 3.5 would require finding
Q1 such that P1 = ϕ(Q1), and then to prove that Q0 and Q1 are both successfully

coupled with Q0. Such Q1 does not exist. So instead we will define Q̃1, such that

P̃1 = ϕ(Q̃1) satisfies

(3.17) P̃1{±1} = 1/4 and P̃1{0} = 1/2 .

As far as recurrence is concerned, there is no difference between using P1 or P̃1, as
we show in Lemma 3.8 below.

So let us now define Q̃1 and the two different couplings. Assume (u, v, w) ∈ Z
3

are given. Let (U, V ) be a simple random walk on Z
2 starting from (u, v) and define

the process W by W0 = w and Wn = 0 for all n > 0. W is deterministic and hence

independent of (U, V ). Then Û = (U, V, W ) and (U, W ) are Markov chains and Q̃1,
the transition matrix of (U, W ), has entries

Q̃1[(u, w), (u ± 1, 0)] = 1/4 and Q̃1[(u, w), (u, 0)] = 1/2 for all u, w.

Moreover, it is straightforward that Q̃1 is successfully coupled with Q0 and satisfies
(3.7) for p = 1/2 . Observe also that (3.17) holds, as claimed.

Next we define the coupling of Q0 with itself. We still let (U, V ) be a simple
random walk on Z

2 starting from (u, v). But this time W is defined by W0 = w
and for n ≥ 0, by

(3.18) Wn+1 − Wn =

{
Vn+1 − Vn if WnVn > 0 or if Vn = 0 and Wn > 0,

−(Vn+1 − Vn) otherwise.

Then Û = (U, V, W ) and (U, W ) are Markov chains, and the transition matrix of
(U, W ) is Q0. Moreover, it is straightforward that this gives a successful coupling
of Q0 with itself, and that Q0 satisfies (3.7) for p = 1/4. Thus the hypotheses

of Theorem 3.5 are satisfied by (P̃1, P2), where P2 = P0 = ϕ(Q0). Therefore
for all processes (Sn, i(n))n≥0 satisfying (1.1) (or equivalently, for all processes
(Sn, i(n))n≥1 defined by (1.2)), the resulting processes S will be recurrent. The
fact that Benjamini’s process is recurrent is now a consequence of Lemma 3.8.

Remark: In Section 4 we shall use some consequences of this example in the

special case when k = 2 and the corresponding distributions Q̃1 and Q2 = Q0 are
as defined a few lines before (3.18). Let now In and (Un, Vn, Wn) be the processes
defined by (3.13) and (3.14). Recall (Un, Vn) is a simple random walk on Z

2. First
it needs to be pointed out that in this special case, the function G2 can be defined
such that (3.18) is valid for n ∈ [τℓ, τℓ+1) for some ℓ with In+1 = Iτℓ+1 = 2, and
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the function G1 is defined such that when In+1 = 1, then Wn+1 = Wn = 0. We
claim that

Un = Vn = 0, Vn+1 = −1 and Wn ∈ {−1, 0, 1}
together imply Un = Wn = 0 or Un+1 = Wn+1 = 0.

(3.19)

To see this assume that Un = Vn = 0 and Vn+1 = −1. Then Vn+1 − Vn = −1.
If Wn = 0, then Un = Wn = 0 by assumption and there is nothing to prove.
Assume then that Wn = +1. This excludes In+1 = 1, because when In+1 = 1, then
Wn = Wn+1 = 0. So In+1 = 2 and (3.18) applies. Thus

Wn+1 − Wn = Vn+1 − Vn = −1, whence Wn+1 = Wn − 1 = 0.

Moreover the jump from (Un, Vn) to (Un+1, Vn+1) can only be of size 1 (because
(Un, Vn) is a simple random walk on Z

2). But there already is a change of size 1
in the V -direction. Thus we can only have Un+1 − Un = 0. This proves our claim
in case Wn = 1. The case Wn = −1 is entirely similar, since now Wn+1 − Wn =
−(Vn+1 − Vn). Thus (3.19) holds in general.

Lemma 3.8. Let (P̃i, 1 ≤ i ≤ k) be a sequence of probability distributions on Z.

Assume that for all processes (Sn, i(n)) satisfying (1.1) with P̃i instead of Pi, the
process S is recurrent. Let now I ⊂ Nk be given and let (Pi, 1 ≤ i ≤ k) be defined

by Pi = P̃i if i /∈ I, and if i ∈ I, Pi{u} = P̃i{U = u | U 6= 0}, for u 6= 0, with U a

random variable of law P̃i.
Then for all processes (Sn, i(n)) satisfying (1.1), S is recurrent as well.

Proof. First note that the hypothesis on the P̃i’s means that for any choice of

F̃ : [0, 1] × ∪n≥1(Z × Nk)n → Nk, the process defined by (1.2) (with F̃ and G̃ in

place of F and G respectively, and G̃ associated to the P̃i’s) is recurrent.

The intuition for this lemma is clear. A walker using P̃i as distribution for his

displacement stands still with probability P̃i(0). In fact when he arrives at a new
site he stands still a geometric number of times and then makes a displacement with
distribution Pi. The standing still has no influence on the collection of sites visited
by the walker and hence does not influence recurrence. Recurrence will be the same

whether P̃i or Pi is used. A complication arises because we have to deal not with
sequences (Sn) but with sequences (Sn, i(n)), and even the latter sequences are not
Markovian.

Let now (Sn, i(n)) be a process satisfying (1.1). To simplify, we take S0 = 0. As
is explained in the introduction, such a process can be constructed with functions
F : [0, 1] × ∪n≥1(Z × Nk)n → Nk, G : [0, 1] × Nk → Z and independent sequences
(Aℓ)ℓ≥0 and (Bℓ)ℓ≥0 of i.i.d. uniformly distributed random variables on [0, 1]: for
n ≥ 0,

i(n + 1) = F (An+1, (Sℓ, i(ℓ))ℓ≤n)

and
Sn+1 − Sn = G(Bn+1, i(n + 1)).

Here G is such that the law of G(B1, i) is Pi.

Let now F̃ : [0, 1] × ∪n∈N(Z × Nk)n → Nk be defined by

F̃ (a, (s(ℓ), j(ℓ))ℓ≤n) = j(n),(3.20)

if j(n) ∈ I and s(n) = s(n − 1), and otherwise by

F̃ (a, (s(ℓ), j(ℓ))ℓ≤n) = F (a, (s(tℓ), j(tℓ))ℓ≤m),(3.21)
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where t0 = 0,

(3.22) tℓ = inf{r ∈ (tℓ−1, n] : s(r) 6= s(r − 1) or j(r) /∈ I} for ℓ ≥ 1,

and

(3.23) m = sup{ℓ : tℓ < ∞}.
Note that (3.20)-(3.23) are merely the definitions of the non-random functions tℓ, m

and F̃ at a generic point a, (s(ℓ), j(ℓ))ℓ≤n of their domains. Note also that, by
convention, tℓ = ∞ if the set in the right hand side of (3.22) is empty. In particular
this is the case for ℓ > n.

Let G̃ : [0, 1]×Nk → Z be such that the law of G̃(B1, i) is P̃i. Define the random

quantities (S̃n, ĩ(n)) by S̃0 = 0, ĩ(0) = i(0) fixed in Nk, and for n ≥ 0,

ĩ(n + 1) = F̃ (An+1, (S̃ℓ, ĩ(ℓ))ℓ≤n),(3.24)

and

S̃n+1 − S̃n = G̃(Bn+1, ĩ(n + 1)).(3.25)

Equation (3.20) implies that

ĩ(n + 1) = ĩ(n) if ĩ(n) ∈ I and S̃n = S̃n−1.(3.26)

Let ρ0 = 0 and ρℓ = inf{r > ρℓ−1 : S̃r 6= S̃r−1 or ĩ(r) /∈ I} for ℓ ≥ 1. Note that ρn

is essentially the value of tn at the random place (S̃ℓ, ĩ(ℓ))ℓ≤n. By definition

S̃r = S̃ρℓ
for all r ∈ [ρℓ, ρℓ+1),(3.27)

and

S̃ρℓ+1
6= S̃ρℓ

if ĩ(ρℓ + 1) ∈ I.(3.28)

Moreover, (3.26) implies (by induction on r) that ĩ(r) = ĩ(ρℓ + 1) for all r ∈
(ρℓ, ρℓ+1], and

ĩ(ρℓ+1) = ĩ(ρℓ + 1) = F̃ (Aρℓ+1, (S̃r, ĩ(r))r≤ρℓ
)(3.29)

= F (Aρℓ+1, (S̃ρr
, ĩ(ρr))r≤ℓ),

where the last equality follows from (3.21). Now, for any i ∈ Nk and u ∈ Z, if
Fn = σ((Aℓ, Bℓ)ℓ≤n),

P{S̃ρℓ+1
− S̃ρℓ

= u | ĩ(ρℓ + 1) = i, Fρℓ
} = Pi(u).(3.30)

Indeed when i ∈ I and u 6= 0, the left hand side is equal to
∑

K≥1

P{{G̃(Bρℓ+K , i) = u} ∩ {ρℓ+1 − ρℓ = K} | ĩ(ρℓ + 1) = i, Fρℓ
},

which is equal to ∑

K≥1

P̃i(0)K−1P̃i(u) = Pi(u).

If i ∈ I and u = 0, both sides of (3.30) equal 0 by (3.28) and the definition of I.
When i(ρℓ + 1) = i and i /∈ I, then ρℓ+1 = ρℓ + 1 and (3.30) follows from the fact

that P̃i = Pi.
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Finally we claim that (3.29) and (3.30) show that (S̃ρℓ
, ĩ(ρℓ)) has the same

law as (Sℓ, i(ℓ)): indeed we shall show by induction on ℓ that for any sequence
j(1), . . . , j(ℓ) ∈ Nk, u1, . . . , uℓ ∈ Z,

(3.31) P

{
S̃ρℓ+1

− S̃ρℓ
= uℓ+1, ĩ(ρℓ+1) = j(ℓ + 1), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)

}
,

is equal to

(3.32) P {Sℓ+1 − Sℓ = uℓ+1, i(ℓ + 1) = j(ℓ + 1), . . . , S1 = u1, i(1) = j(1)} .

But (3.31) is equal to

Pj(ℓ+1)(uℓ+1)P
{
ĩ(ρℓ+1) = j(ℓ + 1), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)

}
,

by (3.30). By using (3.29) we see that the second factor in this last expression is
equal to

P {F (Aρℓ+1, (sr, j(r))r≤ℓ) = j(ℓ + 1)}
× P

{
S̃ρℓ

− S̃ρℓ−1
= uℓ, ĩ(ρℓ) = j(ℓ), . . . , S̃ρ1 = u1, ĩ(ρ1) = j(1)

}
,

where for all r, sr := u1 + · · ·+ ur. Then an induction procedure shows that (3.31)
is equal to (3.32), as claimed.

Moreover, by assumption S̃ is recurrent and (3.27) implies that (S̃ρℓ
, ℓ ≥ 0) is

also recurrent. This proves the lemma. �

We finish with this last class of examples

Example 3.9. Take for Q0 the transition matrix of a Markov chain (U, V ) such
that U and V are both Markovian and independent of each other, and such that
P0 = ϕ(Q0) is recurrent. Assume that for all i ∈ [1, k], Qi is the transition matrix of
a Markov chain (U, Wi) such that U and Wi are both Markovian and independent
of each other (the chain U being the same for Q0 and for Qi). Assume that all
Qi’s are translation invariant (note that this hypothesis only concerns the Markov
chain U). Suppose also that for all i it is possible to couple the chains V and Wi

such that (V, Wi) is Markovian and such that if |Wi(0)| ≤ |V (0)| + 1 then for all
n ≥ 0, |Wi(n)| ≤ |V (n)| + 1. Let now U be a chain independent of this Markov
process (V, Wi). Then (U, V ) and (U, Wi) are both Markovian respectively with
transition matrices Q0 and Qi. This coupling of (U, V ) and (U, Wi) shows that Qi

is successfully coupled with Q0. Assume also that the Qi’s, i ≤ k, satisfy (3.7) for
some positive p, uniformly in i. Then the hypotheses of Theorem 3.5 are satisfied.

This can be applied to the following: let (An) and (Bn) be two independent
sequences of i.i.d. random variables uniformly distributed on [0, 1]. Let p ∈ [0, 1/2)
and let U(n) =

∑n
i=1(1{Ai≥p} − 1{Ai<1−p}). Let V be the simple random walk on

Z defined by V (0) = v0 and

V (n) − V (n − 1) = 1{Bn<1/2} − 1{Bn≥1/2}.

Let (pi(w) : i ≥ 1 and w ≥ 0) be such that pi(w) ∈ [0, 1/2] for all w ∈ Z. Define
Wi by Wi(0) = 0 and on the event {Wi(n − 1) = w},

Wi(n) − w =
[
1{Bn<pi(w)} − 1{Bn≥pi(w)}

]
1{w≥1}

+
[
1{Bn≥pi(w)} − 1{Bn<pi(w)}

]
1{w≤−1}

+
[
1{Bn<1/2−pi(0)} − 1{Bn≥1/2+pi(0)}

]
1{w=0}.



RANDOM WALKS WITH OCCASIONALLY MODIFIED TRANSITION PROBABILITIES 23

Then one immediately checks that |Wi(n)| ≤ |V (n)| + 1 for all n ≥ 0, and the
resulting transition matrices Qi are successfully coupled with Q0. Moreover Con-
dition (3.16) is satisfied for all Qi’s with (1− 2p)/2 instead of p. Thus for any such
choice of (pi(w)), we can apply Theorem 3.5 and find in this way many examples of
recurrent processes. However, given the (pi(w))’s, it is usually not easy to describe
explicitly the associated laws Pi.

3.2. Continuous case. We present now an analogous coupling method (in the
spirit of Example 3.9) when the laws Pi are defined on R, because in this case, by
using stochastic calculus, we can give more explicit examples of Pi’s, which can be
used to construct recurrent processes {Sn} (see Proposition 3.15 below).

Let B(1) and B(2) be two independent Brownian motions started at 0. Let
(U0, V0, W0) be a random variable in R×R

+×R
+, independent of B = (B(1), B(2)).

For all t > 0, set Ut = U0 + B
(1)
t . Let (σ0, b0) : [0, +∞) → R

2 be some Lipschitz
functions and v0 ≥ 0 some constant. Then (see Exercice 2.14 p.385 in [15]) the
stochastic differential equation

(3.33) Vt = V0 +

∫ t

0

σ0(Vs) dB(2)
s +

∫ t

0

b0(Vs) ds + Lt,

with L the local time in 0 of V , admits a unique solution which is measurable with
respect to the filtration generated by B(2).

Consider next (σ, b) : (0, +∞) → R
2 some locally Lipschitz functions and the

stochastic differential equation

(3.34) Wt = W0 +

∫ t

0

σ(Ws) dB(2)
s +

∫ t

0

b(Ws) ds, t < T ∧ e,

where

e = inf{t ≥ 0 : Wt = +∞} and T = inf{t ≥ 0 : Wt = 0}.
It is known (see for instance Exercise 2.10 p.383 in [15]) that if σ and b are locally
Lipschitz, then equation (3.34) admits a unique solution W which is measurable
with respect to the filtration generated by B(2). When (U0, W0) = (0, 1) and when
(σ, b) is such that

T < e almost surely,(3.35)

we denote by P the law of UT . Then, like in the discrete case, we have P = ϕ(σ, b)
for some function ϕ. In the following, all (σ, b) will be assumed to be locally
Lipschitz and such that (3.35) is satisfied. Moreover, for w > 0 we will denote by

P
(σ,b)
w the law of (Wt)t≤T when W0 = w.
We say that (σ, b) : (0,∞) → R

2 is successfully coupled with (σ0, b0) if for any
solutions V and W , respectively of (3.33) and (3.34), with W0 ≤ V0 + 1, we have
Wt ≤ Vt + 1 for all t < T . Note that, by using a comparison theorem (see [9]
Theorem 1.1 p.437), if for all v > 0, σ(v + 1) = σ0(v) and b(v + 1) ≤ b0(v), then
(σ, b) is successfully coupled with (σ0, b0).

Let ((σi, bi), 0 ≤ i ≤ k), k ≤ ∞, be a sequence of locally Lipschitz functions on
(0,∞)2 such that for all i ∈ Nk, (σi, bi) is successfully coupled with (σ0, b0). For
i ∈ Nk, set Pi = ϕ(σi, bi).

Let F : [0, 1] × ∪n≥1(R × Nk)n → Nk be given. This function F determines the
index i in (σi, bi) which will govern the steps in our modified random walk over a
certain random time interval, as we make more precise now.
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Let (An)n≥1 be a sequence of independent random variables uniformly dis-
tributed on [0, 1]. Assume that this sequence is independent of B. Let V be
the solution of (3.33), with V0 = 0. Let (U0, I0) be a random variable in R × Nk,
independent of A and B. Define (τn)n≥0 an increasing sequence of random times,
and the processes (W ∗

t )t<τ∞
and (It)t<τ∞

, with

(3.36) τ∞ := lim
n→∞

τn,

by the following: first τ0 = 0. Assume then that (τ1, . . . , τn) and (It, W
∗
t )0≤t≤τn

are defined and measurable with respect to the σ-field

σ((Us, Bs)s≤τn
) ∨ σ(A1, . . . , An).

Assume moreover that It = Iτℓ+1
for t ∈ (τℓ, τℓ+1] and ℓ ≤ n− 1, and that W ∗

τℓ
= 0

for all 1 ≤ ℓ ≤ n. For ℓ ≤ n, set i(ℓ) = Iτℓ
and Sℓ = Uτℓ

. Then we define i(n + 1)
by

i(n + 1) = F (An+1, (Sℓ, i(ℓ))ℓ≤n),

and Wn as the solution of

Wn
t = 1 +

∫ t

0

σi(n+1)(W
n
s ) dBτn

s +

∫ t

0

bi(n+1)(W
n
s ) ds, t ≤ T (n),

where T (n) is the first time when Wn reaches 0, and where Bτn
s = B

(2)
τn+s − B

(2)
τn .

The process Wn is well-defined since Bτn is independent of i(n + 1). Let

τn+1 := τn + T (n).

Then set

W ∗
t = Wn

t−τn
and It = i(n + 1) for t ∈ (τn, τn+1].

This defines the sequence τn for all n and (W ∗
t , It) for t < τ∞.

Let now Ft = σ((Us, Bs, Is)s≤t∧τ∞
). Then, (τn)n≥0 is a sequence of Ft-stopping

times and like in the discrete setting, we have

Lemma 3.10. For all n ≥ 0, the conditional law of Uτn+1 − Uτn
given Gn :=

Fτn
∨ σ(i(n + 1)) is Pi(n+1).

Proof. Given Gn, the law of (Wn
t = W ∗

τn+t)0≤t≤τn+1−τn
is P

(σi(n+1),bi(n+1))
1 and

(Un
t = Uτn+t − Uτn

)t≥0 is a Brownian motion independent of (Wn
t )0≤t≤τn+1−τn

.
The lemma follows, since by definition ϕ(σi(n+1), bi(n+1)) = Pi(n+1). �

This lemma implies that the sequence (Sn, i(n))n≥0 has the same law as the process
defined in the introduction by (1.2) (with (S0, i(0)) = (U0, I0)). Moreover we have
the following result:

Proposition 3.11. Assume that there exists positive constants 0 < α < 1 < β, σ+

and b+ such that

(3.37) 0 ≤ σi(x) ≤ σ+ and |bi(x)| ≤ b+ for all x ∈ (α, β) and all 1 ≤ i ≤ k.

Then τ∞, as defined in (3.36), is a.s. infinite for any choice of (i(n), n ≥ 0).

Proof. We start with a lemma. For z ∈ R, let Tz := inf{t : W ∗
t = z}. In particular,

T = T0.
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Lemma 3.12. Let (σ, b) be locally Lipschitz and 0 < α < 1 < β some constants.
Then for all r ≥ 1, there exists a constant C > 0 depending only on r, α, β and
σmax := supx∈[α,β] |σ(x)|, such that

P
(σ,b)
1 {T < ǫ} ≤ Cǫr for all ǫ < ((1 − α) ∧ (β − 1))/(2bmax),

where bmax := supx∈[α,β] |b(x)|.
Proof. First we have

P
(σ,b)
1 {T < ǫ} ≤ P

(σ,b)
1 {Tα < ǫ} ≤ P

(σ,b)
1 {Tα ∧ Tβ < ǫ}.

Next set, for all t < T ,

H(t) :=

∫ t

0

σ(Ws) dB(2)
s +

∫ t

0

b(Ws) ds.

We have

P
(σ,b)
1 {Tα ∧ Tβ < ǫ} ≤ P

{
sup
t≤ǫ

|H(t ∧ Tα ∧ Tβ)| ≥ (1 − α) ∧ (β − 1)

}
.

If ǫ < ((1 − α) ∧ (β − 1))/(2bmax), this last term is bounded by

P

{
sup
t≤ǫ

∣∣∣∣∣

∫ t∧Tα∧Tβ

0

σ(Ws) dB(2)
s

∣∣∣∣∣ ≥
(1 − α) ∧ (β − 1)

2

}
,

which by Doob’s inequality (Theorem (1.7) p.54 in [15]) is bounded by Cǫr for some
constant C > 0, which depends only on r, σmax, α and β. This concludes the proof
of the lemma. �

Taking r = 2 in this lemma, we have that for n > ((1 − α) ∧ (β − 1))−12b+

P{τn+1 − τn < n−1 | Gn} ≤ Cn−2.

Proposition 3.11 follows now from the conditional Borel-Cantelli Lemma (Theorem
12.15 in [16]) by a standard argument. �

Let us give now p = (pǫ)ǫ>0 such that pǫ ∈ (0, 1) for all ǫ > 0. Let (σ, b) be
locally Lipschitz and let W be the solution of (3.34), with W0 = w0. Remember
that T = inf{t > 0 : Wt = 0}. We write C′(p) = C′(p, σ, b)) for the property

(3.38) P{UT ∈ [−ǫ, ǫ]} > pǫ for all ǫ > 0 and all w0 ∈ (0, 1],

where U is a Brownian motion starting from 0 independent of W .
We say that a process on R is recurrent, if for all ǫ > 0 and all x ∈ R, it

returns a.s. infinitely often to [x − ǫ, x + ǫ]. Similarly a law P is recurrent if the
associated random walk is recurrent. The analogue of Theorem 3.5 is then the
following theorem:

Theorem 3.13. Let p = (pǫ)ǫ>0 be given. Let (σ0, b0) be a Lipschitz function and
((σi, bi), 1 ≤ i ≤ k) be a sequence of locally Lipschitz functions. Assume (3.35)
holds for i ∈ {0} ∪ Nk. Set Pi = ϕ(σi, bi). Assume that there exists 0 < α <
1 < β and positive constants σ+ and b+ such that (3.37) holds. Assume moreover
that P0 = ϕ(σ0, b0) is a recurrent law on R and that for each i ∈ Nk, (σi, bi) is
successfully coupled with (σ0, b0) and satisfies (3.38). Then for any (Sn, i(n))n≥0

which satisfies (1.1), the process {Sn}n≥0 is recurrent.
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We state now an analogue of Theorem 3.6 which can give examples of transient
processes. We say that a process on R is transient, if for all a < b, it returns a.s.
a finite number of times in [a, b]. Similarly a law P is transient if the associated
random walk is transient.

Theorem 3.14. Let (σ0, b0) be a Lipschitz function and ((σi, bi), 1 ≤ i ≤ k) be a
sequence of locally Lipschitz functions. Assume (3.35) holds for i ∈ {0} ∪ Nk. Set
Pi = ϕ(σi, bi). Assume that there exists 0 < α < 1 < β and positive constants σ+

and b+ such that (3.37) holds. Assume moreover that P0 = ϕ(σ0, b0) is a transient
law on R and that for each i ∈ Nk, (σ0, b0) is successfully coupled with (σi, bi).
Then for any (Sn, i(n))n≥0 which satisfies (1.1), the process {Sn}n≥0 is transient.

The proof of these theorems are similar to the discrete case and left to the reader.

As an example of laws which are successfully coupled we give the following result:

Proposition 3.15. Let P0 be the Cauchy law on R. Set (σ0, b0) = (1, 0). Then
(σ0, b0) satisfies (3.35), is successfully coupled with itself, and P0 = ϕ(σ0, b0). More-
over for any α ∈ [1, 2], there exists (σα, bα) locally Lipschitz satisfying (3.35), suc-
cessfully coupled with (σ0, b0) and such that ϕ(σα, bα) is in the domain of normal
attraction of a symmetric stable law with index α.

Proof. The fact that (σ0, b0) satisfies (3.35) and is successfully coupled with itself

is immediate (in the coupling we have Vt = V0 + B
(2)
t + Lt and Wt = W0 + B

(2)
t

for t < T ). So let us concentrate on the second claim. The case α = 1 is given for
instance by P0 itself. Now we prove the result for α = 2. Take (σ, b) = (0,−1) to be
constants. Then Wt = W0−t for all t ≤ T = W0. Set P = ϕ(σ, b) = ϕ(0,−1), (3.35)
being obviously satisfied. Let U be a standard Brownian motion on R. Observe
that when W0 = 1, then W reaches 0 at time T = 1. Thus P is the law of U at
time 1 which is the standard Gaussian and it is immediate that (σ, b) = (0,−1)
is successfully coupled with (σ0, b0) = (1, 0). This gives the result for α = 2. It
remains to prove the claim for α ∈ (1, 2). For ν ∈ (−1,−1/2), let W (ν) be a Bessel
process of index ν starting from 1, i.e., W (ν) is the solution of the SDE:

W
(ν)
t = 1 + B

(2)
t + (ν + 1/2)

∫ t

0

1

W
(ν)
s

ds for all t < T,

where B(2) is a Brownian motion and T is as always the first time when W reaches
0. It is known (see [15]) that T is a.s. finite when ν ∈ (−1,−1/2). Set σ(ν) = 1
and b(ν)(w) = (ν + 1/2)/w. Then, for ν ∈ (−1,−1/2), (σ(ν), b(ν)) satisfies (3.35).
Set P (ν) = ϕ(σ(ν), b(ν)). We claim that if ν ∈ (−1,−1/2), then (σ(ν), b(ν)) can be
successfully coupled with (σ0, b0) and P (ν) is in the domain of attraction of a stable
law with index −2ν. The first part is immediate: since ν + 1/2 ≤ 0, it follows
from a comparison theorem (see [9] Theorem 1.1 p.437). For the second part, first
observe that

E
{
eiuUT

}
= E

{
e−

u2

2 T
}

for all u ∈ R.

So the characteristic function of P (ν) is related to the Laplace transform of T . For
Bessel processes this last function can be expressed in terms of modified Bessel
functions: if φν is the Laplace transform of T , the hitting time of 0 for a Bessel
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process of index ν < −1/2 starting from 1, then (see [10] Theorem 3.1):

φν(s) =
2ν+1

Γ(−ν)

Kν(
√

2s)

(2s)ν/2
for all s > 0,

where Γ is the usual Gamma function and Kν is a modified Bessel function (to
see this from [10], take a = 1 and let b tend to 0 in Formula (3.7), and use the
asymptotic when x → 0 of Kν(x) given just above Theorem 3.1). Moreover (see
[14] Formula (5.7.1) and (5.7.2)) we have

Kν(s) =
π

2

I−ν(s) − Iν(s)

sin νπ
for all s > 0,

where

Iν(s) =

∞∑

k=0

(s/2)ν+2k

k!Γ(k + ν + 1)
for all s > 0.

This shows (use also basic identities of the Gamma function given in Formula (1.2.1)
and (1.2.2) in [14]) that for u close to 0,

E
{
eiuUT

}
= 1 − cu−2ν + o(u−2ν),

for some constant c > 0, which proves our claim. �

4. A weak law of large numbers

The next result answers the second part of Benjamini’s original question:

Theorem 4.1. Let (Sn, n ≥ 0) be the process on Z, which at a first visit to a site
makes a discrete symmetric Cauchy jump and at other visits makes a ±1 Bernoulli
jump. Then

(4.1)
1

n
sup
t≤n

| St |→ 0 in probability.

Proof. We shall first prove (4.1) with St replaced by the auxiliary process S̃t which
was already used in Lemma 3.8 (and introduced in the Example 3.7). The process

S̃t makes a discrete symmetric Cauchy jump at a first visit to a site and at other

visits makes a jump with distribution P̃1, where

P̃1{±1} = 1/4, P̃1{0} = 1/2 and P̃1{u} = 0 for u /∈ {−1, 0, +1}.

Quantities referring to the walk {S̃n} will all be decorated with a tilde, but will
otherwise be defined in the same way as their analogues without a tilde. We further
remind the reader that P1 is the distribution on Z which puts mass 1/2 on ±1 and
that P2 is the discrete Cauchy distribution.

Let R̃n be the range at time n, i.e.,

R̃n = cardinality of {S̃0, S̃1, . . . , S̃n−1}.

This means that during the time interval [0, n − 1] S̃ℓ took exactly R̃n Cauchy

jumps and n − R̃n steps with distribution P̃1. Let us now use the construction of

the {S̃ℓ} which is the analogue of the one given for {Sℓ} in the introduction. We
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give distribution P̃1 to each step Ỹ (1, ℓ), ℓ ≥ 1, and distribution P2 to each Cauchy
step Y (2, ℓ), ℓ ≥ 1. Then

S̃n =

n− eRn∑

ℓ=1

Ỹ (1, ℓ) +

eRn∑

ℓ=1

Y (2, ℓ).

Consequently, for any ε > 0 it holds that on the event {R̃n ≤ εn},

sup
t≤n

|S̃t| ≤ sup
s≤n

∣∣∣
s∑

ℓ=1

Ỹ (1, ℓ)
∣∣∣ + sup

r≤εn

∣∣∣
r∑

ℓ=1

Y (2, ℓ)
∣∣∣.

By maximal inequalities (see [2], Theorem 22.5) we therefore have for any ε ≤
1, α > 0,

P{sup
t≤n

|S̃t| ≥ 8αn} ≤ P{R̃n > εn} + 4 max
t≤n

P

{∣∣∣
t∑

ℓ=1

Ỹ (1, ℓ)
∣∣∣ ≥ αn

}

+ 4 max
t≤εn

P

{∣∣∣
t∑

ℓ=1

Y (2, ℓ)
∣∣∣ ≥ αn

}
.(4.2)

Now, as is well known (eg. by Chebyshev’s inequality), for each fixed α > 0,

(4.3) max
t≤n

P

{∣∣∣
t∑

ℓ=1

Ỹ (1, ℓ)
∣∣∣ ≥ αn

}
→ 0 as n → ∞.

Also, for fixed α > 0, ε > 0, t ≤ εn,

(4.4) P

{∣∣∣
t∑

ℓ=1

Y (2, ℓ)
∣∣∣ ≥ αn

}
≤ P

{∣∣∣
t∑

ℓ=1

Y (2, ℓ)
∣∣∣ ≥ α

ε
t

}
,

and

(4.5) lim
t→∞

P

{∣∣∣
t∑

ℓ=1

Y (2, ℓ)
∣∣∣ ≥ α

ε
t

}
= f(

α

ε
),

for some function f(·). Moreover, f(α/ε) can be made as small as desired by taking
α/ε large. In fact,

1

m

m∑

ℓ=1

Y (2, ℓ) converges in distribution to a Cauchy variable,

as m → ∞ (see [6], Theorem 17.7). It is immediate from (4.2)-(4.5) that

(4.6)
1

n
R̃n → 0 in probability

is a sufficient condition for (4.1) with St replaced by S̃t.

We now turn to a proof of (4.6). Since 0 ≤ R̃n/n ≤ 1, (4.6) is equivalent to

1

n
ER̃n =

1

n

n−1∑

t=0

P {At,n−t} → 0,

where

At,ℓ = {S̃t is not revisited during [t + 1, t + ℓ − 1]}
= {S̃t 6= S̃t+s for 1 ≤ s ≤ ℓ − 1}.
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In particular, since At,ℓ is decreasing in ℓ, a sufficient condition for the WLLN for

S̃n is that

(4.7) lim
ℓ→∞

P {At,ℓ} = 0 uniformly in t.

Recurrence essentially is property (4.7), without the uniformity requirement. To
prove (4.7) with the uniformity we use the coupling defined in the remark below
Example 3.7, as we now explain. Let Q0 be the transition probability matrix of a
simple random walk on Z

2. Denote this walk by {(Un, Vn)}n≥0 and let its starting
point be (0, 0). We proved in Example 3.7 that Q0 is successfully coupled with
itself. We shall use a part of that result here. We also need to know that there
exists another process {(Un, Wn)}n≥0 which also starts at (0, 0) and takes values
in Z

2 and in addition a coupled process {(Un, Vn, Wn)}n≥0 such that

the law of the imbedded process of {(Un, Wn)} in the

U -axis is the same as the law of Benjamini’s process {S̃n},
and

(4.8) | Wn |≤| Vn | +1.

We remind the reader that the imbedded process here is {Uτn
}n≥0, where τ0 = 0

and for ℓ ≥ 1

τ(ℓ) = inf{t > τ(ℓ − 1) : Wt = 0}.
In the remainder of this proof we shall often write Γ(φ) instead of Γφ for certain
Γ and φ, in order to avoid double subscripts. Now fix some t ∈ {0, 1, . . . , n − 1}.
For time running from 0 to t we let U t

0, U
t
1, . . . , U

t
t be a copy of {S̃ℓ}0≤ℓ≤t. No

coupling of this process with another process is needed. However, we shall further
need an independent copy of the variables {(Un, Vn, Wn)}n≥0 with its corresponding
sequence of times τℓ at which the walk {(Un, Wn)} visits the U -axis. The successive
positions of Benjamini’s walk determined by the triple {(Un, Vn, Wn)}n≥0 itself
would be U(τ0), U(τ1), . . . . However we want to shift those positions to come right
after the previous points {U t

ℓ}. This requires one important change. In the coupling
construction by itself, at a time τ at which Wτ = 0, assume that the Benjamini
walk arrived in some point, u say, on the U -axis. In order to choose the next step
for the walk one must now decide whether the visit to u at τ is the first visit by
the walk to u or not. In the construction of Example 3.7 it would be a first visit if
and only if U(τm) 6= u for 0 ≤ τm < τ . Here we have to modify this. We think of
the walk as first traversing U t

0, U
t
1, . . . , U

t
t , and then to start from time t on to use

the coupling construction. The visit at time τ to u will therefore be counted as the
first visit if and only if

U(τm) 6= u − U t
t for 0 ≤ τm < τ and U t

s 6= u for 0 ≤ s ≤ τ.

After this change, the path

U t
0, U

t
1, . . . , U

t
t = U t

t + U(τ0), U
t
t + U(τ1), U

t
t + U(τ2), . . .

is a typical path of a Benjamini walk, but with a modified rule for determining
whether a point is fresh or old. To be more precise, let Θ = Θ(t) = {U t

0 =
0, U t

1, . . . , U
t
t} be the set of points visited by the Benjamini walk during [0, t]. Now

first fix Θ(t). Then At,ℓ occurs if and only if none of the next ℓ − 1 positions of
a Benjamini walk equals U t

t . However, for this second stage the points of Θ are
regarded as old points, even if they have not been visited before. Thus we use a
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modified Benjamini walk in which the walk takes a simple symmetric walk step
when it is at an old point or a point from Θ, and a discrete Cauchy distribution
when the walk is at a fresh point outside Θ. We shall call this the Θ-modified
walk. The original Benjamini walk is the special case of this when Θ = ∅. When
the dependence on Θ is important we shall indicate this by a superscript Θ. In
particular, the law of the walk which we just described (in which we regard the
points of Θ as old points) is written as P

Θ. Choosing or modifying Θ merely
modifies the rule by which the index i, or equivalently the function F in (3.10) and
(3.15) is chosen. However, Lemma 3.3 remains valid for the Θ-modified process. In

particular, we can express the conditional law of S̃t+s − S̃t given Ft, by means of
P

Θ(t). This gives

P{At,ℓ} = E
{
P{S̃t+q 6= S̃t for 1 ≤ q ≤ ℓ − 1

∣∣Ft}
}

= E
{
P

Θ(t){S̃q 6= 0 for 1 ≤ q ≤ ℓ − 1}
}

≤ sup
Θ

P
Θ{S̃q 6= 0 for 1 ≤ q ≤ ℓ − 1}.

We now complete the proof of (4.7). We find it useful for this purpose to intro-
duce the events

Aq := {Uq = Vq = 0} ∩ {Vq+1 = −1}.
Since {(Uq, Vq)}q≥0 is a simple random walk it is well known that this walk is recur-
rent, so that with probability 1, the event {Uq = Vq = 0} occurs for infinitely many
q. By a straightforward application of a conditional version of the Borel-Cantelli
lemma (cf. Theorem 12.15 in [16]) it then follows that, again with probability 1,
Aq occurs infinitely often. For every q with Vq = 0 we have Wq ∈ {−1, 0, 1}, by
virtue of (4.8). The remark following Example 3.7 now shows that if Aq occurs for
some q, then also

Bq := {there exists some τr ∈ {q, q + 1} which satisfies U(τr) = W (τr) = 0}

occurs for the same q. Further, the fact that {S̃n} is the imbedded process on the
U -axis of the process (U, W ) makes

{S̃q 6= 0 and S̃q+1 6= 0} together with

{there exists some τr ∈ {q, q + 1} which satisfies U(τr) = W (τr) = 0}
impossible. Equivalently,

{S̃q 6= 0 and S̃q+1 6= 0} implies that Bq fails.

Taking intersections over 1 ≤ q ≤ ℓ − 1 then yields

P
Θ{At,ℓ} ≤ P

Θ{S̃q 6= 0 for 1 ≤ q ≤ ℓ}
≤ P

Θ{Bq fails for all q ≤ ℓ − 1}
≤ P{Aq fails for all q ≤ ℓ − 1}

(use contrapositives for the last inequality). But the right hand side here is inde-
pendent of t and Θ, since it involves only the simple random walk (Un, Vn). In
addition this right hand side tends to 0 as ℓ → ∞, since we already proved that
with probability 1 infinitely many Aq occur. This last estimate is uniform in t, Θ,
as desired.
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This finally proves (4.7) and the WLLN, i.e., (4.1) with St replaced by S̃t. How-

ever, this proof is for the {X̃n}-process which takes a step with distribution P̃1

whenever the walk is at an old point. We shall now show that this implies the
WLLN for the process {Sn}, i.e., (4.1) itself. Indeed, in the notation of the proof

of Lemma 3.8, the processes {Sn, i(n)}n≥0 and {S̃ρn
, ĩ(ρn)}n≥0 have the same law.

In particular,
(

1

t
sup
ℓ≤t

| Sℓ |, i(n)

)
and

(
1

t
sup
ℓ≤t

| S̃ρℓ
|, ĩ(ρn)

)
(4.9)

have the same law. As explained in the proof of Lemma 3.8 we may even assume
that all these variables are defined on the same probability space of sequences
{Aℓ}ℓ≥0, {Bℓ}ℓ≥0 provided with the measure which makes all these variables i.i.d.
uniform on [0, 1]. We denote this probability measure by P. It follows from (3.30)
and the lines following it that

P{ρℓ+1 − ρℓ ≥ q | σ(ρ1, ρ2, . . . , ρℓ)} ≤ C1 exp[−C2q],

for some 0 < C1, C2 < ∞. In turn, this implies that for some constant C ∈ (0,∞),

lim sup
t→∞

sup
ℓ≤t

ρℓ

t
= lim sup

t→∞

ρt

t
= lim sup

t→∞

∑t
ℓ=1[ρℓ − ρℓ−1]

t
≤ C with probability 1.

It follows that

P{supℓ≤t | S̃ρℓ
|> εt}

≤ P{maxℓ≤t ρℓ > (C + 1)t} + P{supℓ≤(C+1)t | S̃ℓ |> εt}.
The last term on the right here tends to 0 as t → ∞ and ε > 0 fixed, by virtue of

(4.1) with St replaced by S̃t. Since also the first term on the right here tends to
0 as t → ∞, we conclude from (4.9) that (1/t) supℓ≤t | Sℓ |→ 0 in probability, as
desired. �
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