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Abstract. We tackle the problem of graph transformation with a particular focus on
node cloning. We propose a graph rewriting framework where nodes can be cloned zero,
one or more times. A node can be cloned together with all its incident edges, with only
the outgoing edges, with only the incoming edges or without any of the incident edges.
We thus subsume previous works such as the sesqui-pushout, the heterogeneous pushout

and the adaptive star grammars approaches. A rule is defined as a span L
l
← K

r
→ R

where the right-hand side R is a multigraph, the left-hand side L and the interface K are
polarized multigraphs. A polarized multigraph is a multigraph endowed with some cloning
annotations on nodes and edges. We introduce the notion of polarized multigraphs and
define a rewriting step as pushback followed by a pushout in the same way as in the
sesqui-pushout approach.

1. Introduction

Graph transformation [21, 11, 13] extends string rewriting [4] and term rewriting [1] in
several respects. In the literature, there are many ways to define graphs and graph rewrit-
ing. The proposed approaches can be gathered in two main streams : (i) the algorithmic
approaches, which define a graph rewrite step by means of the algorithms involved in the
implementation of graph transformation (see e.g. [3, 9]); this stream is out of the scope of
the present paper ; (ii) the second stream consists of the algebraic approaches, first proposed
in the seminal paper [14], and which uses categorical constructs to define graph transfor-
mation in an abstract way. The most popular algebraic approaches are the double pushout
(DPO) and the single pushout (SPO) approaches, which can be illustrated as follows :

L

m
��

K
loo

d
��

r
// R

m′

��

G D
l′oo

r′
// H

L

m
��

l
// R

m′
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G
l′

// H

Double pushout: a rewrite step Single pushout: a rewrite step
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2 GRAPH REWRITING WITH POLARIZED CLONING

In the DPO approach [14, 6], a rule is defined as a span, i.e., as a pair of graph morphisms

L ← K → R. A graph G rewrites into a graph H (G
dpo
=⇒ H) if and only if there exists a

morphism (a matching) m : L→ G, a graph D and graph morphisms d,m′, l′, r′ such that
the left and the right squares in the diagram above for a DPO step are pushouts. In general,
D is not unique, and sufficient conditions may be given in order to ensure its existence, such
as dangling and identification conditions. Since graph morphisms are completely defined,
the DPO approach is easy to grasp, but in general this approach fails to specify rules with
deletion of nodes, as witnessed by the following example. Let us consider the reduction
of the term f(a) by means of the rule f(x) → f(b). This rule can be translated into a
span f(x) ← K → f(b) for some graph K. When applied to f(a), because of the pushout
properties, the constant a must appear in D, hence in H, although f(b) is the only desired
result for H.

In the SPO approach [20, 15, 16, 12], a rule is a partial graph morphism L → R.

When a (total) graph morphism m : L → G exists, G rewrites into H (G
spo
=⇒ H) if and

only if the square in the diagram above for a SPO step is a pushout. This approach is
appropriate to specify deletion of nodes thanks to partial morphisms. Deletion of a node
causes automatically the deletion of all its incident edges.

In this paper we are interested in graph transformation with an additional feature,
namely cloning of nodes. Informally, by cloning a node, say n, we mean making zero, one
or more copies of the node n ; each copy can be made either with all incident edges of the
cloned node n, with only its outgoing edges, with only its incoming edges, or making a clone
of n without any of its incident edges.

Cloning a substructure is very common in the setting of term rewriting systems. Con-
sider the rule f(x) → g(x, x). This rule copies twice the instance of x when applied over
first-order terms. In the area of graph transformation, the considered rule can be intuitively
written as f(x) → g(p : x, p) where x is not copied twice but shared (see e.g., [19, 10]). If
this kind of sharing, which is one of the main features of graph transformation, can be of
great interest in several areas such as efficient implementations of declarative programming
languages [18], cloning of substructures is another important feature which may ease graph
transformation in many real-life applications. Unfortunately, this feature has not attracted
yet the attention it deserves.

The classical DPO and SPO approaches of graph transformation are clearly not well
suited to perform cloning of nodes. As far as we are aware of, there are two algebraic
attempts to deal with cloning [5, 8]. In [5], Corradini at al. propose the sesqui-pushout
approach where a rewrite rule is a span L← K → R as in the DPO approach, and a rewrite

step G
sqpo
=⇒ H is obtained as in the DPO approach, but the left square is a final pullback

complement of the matching m. The sesqui-pushout approach has the ability to clone nodes
with all their incident edges.

In this paper, we propose a new algebraic approach to graph transformation with cloning
abilities which generalizes the heterogeneous pushout approach (HPO) we have presented
in [8]. In the HPO approach, a rewrite rule is defined as a tuple (L,R, τ, σ) such that the
left-hand side L and the right-hand side R are termgraphs (a termgraph is a first-order
term with possible sharing and cycles), τ is a mapping from the nodes of L to the nodes
of R (τ needs not be a graph morphism) and σ is a partial function from the nodes of R
to the nodes of L. Roughly speaking, τ(p) = n indicates that incoming edges of p are to
be redirected towards n and σ(n) = p indicates that node n should be instantiated as p

(parameter passing or cloning). A rewrite rule can be depicted as follows
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L τ
//________ R

σ

u UX\_cfi

and a rewrite step in the HPO approach can be illustrated as

L τ
//________

m

��

R

d
��

σ

u UX\_bfi

G τ1
//________ H

σ1

u UX\_bfi

where the graph G is rewritten into H (G
hpo
=⇒ H) and H is such that the above diagram

is a heterogeneous pushout [8]. In this approach a node may be cloned with all its outgoing
edges (and not with all its incident edges as in the sesqui-pushout approach). In the present
work, we are generalizing functions τ and σ to spans (relations over the nodes of L and R)
and consider multigraph transformation rather than termgraphs. Therefore the rules we
are investigating in this paper are of the following shape

L
l
← K

r
→ R

where L and K are polarized multigraphs, R is a multigraph, l is a morphism of polarized
mutltigraphs and r is a homomorphism of multigraphs. A polarized multigraph F is a
multigraph F such that each node, n, can be annotated or not by the signs +,− such as,
n+, n−, n± or n. Intuitively, the annotation + in n+ means that the node n can be cloned
together with all its outgoing edges, while n− means that the node n can be cloned together
with all its incoming edges. n± means that the node n can be cloned together with all its
incident edges. Finally, the node n without any annotation means that the node n can be
cloned without its incident edges. Thus, polarization of nodes provides more flexible ways
in cloning nodes if compared to sesqui-pushout and HPO approaches.

A rewrite step in this new approach has the following shape

L

m

��

K
l

oo
r

//

d
��

R

m′

��

G D
l′

oo
r′

// H

The right square is a pushout of graphs as in the DPO approach while the left square
is a pushback in the category of polarized graphs.

If we consider again the rewrite rule f(x) → g(x, x). This rule can be translated

to the following span L
l
← K

r
→ R where the morphisms l and r are define as l(f1) =

f, l(x1) = x, l(x2) = x and r(f1) = g, r(x1) = x1, r(x2) = x2. Roughly speaking, the
negative (respectively, positive) polarization of f (respectively, of x1) in K indicates that all
incoming edges of node f should be redirected to point at node g (respectively, all outgoing
edges of x, should be copied twice and plugged to x1 and x2 in R (see Example 3.5).
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L K R
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��
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1

x+1 x+2
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�� !!
DD
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x1 x2

At a first sight, our approach is close to the sesqui-pushout approach [5]. Our work
departs from the sesqui-pushout approach in the way the clones can be obtained. We
provide different possibilities for cloning thanks to the polarization of nodes. We show later
in Section 5 how to simulate the sesqui-pushout approach and emphasize on the abilities
which cannot be simulated by the other proposed approaches.

The paper is organized as follows. The next section introduces the notion of polarized
graphs together with some properties needed to express graph transformation. Section 3
defines graph rewriting with polarized cloning. Examples illustrating our approach are
provided in Section 4. Finally, a comparison with related work and concluding remarks are
given in Section 5.

2. Polarized graphs

In this paper, a graph is a directed multigraph. Most results are given up to isomor-
phism. The propositions are made of explicit constructions, so that their proofs consist
“simply” in a verification.

2.1. Pushouts, pullbacks, pushbacks. Pushouts and pullbacks are basic notions of cat-
egory theory [17], mutually dual. A pushback is a final pullback complement. They are
depicted as follows, respectively:

K

d
��

r
// R

h
��

D r1
// H

L

m

��

K
loo

d
��

G D
l1

oo

L

m

��

K
loo

d
��

G D
l1

oo

In the first diagram (r1, h) is the pushout of (d, r) and in the second diagram (l, d) is
the pullback of (m, l1) (“the” pushout and “the” pullback are unique up to isomorphism).
Equivalently, in the second diagram (l1, d) is a pullback complement of (m, l), however
pullback complements are not unique up to isomorphism. In the third diagram (l1, d) is the
final pullback complement of (m, l), also called the pushback of (m, l), which is unique up
to isomorphism because of its terminality property.

In the category of sets, there are similarities between pushouts and pushbacks. Let Set
denote the category of sets, let “+” denote the sum (or disjoint union) of sets, and for each
set Y with a subset X let X denote the complement of X in Y , so that Y = X +X. The
symbol “+” also denotes the sum of functions: when f1 : X1 → Y1 and f2 : X2 → Y2, then
f1 + f2 : X1 +X2 → Y1 + Y2 is defined piecewise from f1 and f2.

Let r : K → R be a function and d : K → D an inclusion, so that D = K +K. The
pushout of d and r in Set is the following square, where h : R → R +K is the canonical
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inclusion:

K

d
��

r
// R

h
��

D = K +K
r1=r+id

K

// H = R+K

Let l : K → L be a function and m : L→ G an inclusion, so that G = L+L. The pullback
complements of l and m in Set are the following squares (on the left), where d : K → K+K

is the canonical inclusion and whereK is any set and l : K → L any function. The pushback
of l and m is the following square (on the right):

L

m

��

K
l

oo

d
��

G = L+ L D = K +K
l1=l+l

oo

L

m

��

K
l

oo

d
��

G = L+ L D = K + L
l1=l+id

L

oo

Example 2.1. Here is a pullback complement and the pushback of given m and l. Only
the sets are represented, the names of their elements describe the functions: m and d are
inclusions, while l and l1 drop the index (every xi is mapped to x). In this example, for any
given α ∈ N there is a pullback complement for each β ∈ N (on the left) and the pushback
corresponds to β = 1 (on the right).

n n1 . . . nα

n n1 . . . nα

p p1 . . . pβ

n n1 . . . nα

n n1 . . . nα

p p1

2.2. Graphs. In this section, some pushouts and pushbacks of graphs are built explicitly.

Definition 2.2. A graph X is made of a set of nodes |X|, a set of edges X→ and two
functions source and target from X→ to |X|. An edge e with source n and target p is

denoted n
e
→ p. The set of edges from n to p in X is denoted Xn→p. A morphism of graphs

f : X → Y is made of two functions (both denoted f) f : |X| → |Y | and f : X→ → Y→,

such that f(n)
f(e)
→ f(p) for each edge n

e
→ p. This provides the category Gr of graphs.

The construction of the sum of two graphs is explicited below, as well as the construction
of the edge-sum for adding edges to a graph. Given two graphs X1 and X2, the sum X1+X2

is the graph such that |X1 + X2| = |X1| + |X2| and (X1 +X2)→ = X1→ + X2→ and the
source and target functions for X1 +X2 are induced by the source and target functions for
X1 and for X2. Given two graphs X and E such that |E| ⊆ |X|, the edge-sum X +e E

is the graph such that |X +e E| = |X| and (X +e E)
→

= X→ + E→ and the source and
target functions for X +e E are induced by the source and target functions for X and for
E. Clearly, the precise set of nodes of E does not matter in this construction, as long as it
contains the source and target of every edge of E and is contained in |X|. This notation is
extended to morphisms: let f1 : X1 → Y1 and f2 : X2 → Y2, then f1+f2 : X1+X2 → Y1+Y2

is defined piecewise from f1 and f2. Similarly, let f : X → Y and g : E → F with |E| ⊆ |X|
and |F | ⊆ |Y |, then f +e g : X +e E → Y +e F is defined as f on the nodes and piecewise
from f and g on the edges.
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Remark 2.3. Each graph Y with a subgraph X can be expressed as

Y = (X +X) +e X̃

where X is the subgraph of Y generated by the complement of |X| in |Y | and X̃ is the
subgraph of Y generated by the edges in Y→ not in X→ +X→.

Definition 2.4. A matching of graphs is a monomorphism of graphs (this is often called
an “injective matching”).

A morphism of graphs is a monomorphism if and only if both underlying functions (on
nodes and on edges) are injections. So, up to isomorphism, every monomorphism of graphs
can be seen as an inclusion.

Proposition 2.5. Let r : K → R be a morphism and d : K → D a matching of graphs, so

that D = (K +K) +e K̃ as in remark 2.3. Let r1 = r + idK : K +K → R +K, let R̃ be

made of one edge (e, nK , pK) : nH → pH for each nodes nH and pH in R + K, and each

edge e : nK → pK in K̃ such that r1(nK) = nH and r1(pK) = pH , and let r̃ : K̃ → R̃ map
e to (e, nK , pK). Then the pushout of d and r in Gr is the following square, where h is the
canonical inclusion.

K

d
��

r
// R

h
��

D = (K +K) +e K̃ r1=(r+id
K
)+er̃

// H = (R +K) +e R̃

with R̃nH→pH
∼=

∑

nD∈r−1

1
(nH ),pD∈r−1

1
(pH )

K̃nD→pD for all nH , pH ∈ |H| .

Proposition 2.6. Let l : K → L be a morphism and m : L → G a matching of graphs,

so that G = (L + L) +e L̃. The pullback complements of l and m in Gr are the following
squares, where d is the canonical inclusion and where K is any graph, l : K → L is any

morphism of graphs, K̃ is any graph such that |K̃| ⊆ |K|+ |K|, l̃ : K̃ → L̃ is any morphism
of graphs which coincide with l + l on the nodes.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K +K) +e K̃
l1=(l+l)+e l̃

oo

Proposition 2.7. Let l : K → L be a morphism and m : L→ G a matching of graphs, so

that G = (L+ L) +e L̃. The pushback of l and m is the following square, where K̃ is made

of one edge (e, n, p) : n→ p for each e : l1(n)→ l1(p) in L̃ and l̃ maps (e, n, p) to e.
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L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K + L) +e K̃
l1=(l+id

L
)+e l̃

oo

with K̃nD→pD
∼= L̃l1(nD)→l1(pD) for all nD, pD ∈ |D| .

Example 2.8. With the same conventions as in exemple 2.1, here is a pullback complement
(on the left) and the pushback (on the right) of given m and l in Gr.

n poo n1 p1oo p2

n
''
poo

��
q

VV
n1 p1oo

���� ��

p2

q1 q2

OO

n poo n1 p1oo p2

n
''
poo

��
q

VV
n1

)) $$
p1oo

��

p2

}}{{
{{

q1

VV GG

2.3. Polarized graphs. In this paper, a polarized graph is a graph with two distinguished
subsets of nodes and a distinguished subset of edges. In our rewriting process, the polar-
ization will be used for cloning. In this section the category of polarized graphs is defined
and it is proved that it has the required pushbacks, by building them explicitly.

Definition 2.9. A polarization X◦ of a graph X is a triple (|X|+, |X|−,X⋆
→) such that

X◦ ⊆ X, in the sense that |X|+ ⊆ |X|, |X|− ⊆ |X| and X⋆
→ ⊆ X→, such that each n

e
→ p

in X⋆
→ has its source n ∈ |X|+ and its target p ∈ |X|−. A polarized graph X = (X,X◦) is a

graph X together with a polarization X◦ of X. A morphism of polarized graphs f : X→ Y,
where X = (X,X◦) and Y = (Y, Y ◦), is a morphism of graphs f : X → Y such that
f(X◦) ⊆ Y ◦, in the sense that f(|X|+) ⊆ |Y |+, f(|X|−) ⊆ |Y |− and f(X⋆

→) ⊆ Y ⋆
→. This

provides the category Gr◦ of polarized graphs.

Given two polarized graphs X1 and X2, their sum is the polarized graph X1 +X2 made
of the graph X1 + X2 with the polarization |X1 + X2|

+ = |X1|
+ + |X2|

+, |X1 + X2|
− =

|X1|
− + |X2|

− and (X1 +X2)
⋆
→

= X1
⋆
→ +X2

⋆
→. Given two polarized graphs X and E such

that |E| ⊆ |X|, |E|+ ⊆ |X|+ and |E|− ⊆ |X|−, their edge-sum is the polarized graph X+eE

made of the graph X +e E with the polarization |X +e E|
+ = |X|+, |X +eE|

− = |X|− and
(X +e E)⋆

→
= X⋆

→ + E⋆
→. This notation is extended to morphisms.

As in definition 2.9, we use the same notations for a polarization as for a subgraph,
with obvious meaning: each notation involving a polarization X◦ is a shorthand for a triple
of notations involving respectively |X|+, |X|− and X⋆

→.

Definition 2.10. A matching of polarized graphs is a monomorphism f : X→ Y such that
f(X◦) = f(X) ∩ Y ◦ (f strictly preserves the polarization).

A morphism of polarized graphs is a monomorphism if and only if, as a morphism of
graphs, it is a monomorphism. So, up to isomorphism, it can be seen as an inclusion.

Remark 2.11. Let X ⊆ Y be a matching of polarized graphs. Let X = (X,X◦) and

Y = (Y, Y ◦), so that X◦ = X ∩ Y ◦. Let Y = (X + X) +e X̃ as in remark 2.3. Let

X
◦
= X ∩ Y ◦ and X = (X,X

◦
). Let X̃◦ = X̃ ∩ Y ◦ and X̃ = (X̃, X̃◦). Then X, X and
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X̃ are polarized graphs included in Y. In addition, since the inclusion is a matching, the

subpolarization (X◦ +X
◦
) +e X̃

◦ of Y ◦ is equal to Y ◦. It follows that:

Y = (X+ X) +e X̃ .

Proposition 2.12. Let l : K → L be a morphism and m : L → G a matching of polarized

graphs, so that G = (L+ L) +e L̃ as in remark 2.11. The pullback complements of l and m

in Gr◦ are the following squares, where d is the canonical inclusion and where the polarized

graph K and the morphism l : K → L are arbitrary, K̃ is any polarized graph such that

|K̃| ⊆ |K+K| as polarized graphs, and l̃ : K̃→ L̃ is any morphism of polarized graphs which
coincides with l + l on nodes.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K+K) +e K̃
l1=(l+l)+e l̃

oo

— The modified part of the paper BEGINS here. —

Definition 2.13. According to remark 2.11, a matching of polarized graphs f : X → Y

gives rise (up to isomorphism) to a decomposition Y = (X+X)+e X̃, then the edges in X̃ are
called the linking edges for f . With the notations of proposition 2.12, a pullback is called a
polarized pullback when every linking edge for m is polarized, as well as every linking edge
for d. When every linking edge for m is polarized, the polarized pushback of l and m is the
terminal polarized pullback complement, when it exists.

Proposition 2.14. Let l : K → L be a morphism and m : L → G a matching of polarized

graphs, so that G = (L + L) +e L̃ as in remark 2.11. In addition, let us assume that that

L̃
⋆
→ = L̃→ (every edge in L̃ is polarized). Then the polarized pushback of l and m is the

following square, where K̃ and l̃ : K̃→ L̃ are defined as follows, using l1 = l+id
L
on nodes:

K̃⋆
→ is made of one edge (e, nD, pD) : n→ p for each nD ∈ |K|

+ + |L|+, pD ∈ |K|
− + |L|−

and e : l1(nD)→ l1(pD) in L̃⋆
→, K̃→ = K̃⋆

→, and l̃ maps (e, nD, pD) to e.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K+ L) +e K̃
l1=(l+id

L
)+e l̃

oo

with K̃nD→pD = K̃⋆
nD→pD

∼= L̃⋆
l1(nD)→l1(pD) for all nD ∈ |D|

+, pD ∈ |D|
−

— The modified part of the paper ENDS here. —

Remark 2.15. This result means that the polarized part of G is cloned in D, according to
the cloning instructions provided by the polarized part of K.

Example 2.16. Here is a pullback complement (on the left) and the pushback (on the
right) of given m and l in Gr◦. A node x ∈ |X|+ is denoted x+, symmetrically x ∈ |X|− is
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denoted x−, and an edge e : x→ y in X⋆
→ is denoted e : x

⋆
→ y.

n± p±oo n1
± p1

+oo p2
−

n±

⋆
**

p±oo

⋆
��

q±
⋆
TT

n1
±

⋆

''

p1
+oo

⋆
�� ⋆ ""

EE
EE

p2
−

q1
±

⋆

<<yyyy

q2
±

⋆
OO

n± p±oo n1
± p1

+oo p2
−

n±

⋆
**

p±oo

⋆
��

q±
⋆
TT

n1
±

⋆

''

p1
+oo

⋆
��

p2
−

q1
±

⋆

<<yyyy

3. Graph rewriting with polarized cloning

Definition 3.1. A rewrite rule, or production, is made of a morphism of polarized graphs
l : K → L such that l(K⋆

→) = l(K→) ∩ L⋆
→ (l strictly preserves the polarization of edges)

and a morphism of graphs r : K → R where K is the graph underlying K. This is denoted

L
l
← K

r
→ R.

As in definitions 2.4 and 2.10, a matching of graphs is a monomorphism m : X → Y in
Gr and a matching of polarized graphs is a monomorphism m : X → Y in Gr◦ such that

f(X◦) = f(X)∩Y ◦. Now, let us consider a rule p = L
l
← K

r
→ R and a matching of graphs

m : L→ G.
Roughly speaking, in graph rewriting with polarized cloning, the aim of a rewrite step

with respect to p and m is to build a matching of graphs h : R→ H, by replacing L in G by
R and taking into account the cloning instructions provided by K. More precisely, a rewrite

step with respect to p and m builds a rule p1 = G
l1← D

r1→ H, a matching of polarized
graphs d : K → D and a matching of graphs h : R → H, in such a way that the square of
polarized graphs on the left-hand side takes care of the cloning, thanks to a pushback, and
the square of graphs on the right-hand side takes care of the “pure” rewriting, thanks to a
pushout.

L

m

��

K
l

oo
r

//

d
��

R

h
��

G D
l1

oo
r1 // H

Graph rewriting with polarized cloning is made of four consecutive substeps, their
succession can be illustrated as follows; the top line is about graphs, and the bottom line
about polarized graphs. The first and third parts are quite easy, the second and fourth
parts are made of a pushback of polarized graphs and a pushout of graphs, respectively: we
recognize the main features of sesqui-pushout rewriting [5].

G

''O
OOOO D //____ H

G //____ D

77ooooo

To begin with, the matching m : L → G and the polarization L◦ of L give rise to a
polarization G◦ of G.

Definition 3.2. Let L be a polarized graph, m : L → G a matching of graphs, and let

G = (L+L)+eL̃ as in remark 2.3. Themaximal polarization of G preserving the polarization

L◦ of L (with respect to m) is G◦ = (L◦ + L) +e L̃.
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This means that G◦ coincides with L◦ on the image of m and that it is maximal outside

the image of m. The resulting polarized graph is G = (G,G◦) = (L + L) +e L̃ where

L = (L,L) and L̃ = (L̃, L̃), hence every edge in L̃ is polarized. Then m defines a matching
of polarized graphs m : L→ G.

Definition 3.3. Given a rule p = L
l
← K

r
→ R and a matching of graphs m : L → G, the

rewrite step with respect to p and m is the succession of the following substeps.

• From G to G. The polarized graph G is (G,G◦) where G◦ is the maximal polar-
ization of G preserving the polarization L◦ of L.
• From G to D. The pushback of m and l in Gr◦ (proposition 2.14) gives rise to a
polarized graph D, a morphism l1 : D→ G and a matching d : K→ D in Gr◦.
• From D to D. The graph D and the matching d : K → D are obtained simply by
forgetting the polarizations.
• From D to H. The pushout of m and l in Gr (proposition 2.5) gives rise to a
graph H, a morphism r1 : D → H and a matching h : R→ H.

This is written G
pc

%9 H .

Theorem 3.4. With respect to a rule L
l
← K

r
→ R and a matching m : L→ G, the graph

G rewrites into H in the sense of polarized cloning rewriting ( G
pc

%9 H ) if and only if

there is a matching h : R→ H such that, with the notations G = (L+L)+e L̃ (with respect

to m) and H = (R+R) +e R̃ (with respect to h) as in remark 2.3,

• R = L

• and for every pair of nodes nH , pH ∈ |H| (where |H| = |R|+ |L|), if nH ∈ |H|
+ and

pH ∈ |H|
− then RnH→pH is the disjoint union of the sets L⋆

l1(nK)→l1(pK) for every

nK ∈ |K|
+ such that r1(nK) = nH and every pK ∈ |K|

− such that r1(pK) = pH ,
otherwise RnH→pH is empty.

L

m
��

K
loo

r
//

d
��

R

h
��

(L+ L) +e L̃ (K + L) +e K̃
(l+id

L
)+e l̃

oo

(r+id
L
)+er̃

// (R+ L) +e R̃

Proof. The proof follows the construction of the polarized cloning rewrite step.

• By definition 3.2, G = (L+ L) +e L̃ where L = (L,L) and L̃ = (L̃, L̃).

• Then by proposition 2.14, D = (K+L)+e K̃ and l1 = (l+id
L
)+e l̃ where K̃nD→pD

∼=

L̃l1(nD)→l1(pD) for all nD, pD ∈ |D| and K̃⋆ = K̃, and l̃(e, nD, pD) = e for every

(e, nD, pD) ∈ K̃→.

• It follows that D = (K + L) +e K̃

• Then by proposition 2.5, H = (R+L)+e R̃ and r1 = (r+idK)+e r̃ where R̃nH→pH
∼=∑

nD∈r−1

1
(nH ),pD∈r−1

1
(pH ) K̃nD→pD for all nH , pH ∈ |H| and r̃(e) = (e, nD, pD) for

every e : nD → pD ∈ K̃→.
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Example 3.5. Here is a rewrite step that implements the basic cloning rule f(x)→ f1(x, x)
discussed in the introduction. On the left-hand side we use the same convention on node
names as in previous examples: ni 7→ n. On the right-hand side in this simple example the
names are preserved: ni 7→ ni. Instead of annotating most edges with ⋆, we use the symbol
• for annotating the other edges: in other words, • is the negation of ⋆.

f−

•
��

x+

f−

1

x+1 x+2

f1

}}||
||

��
x1 x2

j±
++

��

f−

•
��

jj

x+

XX
j± // f−

1

x+1

OO

x+2

__@@@@

j // f1

}}||
||

��
x1

OO

x2

aaBBBBB

Since the clones x1 and x2 of x are annotated by +, x1 and x2 inherit solely the outgoing
edges of x. As for f1 which is annotated by −, it inherits only the incoming edges of f .

4. Examples

In this section we illustrate through some examples the proposed graph transformation
with polarized cloning.

Example 4.1. Let us consider the production p = L
l
← K

r
→ R where

L =
f±

��
>>

>>

��}}||
||

a+
⋆
// b− c

K =

f±

1 f+
2

a+1 a−2 b−

R =

g f

a b // x

and l is defined by {f1 7→ f, f2 7→ f, b 7→ b, a1 7→ a, a2 7→ a} and r is defined by
{f1 7→ g, f2 7→ f, b 7→ b, a1 7→ g, a2 7→ a}

The production p is graphically represented as follows:

f±

��
>>

>>

��}}||
||

a+
⋆ // b− c

f±

1 f+
2 b−

a+1 a−2

g{f1, a1} f ′{f2}

a′{a2} b′{b} // x

We use name sharing in order to represent morphisms, i.e. r(fi) = f = l(fi). We do not
put annotations on nodes of L. We assume in the rest of this section that the annotations
of the nodes of L are defined from those of the nodes of K and the morphism l as follows :
a node n in L inherits the annotations of its l antecedents. In R we follow the convention
that n{e1, ..., en} is a node n such that ei is in K, and r(ei) = n. Therefore, a node without
a list of antecedents in R is not an image of a node in K and has to be considered as a new
node.

Now let us consider the following graph G:

j //

��

f

��

gg
//

����
��

&&M
MMMMMMMM

��

d koo

��
rra

II

// b

88qqqqqqqqq )) cii

with matching m such that m(x) = x for x ∈ {f, a, b, c}. In the following we use this
name sharing convention between L and G in order to represent the matching. Then G is:
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j±
⋆
//

⋆
��

f±

��
⋆
jj

⋆
//

}}||
||

((QQQQQQQQQQ

��

d± k±
⋆
oo

⋆
��

⋆rr
a±

⋆
JJ

⋆
// b−

⋆
66mmmmmmmmmm

⋆
++
c±

⋆

kk

The idea is that each node in |G| − |m(L)| is polarized ±, and each node in |m(L)| is
polarized as in L. The same method is followed to annotate edges. Thus, in G all edges
are annotated with ⋆ except the ones that are matched and not annotated in L. In our
example only edges f → a, f → b, f → c are not annotated. Notice that the edge a→ b is
annotated even if it is matched since it is annotated in L.

For D we use the same naming convention in order to represent morphism h between K

and D as the one used to represent morphisms r and l. Thus we have the following graphic
representation in which we omitted annotations on edges for the sake of readability (all
edges should be annotated with ⋆):

j±

  
AA

AA

f±

1
++

��   
@@

@@
@

XX

f+
2

//

��~~~~
~~

ll

d± k±oo

wwoooooooooo

a+1

OO

33a−2 b−

and finally R is the graph:

j

��
==

==
=

g

VV
hh

**

))
����

f2 //

ll

��~~}}
}}

d k

wwppppppppp
oo

a2 b // x

Example 4.2 (Memory freeing). We consider unlabeled graphs, but for the sake of read-
ability we will informally write cons for a node of name cons. Such a node is supposed to
match nodes written consi .

Following this convention, we can write the rule that frees the memory used by a list
as follows:

free // cons1 //

��

cons2

b

free±1 a±1 free {free1} // cons {a1}

One can check that if we match cons1 to consi s, a to consi+1 s (and a to nil for

i = 4) and b to bis, then successive applications of the previous rewriting rule starting from
the following graph G:

free

��

joo

%%J
JJ

JJ
JJ

J

cons1 //

��

cons2 //

��

cons3 //

��

cons4 //

��

nil

b1 b2 // b3 b4
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lead to the graph

j // free // nil

Notice that edges adjacent to a deleted nodes are deleted as well (namely in this example
edges j → b2 and b2 → b3).

The first rewrite step reducing G is defined as follows.
The annotated graph G is :

free±

��

j
⋆
oo

⋆

$$I
IIIIIII

cons1 //

��

cons+2
⋆
//

⋆
��

cons3
⋆
//

⋆
��

cons4
⋆
//

⋆
��

nil

b1 b2
⋆ // b3 b4

D is :

free± j
⋆
oo

⋆

$$I
IIIIIII a±1

⋆zzu
uuuuu

⋆

����
��

��
��

��
��

�

cons±2
⋆
//

⋆
��

cons3
⋆
//

⋆
��

cons4
⋆
//

⋆
��

nil

b2
⋆

// b3 b4

and finally R is:

free
,,

joo

$$I
IIIIIII cons

zzuuuuu

����
��

��
��

��
��

�

cons±2
//

��

cons3 //

��

cons4 //

��

nil

b2 // b3 b4

The halt case can be treated by the following simple rule

free // nil

in which K and R are empty graphs.

Example 4.3. Now we present a rule scheme that illustrates a use of the cloning of outgoing
edges. Function spam applies function f to all nodes pointed by the argument of spam.

spam

��
e

e+1 f {e1} // x

This rule can produce the following rewrite step:

spam // e+

⋆
��⋆

{{vv
vv

vv
v ⋆

��
==

==
=

a b c

e+

⋆
��

⋆

��
??

??

⋆��~~
~~

a b c

f

����
��

��
��

��
==

==
==

==

��

// x

a b c
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Example 4.4 (Global update). Let us consider now the use of incoming edges cloning. This
feature is useful when one wants to update a shared information. Consider the following
rule:

update

��

// old

new

new±

1 old−1
g{new1, old1}

In K, new± is used to make a clone of the node new (this is a clone of both incoming
and outgoing edges) and old− is used to collect all incoming edges of the node old. Then,
using r all those incoming edges are redirected to the clone of new.

This rule produces the following rewrite step:

j //

##G
GG

GG
GG

G update

�� $$J
JJ

JJ
J

old

��

k
,,
newii n

OO

oo

j // new±

1

tt

old−1

k

99

n

ddJJJJJJ

OO
j

��
<<

<<

k
''
g

gg ngg

ww

Thus old is collapsed to new in g, and edges pointing to old, namely n → old are
redirected to point g.

Example 4.5. Being able to clone separately incoming and outgoing edges makes possible
the writing of rules that behave like the higher order function map, which applies a given
function to each descendant of a node (instead of a list as in the usual map function). We
want to have the following rewrite derivation:

j // map

��

// ante // e

�� ��
66

66
66

~~}}
}}

}}
}

f funoo a b c
=⇒⋆

j // e

~~}}
}}

}
��   

AA
AA

A

f1

��

f2

��

f3

��
a b c

Nodes ante and fun are used in order to avoid any matching confusion since in our
graphs, descendant of a node are not ordered . ante indicates the antecedent node (e in our
example) to which the result is going to be linked. fun specifies which function has to be
copied for each descendant of the node pointed by the one specified by ante.

It is done by the combination of two rewrite rules and the introduction of an interme-
diate function map′. The idea is to clone all outgoing edges from e and for each of these
edges to make a copy of function f that is introduced between e and its successors. The
initialization of map′ is done by the following rule:

map // ante // e

fun // f

e+1 e−2

f±

map′ {e1} //

��

ante // n{e2}

fun // f {f}

Using this rule, we get the following rewrite step
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j //

((QQQQQQQQQQQQQQ map

||yy
yy

y

// e

�� ��
66

66
66

~~}}
}}

}}
}

f f a b c
=⇒

fun // f ′ f j

��

����
��
��
��
��
��

map′ //

OO

%%J
JJJJJ

��
))SSSSSSSSSSSSS ante // n

a b c

Let us call G1 the right-hand side of this rewrite step.
This first step uses two clones of e, one is used to collect all the nodes to which f

is applied (namely e+1 ) and the other one is going to be used to gather the successive
applications of f.

We now give the rule for map′. Here the idea is to make a copy of the function f pointed
by fun and to introduce an edge from this new copy to the third argument of map’ and from
the node pointed by ante to the copy of the function f. Thus this rule is going to apply the
function f to all descendants of map’ that are not labeled by ante nor fun.

ante // e

map′

��

//

OO

x

fun // f

m±

1 e±1

x±1

ante // e′{e1} // f′

��

map {m1}

OO

��

x{x}

fun // f

G1 matched by the left-hand side above through the matching {e 7→ n, x 7→ b, ante 7→
ante, fun 7→ fun, f 7→ f ′} rewrites to the following graph G2:

fun // f j

��

����
��
��
��
��
��

map′ //

OO

))SSSSSSSSSSSSS

��

ante // n // f′

wwooooooooooo

a b c

Now, the successive applications of this rule lead to the graph:

fun // f

map′ //

OO

ante

��
j // e

��
yytttttttt

##G
GG

GG
G

f′

��

f′′

��

f′′′

��
a b c

The subgraph reachable from node map′ is no longer reachable from the rest of the
graph and has to be deleted by garbage collection.
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5. Conclusion and Related Work

We proposed a new way to perfom graph transformation which offers different possib-
lities to clone nodes and their incident edges, in addition to classical graph transformation
(addition and deletion of nodes and edges). This work has been obtained as a generalization
of [8] where an algebraic approach, based on heterogeneous pushouts (HPO), of termgraph
transformation has been proposed. There, a rule is defined as a tuple (L,R, τ, σ) such that
L and R are termgraphs representing the left-hand and the right-hand sides of the rule,
τ is a mapping from the nodes of L to those of R and σ is a partial function from nodes
of R to nodes of L. The mapping τ describes how incoming edges of the nodes in L are
connected in R (i.e., global redirection of incoming pointers), τ is not required to be a graph
morphism as in classical algebraic approaches of graph transformation. The role of σ is to
indicate the parts of L to be cloned. These two functions τ and σ have been generalized

in our present framework to a span L
l
← K

r
→ R where graphs L and K are annotated

with cloning indications. Handling termgraphs as in [8] requires some care to ensure the
preservation of the arity (the number of outgoing edges) of a node during a transforma-
tion process. This requirement prevents from deletion of nodes and their incident edges in
general. To ensure preservation of node arities, the function τ is required to be total. The
problem of arity preserving does not appear in multigraphs. Thus, in our context, a node, n
in L, can actually be deleted (zero clone) with all its incident edges if, for instance, n has no
antecedent in K. With respect to cloning abilities, the HPO approach offers the possibility
to make one or more copies of a node together with its outgoing edges. Therefore, this
way of cloning nodes is limited to the outgoing edges only and contrasts with the flexible
possibilities of cloning edges proposed in the present paper. In fact, whenever a graph G

rewrites into H according to the HPO approach by using a rule (L,R, τ, σ), the graph G

can also be rewritten into H according to a rule L
l
← K

r
→ R where morphisms l and r

encode the functions τ and σ as described below.

Proposition 5.1. Let ρ be an HPO rule (L,R, τ, σ). Then L and R are multigraphs,
τ : |L| → |R| is a total function and σ : |R| → |L| is partial function. Let C denote the
domain of σ, seen as a graph without edges. Let us assume that every node in C has no

outgoing edges (they are kind of variables). Let p be the rule L
l
← K

r
→ R defined as follows

• K is a graph without edges and |K| = |L|+ |C|,
• let n in |L|, then l(n) = n and r(n) = τ(n),
• let n in |C|, then l(c) = σ(c) and r(c) = c,
• |K|+ = |C| and |L|+ = l(|C|) = σ(|C|): nodes in C are dedicated to make clones
with outgoing edges only.
• |K|− = |L| and |L|+ = l(|C|) = σ(|C|): this reflects the fact that the nodes of L
undergo global redirection of incoming pointers.
• L⋆ is empty.

Then, for an injective matching m : L→ G, G
hpo
=⇒ H implies G

pc
=⇒ H.

Cloning is also one of the features of the sesqui-pushout approach to graph transforma-
tion [5]. In this approach, a rule is a span L← K → R of multigraphs and the application of
a rule to a graph G can be illustrated by the same figure as for a DPO step (as in the intro-
duction), where the right-hand side is a pushout as in the DPO approach but the left-hand
side is a pullback, and moreover it is a final pullback complement. The sesqui-pushout ap-
proach and ours mainly differ in the way of handling cloning. In [5], the cloning of a node is
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performed by copying all incident edges (incoming and outgoing edges) of the cloned node.
This is a particular case of our way of cloning nodes. The use of polarized multigraphs
helped us to specify for every clone, the way incident edges can be copied. Therefore, a
sesqui-pushout rewriting step can be simulated by a rewriting step with polarized rules, but
the converse does not hold in general.

Proposition 5.2. Let ρ be the rewrite rule L ← K → R. Let ρ′ be the rule L
l
← K

r
→ R

such that

• |K|+ = |K|− = |K|, K⋆ = ∅,
• |L|+ = |L|− = |L|, L⋆ = ∅,

Then, for an injective matching m : L→ G, G
sqpo
=⇒ρ H implies G

pc
=⇒ρ′ H.

In [5], the sesqui-pushout approach has been compared to the classical double pushout
and single pushout approaches. Corradini et al. showed that the sesqui-pushout and the
DPO approaches coincide under some conditions (see [5, Proposition 12]). They also showed
how the sesqui-pushout approach can be simulated by the SPO approach and gave conditions
under which a SPO derivation can be simulated by a sesqui-pushout (see [5, Proposition 13]).
So, according to Proposition 5.2, which shows how to simulate a sesqui-pushout step in our
setting, we can infer the same comparisons with respect to DPO and SPO for our graph
rewriting definition.

Cloning has also been subject of interest in [7]. The authors considered rewrite rules of
the form S :=R where S is a star, i.e., S is a (nonterminal) node surrounded by its adjacent
nodes together with the edges that connect them. Rewrite rules which perform the cloning
of a node have been given in [7, Def. 6]. These rules show how a star can be removed, kept
identical to itself or copied (cloned) more than once. Here again, unlike our framework, the
cloning does not care about the arity of the nodes and, as in the case of the sesqui-pushout
approach, a node is copied together with all its incoming and outgoing edges.
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[12] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic approaches
to graph transformation - part ii: Single pushout approach and comparison with double pushout ap-
proach. In Handbook of Graph Grammars, pages 247–312, 1997.

[13] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 3: Concurrency, Parallelism and Distribution. World
Scientific, 1999.

[14] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic approach. In 14th Annual
Symposium on Foundations of Computer Science (FOCS), 15-17 October 1973, The University of Iowa,
USA, pages 167–180. IEEE, 1973.

[15] R. Kennaway. On “on graph rewritings”. Theor. Comput. Sci., 52:37–58, 1987.
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Appendix A. Proofs

A.1. Definitions. Pushouts and pullbacks are basic notions of category theory, mutually
dual (see for instance [17]); the following notations will be used throughout the appendix.

In a category, “the” pushout of D
d
← K

r
→ R is D

r1→ H
h
← R such that h ◦ r = r1 ◦ d

and for every D
r′1→ H ′ h′

← R such that h′ ◦ r = r′1 ◦ d there is a unique η : H → H ′ such

that η ◦ r1 = r′1 and η ◦ h = h′. Then K
d
→ D

r1→ H is called a pushout complement of

K
r
→ R

h
→ H. Dually, “the” pullback of L

m
→ G

l1← D is L
l
← K

d
→ D such that m◦ l = l1 ◦d

and for every L
l′
← K ′ d′

→ D such that m ◦ l′ = l1 ◦ d
′ there is a unique κ : K ′ → K

such that l ◦ κ = l′ and d ◦ κ = d′. Then G
l1← D

d
← K is called a pullback complement

of G
m
← L

l
← K. Due to their universality property, the pushout of D

d
← K

r
→ R and

the pullback of L
m
→ G

l1← D are unique up to isomorphism, but there may be several

non-isomorphic pushout complements of K
r
→ R

h
→ H and several non-isomorphic pullback

complements of G
l1← D

d
← K. Pushouts and pullbacks are depicted as usual:

K

d
��

r
// R

h
��

D
r1

// H

L

m

��

K
loo

d
��

G D
l1

oo
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Final pullback complements appeared as a fundamental tool for graph rewriting in [5]. The

pushback of G
m
← L

l
← K is its final pullback complement, when it exists. This means that

the pushback of G
m
← L

l
← K is a pullback complement G

l1← D
d
← K of G

m
← L

l
← K

such that for every pullback complement G
l′1← D′ d′

← K of G
m
← L

l
← K there is a unique

δ : D′ → D such that δ ◦ d′ = d and l1 ◦ δ = l′1. Because of its terminality property, the

pushback of G
m
← L

l
← K is unique up to isomorphism. In order to insist on this terminality

property, pushbacks will be depicted as follows:

L

m

��

K
l

oo

d
��

G D
l1

oo

As mentioned in the main text, the propositions are made of explicit constructions, they
can be proved by “simple” verifications. In this appendix we do write the proofs as simple
verifications for the constructions on sets. But for the constructions on graphs and polarized
graphs we use well-known results about pointwise construction of limits and colimits. All
the constructions are performed up to isomorphism.

A.2. Proofs on sets.

Proposition A.1. Let r : K → R be a function and d : K → D an inclusion, so that up
to bijection D = K +K and d is the canonical inclusion. The pushout of d and r in Set is
the following square, where h is the canonical inclusion:

K

d
��

r
// R

h
��

D = K +K
r1=r+id

K

// H = R+K

Proof. Given a commutative square

K

d
��

r
// R

h′

��

D = K +K
r′
1

// H ′

let us check that there is a unique function η : H → H ′ such that η ◦h = h′ and η ◦ r1 = r′1.
If such a η exists, then its restriction to R is h′ and its restriction to K is the restriction of
r′1 to K. These two properties determine a function η : H → H ′ which satisfies η ◦ h = h′

and η ◦ r1(x) = r′1(x) for each x ∈ K. We have to check that η ◦ r1(x) = r′1(x) for each
x ∈ K. This follows from the equalities η ◦ r1 ◦ d = η ◦ h ◦ r = h′ ◦ r = r′1 ◦ d.
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Proposition A.2. Let l : K → L be a function and m : L→ G an inclusion, so that up to
bijection G = L+ L and m is the canonical inclusion. The pullback complements of l and
m in Set are the following squares, where D is any set containing K (so that D = K+K),
d is the canonical inclusion and l : K → L is any function:

L

m

��

K
l

oo

d
��

G = L+ L D = K +K
l1=l+l

oo

Proof. First, let us prove that the square in the proposition is a pullback square. Clearly it
is commutative. Given a commutative square

L

m

��

K ′
l′

oo

d′

��

G = L+ L D = K +K
l1=l+l

oo

let us check that there is a unique function κ : K ′ → K such that l ◦κ = l′ and d◦κ = d′. If
such a κ exists, since d is the canonical inclusion, the image of d′ is in K and κ(x′) = d′(x′)
for each x′ ∈ K ′. This determines a function κ : K ′ → K which satisfies d ◦ κ = d′. We
have to check that l ◦ κ = l′, or equivalently, since m is an inclusion, that m ◦ l ◦ κ = m ◦ l′.
This follows from the equalities m ◦ l ◦ κ = l1 ◦ d ◦ κ = l1 ◦ d

′ = m ◦ l′.
Now, let us check that every pullback complement of l and m has this form. Given a

pullback square

L

m

��

K
l

oo

d′

��

G = L+ L D′

l′
1

oo

let us check that it has the same form as in the proposition. Since monomorphisms are
stable under pullbacks [17], the function d′ is a monomorphism, so that up to isomorphism
we may assume that d′ is the canonical inclusion of K in D′ = K + K ′, where K ′ is the
complement of K in D′. Since the square is commutative, the restriction of l′1 to K is l.

Finally, let us check that l′1 maps K ′ to L: otherwise, there is some x′ ∈ K ′ such that
l′1(x

′) = x for some x ∈ L, then we get a commutative square

L

m

��

{∗}
∗7→x

oo

∗7→x′

��

G = L+ L D′

l′
1

oo

but there is no κ : {∗} → K such that κ(∗) = x′, which contradicts the pullback complement
property of D′.
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Proposition A.3. Let l : K → L be a function and m : L → G an inclusion, so that up
to bijection G = L + L and m is the canonical inclusion. The pushback of l and m is the
following square:

L

m

��

K
l

oo

d
��

G = L+ L D = K + L
l1=l+id

L

oo

Proof. Clearly from proposition A.2, this square is a pullback. In order to prove that it is
final, using proposition A.2, we have to prove that for every D′ = K +K ′ and l′1 = l + l′ :
D′ → G there is unique δ : D′ → D such that δ is the identity on K and l1 ◦ δ = l′1 on

K +K ′. It is easy to check that δ = idK + l′ is the unique function which satisfies these
properties.

L

m

��

K
loo

d
��

d′

��

G = L+ L D = K + L
l1=l+id

L
oo

D′ = K +K ′
l′1=l+l′

ii δ=idK+l′jjUUUUUUUUUUUUUUUU

A.3. Proofs on graphs. As in the main text, for each graph X the set of edges from n to
p in X is denoted Xn→p. In addition for every morphism of graphs f : X → Y , for every
nX , pX ∈ |X| and nY , pY ∈ |Y | the restrictions of f are denoted:

fnX→pX : XnX→pX → Yf(nX)→f(pX) and fnY →pY :
∑

n∈f−1(nY ),p∈f−1(pY )

Xn→p → YnY →pY .

A graph X may be represented informally as follows, where srcX and tgtX represent
the source and target functions:

X→

srcX
++

tgtX

33 |X|

Let SGr denote the following category (the identity arrows idE and idN are omitted in this
representation):

E

src
++

tgt

33 N

Then, a graph may be identified to a functor from SGr to Set, where Set is the category
of sets. More precisely, the category of graphs Gr may be identified to the category of
functors from SGr to Set. It follows that limits and colimits of graphs may be computed
pointwise [17].

As in the main text, a matching of graphs is a monomorphism of graphs (this is often
called an “injective matching”). And a matching of graphs f : X → Y gives rise (up to
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isomorphism) to a decomposition Y = (X+X)+e X̃. The edges in X̃ are called the linking
edges for f .

Proposition A.4 (proposition 2.5). Let r : K → R be a morphism and d : K → D a

matching of graphs, so that up to isomorphism D = (K +K) +e K̃ and d is the canonical
inclusion. The pushout of d and r in Gr is the following square, where h is the canonical

inclusion and where R̃ and r̃ : K̃ → R̃ are defined as follows. On nodes, |R̃| = |R| + |K|

and r1 = r + idK : |H| → |D|. On edges, R̃ has one edge (e, nD, pD) : nH → pH for each

edge e : nD → pD in K̃ such that r1(nD) = nH and r1(pD) = pH , and r̃ : K̃ → R̃ maps e

to (e, nD, pD).

K

d
��

r
// R

h
��

D = (K +K) +e K̃ r1=(r+id
K
)+er̃

// H = (R +K) +e R̃

So, on the linking edges, the morphism r̃ induces a bijection, for all nH , pH ∈ |H|:

r̃nH→pH :
∑

nD∈r−1

1
(nH ),pD∈r−1

1
(pH )

K̃nD→pD
≃
→ R̃nH→pH .

Proof. Since D = (K + K) +e K̃, we have |D| = |K| + |K| and D→ = K→ +K→ + K̃→.
Since a pushout of graphs can be computed pointwise, let us use proposition A.1. On
nodes, we get |H| = |R|+ |K| with h the canonical inclusion and r1 = r + idK . On edges,

we get H→ = R→ + K→ + R̃→ where R̃→ = H̃→, with h the canonical inclusion and
r1 = r+ idK→

+ id
K̃→

. The source and target functions for H coincide with the source and

target functions for R and for K on the subgraphs R and K, respectively. For every edge

e : nD → pD in K̃, its image in H is e : r1(nD) → r1(pD) in R̃, this is the edge denoted
(e, nD, pD) in the proposition.

Proposition A.5 (proposition 2.6). Let l : K → L be a morphism and m : L → G a

matching of graphs, so that up to isomorphism G = (L + L) +e L̃ and m is the canonical
inclusion. The pullback complements of l and m in Gr are the following squares, where

D is any graph containing K (so that D = (K + K) +e K̃), d is the canonical inclusion,

l : K → L is any morphism of graphs and l̃ : K̃ → L̃ is any morphism of graphs which
coincides with l + l on the nodes.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K +K) +e K̃
l1=(l+l)+e l̃

oo

Proof. Since G = (L+ L) +e L̃, we have |G| = |L|+ |L| and G→ = L→ + L→ + L̃→. Since
monomorphisms are stable under pullback, the pullback complements of l and m are such

that d : K → D is a monomorphism. Hence, up to isomorphism, D = (K +K) +e K̃, so

that |D| = |K|+ |K| and D→ = K→+K→+ K̃→, and d is the canonical inclusion. We still

have to prove that l1 = (l+ l) +e l̃. Since a pullback of graphs can be computed pointwise,
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proposition A.2 tells us that on nodes l1 = l + l for any function l : |K| → |L| and that

on edges l1 = l + l′ for any function l′ : K→ + K̃→ → L→ + L̃→. In addition, an edge

e : nD → pD in K→+ K̃→ is in K→ if and only if both nD and pD are in |K|, and similarly

an edge e : nG → pG in L→ + L̃→ is in L→ if and only if both nG and pG are in |L|. Since

l1 = l + l on nodes, it follows that l′ = l + l̃ with l : K→ → L→ and l̃ : K̃→ → L̃→.

Proposition A.6 (proposition 2.7). Let l : K → L be a morphism and m : L → G a

matching of graphs, so that up to isomorphism G = (L + L) +e L̃ and m is the canonical

inclusion. The pushback of l and m is the following square, where K̃ is made of one edge

(e, nD, pD) : nD → pD for each e : l1(nD) → l1(pD) in L̃ and l̃ maps each (e, nD, pD) ∈ K̃

to e ∈ L̃.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K + L) +e K̃
l1=(l+id

L
)+e l̃

oo

So, on the linking edges, the morphism l̃ induces a bijection, for all nD, pD ∈ |D|:

l̃nD→pD : K̃nD→pD
≃
→ L̃l1(nD)→l1(pD) .

Proof. This proof generalizes the proof of proposition A.3. Clearly from proposition A.5,
this square is a pullback. In order to prove that it is final, using proposition A.5, we have

to prove that for every D′ = (K + K ′) +e K̃ ′ and l′1 = (l + l′) +e l̃′ : D
′ → G there is a

unique δ : D′ → D such that δ is the identity on K and l1 ◦ δ = l′1. Since l1 = (l+ idL) +e l̃

and l′1 = (l + l′) +e l̃′, this means that δ = (idK + l′) +e δ̃ with l̃ ◦ δ̃ = l̃′ : K̃ ′ → L̃. So, δ is

uniquely determined on K +K ′, hence on the nodes of D′, and we still have to check that

the equality l̃ ◦ δ̃ = l̃′ determines a unique δ̃ : K̃ ′ → K̃. The equality l̃ ◦ δ̃ = l̃′ is equivalent

to the family of equalities l̃nD→pD ◦ δ̃nD′→pD′ = l̃′nD′→pD′ for all nodes nD′ and pD′ in D′,

with nD = δ(nD′) and pD = δ(pD′) in D. Since l̃nD→pD is a bijection, this is equivalent to

δ̃nD′→pD′ = l̃−1
nD→pD

◦ l̃′nD′→pD′ :

L̃

l̃−1
nD→pD

&&

K̃
l̃nD→pD

oo

K̃ ′
l̃′n

D′→p
D′

ee δ̃n
D′→p

D′

ggNNNNNNNNNNNNNN
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This determines the morphism δ̃, hence δ. This proof is summarized by the diagram below:

L

m
��

K
loo

d
��

d′

  

G = (L+ L) +e L̃ D = (K + L) +e K̃
l1=(l+id

L
)+e l̃

oo

D′ = (K +K ′) +e K̃ ′
l′1=(l+l′)+e l̃′

jj δ=(idK+l′)+eδ̃kkVVVVVVVVVVVVVVVVVVV

A.4. Proofs on polarized graphs. A polarized graph X = (X,X◦) may be represented
informally as follows, where srcX and tgtX represent the source and target functions, src+X
and tgt

−

X represent the restrictions of srcX and tgtX , respectively, and the upward arrows
represent the inclusions:

X→

srcX
,,

tgtX

22 |X|

X⋆
→

src
+

X
,,

tgt
−
X

44

OO

|X|+

CC�������

|X|−

[[8888888

Let S◦
Gr denote the following limit sketch, where the arrows “֌” stand for monomorphisms

and where i+ ◦ src+ = src ◦ i and i− ◦ tgt− = tgt ◦ i (an introduction to sketches can be
found in [2]):

E

src
,,

tgt

22 N

E⋆
src+

++

tgt−

55

OO

i⋆

OO

N+
DD

i+
DD						

N−

ZZ

i−
ZZ555555

Then, a polarized graph may be identified to a set-valued model of S◦
Gr. More precisely, the

category of polarized graphs Gr◦ may be identified to the category of set-valued models of
S◦
Gr. It follows that limits of polarized graphs may be computed pointwise.

As in the main text, a matching of polarized graphs is a monomorphism f : X → Y

such that f(X◦) = f(X) ∩ Y ◦ (i.e., f strictly preserves the polarization). And a matching
of polarized graphs f : X → Y gives rise (up to isomorphism) to a decomposition Y =

(X+ X) +e X̃. The edges in X̃ are called the linking edges for f .

Proposition A.7 (proposition 2.12). Let l : K → L be a morphism and m : L → G a

matching of polarized graphs, so that up to isomorphism G = (L + L) +e L̃ and m is the
canonical inclusion. The pullback complements of l and m in Gr◦ are the following squares,

where d : K→ D is any matching of polarized graphs (so that D = (K +K) +e K̃), d is the
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canonical inclusion, l : K → L is any morphism of polarized graphs and l̃ : K̃ → L̃ is any
morphism of polarized graphs which coincides with l + l on nodes.

L

m
��

K
l

oo

d
��

G = (L+ L) +e L̃ D = (K+K) +e K̃
l1=(l+l)+e l̃

oo

Proof. This proof generalizes the proof of proposition A.5. Since monomorphisms are stable
under pullback, the pullback complements of l andm are such that d : K→ D is a monomor-
phism. Let us prove that d is a matching of polarized graphs: let nK be a node in K, with
nL = l(nK) in L, such that d(nK) is polarized as d(nK)+ in D, then m(nL) = l1(nK) is
polarized as m(nL)

+ in G, and since m is a matching nL is also polarized as n+
L in L, which

implies that nK is polarized as n+
K in K because the square is a pullback. A similar result

holds for nodes with negative polarization and for polarized edges. So, d is a matching,

from which it follows that, up to isomorphism, D = (K + K) +e K̃ and d is the canonical

inclusion. We still have to prove that l1 = (l+ l) +e l̃. Since a pullback of polarized graphs
can be computed pointwise, this part of the proof runs as in the proof of proposition A.5.

In a pullback square as in proposition A.7, it may happen that every linking edge for m
is polarized while this does not hold for d; for example, with the notations as in the main
text:

n± n+
1 n−

2

n±

⋆
��

p±

n+
1 n−

2

��

p±

Definition A.8. With the notations of proposition A.7, a pullback is called polarized when
every linking edge for m is polarized, as well as every linking edge for d. When every linking
edge for m is polarized, the polarized pushback of l and m is the terminal polarized pullback
complement, when it exists.

Proposition A.9 (proposition 2.14). Let l : K → L be a morphism and m : L → G a

matching of polarized graphs, so that up to isomorphism G = (L + L) +e L̃ and m is the
canonical inclusion. In addition, let us assume that every linking edge for m is polarized.

The polarized pushback of l and m is the following square, where K̃ is made of one edge

(e, nD, pD) : nD → pD for each nD ∈ |D|
+, pD ∈ |D|

− and e : l1(nD) → l1(pD) in L̃ and

where l̃ maps each (e, nD, pD) ∈ K̃ to e ∈ L̃:

L

m
��

K
loo

d
��

G = (L+ L) +e L̃ D = (K+ L) +e K̃
l1=(l+id

L
)+e l̃

oo

Since every linking edge for m and for d is polarized, L̃⋆
→ = L̃→ and K̃⋆

→ = K̃→. On

the linking edges, the morphism l̃ induces a bijection, for all nD ∈ |D|
+ and pD ∈ |D|

−:

l̃nD→pD : K̃nD→pD
≃
→ L̃l1(nD)→l1(pD) .
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If nD 6∈ |D|
+ or pD 6∈ |D|

−, then K̃nD→pD is empty, but it may happen that l1(nD) ∈ |G|
+

and l1(pD) ∈ |G|
− and that L̃l1(nD)→l1(pD) is not empty. For example:

n± n+
1 n−

2

n±

⋆
��

p±

n+
1

⋆
��

n−

2

p±

Proof. This proof is similar to the proof of proposition A.6. Using proposition A.7, we have

to prove that for every D
′ = (K + K′) +e K̃

′ and l′1 = (l + l′) +e l̃′ : D
′ → G such that all

edges in K̃′ are polarized, there is a unique δ : D′ → D such that δ is the identity on K

and l1 ◦ δ = l′1. This means that δ = (idK + l′) +e δ̃ with l̃ ◦ δ̃ = l̃′ : K̃ ′ → L̃. So, δ is

uniquely determined on K + K′, hence on the nodes of D′, and we still have to check that

the equality l̃ ◦ δ̃ = l̃′ determines a unique δ̃ : K̃ ′ → K̃. The equality l̃ ◦ δ̃ = l̃′ is equivalent

to the family of equalities l̃nD→pD ◦ δ̃nD′→pD′ = l̃′nD′→pD′ for all nodes nD′ and pD′ in D
′,

with nD = δ(nD′) and pD = δ(pD′) in D.

• If nD′ ∈ |D′|+ and pD′ ∈ |D′|− then nD ∈ |D|
+ and pD ∈ |D|

− so that l̃nD→pD is a

bijection. Then δ̃nD′→pD′ is uniquely determined by δ̃nD′→pD′ = l̃−1
nD→pD

◦ l̃′nD′→pD′ .

• Otherwise, K̃ ′
nD′→pD′ is empty, because all edges in K̃′ are polarized. Then δ̃nD′→pD′

is uniquely determined.

This yields the morphism δ̃, hence δ. This proof is summarized by the diagram below:

L

m
��

K
loo

d
��

d′

  

G = (L + L) +e L̃ D = (K+ L) +e K̃

l1=(l+id
L
)+e l̃

oo

D
′ = (K+K′) +e K̃

′
l′1=(l+l′)+e l̃′

jj δ=(idK+l′)+eδ̃kkVVVVVVVVVVVVVVVVVV


