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{frederic.cuppens, nora.cuppens}@telecom-bretagne.eu

Abstract. The use of dynamic access control policies for threat response
adapts local response decisions to high level system constraints. However,
security policies are often carefully tightened during system design-time,
and the large number of service dependencies in a system architecture
makes their dynamic adaptation difficult. The enforcement of a single re-
sponse rule requires performing multiple configuration changes on multi-
ple services. This paper formally describes a Service Dependency Frame-
work (SDF) in order to assist the response process in selecting the pol-
icy enforcement points (PEPs) capable of applying a dynamic response
rule. It automatically derives elementary access rules from the generic
access control, either allowed or denied by the dynamic response pol-
icy, so they can be locally managed by local PEPs. SDF introduces a
requires/provides model of service dependencies. It models the service
architecture in a modular way, and thus provides both extensibility and
reusability of model components. SDF is defined using the Architecture
Analysis and Design Language, which provides formal concepts for mod-
eling system architectures. This paper presents a systematic treatment of
the dependency model which aims to apply policy rules while minimizing
configuration changes and reducing resource consumption.

1 Introduction

Intrusion Detection Systems (IDSes) have been recently superseded by Intrusion
Prevention Systems (IPS), which add the capability to passivate the threat in
addition to detecting and reporting. IPSes are widely used as local control points
which take only limited actions (e.g. closing a connection, killing a process, etc.).
The major weakness of those IPSes is their static behavior, which relies on pre-
defined mappings between intrusive behaviors and suitable response actions. The
taxonomy in [1] thus confirms the need for more complex and dynamic response
mechanisms. Cuppens et al. propose in [2] a reaction workflow which links the
local response decisions to the higher level of security policy. They state that
local response decisions should be assisted by global decisions managed at the
policy level. In [3], Debar et al. provide a comprehensive approach for man-
aging intrusion response at the policy level using contextual security policies.



Intrusion response is specified using contextual access control rules which are
triggered when their associated threat contexts are activated. The policy-based
response architecture in [3] separates the response instantiation process which
triggers response rules from the response decision process. While the instantia-
tion process is sufficiently detailed in [3], contributions for the decision process
remain sparse. This paper completes the architecture in [3] by defining a service
modeling framework which enables the decision process to automatically select
local enforcement points able to apply a dynamic response rule.

The decision process maps policy instances into concrete actions applicable
on local Policy Enforcement Points (PEPs). [4] proposes a derivation process
which translates high level policies into local firewall actions, but it only man-
ages network policies. The use of application services provides more granularity
for the specification and application of response policies. A service may be con-
figured with accurate access control rules to the data it manages. It thus enables
accurate response applications not always possible at the network layer. More-
over, service dependencies may provide several alternatives for the application
of response policies. The access to a dependent service may be modified through
the reconfiguration of the access to its antecedent service. Unfortunately, the
use of service dependencies for automated response is still, at the best of our
knowledge, restrained to static mappings. The lack of a formal representation
of those services and their dependencies is a major reason. This paper combines
policy-based response with topological information about services and their de-
pendencies. Services endowed with access control capabilities (ACLs, Application
Firewalls, configuration files, etc.) are considered as PEPs. The Service Depen-
dency Framework (SDF), a formal framework for modeling services and their
dependencies, is defined in this paper. It assists the decision process in deriving
local accesses to antecedent services from the generic access to the dependent
service which is either allowed or denied by the response policy. The decision
process analyzes those accesses with respect to PEPs capabilities. It selects the
optimal set of PEPs capable of applying the security rule.

The paper is structured as follows. Section 2 summarizes the state of the
art, including the presentation of the policy-based response process, the need
for a SDF and description of related work. Section 3 presents the service de-
pendency model. Section 4 defines the framework for building the dependency
model. Section 5 provides a systematic treatment of the SDF by the decision
process. Section 6 concretely implements the SDF on a mail delivery testbed.

2 State Of the Art

2.1 Policy-Based Intrusion Response

Access control policies include permission and/or prohibition rules which apply
to subjects when they intend to perform actions on objects. Some rules specify
requirements which apply during normal operation, they form the operational
policy. Others apply in case of security threats, they form the threat policy.
The switching between operational and threat policies is driven by contextual



constraints. We specify contextual policies using the Organization Based Access
Control (OrBAC) Model [5]. This paragraph recalls the OrBAC concepts we
need in this paper (see [6] for details).

The OrBAC Model uses the abstract triplet (Role, Activity, View) instead of
the concrete triplet (subject, action, object) when defining access control policies.
The concept of Role was first introduced by the RBAC model [7]. A Role is a set
of subjects which have the same permissions. OrBAC adds Activities and Views
as abstractions of actions and objects respectively. An Activity (e.g. access data)
is an operation implemented by some actions (e.g. get and retr commands for
http and pop3 protocols respectively). These can be grouped within the same
activity for which we may define a single rule. A View is a set of objects that
possess the same security-related properties so they can be accessed in the same
way. Abstracting objects into Views avoids the need for writing one rule for each
of them. OrBAC introduces contexts [5] which add conditions under which a
certain rule can be applied. OrBAC uses four predicates:

- empower (subj, Role): subject subj is empowered in the role Role.
- consider (act, Activity): action act is implemented in the activity Activity.
- Use (obj, View): object obj is used in the view View.
- hold (ctxt, subj, act, obj): context ctxt is active for the triplet (subj, act, obj).
A security rule is expressed as Sr (Decision, R, A, V, Context)3. When context

is active, R’s request to perform the activity A on the View V is submitted to the
decision Decision. An example of an OrBAC security rule is: Sr (Prohibition, User,

login, internal Host, not working Hours). User is a role for any system user; login
is the activity of connecting to a host; internal Host is any host connected to
the internal network and the context not working Hours is true outside working
hours. Sr states that such an operation is prohibited outside working hours.

Reaction Policies in the OrBAC model are associated with threat con-
texts. A threat context is assigned to an intrusion class. It is activated when
the associated intrusion is detected (e.g. DoS, Buffer overflow). As in [3], threat
contexts are only activated for the concrete triplets described in alerts. For in-
stance, a brute force attack from a certain address addr against an account Acc
using the login service activates the Brute Force context as follows:

Hold (addr, login, Acc, Brute Force) ← alert (Source, Target, Classification),

Classification (Brute Force), service (Target, login), Account (Target, Acc)

The context activation may trigger policy rules associated with this context.
These rules specify new security requirements appropriate for countering the
detected threat. Threat contexts activation uses mappings from IDMEF alert
attributes [8] onto concrete policy components. While the mappings are delib-
erately simplified in our example, they may introduce different granularities in
order to consider different attack classes (e.g. a DDoS attack is managed differ-
ently than a targeted buffer overflow attack)[3].
3 OrBAC associates organizations with security rules. To simplify, these are not made

visible in this paper since we consider only a single organization



2.2 Policy Decision Models

The decision process contains two steps [4]. The first is architecture-dependent.
It segments a response into elementary actions. The second step is component-
dependent. It translates elementary actions into concrete configurations. [9] pro-
poses a formal approach for the specification and deployment of network security
policies. Unfortunately, it does not consider the overlying service architecture.
The modeling of services and their dependencies provides means for a fine grained
response application, which it is not always applicable on the network layer. Let’s
check for instance the following concrete response policy:
Prohibition (IP, HTTP/Get, retail Appli), Permission (IP, HTTP/Get, mail Appli)

where both applications are hosted on the same server. Applying this policy
at the network layer is tedious since firewalls are less likely to have visibility
over application data. While application layer firewalls are more appropriate,
they are not always available on the server. A model-based analysis of service
architectures may provide more suited alternatives for the application of such
response policies. For instance, when the web server is accessible through traffic
redirection from a remote proxy, a SDF links between the web service and the
proxy service so that the decision process automatically selects the proxy for
applying this policy.

A formal dependency framework which establishes the link between the ac-
cess to an antecedent service and the access to its dependent service does not
seem to exist. This paper provides a requires/provides model framework for ser-
vice dependencies. This framework assists the Policy Decision Process (PDP) in
tracing all the elementary accesses in order to access a certain data. As such,
and when this access is prohibited, the PDP alters some elementary accesses in
order to deny the prohibited access. Moreover, when the access is allowed, the
PDP satisfies at least one single access path to the data. The decision process
in this paper is different from the approach described in [10] in that it aims at
finding the best suitable set of PEPs capable of applying a response, after and
only after this response is selected. We first briefly describe existing dependency
models and their usages before presenting our dependency model and its use.

2.3 Service Dependency Models and Applications

Existing dependency models An XML based dependency model is presented
in [11]. This model provides a backend for building a dependency database, with-
out providing a formal specification of service dependencies. [12] defines a depen-
dency algebra for modeling dependency strengths. It separates the Dependency
relation from the Use relation. It states that critical components should only
use and not depend on non-critical components. In [13], a UML-based depen-
dency model describes service dependencies in ad hoc systems. It focuses on the
dependencies relevant to ad hoc collaborative environments. Moreover, a service
dependency classification for system management analysis is provided in [14]. It
separates between functional (implementation-independent) and structural de-
pendencies (implementation-dependent).



Service Dependency Usages A cost-sensitive approach for balancing be-
tween intrusion and response costs is provided in [15]. A system map holding
dependency information is used as a basis for deciding on response strategy. [16]
proposes a function which evaluates intrusion response impacts using depen-
dency trees. It allows a cost-sensitive selection of intrusion responses. Another
cost-sensitive analysis of intrusion responses is presented in [17]. It uses depen-
dency graphs instead of dependency trees. Service dependencies are also used
for fault analysis [18], dependability analysis [19] and many other applications.

The existing dependency models such as graph [15,17,16] or class-based [13]
models classify service dependencies using static attributes. These are often infor-
mally defined, and adapted to only specific system implementations. The adop-
tion of those models still confronted to their expressiveness and the dependency
characteristics they deal with. The decision process needs more than to know
about the existence of a certain dependency and its strength. In order to derive
elementary accesses to antecedent services, and to do it automatically, the deci-
sion process must be able to discern the access to the antecedent service through
the access to its dependent services. In other terms, it must be aware of what
data is required from the antecedent service, how, when and why is it accessed.

On the other hand, the SDF must enable the regrouping of elementary ser-
vices into dependency blocks with well-defined interfaces. Those blocks can be
implemented in other dependency blocks, and thus providing reusability of the
dependency model. The SDF must also allow the abstraction of certain depen-
dencies, and thus representing only the dependencies relevant for the application
purposes. We have choosen to define the SDF using the Architecture Analysis
and Design Language (AADL)[20]. AADL fulfills those requirements through
the modeling of service architectures. In the following section, we summarize the
main AADL concepts we use in this paper and present our SDF.

3 The Service Dependency Model

3.1 Using AADL to model the SDF

AADL has been released and standardized by the Society of Automotive Engi-
neers. AADL provides formal modeling concepts for the description and analysis
of application system architectures in terms of distinct components and their
interactions. We privileged AADL over common modeling languages like UML
because AADL provides more powerful features for modeling system runtime be-
haviors. AADL provides standardized textual and graphical notations for model-
ing systems and their functional interfaces. It has been designed to be extensible
so that analyses that the core language does not support can be supplied. The
extensibility in AADL is provided through the Annex extension construct.

SDF models user runtime behaviors when accessing the data provided by
dependent services. It contrasts with most functional dependency models since
it focuses on the data flows associated with the access to a dependent service
rather than modeling its functional dependencies. This is a main concept in our



approach since policy-driven responses require PEPs to deny some of these data
flows. We thus model services as abstractions, and these are decoupled from the
concrete components which realize them. Our decision can be best motivated by
the fact that concrete components only introduce functional dependencies which
are not relevant in our approach. For instance, a web service is defined through
its dependencies, independently whether it is implemented by apache2 server or
windows web server. We use for this purpose AADL system abstractions (see
section 3.2). AADL models dependencies using inter-component connections.
AADL connnections reproduce the service topology. They allow modeling multi-
ple service paths through the use of multiple connection paths to the same data.
We also use AADL operational modes in order to represent the dependency se-
quencing during the workflow of the dependent service. We use the AADL Error
Model Annex [21] which has also been standardized to add features for modeling
the system behavior in the presence of faults. We use faults as model constructs
in order to represent the behavior of a dependent service when it can not access
to the antecedent service due to a response application. In the remaining of this
section, we describe the main elements of our AADL dependency model.

3.2 Service and service dependency definition

We define a service as the implementation of an interface which provides data
access to its users (e.g. Web service, IP service). A service often requires access
to subsidiary data during its normal behavior. It is thus identified through the
specification of its required and provided data accesses. We model an elementary
service in AADL as a black box with specific requires/provides interfaces. Each
interface enables a specific data access, either required or provided by the service
(see Figure 1). We may add constraints between data required and provided by
a service (e.g. the required account is the owner of the provided data). These are
expressed as predicates assigned, when necessary, to the corresponding interfaces.

1 −− Implementation of elementary se rv i ce −−
2 system Service Name
3 features
4 RF1 : requires data access da ta Se t r1 ;
5 . . .
6 RFn: requires data access data Se t rn ;
7 PF1 : provides data access data Set p1 ;
8 . . .
9 PFm: provides data access data Set pm ;

10 end Service Name ;

R e q u i r e s  d a t a  a c c e s s

P r o v i d e s  d a t a  a c c e s s

. . .

 S e r v i c e _ n a m e

. . .

P F 1 P F 2 P F m

R F 1 R F 2 R F n

Fig. 1. Elementary Service definition

Service A depends on service B when A requires data access which is provided
by B. A is the dependent service, and B is the antecedent service. The failure of
B, due to an attack or a response, prevents it from providing the data required



by A. The proper behavior of A is thus conditioned by the proper behavior of
B. Required data accesses enable dependency compliance check: A may never
depend on a B if the data access provided by B is not required by A. However,
a required data access does not necessarily imply the need for a dependency,
because this access can be managed by the service itself. For instance, a mail
delivery service requires access to user accounts. These can be managed locally
by the service (passwords file), or remotely accessed through a directory service.
Only the latter case implies a dependency for the directory service.

We model the dependency of service A to service B by connecting the provides
interface of B to its complementary requires interface of A. The AADL model
checks the compliance of this dependency by verifying that the access required
by A corresponds to the access provided by B (see Figure 2).

1 system implementation Dependency Model .A
2 subcomponents
3 A: system dependent ;
4 B: system antecedent ;
5 connections
6 const AB : data access B.PF1 −> A.RF1 ;
7 end Dependency Model .A;

R e q u i r e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

P r o v i d e s  d a t a  
a c c e s s d a t a _ S e t _ r 1

. . .

  B
P F 1

. . .

      A

. . .

R F 1

. . .

Fig. 2. Explicit Service Dependency Representation

3.3 Service Dependency Specification

The SDF specifies dependencies by modeling: the data exchanged in each depen-
dency, the paths followed by these data, the sequencing of dependencies during
the operation of the dependent service and the impact due to the unfulfillment
of each dependency. We thus define the following dependency characteristics.

- Dependency type defines the path of the network flow, and describes the
data assets exchanged between the dependent and the antecedent service.

- Dependency mode makes precise the occurrence of a dependency within the
lifecycle and workflow of the dependent service.

- Dependency Impact evaluates the influence of the insatisfaction or degra-
dation of the relation between antecedent and dependent services.

While these characteristics may be completed at a later time, we believe that
they are the most relevant for our purpose of using the dependency model for
assisting the decision process as described in section 2. In the remainder of this
section, we discuss each attribute, and we show how it is modeled in AADL.

Service Dependency Types describe elementary paths followed by the data
provided by the antecedent service. They only describe access paths for the direct
dependencies of a service. Complete data paths, due to indirect dependencies
(dependencies of the direct antecedents of a service), are automatically inferred
from elementary access paths for each service as explained later in section 4.



A dependency type may be either service-side, user-side or proxy dependency.
- Service-side dependency: the dependent service initiates the interaction with
the antecedent service. The user connects to the dependent service as if no
dependency exists (see Figure 3-a).

- User-side dependency: the user obtain credentials from the antecedent ser-
vice and present them to the dependent service. The connection is transparent
for the dependent service (see Figure 3-b).

- Proxy dependency: the access path to the dependent service is intercepted
by the antecedent service. No access path explicitly exists between the dependent
service and its user during the dependency (see Figure 3-c).

a- Service-side

U A

B

1  -  3

2

b- User-side

A

B

1

U 2

3

c- Proxy

A

1

U

2

3

B

White interfaces represent the data flow provided by the dependent service for its users.
Gray interfaces represent data flow provided by the antecedent service.
A is the dependent service, B is the antecedent service, and U is the user of the dependent service.

Fig. 3. Service Dependency Types

Service Dependency Modes describe the sequencing of dependencies within
the lifecycle and workflow of the dependent service. We use AADL operational
modes for modeling dependency sequencing. AADL modes are constructs which
represent operational states of a component. Each mode illustrates an opera-
tional phase for the dependent service which is characterized by the need for
a certain dependency. As such, the dependent service does not notice the fail-
ure and/or inaccessibility of the antecedent service unless the former reaches
an operational mode where it requires the access to the data provided by the
antecedent service. The transition into a dependency mode means that the de-
pendent service has reached an operational phase where it requires access to the
data provided by the antecedent service. The transition out of this mode means
that the dependency is no longer required.

A service has four operational modes. These modes describe the lifecycle of
this service. Every dependency mode exists necessarily in at least one of these
operational modes. We shall first describe service lifecycle in AADL, and later
we describe dependency sequencing during this lifecycle.

Service lifecycle holds four operational modes: Start, Idle, Request and Stop
modes (see the associated AADL model in Figure 4). They are defined as follows:

- start Mode characterizes the launching period of a service. The process
realizing the service is loading configurations and assets. The transition out of



this mode occurs when the process is ready to receive user requests. Dependencies
in start mode are one-time dependencies only required during service start-up.

- Idle Mode characterizes the period during which a service is waiting for
incoming user requests. The transition out of this mode is initiated by a user
request, or by a decision to stop the service. The dependencies in this phase are
mainly functional dependencies not relevant for the purpose of this paper, but
which can be further investigated as for impact evaluations (see section 7).

- Request Mode starts when the service receives a user request. It characterizes
the in-line dependencies required in order to process this request. The transition
from this mode occurs after the user connection is closed.

- Stop mode All the actions a service may take before stopping are considered
as part of the stop mode.

The sojourn time in each operational mode varies according to service con-
figurations. Transitions between operational modes may also vary for certain
services. For instance, a service may start on a per-request basis. It therefore
directly switches to the stop mode at the end of the request mode.

S t a r t

I d l e

R e q u e s t

S t o p

t rans i t

t rans i t

t rans i t

d o w n

1 system implementation Dependent . i n s t ance
2 subcomponents
3 CStart : system op State in modes ( Star t ) ;
4 CIdle : system op State in modes ( I d l e ) ;
5 CRequest : system op State in modes ( Request ) ;
6 CStop : system op State in modes ( Stop ) ;
7 modes
8 Star t : i n i t i a l mode ;
9 I d l e : mode ; Request : mode ; Stop : mode ;

10 Star t −[CStart . t r a n s i t ]−> I d l e ;
11 I d l e −[CIdle . t r a n s i t ]−> Request ;
12 Request −[CRequest . t r a n s i t ]−> I d l e ;
13 I d l e −[CIdle . down]−> Stop ;
14 end Dependent . i n s t ance ;

Fig. 4. Dependent Service Modes

Dependency sequencing Dependencies in each operational mode are invoked in
a certain sequence related to the service behavior. These are defined as AADL
operational sub-modes assigned to the components of each operational mode
(lines 2-6 in Figure 4). We thus state dependencies within the lifecycle of the
dependent service, and we determine the dependency sequencing within the same
lifecycle phase. We obtain a Dependency Finite State Machine (DFSM) with sub-
states. Dependencies appear in three possible sequences described as follows.

- Stateless sequencing : the satisfaction of the parent dependency is an obli-
gation prior to the access to the child dependency. However, the former does not
need to remain satisfied once the latter is accessed (Figure 5-a).

- Statefull sequencing : the parent dependency must remain satisfied as long
as the child dependency is not satisfied yet (Figure 5-b).



a- Stateless sequencing

i + 2
D e p

i + 1
D e pi

D e p

b- Statefull sequencing

i
D e p

i + 1
D e p i + 2

D e p

c- Alternative sequencing

i + 2
D e p

i + 1
D e p i

D e p

Fig. 5. Service Dependency Sequencing

- Alternative sequencing : characterizes redundant dependencies. The transi-
tion from the parent dependency leads to one child dependency (Figure 5-c).

Stateless and statefull sequencings express conjuctive dependencies. Alterna-
tive sequencing expresses disjunctive dependencies where only one alternative
dependency is required. Each dependency mode is associated with a specific re-
quire interface (see Figure 1) which is connected to a specific antecedent service.

Service Dependency Impacts express the consequence of any degradation of
the antecedent service, which alters the access to data required by the dependent
service. The failure of a dependency alters the transitions between operational
modes. This alteration is motivated by the fact that the failure of a dependency
denies reaching its subsequent dependencies in case of no alternative dependency.

Dependency failure does not only alter the normal transition out of the failed
dependency. It may also restrain the service to switch to another operational
mode. For instance, a web server may switch to unsecure connections when the
SSL service does not respond. We use the AADL error model annex to repre-
sent the impact of a dependency failure. Each service is attributed at least two
AADL error states, which are normal and failure states. The impact of a depen-
dency is expressed by constraining the transition out of a dependency to occur
depending on the error state of the antecedent service. This is done by defining
Guard Transition properties which use error propagations. Error propagations
are AADL constructs which notify the component at the remote end of a connec-
tion about the error state of the other component. We use Error Free and Failed
propagations which notify respectively an error free and a failed dependency
states. Each dependency state may dispose of two transitions. The first is the
normal transition, constrained by the satisfaction of the dependency. The second
transition is optional. It is constrained by the unsatisfaction of the dependency.

The following example of a Mail Delivery Service (MDS) illustrates these spec-
ifications. MDS authenticates its users using LDAP service. Authenticated users are
granted access to their remote mailboxes mounted using the NFS service. The
accounts of connected users are locked in order to prevent simultaneous sessions.
MDS unlocks an LDAP account after its corresponding user closes his/her opened
session. The normal behavior of MDS is modeled in lines 1-6 of Figure 6.

The impact of the second LDAP dependency is stated as follows. Firstly, au-
thenticated users cannot disconnect if the MDS cannot access to the LDAP service.
The Guard Transition in lines 11-12 states that the transition to the Idle phase
(line 6) only occurs if the dependency is in the Error Free state. Secondly, au-
thenticated users remain blocked in the NFS dependency state as long as the
second LDAP dependency is not restored (lines 7-10 of Figure 6).



1 modes
2 LDAP1: i n i t i a l mode ;
3 NFS: mode ; LDAP2: mode ; I d l e : mode ;
4 T1 : LDAP1 −[C1 . t r a n s i t ]−>NFS;
5 T2 : NFS −[C2 . t r a n s i t ]−> LDAP2;
6 T3 : LDAP2 −[C3 . t r a n s i t ]−> I d l e ;
7 T4 : LDAP2 −[C3 . F a i l u r e t r a n s i t ]−> NFS;
8 annex Error Model {∗∗
9 Guard Transit ion =>

10 (RAccount [ Fa i l ed ] ) applies to T4 ;
11 Guard Transit ion =>
12 (RAccount [ Error Free ] ) applies to T3 ;
13 ∗∗} ;

I M A P

L D A P

N F S
L D A P 1

N F S

L D A P 2

I d l e
F a i l e d

E r r _ F r e e N o r m a l

F a i l u r e

E r r _ F r e e

F a i l e d

Fig. 6. Service dependency Impact

4 Dependency Model Framework

Section 3 has defined the service dependency characteristics managed using our
approach. This section describes the steps for building a dependency model
using our framework summarized in Figure 7. We use the Open Source AADL
Tool Environment (OSATE)4 which is a set of Eclipse plug-ins. OSATE maintains
AADL models as XML-based files, which allows the reusability of the model.

S e r v i c e  d e p e n d e n c y  d e s c r i p t i o n s

4

1 2

E x p l i c i t  d e p e n d e n c i e sO S A T E  t o o l

*

M o d e l  t r a n s l a t i o n  a n d  v a l i d a t i o n

M u l t i - f i l e s  X M L  m o d e l

O S A T E  s u p p o r t  f o r  A A D L  X M L  I n t e r c h a n g e  r e p r e s e n t a t i o n

3

J a v a  b a s e d  Q u e r y  i n t e r f a c e

+  d e p S t a t e I d :  i n t

#  P a r e n t S t a t e :  d e p S t a t e

#  A n t S e r v i c e :  S e r v i c e

#  R e q u i r e d D a t a :  D a t a

#  R e q u e s t e t :  S e r v i c e

#  F a i l u r e T r a n s :  S e r v i c e

d e p S t a t e

+  C h e c k P a t h  ( ) :  b o o l e a n

+  c h k C o n s t r a i n t  ( ) :  b o o l e a n

+  g e t F a i l u r e T r a n s  ( ) :  d e p S t a t e

+  a d d H i s t o r y  ( ) :  b o o l e a n

1

*

I t e r a t i v e  m o d e l
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Fig. 7. Dependency Model Framework

The modeling framework is split into four steps. The user is intended to do
the first two steps. The last two steps are automatically generated.

Step 1 consists of modeling the explicit dependencies of a service. Each
service has a dedicated dependency model defined in an AADL package. Only
explicit dependencies are represented. Antecedent services are considered as in-
dependent services, and therefore indirect dependencies are not represented.

4 http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html



Step 2 consists of modeling the dependency impacts. Failure impacts are
specified as in section 3.3. Only the impacts of explicit dependencies are modeled.
Indirect dependency impacts are infered from those of explicit dependencies.

The iteration over the first two steps consists of replacing antecedent ser-
vices by the implementation of their composite dependency models. Antecedent
services, previously used as abstract independent components, are replaced by
instantiations of their dependency packages (see the case study for examples).

In Step 3, OSATE translates the AADL model into a multi-file XML model.
Each package (i.e. elementary dependency model) is saved as an XML file ex-
pressed using the AADL XML Interchange format. This step is preceded by an
automated model validation. OSATE checks the connections between model com-
ponents. It flags inappropriate dependencies where a dependent service is made
dependent of an antecedent service which does not provide its required data.

Step 4 is the implementation of a query interface which manages the ac-
cess to the dependency model. This interface is queried for the dependencies of
a specific service. We use the Java-based Document Object Model to explore
the AADL/XML model. The query interface builds a Dependency Finite State
Machine (DFSM) with substates in order to represent service dependencies.

The DFSM schema is illustrated in Figure 7. It summarizes all the depen-
dency characteristics modeled in the first two steps. The attributes of a depen-
dency state are (1) the antecedent service, (2) the required data (section 3.2),
(3) the requester (dependency type), (4) the dependency impact, (5) the parent
dependency and (6) the next dependency (dependency modes). Cyclic dependen-
cies are discarded, and thus a dependency state cannot be a parent for another
dependency state which points to the same service.

5 Service Dependencies: Application to Security

5.1 Using Services as Policy Enforcement Points

Deriving Concrete DFSM from Abstract DFSM Policy-based responses
are expressed as (s, a, o) triplets. The SDF is queried for the DFSM of the service
which implements the action a. It thus provides a DFSM which holds abstract
components while the PDP receives concrete rules (see section 2.1). We thus need
to derive a concrete DFSM using the abstract DFSM provided by the query
interface. We associate abstract services with the concrete components which
realize them using the predicate realize(component, Service). It states that the
service Service is realized by the component component. The derivation process
replaces the abstract service with its concrete implementation. It also derives
concrete data instances from abstract data interfaces through the application of
their associated constraints to the object o in the security rule (see section 3.2).
A service may be realized by several component instances. The single abstract
dependency is thus instantiated into several disjunctive concrete dependencies.

The derivation process follows the dependency sequencing in the abstract
DFSM. It substitutes abstract components with concrete implementations. The



input : Sr(s, a, o), DFSM
output: DFSM

curState = DFSM.start;
repeat

if curState == DFSM.start then
Only in the first iteration
curState.Requester = Sr.s;
curState.AntService = Sr.a;
curState.RequiredData = Sr.o;

else
if curState.Requester == User then curState.Requester = Sr.s;
else curState.Requester = subject.realize(subject, curState.Requester);
curState.RequiredData = curState.RequiredData.chkConstraint(Sr.o);
auxSr.s = curState.Requester; auxSr.a = curState.AntService;
aurSr.o = curState.RequiredData;
MakeTransClosure(auxSr, curState.getChilds());
getChilds() Returns the sub state machine for the current state

curState = curState.getNext();
until curState = DFSM.end ;

Algorithm 1: Transitive Closure

initial concrete components are provided by the concrete response rule. Subse-
quent concrete accesses are derived from the abstract DFSM and the concrete
response rule. We use for this purpose the MakeTransClosure function of al-
gorithm 1. It iteratively substitutes the abstract DFSM with a concrete DFSM
using the concrete security rule delivered by the policy instantiation process.

Modeling Policy Enforcement Points The derivation of concrete elementary
accesses is followed by a decision process. It aims to reconfigure elementary
accesses so that the initial response access rule could be applied. In case of
permission, the decision process satisfies at least a minimal set of dependencies.
In case of a prohibition, it checks that no dependency path enables the prohibited
data access. Access permissions are modified through the reconfiguration of PEPs
which are modules associated with services. We therefore consider each service as
a PEP having limited access control capabilities. This capability, when it exists,
is limited to a specific class of subjects. It thus restrains the PEP capability
to apply elementary access rules. For instance, firewall visibility is limited to
network level information, it is not able to monitor user-level credentials.

A PEP is able to apply a security rule when (1) the subject in this rule
belongs to the capability set of the PEP, (2) the service pointed by the action is
managed by the PEP and (3) the object is a data provided by the service (this
constraint is satisfied by the derivation process of algorithm 1)). The capability
of a PEP depends on its concrete implementation (see examples in the case
study). It is defined as a constraint which must be satisfied by the subject in the
security rule. Services which do not have access control capabilities are assigned
null capability sets. The PDP may select a certain PEP if the subject within
the elementary concrete rule derived for this PEP belongs to its capability class.
The PDP selects the optimal response set according to two criteria.

- A prohibition is applied the closer possible to the start state of the DFSM,
in order to reduce resource consumption. This is motivated by the fact that



when the access is denied at the beginning of the DFSM, subsequent dependency
accesses are denied, which contributes in reducing resource consumption.

- The PDP minimizes the configuration changes required for the application
of a security rule by minimizing the services which need to be reconfigured.

Section 5.2 describes how we fulfill those requirements using our approach.

5.2 Selecting Policy Enforcement Points

S is the set of services obtained from the AADL model. We model the DFSM for
the service sDep as DFSMsDep

= {Sa, Ta} where si ∈ Sa ⊂ S is an antecedent
for sDep and aij ∈ Ta ⊂ S×S is a transition. A path pij is a sequence of adjacent
transitions which lead from the dependency state si to the dependency state sj .
If this path does not exist then pij = φ. For an input security rule, the PDP
crosses DFSMsDep . It searches the minimal set of dependencies which applies
the security rule and reduces superfluous resource transactions. Algorithm 2
illustrates the behavior of the PDP. In case of a permission, the PDP searches for
the dependency path which requires the least modifications (i.e. reconfigurations)
in order to allow the access. The selected path is liberated in order to apply the
input permission. In case of a prohibition, the PDP denies all dependency paths.
When altering a dependency state, the PDP switches to the failure transition of
this state and checks that it does not belong to a permissible path.

input : Sr(Type, s, a, o)
output: List < si, Sri > Resp with si ∈ S

FSMa = makeTransClosure(getDFSM(a), Sr);
dStart = FSMa.start; dEnd = FSMa.end;
if Type = Prohibition then

foreach pij in FSMa with (i=dStart) & (j=dEnd) do
if chkRespHistory(pij) (returns False if the path has beed already intercepted)
then

curState = dStart;
repeat

curState = curState.getNext(pij); returns the next state on the path pij

if chkCapability(curState) then
Resp.add(curState.AntService, curState.Sr);
curState.addHistory(curState.Sr); add Sr to the resp. history
auxPath = FSMa.getPath(curState.getFailureTrans(), dEnd);
if (auxPath 6= φ)∧(curState.getFailureTrans().parent 6= Idle) then
pij ← auxPath;

until curState = dEnd ;

else
In case of permission, the PDP allows the path requiring minimum modifications
minPath = null; minLength = Infinity;
foreach pij in FSMa with (i=dStart) & (j=dEnd) do

curLength = 0;
repeat

curState = curState.getNext(pij);
if !chkRespHistory(curState) then curLength ++;

until curState = dEnd ;
if curLength < minLength then {minLength = curLength; minPath = pij ;}

allow(minPath); Liberates the path in parameter

Algorithm 2: Evaluation of the resulting impact transfer matrices



6 Case Study: E-mail Service

6.1 Testbed description

This section implements our dependency model for the example of an email
service. The email testbed manages mailboxes using the NFS service. Local mail
access is granted by both IMAP and POP services. Remote mail access is granted
by a webmail service. The webmail application connects directly to the POP
server, and indirectly to the IMAP server through an IMAP proxy which caches
IMAP connections. Users are authenticated using the LDAP service.

The available PEPs are ModSecurity5 which monitors the access to the web-
mail application, the super daemon XInetd which monitors access to the IMAP
Proxy. The LDAP server monitors the access to user accounts and the NFS service
monitors the access to the shared files using the /etc/exports file. The visi-
bility of XInetd and NFS is limited to internal IP addresses. ModSecurity only
manages external IP addresses. Finally LDAP manages its internal accounts.

6.2 Description of the Testbed AADL Model

Figure 8 illustrates the graphical AADL reprentation of the testbed dependency
model. The main parts of the AADL textual representation are described in
appendix A. We interpret in this paragraph the AADL code in appendix A.
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Fig. 8. TestBed AADL model

The serviceDB package (lines 1-13) contains the modeled services. POP ser-
vice requires access to user accounts (line 4). It provides access to mailboxes (line

5 http://www.modsecurity.org/



6) which are remotely accessed by the POP service (line 5). The webmail service
is granted by a webmail application which must be accessible for webmail users
(line 10). The webmail service recuperates mailboxes (line 9) and provides them
to its users (line 11). The POP package (lines 14-35) provides mailbox access (lines
15-17). The LDAP and NFS (line 20-21) services are extracted from the serviceDB
package. LDAP and NFS dependencies are service-side dependencies; they are both
connected to the POP service (lines 23-24). They are in the request mode (lines
27-28) since they are accessed by the POP service while processing user requests.
LDAP dependency is stateless because the access to user accounts is not required
after authentication (line 29). Its failure alters the transition to the NFS depen-
dency (lines 29&32). The failure of the NFS dependency initiates a transition to
the Idle mode (lines 30&33). The modeling of POP and IMAP dependencies (The
IMAP package is omitted for space limitations) gives two packages which provide
mailbox access. We use these packages in order to model the webmail service
(lines 40-41). The latter is granted by a webmail application. We model the ac-
cess for webmail users to the webmail application through the connection in line
46. The webmail application provides access to mailboxes recuperated from the
mail delivery services (lines 44-45). Lines 53-56 model the multiple access paths
to the mail boxes using both POP and IMAP services. The access to the web ser-
vice must be maintained as long as the connection to the mail delivery services
is still required. The web dependency is thus a statefull dependency. POP and
IMAP dependencies are modeled as substates of the web dependency (line 49).
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Fig. 9. Webmail Dependency FSM

The query interface generates a webmail DFSM (see Figure 9) which summa-
rizes all dependency states and transitions (both normal and failure transitions).

6.3 The Use of Service Dependencies for Response Application

We demonstrate in this section the use of the SDF. We adopt the same mappings
provided in [3], and we show that for the same abstract rule, the selected PEPs
vary according to the mapping outcome. We prefer to use the simple response
policy shown in listing 1.1 in order to show the use of our dependency model.
This response policy requires that the attacker must be forbidden from accessing
to the threatened data through the victim service.



Listing 1.1. Testbed Response Policy
1 −− The abs t rac t response ru l e −−
2 Sr ( prohibition , a t t Source , v ic t im Serv , target Data , attack Threat )
3 −− The Or−Bac Hold f a c t which transforms a l e r t s in to contex t s −−
4 Hold ( Subject , Action , Object , Th Context ) :−
5 alert ( Source , Target , d e s c r i p t i o n ) &
6 map Subject ( Source , Subject ) &
7 map Action ( Target . Serv ice , Action ) &
8 map Object ( Target , Object ) &
9 map Context ( d e s c r i p t i on , Th Context ) .

The mapping functions in listing 1.1 are XSLTs which extract data from IDMEF
alerts [8]. We implemented a prototype for algorithm 2. We simulated several
attack instances and we observed the subsequent behavior of the PDP. In the
remaining, we give four attack examples and the associated responses fired by
the Policy Instantiation Engine and managed by the PDP using our prototype.
Figure 10 summarizes the alerts received, the PDP behavior and the selected
PEPs. It also shows the configurations automatically generated for each selected
PEP according to its appropriate elementary access rule derived by the PDP.
The attributes in italic are simple mappings from the associated access rules.
These are generated by component-specific agents interfacing with each PEP.
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Fig. 10. Attack and Response Samples managed by the Testbed

Reconnaissance attack is generated by an external user who tries to find
valid user IDs. The attacker does not have a valid account. The alert source thus
lacks information about a known user. The response module is alerted about an
IP address performing a reconnaissance attack against the webmail application.
As in Figure 10-a, the PDP selects the first dependency state since the source
specified in the elementary rule belongs to the PEP capability set.

Brute Force attack is account centric. The attacker has already acquired a
valid account ID. He now tries to break the associated password. The alert noti-
fies a brute force attack from a spoofed address against Charlie’s mailbox. The



dependency selected in the former example can not be used since no IP address
is selected. The PDP chooses to deny the access for both POP and IMAP servers
to Charlie’s account. The dashed arrows (Figure 10-b) are failure transitions
followed by the PDP after it has altered their source dependency nodes.

Arbitrary Code Execution allows an intruder to execute arbitrary code on the
target machine on the behalf of the exploited service. The threatened services
are IMAP and POP respectively. The alerts respectively notify an IMAP and a POP
threat. The selected DFSMs are those of POP and IMAP services. In case of IMAP
service (Figure 10-c), the first dependency is selected since the source IP address
belongs to the capability set of Xinetd. The LDAP dependency for the POP service
can not be used since no LDAP account was instantiated by the transitive closure
(Figure 10-d). The NFS service is found to be able to apply its elementary access
control rule. It consists of unmounting mailboxes in the /etc/exports file. It is
true that the decision process did not provide a solution which protects the POP
server. However, a close look to the PEPs capabilities shows that such a solution
at least protects the mailbox alteration following a successful attack.

7 Discussion and Conclusion

In this paper, we have presented a modeling framework for the services and their
dependencies. The novelty of this framework resides in its ability to formally de-
fine dependency attributes, rather than assigning static dependency parameters
as in most of the existing class-based models. The formal definition of depen-
dency parameters provides a strong platform for the use of those dependencies
for security management. This paper demonstrates that service dependencies
can be used for more than only a-posteriori evaluation of intrusion response
impacts, after these have been selected (although being an important challenge
for the security research community). It describes an a-priori use of service de-
pendencies, notably for the selection of suitable means to apply an intrusion
response, if any. The efficiency of a response application is measured through its
ability to satisfy the security requirements while pushing the response closer to
the attacker and minimizing the configuration changes.

Limitations of this work include the separated treatment of responses and
dependencies search. Firstly, the separated treatment of each response will be
extended in order to consider the overall response policy. The optimal application
of each response apart does not necessarily provide an optimal application of the
response policy, as certain rules may overlap. However, since new response rules
may be generated continuously, other problems must be considered such as the
stability of the system. Secondly, the upward search for dependencies can be
extended with a downward search (i.e. searching for dependents of a service) of
dependencies in order to evaluate the impact of selected responses. Future work
will focus on adding a third criterion for the selection of a candidate response,
being its impact on other services. This will be seen as collateral damages since
an antecedent service may have several dependent services other than the service
explicitly designated in the intrusion response.
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8 Appendix A

This section summarizes the AADL textual representation for the email testbed.
1 package serviceDB −− Service database −−
2 pub l i c −− Only two sample s e r v i c e s are presented −−
3 system POP −− Implementation of the Pop serv i c e −−
4 features mb Owner : requires data access dataDB : : Account ;
5 R mb : requires data access dataDB : : mBox ;
6 P mb : provides data access dataDB : : mBox ;
7 end POP;
8 system WEBMAIL −− Implementation of the webmail s e rv i c e −−
9 features R mb : requires data access dataDB : : mBox ;

10 R api : requires data access dataDB : : mailAPI ;
11 P mb : provides data access dataDB : : mBox ;
12 end WEBMAIL;
13 end serviceDB ;
14 package Pop −− The implementation of the Pop dependency model −−
15 pub l i c System POP
16 features P mb : provides data access dataDB : : mbox ;
17 end POP;
18 pr i va t e system implementation POP. in s tance
19 subcomponents PopUser : system user ;
20 Ldap : system serviceDB : : Ldap ;
21 NFS: system serviceDB : : NFS;
22 Pop : system dependent . i n s t ance ;
23 connections data access Ldap . P a−> Pop . mb Owner ;
24 data access NFS.P mb−> Pop .R mb ;
25 data access Pop .P mb−> PopUser .R mb ;
26 end POP. in s tance ;
27 system implementation op State . Request
28 modes LDAP: i n i t i a l mode ; NFS: mode ; I d l e : mode ;
29 T1 : LDAP−[C1 . t r a n s i t ]−> NFS;
30 T2 : NFS−[C2 . F a i l t r a n s i t ]−> I d l e ;
31 annex Error Model {∗∗
32 Guard Transit ion => (mb Owner [ Error Free ] ) applies to T1 ;
33 Guard Transit ion => (R mb [ Fa i l ed ] ) applies to T2 ; ∗∗} ;
34 end op State . Request ;
35 end Pop ;
36 package webmail
37 pub l i c −− same as the Pop pub l i c in t e r f a c e −−
38 pr i va t e system implementation webmail . i n s t ance
39 subcomponents webmailUser : system user ;
40 Imap : system Imap : : IMAP;
41 Pop : system Pop : :POP;
42 web : system serviceDB : :Web;
43 webmail : system dependent . i n s t ance ;
44 connections data access Imap .P mb −> webmail . R mb1 ;
45 data access Pop .P mb −> webmail . R mb2 ;
46 data access web . P api −> webmailUser . R api ;
47 data access webmail . P mb −> webmailUser . R mb1 ;
48 end webmail . i n s t ance ;
49 system implementation op State . web
50 subcomponents C1 : system op State in modes ( I d l e ) ;
51 C2 : system op State in modes (Pop) ;
52 C3 : system op State in modes ( Imap) ;
53 modes I d l e : i n i t i a l mode ; Pop : mode ; Imap : mode ;
54 T1 : Id l e −[C1 . t r a n s i t ]−>Pop ;T2 : Id l e −[C1 . t r a n s i t ]−>Imap ;
55 T3 : Pop−[C2 . F a i l t r a n s i t ]−>Imap ;T4 : Imap−[C3 . F a i l t r a n s i t ]−>Pop ;
56 T5 : Pop−[C2 . t r a n s i t ]−> I d l e ;T6 : Imap−[C3 . t r a n s i t ]−> I d l e ;
57 annex Error Model {∗∗
58 Guard Transit ion => (R mb2 [ Fa i l ed ] ) applies to T3 ;
59 Guard Transit ion => (R mb1 [ Fa i l ed ] ) applies to T4 ;
60 Guard Transit ion => (R mb2 [ Error Free ] ) applies to T5 ;
61 Guard Transit ion => (R mb1 [ Error Free ] ) applies to T6 ; ∗∗} ;
62 end op State . web ;
63 end webmail ;


