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Abstract: Let us consider a solution of the time-inhomogeneous stochastic differential equation
driven by a Brownian motion with drift coefficient b(t, x) = ρ sgn(x)|x|α/tβ. This process can be
viewed as a distorted Brownian motion in a potential, possibly singular, depending on time. After
obtaining results on existence and uniqueness of solution, we study its asymptotic behaviour and made
a precise description, in terms of parameters ρ, α and β, of the recurrence, transience and convergence.
More precisely, asymptotic distributions, iterated logarithm type laws and rates of transience and
explosion are proved for such processes.
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1 Introduction

Let X be a one-dimensional process satisfying the following equation

Xt = x0 +Bt + ρ

∫ t

t0

sgn(Xs)|Xs|α
sβ

ds, t ≥ t0. (1.1)

Here B denotes a standard Brownian motion, x0, ρ, α, β are some real constants and t0 > 0.
In this paper we shall study the asymptotic behaviour of such process. More precisely, our
main goal is to give conditions which characterise the recurrence, transience and convergence
in terms of parameters ρ, α and β.

The equation (1.1) can be viewed as a continuous counterpart of a discrete time model
considered recently in [16] and which is related, when α = β = 1, to the Friedman’s urn model
[7] but also to the random walk with an asymptotically zero drift studied in [14]. Indeed, the
discrete time process studied in [16] is a random walk on the real half line such that

E(Xt+1 −Xt | Xt = x) ∼
t→∞

ρ
xα

tβ
.

The authors establish when the process is recurrent or transient for certain values of param-
eters ρ, α, β and present open problems. Their approach is based on a precise study of some
submartingales and supermartingales.
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In the one-dimensional case, for time-homogeneous stochastic differential equations driven
by a Brownian motion, there exists precise criteria, using the scale function, for recurrence
and transience (see for instance [12] or [8]) or explosion (see for instance [13]). Some of these
criteria are extended to the time-inhomogeneous situation for dimension greater or equal than
two in [3]. Unfortunately, the results in [3] do not apply to the equation (1.1), even it is stated
that the method can be adapted to the one-dimensional case. Recall also that there exist
some general results on recurrence or transience (see for instance [10]) and explosion (see
for instance [20] or [18]) based on the construction of some convenient Lyapunov functions.
However, for the equation (1.1), the construction of such functions seems to be more delicate.

Here are another two natural questions:

i) Does there exist a well chosen normalisation of X to ensure that the normalised process
converges in distribution or almost surely?

ii) Is it possible to obtain the pathwise largest deviations of X, for instance the iterated
logarithm law?

This kind of questions are treated in [1],[2] or [9] for different equations which have some
common features with (1.1). The authors consider in [2] or [9] the following equation

dxt = dBt + F (xt)dt, with

∫ ∞

−∞
F (x)dx = 0 (H1) or F (x) ∼

x→∞
ρ |x|α, ρ ∈ (0,∞) and α ∈ [−1, 1) (H2).

Under additional assumptions (see [9]) the hypothesis (H1) implies that x is recurrent and that
the process xt/

√
t converges in distribution to a standard Gaussian random variable. On the

other hand, when α ∈ (−1, 1), hypothesis (H2) ensures that x is transient and asymptotically
behaves as a solution of the deterministic underlying dynamical system, that is

xt ∼
t→∞

ht a.s. with h′t = F (ht)

The case α = −1 (see [2]) is more difficult and its study is related to the Bessel process. In
that case x satisfies the iterated logarithm law and recurrence or transience depends on the
position of ρ with respect to 1/2. Besides, the authors in [1] study the following damped
stochastic differential equation

dxt = σ(t)dBt + F (xt)dt, with (1.2)

lim
t→∞

↓ σ(t) = 0, σ ∈ L2 and F (x) ∼
x→0

ρ sgn(x)|x|α, ρ ∈ (−∞, 0) and α ∈ (1,∞).

It is proved that xt converges almost surely to 0 with polynomial speed. We will see that
equation (1.1) is connected to the last one by using a suitable change of time.

In this paper we firstly study existence, uniqueness and explosion of solutions for (1.1).
Different situations are distinguished following the values of ρ and α and existence and unique-
ness are proved. We point out that when α ∈ (−∞, 0) the existence of a solution is not obvious
since the drift has a singularity in 0. For the time-homogeneous case, a solution to this prob-
lem is given in [4] by using the scale function. These ideas does not apply to one-dimensional
time-inhomogeneous stochastic differential equations and this is the main difficulty of this
part. Our idea is to use an appropriate change of time, taking full advantage of the scaling
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property of the Brownian motion, the Girsanov’s transformation and the classification of iso-
lated singular points in [4]. These different tools allow us to answer the question of explosion
of the solution when α ∈ (1,∞). We note that when 2β ∈ (α+ 1,∞) we shall prove that the
solution explodes in finite time with a positive probability, but not almost surely.

Secondly, we describe for all values of parameters ρ, α, β, the recurrent and the transient
features of the solution but also its convergence. We present in Figure 1 below, the diagram
of phase transition that we obtain in the attractive case ρ ∈ (−∞, 0):

−1 1

1

α

β

β =
α+1

2

Recurrence

Convergence toward 0

Figure 1: Phase transition in the attractive case ρ ∈ (−∞, 0)

Note that α ∈ (−∞,−1] is not allowed since in that case we will show that any solution is only
defined up to the reaching time of 0, which is finite almost surely. The critical line separating
the two phases (Recurrence and Convergence toward 0) is given by β = 0 and on this line
the process is recurrent. The line 2β = α + 1 can be called subcritical in the sense that the
recurrent behaviour is different below and above. As for the proof of the existence, we use
a suitable change of time and an associated scaling transformation, we give the asymptotic
distribution of X and its pathwise largest deviations under a convenient normalisation. In
fact, we show that the asymptotic behaviour of the process is strongly connected to the paths
and to the stationary distribution of an ergodic diffusion.

For instance, when 2β ∈ (−∞, α+ 1), we show that

Xϕ(t)√
ϕ′(t)

”behaves as” Ht = Bt +

∫ t

0
ρ sgn(Hs)|Hs|αds, with ϕ′(t) = ϕ(t)

2β
α+1 .

In that case, we obtain the convergence in distribution of Xt/t
β

α+1 to the stationary distri-
bution of H and its pathwise largest deviation. In particular, when β is negative, we get

the polynomial stability of X and if we denote xt := X(φt), with φt := t
1

1−β , we see that x
satisfies the damped stochastic differential equation (1.2) and we prove similar results as in
[1] under slightly different hypothesis, but we try to be more accurate.

Then we present in Figure 2 below, the diagram of phase transition that we obtain in
the repulsive case ρ ∈ (0,∞). We will remark that when α ∈ (1,∞) and 2β ∈ (−∞, α+ 1)
the process explodes in finite time almost surely. Here the nontrivial critical line is given by
2β = α+1 and the process is either recurrent or transient and we obtain similar results as in
[16], but again we try to be more accurate. On this line we must distinguish the two particular
points (−1, 0) and (1, 1) because these are the only cases where recurrence and transience
depend on the position of ρ with respect to 1/2. The first corresponds to the well known
Bessel process and the second one is a continuous time counterpart of the Friedman’s urn
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−1 1

1

α

β

β =
α+1

2

Recurrence

Transience

Figure 2: Phase transition in the repulsive case ρ ∈ (0,∞)

model. In this case, we obtain similar results as in [7] concerning recurrence and transience,
but also regarding the asymptotic distribution and the pathwise largest deviations. For the
other points of the critical line, the process is recurrent. We point out that this is an open
problem in [16]. In the present paper there is no restriction on the parameters ρ, α and β.
The lines α = −1 and α = 1 can be called subcritical in the sense that the behaviour of
the process is slightly different to the right or left, in particular, the domain of recurrence
depends on α. The proof of recurrence is based on the same ideas as for the attractive case
by associating an ergodic diffusion to an appropriate transformation of X.

For instance, when 2β ∈ (α+ 1,∞) and α ∈ (−1, 1), we show that

Xet

e
t
2

”behaves as” Ut = Bt −
∫ t

0

Us

2
ds.

In that case, we get that X behaves as a standard Brownian motion, that is it satisfies the
iterated logarithm law and Xt/

√
t converge in distribution to a standard Gaussian random

variable. We can say that the drift is asymptotically negligible compared to the noise in the
opposite of the transient case. Concerning the proof of this one when α ∈ (−∞, 1), the tools
are similar to those used in [16]. We show that X behaves as a solution of the deterministic
underlying dynamical system, that is

|Xt| ∼
t→∞

|ht| a.s. with h′t = ρ sgn(ht)|ht|α/tβ .

Some of these results could be proved with similar arguments for a general drift b un-
der additional assumptions, for instance when b(t, x) = f(t)g(x) with f(t) ∼t→∞ t−β and
g(x) ∼x→∞ ρ|x|α. The case of a general diffusion coefficient σ seems more difficult. Other
interesting cases would be when one replaces the Brownian motion by a stable Lévy process
or by a fractional Brownian motion. These generalisations will be studied elsewhere.

The paper is organised as follows: in the next section we also recall the important prop-
erties of three well-known processes which are solutions of (1.1) for particular values of pa-
rameters. In Section 3 we introduce the scaling transformation and we study the existence,
uniqueness and explosions of solutions, while in Section 4 we analyse the asymptotic behaviour
of the process.
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2 Three particular processes

We shall study the equation (1.1) in its equivalent differential form:

dXt = dBt + ρ sgn(Xt)
|Xt|α
tβ

dt, Xt0 = x0. (2.1)

HereB is a standard Brownian motion defined on a filtered probability space (Ω,F , (Ft)t≥0,P).
By symmetry of the equation and by scaling transformation, we can assume without loss of
generality that x0 ≥ 0 and t0 = 1. We will keep these assumptions all along the paper.

To begin with, let us recall the behaviour of three important processes which are solutions
of (2.1) with some particular parameters.

2.1 The Brownian Motion and the Ornstein-Ulhenbeck Process

Firstly, if ρ = 0 then X ≡ B is the standard Brownian motion and it is classical that B is
recurrent and it satisfies

lim
t→∞

Bt√
t

L
= N (0, 1) and lim sup

t→∞

Bt√
2t ln ln t

= 1 a.s. (2.2)

Secondly, if ρ 6= 0, α = 1 and β = 0 then X ≡ U is the Ornstein-Uhlenbeck process. By using
the harmonic function V (t, x) := e−ρtx it is not difficult to prove that U is recurrent if and
only if ρ ∈ (−∞, 0) and in that case it satisfies

lim
t→∞

Ut
L
= N

(
0,

1

2|ρ|

)
and lim sup

t→∞

Ut√
ln t

=
1√
ρ

a.s.

Moreover, it is transient if and only if ρ ∈ (0,∞) and in that case it satisfies

lim
t→∞

Ut

eρt
= G a.s. with G ∼ N

(
x0
eρ

,
e2ρ

2ρ

)
.

Let us note that the probabilities to be transient in ±∞ can be computed.

2.2 The Bessel process

Finally, if ρ ∈ (0,∞), α = −1 and β = 0, then there exists a pathwise unique nonnegative
strong solution X ≡ R to the equation (2.1), it is the Bessel process of dimension 2ρ+1 (see,
for instance, Proposition A.21 in [4], p. 109). The square of any weak solution of the equation
(2.1) is the unique weak solution of the equation

drt = 2
√

|rt| dwt + (2ρ+ 1)dt, r1 = x20.

Here w is a standard Brownian motion. This is the square Bessel process of dimension 2ρ+1.
By using Theorems 3.4 and 3.5 in [4], p. 66, and Proposition 3.2 and corollary 3.4 in [19], pp.
359-360, using local times, we can prove the following properties:

i) if ρ ∈ (0, 1/2) then we can construct different weak solutions to the equation (2.1) and
the set {t ≥ 1 : Rt = 0} is unbounded a.s.;
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ii) if ρ ∈ [1/2,∞) and x0 ∈ (0,∞) then R is the pathwise unique strong solution to the
equation (2.1) and it is positive;

iii) if ρ ∈ [1/2,∞) and x0 = 0 then, for all t > 0, Rt > 0 a.s. and the set of weak solutions
to the equation (2.1) is the set of distributions which are mixture of the laws of ±R.

Furthermore, the asymptotic behaviour can be described as follows:

lim sup
t→∞

Rt√
2t ln ln t

= 1 a.s. and lim
t→∞

Rt√
t

L
=

√
Γ, with Γ ∼ γ

(
ρ+

1

2
, 2

)
. (2.3)

Here γ denotes the gamma distribution. Moreover,

i) if ρ ∈ (0, 1/2) then R is recurrent in [0,∞);

ii) if ρ = 1/2 then R is recurrent in (0,∞);

iii) if ρ ∈ (1/2,∞) then R is transient and it satisfies

lim inf
t→∞

ln
(
Rt√
t

)

ln ln t
= − 1

2ρ− 1
a.s. (2.4)

To obtain (2.3) it suffices to perform an appropriate change of time as in [2], p. 914 and to
use Ito’s formula in order to be reduced to the study of the time-homogeneous equation:

dZs = 2
√

Zs dWs + (2ρ+ 1− Zs)ds, Z0 = x20, with Zs := R2
es/e

s.

Here W is a standard Brownian motion. By using Lemma 2.2 in [2], p. 916 and the ergodic
theorem (see, for instance, Theorem 23.15 in [12], p. 465) both applied to Z, we get

lim sup
t→∞

Zt

2 ln t
= 1 a.s. and lim

t→∞
Zt

L
= Γ.

Then (2.3) is deduced by change of time whereas the recurrent or the transient features are
explained in [19], p. 442. Finally, equation (2.4) is a consequence of Lemma 4.1 in [2], p. 926.

Let us note that when ρ ∈ (−∞, 0), α = −1 and β = 0, the reaching time of 0 by X is
finite a.s. (see for instance [19], pp. 442-453). Moreover, by using Theorem 3.2 in [4], p. 66,
we can see that every solution can not be continued after it has reached 0.

3 Preliminary study of solutions

In this section we study existence and uniqueness of solutions for (2.1). To this end, we first
introduce our main tool, the scaling transformation, which will be useful later to study the
asymptotic behaviour.
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3.1 Scaling transformation

Let us set Ω := C([1,∞);R), Ω∗ := C([0, t1);R), with t1 ∈ (0,∞]. For every change of time
(C2-diffeomorphism) ϕ : [0, t1) → [1,∞) we introduce the map Φϕ : Ω → Ω∗ given by

Φϕ(ω)(s) :=
ω(ϕ(s))√

ϕ′(s)
, s ∈ [0, t1), ω ∈ Ω.

Proposition 3.1. The scaling transformation Φϕ induces a bijection between weak solutions
of equation (2.1) and weak solutions of equation

dXs = dWs + ρ
ϕ′(s)

α+1
2

ϕ(s)β
sgn(Xs)|Xs|αds −

ϕ′′(s)
ϕ′(s)

Xs

2
ds, X0 =

x0√
ϕ′(0)

. (3.1)

Here {Ws : s ∈ [0, t1)} denotes a standard Brownian motion. More precisely,

i) if (X,B) is a solution of equation (2.1) then (X,W) is a solution of equation (3.1) where

X = Φϕ(X) and Ws :=

∫ s

0

dB(ϕ(u))√
ϕ′(u)

; (3.2)

ii) if (X,W) is a solution of equation (3.1) then (X,B) is a solution of equation (2.1) where

X = Φ−1
ϕ (X) and Bt −B1 :=

∫ t

1

√
ϕ′ ◦ ϕ−1(u)dW(ϕ−1(u)). (3.3)

It follows that uniqueness in law, pathwise uniqueness or strong existence holds for equation
(2.1) if and only if it holds for equation (3.1).

Proof. Let X a solution (possibly explosive) of the equation (2.1) with a standard Brownian
motion B. By using P. Lévy’s characterisation theorem we can see that W defined in (3.2) is
a standard Brownian motion. Moreover,

dXϕ(s) =
√

ϕ′(s)dWs + ρ sgn
(
Xϕ(s)

)√
ϕ′(s)|Xϕ(s)|α/ϕ(s)β ds.

We conclude that equation (3.1) is satisfied by X := Φϕ(X) by the integration by parts’
formula. The proof of (3.3) is similar and the final remark is a simple application. �

3.2 Two particular changes of time

In the following results we provide some changes of time which produce time-homogeneous
coefficients for each term of the drift in (3.1).

Corollary 3.1. Assume that α 6= −1 and consider the Cauchy problem:

ϕ′
γ(s) = (ϕγ(s))

γ , ϕγ(0) = 1, with γ :=
2β

α+ 1
.

There exists a unique maximal solution ϕγ ∈ C2([0, t1); [1,∞)). Moreover,

i) if γ > 1 then ϕγ(s) = (1 + (1− γ)s)
1

1−γ , with t1 =
1

γ−1 ;
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ii) if γ = 1 then ϕγ(s) = es, with t1 = ∞;

iii) if γ < 1 then ϕγ(s) = (1 + (1− γ)s)
1

1−γ , with t1 = ∞.

The scaling transformation Φγ : Ω → Ω∗ associated to this change of time is given by

Φγ(ω)(s) =
ω(ϕγ(s))

ϕγ(s)
γ
2

, s ∈ [0, t1), ω ∈ Ω.

Moreover, the equation (3.1) can be written

dhs = dWs + ρ sgn(hs)|hs|αds− γϕγ(s)
γ−1 hs

2
ds, h0 = x0, with h := Φγ(X). (3.4)

Corollary 3.2. The scaling transformation Φe : Ω → Ω∗ associated to the exponential change
of time ϕe(t) := et is given by

Φe(ω)(s) =
ω(es)

es/2
, s ∈ [0,∞), ω ∈ Ω.

Moreover, the equation (3.1) can be written

dus = dWs −
us

2
ds+ ρ e(

α+1
2

−β)s sgn(us)|us|αds, u0 = x0, with u := Φe(X) (3.5)

3.3 Existence, uniqueness and explosion

The existence and uniqueness for equation (2.1) are not obvious since the drift could be singu-
lar in 0 and/or not time-homogeneous. However, with the help of the scaling transformation
defined in Corollary 3.1 and the Girsanov’s transformation, we will reduce to study the time-
homogenous part in equation (3.4) and we will use the classification of isolated singular points
in [4].

We first study the case where α ∈ (−1,∞). Here the function x 7→ |x|α is locally integrable
in a neighbourhood of 0. As for the time-homogeneous case (see Proposition 2.2 in [4], p. 28)
we show that there exists a unique pathwise strong solution to the equation (2.1) up to the
explosion time.

Proposition 3.2. Assume that α ∈ (−1,∞) and β ∈ R. There exists a pathwise unique
strong solution X to the equation (2.1) defined up to the explosion time τe. Moreover, if
ρ ∈ (−∞, 0) (the attractive case) or α ∈ (−1, 1] (the linear growth case) then τe is infinite
a.s.

Proof. Assume that α ∈ (1,∞). We construct a truncated stochastic differential equation
as follows: for every integer n ≥ 1 set bn(t, x) := ρ sgn(x)(|x| ∧ n)α/tβ and

dX
(n)
t = dBt + bn(t,X

(n)
t )dt, X

(n)
1 = x0.

This equation has locally Lipschitz coefficients with linear growth. Let X(n) be its pathwise
unique strong solution. Let us introduce

τn := inf{t ≥ 1 : |X(n)
t | ≥ n}, n ≥ n0 and τe := sup{τn : n ≥ 1}.
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For all t ∈ [1, τe) we set Xt := X
(n)
t a.s. where n is chosen such that t ∈ [1, τn]. The process

X is well defined up to the explosion time τe and it is the desired solution for (2.1).
Moreover, when ρ ∈ (−∞, 0), we can prove by using a Lyapunov function that the explo-

sion time of the solution is infinite a.s. Indeed, let us consider the infinitesimal generator of
the space-time diffusion t 7→ (t,Xt) given by

L := ∂t + ρ sgn(x)
|x|α
tβ

∂x +
1

2
∂xx. (3.6)

The non-negative function defined by V (x) := x2 + 1 satisfies

lim
|x|→∞

V (x) = ∞ and LV ≤ V.

By using Theorem 10.2.1 in [20], p. 254, we deduce that the explosion time is infinite a.s.
Assume that α ∈ [0, 1). Then, weak existence and uniqueness in law are consequences

of the Girsanov’s theorem, the Novikov’s criterion being satisfied. To verify this criterion,
let w be a standard Brownian motion starting from x0, set b(s, x) := ρ sgn(x)|x|α/sβ and fix
t ∈ (1,∞). By the Jensen’s inequality, applied with the convex function exp:

E

[
exp

(
1

2

∫ t

1
b2(s,ws)ds

)]
≤
∫ t

1
E

[
eλ|ws|2α

t− 1

]
dt < ∞, with λ := sup

1≤s≤t

(t− 1)|b(s, 1)|
2

.

The Novikov’s criterion holds. Pathwise uniqueness is a consequence of Proposition 3.2 and
Corollary 3.4 in [19], pp. 359-360, using local times.

Assume now that α ∈ (−1, 0). By using Proposition 3.1 and Corollary 3.1 it suffices to
study equation (3.4) and prove that there exists a pathwise unique strong solution h = Φγ(X)
which is nonexploding. First, let us introduce the time-homogeneous part in (3.4):

dHs = dWs + ρ sgn(Hs)|Hs|α ds. (3.7)

Since x 7→ |x|α belongs to L1
loc(R) there exists a unique weak solution for (3.7) with H0 = x0

defined up to the explosion time (see Proposition 2.2 in [4], p. 28). By using Theorem 5.5
in [4], p. 97, concerning power equations, this explosion time is infinite a.s. Second, consider
for every integer n ≥ 1, the truncated equation

dh(n)s = dWs + ρ sgn(h(n)s )|h(n)s |αds− γϕγ−1(s)
h
(n)
s

2
1{|h(n)

s |≤n} ds, h
(n)
0 = x0. (3.8)

By applying the Girsanov’s theorem between (3.7) and (3.8), we can deduce existence and
uniqueness in law of (nonexploding) solutions h(n) of (3.8) and pathwise uniqueness follows
again from Proposition 3.2 and Corollary 3.4 in [19], pp. 359-360. Hence, given a Brownian
motion {Ws : s ∈ [0, t1)}, there exists a pathwise unique strong solutions (h(n),W ), n ≥ 1.
By extension, we get a pathwise unique strong solution (h,W ) of (3.4) defined up to the
explosion time. We conclude that there exists a pathwise unique strong solution X = Φ−1

γ (h)
to equation (2.1) defined up to the explosion time, which is infinite a.s., by using again
Theorem 10.2.1 in [20], p. 254 and the Lyapunov function V (x) := x2 + 1.

Finally, when α = 1, the result is clear since the coefficients of equation (2.1) are locally
Lipschitz functions with linear growth. This ends the proof of the proposition. �

Let us complete the previous proposition with a result concerning the explosion time of
the solution when ρ ∈ (0,∞) and α ∈ (1,∞).
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Proposition 3.3. Assume that ρ ∈ (0,∞), α ∈ (1,∞) and β ∈ R and let us consider τe the
explosion time of X. The following properties hold:

i) if 2β ∈ (−∞, α+ 1] then τe is finite a.s.;

ii) if 2β ∈ (α+ 1,∞) then τe satisfies P(τe = ∞) ∈ (0, 1).

Proof. We use Proposition 3.1 and Corollary 3.1. Assume that 2β ∈ (−∞, α+ 1]. It suffices
to show that h = Φγ(X) explodes in finite times a.s. To this end, by Ito’s formula

dh2s = 2
√

h2s dws + (2ρ(h2s)
α+1
2 − γϕ(s)γ−1h2s + 1) ds, h20 = x20.

Here w is a Brownian motion. Let us introduce Z the pathwise unique strong solution of

dZs = 2
√

Zs dws + (2ρZ
α+1
2

s − |γ|Zs + 1) ds, Z0 = x20.

Since 0 ≤ ϕγ−1 ≤ 1 (remark that γ ≤ 1) we can show by using the comparison theorem
(Theorem 1.1 in [11], p. 437) that Z ≤ h2 a.s. Besides, by using Theorem 5.7 in [4], p. 97,
the explosion time of the time-homogeneous diffusion Z is finite a.s. This implies that the
explosion time of h, and furthermore of X, is also finite a.s.

Assume now that 2β ∈ (α+ 1,∞) (remark that γ > 1). Equation (3.4) can be written

dhs = dWs −
δhs

t1 − s
ds+ ρ sgn(hs)|hs|αds, h0 = x0, with δ :=

γ

2(γ − 1)
. (3.9)

Denote by ηe its explosion time and note that a.s. ηe ∈ [0, t1]∪{∞} and {ηe ≥ t1} = {τe = ∞}.
We show that P(ηe ≥ t1) ∈ (0, 1). Let us introduce the time-inhomogeneous part in (3.9):

dbs = dWs −
δbs

t1 − s
ds, b0 = x0. (3.10)

There exists a unique pathwise strong solution b to the equation (3.10) which is a continuous
stochastic process on [0, t1], with b1 = 0 a.s. (see for instance [15]). By using the Girsanov’s
transformation between (3.9) and (3.10) (their truncation), we can write for every integer
n ≥ 1, s ∈ [0, t1] and Fs-measurable bounded function Fs,

E
[
Fs (h·∧ηn)1{ηn>s}

]
= E

[
Fs (b·∧σn) E (s ∧ σn)1{σn>s}

]

where
ηn := inf{s ∈ [0, t1) : |hs| ≥ n}, σn := inf{s ∈ [0, t1) : |bs| ≥ n}

and

E(s) := exp

(∫ s

0
ρ sgn(bu)|bu|αdWu −

∫ s

0

ρ2|bu|2α
2

du

)
.

Letting n → ∞, we obtain

E
[
Fs(h)1{ηe>s}

]
= E [Fs(b)E(s)] . (3.11)

In particular, we have proved that for all s ∈ [0, t1], P(ηe > s) = E [E(s)] and furthermore it
is clear that P(τe = ∞) = P(ηe ≥ t1) ≥ E [E(t1)] > 0.
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To complete the proof, it remains to show that P(τe = ∞) < 1. We shall apply Theorem
10.2.1 in [20], p. 254. Set

Vµ,c(x) := exp

(
µ

∫ x

0

y

ρ|y|α+1 + c
dy

)
, with µ, c > 0.

Note that there exists c0 ≥ 2|β| such that for all µ > 0, sup{Vµ,c0(x) : x ∈ R} < V (x0)e
1.

Moreover, we can see that there exists n0 ≥ 0 such that for all µ > 0, t ∈ [1, 2] and |x| ≥ n0,

LVµ,c0(t, x) = µ

[
ρ|x|α+1

tβ(ρ|x|α+1 + c0)
+

µx2 + c0 − αρ|x|α+1

2(ρ|x|α+1 + c0)2

]
Vµ,c0(x) ≥

µ

2c0
Vµ,c0(x). (3.12)

Here L is given by (3.6). Then, there exists µ0 > 0 such that for all t ∈ [1, 2] and |x| ≤ n0,

LVµ0,c0(t, x) ≥
µ0 c0

2(ρnα+1
0 + c0)2

Vµ0,c0(x) ≥ Vµ0,c0(x). (3.13)

By using (3.12) and (3.13) we deduce that LVµ0,c0 ≥ Vµ0,c0 on [1, 2]×R and Theorem 10.2.1
in [20], p. 254 applies. Hence, X explodes in finite time with positive probability. �

Let us consider now the case where α ∈ (−∞,−1). Here the function x 7→ |x|α is not
integrable in a neighbourhood of 0. As for the time-homogeneous situation we show that
when ρ ∈ (0,∞), there exists a unique pathwise nonnegative strong solution.

Proposition 3.4. Assume that ρ ∈ (0,∞), α ∈ (−∞,−1) and β ∈ R. There exists a pathwise
unique nonnegative strong solution X to the equation (2.1) defined for all t ≥ 1. Moreover,

i) if x0 ∈ (0,∞) then X is the pathwise unique strong solution and it is positive;

ii) if x0 = 0 then for all t > 1, Xt > 0 a.s. and the set of all weak solutions is the set of
all distributions which are mixture of the distributions of X and −X.

Proof. Assume first that x0 ∈ (0,∞). The proof is based on the same arguments as for the
proof of Proposition 3.2, case α ∈ (−1, 0), and we present here only the main lines. We prove
that equation (3.4) admits a pathwise unique strong solution h defined up to its explosion time
by using the Girsanov’s transformation between equations (3.4) and (3.7) (their truncation)
and by noting that there exists a pathwise unique strong solution H, with H0 = x0, to the
equation (3.7) (see Theorem 2.16 in [4], p. 37). Then, we show by a using the Lyapunov
function V (x) := 1 + |x||α|+1 and Theorem 10.2.1 in [20], p. 254, that the explosion time ηe
of h satisfies ηe < t1 a.s. Note that H is positive and since Girsanov’s transformation gives
a locally equivalent measure, it is the same for h. We deduce that there exists a pathwise
unique solution X = Φ−1

γ (h) to the equation (2.1) which is nonexploding.
Secondly, assume that x0 = 0. Similarly, we get that equation (3.4) admits a pathwise

unique nonnegative strong solution h with for all s > 0, hs > 0 a.s. and we obtain that the set
of all weak solutions is given by the set of all distributions which are mixture of distributions
of h and −h since it is the same for the time-homogeneous equation (3.7) by using Theorem
3.6 in [4], p. 66. We conclude again by using the scaling transformation Φγ . �
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It remains to study the case ρ 6= 0, α = −1 and β 6= 0. Let us introduce the equation

drs = 2
√

|rs| dws +
(
2ρ/sβ + 1

)
ds, r1 = x20. (3.14)

Here w denotes a standard Brownian motion. As for the Bessel process, the square of any
weak solution of the equation (2.1) is a weak solution of equation (3.14). We show that if
ρ ∈ (0,∞) we have existence and uniqueness of a nonnegative solution for (2.1). This process
can be viewed as a Bessel process whose dimension depends on time.

Proposition 3.5. Assume that ρ ∈ (0,∞), α = −1 and β 6= 0. There exists a pathwise
unique nonnegative strong solution X to the equation (2.1) defined for all t ≥ 1. Moreover,

i) if ρ ∈ [1/2,∞), β ∈ (−∞, 0) and x0 ∈ (0,∞) then X is the pathwise unique strong
solution and it is positive;

ii) if β ∈ (0,∞) or if ρ ∈ (0, 1/2) and β ∈ (−∞, 0) then we can construct different solutions
to the equation (2.1) and in the first case, the set {t ≥ 1 : Xt = 0} is unbounded a.s.;

iii) if ρ ∈ [1/2,∞), β ∈ (−∞, 0) and x0 = 0 then the set of all solutions is the set of all
distributions which are mixture of distributions of X and −X.

Proof. The existence of a pathwise unique strong solution r of the equation (3.14) can be
obtained by using Theorem 3.5 in [19], p. 390. Moreover, since the drift is nonnegative, by
using the comparison theorem (see Theorem 1.1 in [11], p. 437) we get that r is nonnegative.

We shall prove that X := r
1
2 is a nonnegative weak solution of equation (2.1). To this end,

by applying Ito’s formula, we obtain for all t ≥ 1 and ε > 0,

(X2
t + ε)

1
2 = (x20 + ε)

1
2 +

∫ t

1

(
X2

s

X2
s + ε

) 1
2

dws +

∫ t

1

ρ ds

sβ(X2
s + ε)

1
2

+

∫ t

1

ε ds

2(X2
s + ε)

3
2

. (3.15)

We need to let ε → 0 in the last equation. Firstly, it is clear that

lim
ε→0

∫ t

1

(
X2

s

X2
s + ε

) 1
2

dws = wt − w1 in probability.

Secondly, by monotone convergence theorem, the third term in the right hand side of (3.15)
converges a.s. We show that the limit is finite a.s. and that the forth term converges toward
0 in probability. To this end, we consider (see section 2 on Bessel processes) the pathwise
unique nonnegative strong solution of

Rs = x0 + ws − w1 +

∫ s

1

ρm
Ru

du, with ρm := inf{ρ/sβ : s ∈ [1, t]} > 0.

By using the comparison theorem (see Theorem 1.1 in [11], p. 437) and Ito’s formula, we get
that for all s ∈ [1, t], X2

s ≥ R2
s and

(R2
t + ε)

1
2 = (x20 + ε)

1
2 +

∫ t

1

(
R2

s

R2
s + ε

) 1
2

dws +

∫ t

1

ρm ds

(R2
s + ε)

1
2

+

∫ t

1

ε ds

2(R2
s + ε)

3
2

.
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By letting ε → 0 in the last equality and the previous comparison, we obtain

∫ t

1

ρ ds

sβXs
≤
∫ t

1

ρM
Rs

ds < ∞ a.s. with ρM := sup{ρ/sβ : s ∈ [1, t]} > 0.

and

lim
ε→0

∫ t

1

ε ds

2(X2
s + ε)

3
2

≤ lim
ε→0

∫ t

1

ε ds

2(R2
s + ε)

3
2

= 0 in probability.

We deduce that X is a nonnegative weak solution of (2.1), which is unique in law, since
uniqueness in law holds for (3.14) and as previously it is possible to obtain its pathwise
uniqueness by using local times. We proceed with the proof of statements i)-iii) in the
proposition.

Firstly, if ρ ∈ [1/2,∞), β ∈ (−∞, 0) and x0 ∈ (0,∞) then X is the pathwise unique strong
solution since every solution is positive by comparison with a Bessel process of dimension 2.

Secondly, if β ∈ (0,∞) then limt→∞ ρ/tβ = 0+ and by using the Markov’s property and
the comparison with a Bessel process of dimension δ ∈ (1, 2) we get that the reaching time of
0 is finite a.s. and that the set {t > 1 : Xt = 0} is unbounded a.s. Besides, if X is a solution
starting from x0 = 0 then −X is also a solution. We deduce that different solutions could be
constructed by gluing the paths of X or of −X each time when the process returns in 0.

Thirdly, if ρ ∈ (0, 1/2) and β ∈ (−∞, 0) then by comparison with a Bessel process of
dimension δ ∈ (1, 2) the reaching time of 0 belongs to

[
1, (2ρ)1/β

)
with a positive probability.

Again, as in the preceding case, different solutions can be constructed.
Finally, if ρ ∈ [1/2,∞), β ∈ (−∞, 0) and x0 = 0 then by comparison with a Bessel process

of dimension 2 every solution Z of (2.1) satisfies Z2
t 6= 0 for all t > 1 a.s. Let us introduce

Ω± := {ω ∈ Ω : ∀t > 1, ±Zt > 0} and P
± := P

(
·
∣∣Ω±) .

Note that for all ε > 0, Ω± = {ω ∈ Ω : ∀1 < t < 1 + ε, ±Zt > 0} ∈ Ft+ε and then Ω± ∈ F1+.
Therefore the process {Bt −B1}t≥1 is again a standard Brownian motion under probabilities
P

± and by uniqueness of the nonnegative weak solution and also, by symmetry, of the non-
positive solution of (2.1), the distribution of Z under P± equals to the distribution of ±X,
where X is the pathwise unique nonnegative strong solution. We deduce that the set of all
weak solutions is exactly the set of all distributions which are mixture of distributions of X
and −X. This completes the proof of the proposition. �

Remark 1. The pathwise strong solution X that we have constructed all along this section
satisfies the strong Markov property. Indeed, when α ∈ (−1,∞), uniqueness in law hold for
(2.1) and therefore we can apply Theorem 21.11 in [12], p. 421. If α ∈ (−∞,−1] the cited
result does not apply directly because it may exist different solutions. Nevertheless, our claim
is true since the result applies to the stochastic differential equation verified by |X||α|+1. �

Remark 2. Recall that in the attractive case ρ ∈ (−∞, 0), when α = −1 and β = 0,
every solution of (2.1) can not be continued after it has reached 0. The same result is true
when α ∈ (−∞,−1] and β arbitrary. First of all, the reaching time of 0 is finite a.s. when
ρ ∈ (−∞, 0) since by comparison theorem (see Theorem 1.1 in [11], p. 437), every solution
X satisfies X2 ≤ w2, with w a standard Brownian motion starting from x0 at time t0.

Assume that α = −1 and let us consider a solution X of (2.1) starting from 0 at initial
time 1. Then X2 is the pathwise unique solution of (3.14) with X2

1 = 0 a.s. Besides, for every
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t > 1, it is not difficult to see that there exists a Bessel R process of dimension 2ρM + 1 < 1,
with ρM := sup{ρ/sβ : 1 ≤ s ≤ t}, such that X2

s ≤ R2
s for all s ∈ [1, t]. By using Corollary

2.2, p. 199 in [5], we obtain

∫ t

0

1

|Xs|
ds ≥

∫ t

0

1

Rs
ds = ∞ a.s.

We deduce, when ρ ∈ (−∞, 0) and α = −1, that any solution of (2.1) can not be continued
after the reaching time of 0 by using the strong Markov property.

In the case where ρ ∈ (−∞, 0), α ∈ (−∞,−1) and β ∈ R, by using Proposition 3.1 and the
Girsanov’s transformation, we reduce to the study of equation (3.7). Since for this equation
every solution can not be continued after it has reached 0 (see Theorem 3.2 in [4], p. 66), we
deduce that it is the same for h = Φγ(X) and furthermore for X. �

4 Asymptotic behaviour of solutions

We present here the systematic study of the recurrence, transience or convergence of the
solution X of (2.1) defined up to its explosion time τe. We also give the asymptotic behaviour
of its sample paths. For latter reference and to simplify our statements let us introduce:

Definition 4.1. We shall say that:

1. X has the Gaussian typical behaviour or X satisfies the iterated logarithm law (under
a given probability P) when it respectively satisfies

lim
t→∞

|Xt|√
t

L
= |G| under P, with G ∼ N (0, 1) (4.1)

or

lim sup
t→∞

|Xt|√
2t ln ln t

= 1 P-a.s. (4.2)

2. X is recurrent (under a given probability P) when, for every x ∈ Eα, the following
set {t ≥ 1 : Xt = x} is P-a.s. unbounded. Here we denote Eα = R, (0,∞) or [0,∞)
according to whether α ∈ (−1,∞), α ∈ (−∞,−1) or α = −1.

3. X is transient (under a given probability P) when limt→τe |Xt| = ∞ P-a.s.

Remark 3. When α ∈ (−1,∞), by symmetry of equation (2.1), we can remove the absolute
values in (4.1) and replace X by −X. Moreover, when there are no confusion, we leave out
the probability P. �

We split our analysis in four cases. The first case is essentially based on the behaviour
of the Brownian motion and the results are simple to prove. For the time-homogeneous case
and for the general case, the proofs are more technical. From this point of view, the general
case contains a number of ideas which are simpler to be explained in the time-homogeneous
situation. The Bessel type case (α = −1) can be handled by the same techniques as for the
general case.
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4.1 Linear case: ρ 6= 0, α = 1 and β arbitrary

The Ornstein-Ulhenbeck process (β = 0) has already been treated in Section 2. More gener-
ally, when α = 1, X is again a Gaussian process and it can be expressed as a time changed
Brownian motion. The result is obtained by finding a harmonic function for the space-time
diffusion t 7→ (t,Xt). First, we consider a particular case which is the analogue, in continuous
time, of the Friedman’s urn model [7]. Note that we obtain similar results.

Proposition 4.1. Assume that ρ 6= 0 and α = β = 1.

1. X is recurrent if and only if ρ ∈ (−∞, 1/2]. Moreover,

i) if ρ ∈ (−∞, 1/2) then it has the Gaussian typical behaviour (4.1) and it satisfies

lim sup
t→∞

Xt√
2t ln ln t

=
1√

1− 2ρ
a.s.;

ii) if ρ = 1/2 then it satisfies

lim
t→∞

Xt√
t ln t

L
= N (0, 1) and lim sup

t→∞

Xt√
2t ln t ln ln ln t

= 1 a.s.

2. X is transient if and only if ρ ∈ (1/2,∞) and it satisfies

lim
t→∞

Xt

tρ
= G a.s. with G ∼ N

(
x0,

1

2ρ− 1

)
.

Proof. Let us note that (t, x) 7→ x/tρ is a harmonic function for the space-time diffusion
t 7→ (t,Xt). By Ito’s formula and P. Lévy ’s characterisation, we can write

Xt

tρ
= x0 +

∫ t

1

dBs

sρ
= x0 + B̃φ(t) with φ(t) :=

{
t1−2ρ−1
1−2ρ if ρ 6= 1/2;

ln t if ρ = 1/2 .

Here B̃ denotes a standard Brownian motion. By using (2.2) we prove the convergence in
distribution but also the pathwise largest deviations. The recurrent or the transient features
are simple consequences. �

We proceed with the case where β is arbitrary.

Proposition 4.2. Assume that ρ 6= 0, α = 1 and β 6= 1.

1. X is recurrent if and only if β ∈ (1,∞) or ρ ∈ (−∞, 0) and β ∈ [0, 1). Moreover,

i) if β ∈ (1,∞) then it has the Gaussian typical behaviour (4.1) and it satisfies the
iterated logarithm law (4.2);

ii) if ρ ∈ (−∞, 0) and β ∈ [0, 1) then it satisfies

lim
t→∞

Xt

t
β
2

L
= N

(
0,

1

2|ρ|

)
and lim sup

t→∞

Xt

t
β
2 (ln t)

1
2

=

(
β − 1

ρ

) 1
2

a.s. (4.3)
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2. X is transient if and only if ρ ∈ (0,∞) and β ∈ (−∞, 1) and it satisfies

lim
t→∞

Xt

exp
(
ρ t1−β

1−β

) = G a.s. with G ∼ N (m,σ2),

where

m := x0 exp

(
ρ

β − 1

)
and σ2 :=

∫ ∞

1
exp

(
2ρ s1−β

β − 1

)
ds.

3. X converges almost surely toward 0 if and only if ρ ∈ (−∞, 0) and β ∈ (−∞, 0) and, in
that case, (4.3) holds.

Proof. The same ideas as for the latter proof are employed. We use the harmonic function
(t, x) 7→ x exp

(
ρ t1−β/(β − 1)

)
and L’Hôpital’s rule to obtain the precise equivalent for the

change of time given by the Dambis-Dubins-Schwarz theorem (see Theorem 1.7 in [19], p.
182). The proof is left to the reader. �

Remark 4. In the linear case, we can compute the probability to be transient at ±∞. �

4.2 Homogeneous case: ρ 6= 0, β = 0 and α arbitrary

The Bessel process (α = −1) has already been treated in the Section 2, whereas the linear case
(α = 1) has been studied previously. In the time-homogeneous situation, X is either positive-
recurrent, null-recurrent or transient, the proof of these features being based on the properties
of scale function. Limits in distribution can be obtained by the ergodic theorem together
with, in the null-recurrent case, an appropriate change of time and the scaling transformation
defined in Corollaries 3.1 and 3.2. Furthermore, to get the asymptotic properties of the sample
paths, it suffices to apply Motoo’s theorem (see, for instance, [17]). Let us recall this result
because it will be used several times in the following.

Theorem 4.1 (Motoo). Let X be a positive-recurrent continuous strong Markov process
whose state space is [a,∞) (or (a,∞)), a ∈ [−∞,∞) and with scale function s. Then, for
every increasing real function h converging toward ∞,

P

(
lim sup
t→∞

Xt

h(t)
≥ 1

)
= 0 or 1 according to whether

∫ ∞ dt

s(h(t))
< ∞ or = ∞.

Proposition 4.3. Assume that ρ 6= 0, α 6= ±1 and β = 0.

1. X is positive-recurrent if and only if ρ ∈ (−∞, 0) and α ∈ (−1,∞) and it satisfies

lim
t→∞

Xt
L
= Π and lim sup

t→∞

Xt

(ln t)
1

α+1

=

(
α+ 1

2|ρ|

) 1
α+1

a.s. (4.4)

where Π is the speed measure associated to X, normalised to be a probability.

2. X is null-recurrent if and only if ρ ∈ (0,∞) and α ∈ (−∞,−1). It has the Gaussian
typical behaviour (4.1) and it satisfies the iterated logarithm law (4.2).
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3. X is transient if and only if ρ ∈ (0,∞) and α ∈ (−1,∞) \ {1} and it satisfies

lim
t→∞

|Xt|
t

1
1−α

= (ρ(1− α))
1

1−α or lim
t→τe

|Xt|
(τe − t)

1
α−1

= (ρ(α− 1))
1

α−1 a.s. (4.5)

according to whether α ∈ (−1, 1) or α ∈ (1,∞).

Remark 5. By using the properties of the scale function, it is possible to compute the prob-
ability to be transient at ±∞. �

Proof. When ρ ∈ (0,∞) and α ∈ (−1, 1) the first equality (4.5) is a direct consequence of
Theorems 2 and 5 in [9], pp. 126-132, while the second equality is a consequence of (4.25)
which is proved in Theorem 4.3 below.

Assume now that ρ ∈ (−∞, 0) and α ∈ (−1,∞). The scale function and the speed measure
of X (see, for instance [13], p. 343) are given by

s(x) :=

∫ x

0
exp

(
−2ρ |y|α+1

α+ 1

)
dy and m(dx) := exp

(
2ρ |x|α+1

α+ 1

)
dx.

Since s is a bijection of R, we can conclude (see, for instance, Proposition 5.22 in [13], p.
345) that X is a recurrent process. Furthermore, m being a finite measure on R, X is
positive-recurrent and we obtain the first equality in (4.4) by using the ergodic theorem (see
for instance, Theorem 23.15 in [12], p. 465). It remains to prove the second equality in (4.4).
To this end, we shall apply Motoo’s theorem. Firstly, by using L’Hôpital’s rule, observe that

s(x) ∼
x→+∞

exp
(
−2ρ xα+1/(α + 1)

)

2|ρ|xα and set λ0 :=

(
α+ 1

2|ρ|

) 1
α+1

.

Let us introduce hλ(t) := λ(ln t)
1

α+1 , with λ > 0. A simple computation gives
∫ ∞ dt

s(hλ(t))
< ∞ or = ∞ according to whether λ > λ0 or λ < λ0.

Then, Motoo’s theorem applies, and we deduce that for all ε > 0,

P

(
lim sup
t→∞

Xt

hλ(t)
≥ 1 + ε

)
= 0 and P

(
lim sup
t→∞

Xt

hλ(t)
≥ 1− ε

)
= 1. (4.6)

That is the second equality in (4.4).
Finally, assume that ρ ∈ (0,∞) and α ∈ (−∞,−1). As previously we obtain that X is re-

current in (0,∞) since s is a bijection between (0,∞) and R. Furthermore, it is null-recurrent
since its speed measure is not finite on (0,∞). To prove the convergence in distribution we
shall use the following important

Lemma 4.1. Suppose that Z and ζ are the unique strong Markovian solution of the stochastic
differential equations with continuous coefficients:

dZs = a(s, Zs)dWs + b(s, Zs)ds, dζs = a∞(ζs)dWs + b∞(ζs)ds.

Assume that the equation satisfied by Z is asymptotically time-homogeneous and Π-ergodic:

lim
s→∞

a(s, z) = a∞(z) and lim
s→∞

b(s, z) = b∞(z) uniformly on compact subsets of R
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and
lim
s→∞

ζs
L
= Π.

Then, if for all ε > 0 there exists r > 0 such that sup{P(|Zs| ≥ r) : s ≥ 0} < ε, that is Z is
bounded in probability,

lim
s→∞

Zs
L
= Π.

We postpone the proof of this lemma and finish the proof of Proposition 4.3. Let us consider
u = Φe(X) defined in Proposition (3.2). It is clear that X has the Gaussian typical behaviour
if and only if

lim
s→∞

u|α|+1
s

L
= Π

L
:= |G||α|+1, with G ∼ N (0, 1). (4.7)

By using Ito’s formula, we can see that u|α|+1 satisfies

du|α|+1
s = a(u|α|+1

s )dWs + h(u|α|+1
s )ds+ ℓ(s)ds, with

a(z) := (|α|+ 1)z
|α|

1+|α| , 2h(z) := (|α|+ 1)(|α|z
|α|−1
|α|+1 − z) and ℓ(s) := ρ(|α|+ 1)e(

α+1
2 )s.

Note that the coefficients a, h and ℓ are continuous and that limu→∞ ℓ(u) = 0 ≤ ℓ ≤ ℓ(0). We
can see that u|α|+1 is asymptotically time-homogeneous and Π-ergodic. Indeed, the first part
of the claim is clear and the time-homogeneous diffusion associated to u|α|+1 is the pathwise
unique strong solution of the equation

dζs = a(ζs)dWs + h(ζs)ds, ζ0 = u
|α|+1
0 .

Moreover, by using Ito’s formula, we can see that ζ is equal in law to U |α|+1, where U is an
Ornstein-Ulhenbeck process, weak solution of

dUt = dWs −
Ut

2
dt. (4.8)

We deduce that u|α|+1 is asymptotically Π-ergodic, where Π is given in (4.7). To apply Lemma
4.1 it remains to prove that u|α|+1 is bounded in probability. Let us introduce the pathwise
unique strong solution of

dξs = a(ξs)dWs + h(ξs)ds+ ℓ(0)ds, ξ0 = u
|α|+1
0 .

By applying the comparison theorem (see Theorem 1.1 in [11], p. 437) it can be shown that
0 ≤ ζ ≤ u|α|+1 ≤ ξ a.s. Moreover, by using the ergodic theorem (see, for instance, Theorem
23.15 in [12], p. 465) the diffusions ζ and ξ are positive-recurrent. Since ergodic diffusions are
bounded in probability, we deduce the boundedness in probability of u|α|+1. Furthermore, we
obtain (4.7) from Lemma 4.1 and X = Φ−1

e (u) satisfies the Gaussian typical behaviour (4.1).
Finally, to obtain the iterated logarithm law for X, it suffices to show the equalities in

1 = lim sup
s→∞

ξ
1

|α|+1
s√
2 ln s

≤ lim sup
s→∞

us√
2 ln s

≤ lim sup
s→∞

ζ
1

|α|+1
s√
2 ln s

= 1 a.s.

We repeat the reasoning developed in the proof of (4.6), by applying Motoo’s theorem to the

diffusions ζ and ξ, with the functions hλ(t) := λ(ln t)
|α|+1

2 , λ > 0. This ends the proof of the
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proposition, excepted for the Lemma (4.1). �

Proof of Lemma 4.1. Let us denote Pu,z the distribution of the diffusion Z with Zu = z
and {Tu,s : 0 ≤ u ≤ s} the associated time-inhomogeneous semi-group. Similarly, we denote
Pz the distribution of the diffusion ζ starting from z at initial time and {Ts : s ≥ 0} the
associated semi-group. Clearly, the diffusion coefficient (s, z) 7→ a(u + s, z) and the drift
(s, z) 7→ b(u+ s, z) of the diffusion s 7→ Zu+s satisfy the hypothesis of Theorem 11.1.4 in [20],
p. 264. We deduce that, for every f ∈ Cb([0,∞);R) and s ∈ [0,∞),

lim
u→∞

Tu,u+sf(z) = Tsf(z) uniformly in z on compact subsets of R. (4.9)

Moreover,
lim
s→∞

Tsf(z) = Π(f) uniformly in z on compact subsets of R. (4.10)

Indeed, assume that z belongs to the compact set [a, b]. By using the strong Markov property,
we can prove that for all s ∈ [0,∞) and v ∈ R,

Pa(ζs > v) ≤ Pz(ζs > v) ≤ Pb(ζs > v).

By using the ergodic theorem and these last inequalities we get the uniform convergence on
compact subsets of R in (4.10). Besides, by the Markov property, for all s, u ∈ [0,∞),

T0,u+sf(z0)−Π(f) = T0,u [Tu,u+sf − Tsf ] (z0) + T0,u [Tsf −Π(f)] (z0)

and clearly, for arbitrary r, s, u non-negative real numbers,

|T0,u+sf(z0)−Π(f)| ≤ sup
z∈[−r,r]

{|Tu,u+sf(z)−Tsf(z)|+ |Tsf(z)−Π(f)|}+4‖f‖∞P(|Zu| ≥ r).

Thanks to (4.9) and (4.10), for all r, ε > 0 there exists s0, u0 ∈ [0,∞) such that for all u ≥ u0,

|T0,u+s0f(z0)−Π(f)| ≤ 2(1 + 2‖f‖∞)ε+ 4‖f‖∞ sup
s≥0

P(|Zs| ≥ r).

Since Z is bounded in probability we deduce that limu→∞T0,uf(z0) = Π(f). The proof of
the lemma is done. �

4.3 General case

Let us introduce the following time-homogeneous diffusion:

dQs = dWs + ρ sgn(Qs)|Qs|αds−
Qs

2
ds. (4.11)

Recall that H and U are the diffusions respectively defined in (3.7) and (4.8) by

dHs = dWs + ρ sgn(Hs)|hs|αds and dUs = dWs −
Us

2
ds.

We set, when it exists,

lim
s→∞

Qs
L
=: Λ, lim

s→∞
Hs

L
=: Π, and recall that lim

t→∞
Us = N (0, 1). (4.12)
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Theorem 4.2. Assume that ρ ∈ (−∞, 0), α ∈ (−1,∞) and β ∈ R.

1. X is recurrent if and only if β ∈ [0,∞). Moreover,

i) if 2β = α+ 1 then it satisfies

lim
t→∞

Xt√
t

L
= Λ. (4.13)

It satisfies the iterated logarithm law (4.2) when α ∈ (−1, 1) and

lim sup
t→∞

Xt

(t ln ln t)
1

α+1

=

(
α+ 1

2|ρ|

) 1
α+1

a.s. when α ∈ (1,∞); (4.14)

ii) if 2β ∈ (α+ 1,∞) then it has the Gaussian typical behaviour (4.1) and it satisfies
the iterated logarithm law (4.2);

iii) if 2β ∈ [0, α+ 1) then it satisfies

lim
t→∞

Xt

t
β

α+1

L
= Π and lim sup

t→∞

Xt

t
β

α+1 (ln t)
1

α+1

=

(
α+ 1− 2β

2|ρ|

) 1
α+1

a.s.

(4.15)

2. X converges almost surely toward 0 if and only if β ∈ (−∞, 0) and it satisfies (4.15).

Proof of Theorem 4.2. We use again Proposition (3.1) and Corollaries (3.1) and (3.2) and
we keep their notation. Assume first that 2β = α + 1 and note that Φγ(X) = Φe(X) = Q,
where Q satisfies (4.11). Therefore, by applying the ergodic theorem to Q we get immediately
the convergence in distribution (4.13). Besides, by using Motoo’s theorem as in (4.6) with

hλ(t) := λ(ln t)
1

α∨1+1 , λ > 0,

we obtain the pathwise largest deviation of Q and by change of time we deduce (4.2) and
(4.14). The recurrent feature is a consequence of these equalities.

The proof of the case when 2β ∈ (α+ 1,∞) is based on the same arguments as in the
second point of Proposition 4.3. We present only the different points and leave the details to
the reader. This time, X has the Gaussian typical behaviour if and only if

lim
s→∞

u3s
L
= G3, with G ∼ N (0, 1) and u = Φe(X). (4.16)

We apply Lemma 4.1 to u3, which verifies a stochastic differential equation having continuous
coefficients. By using Ito’s formula and the comparison theorem (see Theorem 1.1 in [11],
pp. 352–353) it is not difficult to prove that there exits an Ornstein-Ulhenbeck process U ,
weak solution of (4.8) with U0 = u0, such that u2 ≤ U2 a.s. (here we use ρ ∈ (−∞, 0)). Then
we deduce that u3 is bounded in probability since U is ergodic and furthermore bounded in
probability. Moreover, it is a simple calculation to see that u is asymptotically homogeneous
(here we use 2β ∈ (−∞, α+1)) and that its associated time-homogeneous diffusion is equal in
law to U3. Hence, we deduce (4.16) and then, the Gaussian typical behaviour of X = Φ−1

e (u).
Besides, by using the previous comparison and Lemma 2.2 in [2], we obtain

lim sup
s→∞

us√
2 ln s

≤ lim sup
s→∞

Us√
2 ln s

= 1 a.s. (4.17)
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We need to prove the opposite inequality to obtain (4.2) for X. In fact, we show that the
time-inhomogeneous part in the equation satisfied by u2 can be omitted. This implies that u
behaves as the Ornstein-Ulhenbeck U . First, by Ito’s formula,

du2s = 2
√

u2s dws +
(
1− u2s

)
ds+ 2ρ e(

α+1
2

−β)s (u2s
)α+1

2 ds, u0 = x0.

Here w denotes a standard Brownian motion. Besides, by using (4.17), we get

lim
s→∞

q(s, us) := lim
s→∞

2ρ e(
α+1
2

−β)s (u2s
)α+1

2 = 0 a.s. (4.18)

Second, let v ≥ 0 and denote by u2(v) the pathwise unique nonnegative strong solution of

du2s(v) = 2
√

u2s(v) dws +
(
1/2− u2s(v)

)
ds, u2v(v) = u2v.

We shall prove that,

∀s ≥ v, u2s(v) ≤ u2s a.s. on Ωv :=

{
sup
s≥v

|q(s, us)| ≤
1

2

}
. (4.19)

To this end, let us introduce τ := inf {s ≥ v : |q(s, us)| > 1/2}. By using Theorem 1.1 in [11],
pp. 352–353 and a classical argument of localisation, we can see that u2·∧τ (v) ≤ u2·∧τ a.s.
and this exactly the comparison (4.19). Moreover, by using Lemma 2.2 in [2] and (4.18), we
obtain respectively

lim sup
s→∞

us√
2 ln s

≥ lim sup
s→∞

us(v)√
2 ln s

= 1 a.s. on Ωv and P (∪v≥0Ωv) = 1. (4.20)

This implies the opposite inequality in (4.17). We conclude that X = Φ−1
e (u) satisfies the

iterated logarithm law and we get the recurrent feature.
Finally, assume that 2β ∈ (−∞, α+ 1). This proof is based on the same ideas as for

the proof of case 2β ∈ (α + 1,∞). Here, to prove the convergence in distribution, it suffices
to apply Lemma 4.1 to the process h3 = Φ3

γ(X). The only technical points is to show the
boundedness in probability and to obtain its pathwise largest deviations. We only prove these
two points. First, we can see that

dh2s = 2
√

h2s dws + (1 + 2ρ
(
h2s
)α+1

2 ) ds +
k h2s
c+ s

ds, with k ∈ R and c > 0.

Here w denotes a standard Brownian motion. Again, we show that the time-inhomogeneous
part of h2 could be omitted. This implies that h behaves as H defined in (3.7). Indeed, since
ρ is negative, it is not difficult to prove by comparison theorem (see Theorem 1.1 in [11], pp.
352-353) and Ito’s formula that X2 is lower than a standard Brownian motion. Then, we get

lim sup
s→∞

h2s

2s ln ln s
= lim sup

t→∞

X2
t /t

γ

2ϕ−1
γ (t) ln lnϕ−1

γ (t)
= (1− γ)

(
lim sup
t→∞

X2
t

2 t ln ln t

)
≤ 1− γ a.s.

We deduce that

lim
s→∞

[
q(s, h2s)

(h2s)
δ

:=

(
k h2s

c+ s

)
1

(h2s)
δ

]
= 0 a.s. with δ :=

α+ 1

α+ 3
. (4.21)
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Let v ≥ 0 and denote by h2(v) the pathwise unique nonnegative strong solution of

dh2s(v) = 2
√

h2s dws + (1 + (h2s(v))
δ
+ 2ρ (h2s(v))

α+1
2 ) ds, h2v(v) = h2v .

As for the proof of inequality (4.19), by using Theorem 1.1 in [11], pp. 352–353, the compar-
ison h2s ≤ h2s(v), s ≥ v, holds a.s. on Ωv := {∀s ≥ v, |q(s, h2s)| ≤ (h2s)

δ}. Let ε > 0, then by
(4.21) we can choose v ≥ 0 such that P(Ωv) ≤ ε. Moreover, there exists r ≥ 0 such that for
all s ≥ v, P(h2s(v) ≥ r) ≤ ε since h2(v) is an ergodic diffusion. Putting together the last three
inequalities, we obtain that P(h2s ≥ r) ≤ 2ε, for all s ≥ v and therefore we conclude that h3

is bounded in probability.
Second, as for the proof of inequality (4.20), Motoo’s theorem (apply to h(v), v ≥ 0) and

the preceding comparison, imply

lim sup
s→∞

hs

(ln s)
1

α+1

≤
(
α+ 1

2|ρ|

) 2
α+1

a.s. (4.22)

The opposite inequality can be obtained in the same way as previously for (4.22) by using the
cited comparison theorem with this time the pathwise unique nonnegative strong solution of

dh2
s(v) = 2

√
h2
s(v) dws + (1− (h2

s(v))
δ
+ 2ρ (h2

s(v))
α+1
2 )ds, h

2
v(v) = h2v, v ≥ 0.

The proof is left to the reader. This implies the pathwise largest deviations in (4.15) and
we deduce immediately that when 2β ∈ [0, α + 1), X is a recurrent process, whereas when
β ∈ (−∞, 0], X converge almost surely toward 0. This ends the proof. �

We turn now to the repulsive case ρ ∈ (0,∞). The main difficulty is the case where
α ∈ (1,∞) and 2β ∈ (α+ 1,∞) because the process explodes with a positive probability but
not almost surely. The transient case is proved by using some martingale arguments as in
[16].

Theorem 4.3. Assume that ρ ∈ (0,∞), α ∈ R \ {−1, 1} and β ∈ R.

1. X is recurrent, under the conditional probability of nonexplosion, if and only if we have
2β ∈ (α+ 1,∞) or 2β = α+ 1 and α ∈ (−∞, 1). Moreover,

i) if 2β ∈ (α+ 1,∞) then it has the Gaussian typical behaviour (4.1) and it satisfies
the iterated logarithm law (4.2);

ii) if 2β = α + 1 and α ∈ (−∞, 1) then it satisfies the iterated logarithm law (4.2)
and

lim
t→∞

Xt√
t

L
= Λ. (4.23)

2. X is transient, under the conditional probability of explosion, if and only if we have
2β ∈ (−∞, α+ 1) or 2β = α+ 1 and α ∈ (1,∞). Moreover,

i) if α ∈ (−∞, 1) then it satisfies

lim
t→∞

|Xt|
t
1−β
1−α

=

(
ρ(1− α)

1− β

) 1
1−α

a.s. (4.24)
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ii) if α ∈ (1,∞) then it satisfies

lim
t→τe

Xt

(τe − t)
1

α−1

= ϕγ(τe)
γ
2 (ρ(α− 1))

1
α−1 P(· | τe < ∞)-a.s. (4.25)

Proof. 1) Recurrence. In this part we will use the results in Propositions 3.1 and Corollaries
3.1 and 3.2. On the one hand, if 2β = α + 1 and α ∈ (−∞, 1) (the problem for the discrete
time situation considered in [16]) or 2β ∈ (α + 1,∞) and α ∈ (−1,∞), the sentences in 1
i) and 1 ii) could be proved in a similar way as Theorem 4.2 points 1 i) and 1 ii). On the
other hand, if 2β ∈ (α + 1,∞) and α ∈ (−∞,−1), it suffices to follow the reasoning already
performed for the proof of the second point in Proposition 4.3.

It remains to study the case where α ∈ (1,∞). Assume that 2β ∈ (α + 1,∞). We will
need the following result whose proof is postponed to the end of this subsection.

Lemma 4.2. Assume that α ∈ (1,∞) and 2β ∈ (α+ 1,∞). Then,

lim
t→∞

Xt

t
β

α+1

= 0 P(· | τe = ∞)−a.s. (4.26)

By using Lemma 4.2, we can see that

lim
t→∞

1√
t

∫ t

1
ρ
|Xs|α
sβ

ds = lim
t→∞

1√
t

∫ t

1
ρ

∣∣∣∣
Xs

s
β

α+1

∣∣∣∣
α

t−
β

α+1 ds = 0 a.s. on {τe = ∞}.

We deduce that X satisfies, on the set of nonexplosion, the iterated logarithm law (4.2) and
as a consequence it is recurrent on this set. We prove the Gaussian typical behaviour under
the conditional probability of nonexplosion. For this end, it suffices to show that

lim
s→∞

P(us > x | σe = ∞) =
1√
2π

∫ ∞

x
exp

(
−y2

2

)
dy. (4.27)

Here σe denotes the explosion time of u = Φe(X). Note that Lemma 4.1 does not apply
directly here since the explosion time of u can be finite with a positive probability. We first
show that the time-inhomogeneous part in (3.5) could be omitted. By using (4.26), we get

lim
s→∞

[
q(s, us) := ρ e(

α+1
2

−β)s|us|α
]
= lim

t→∞
ρ t(

1
2
− β

α+1)
∣∣∣∣
Xt

t
β

α+1

∣∣∣∣
α

= 0 a.s. on {σe = ∞}.
(4.28)

Let ε > 0, v ≥ 0 be and denote U (±ε) the pathwise unique strong solution of the equation

dU (±ε)
s = dWs −

U
(±ε)
s

2
ds ± ε ds, U (±ε)

v = uv1{σe>v}.

It is classical that U (±ε) is Feller and ergodic. Furthermore, the strong mixing property holds
(see [12], Theorem 20.20, p. 408) and we obtain

lim
s→∞

P(U (±ε)
s > x | Ωε

v) =: F∓ε(x) =
1√
2π

∫ ∞

x
exp

(
−(y ∓ ε)2

2

)
dy,

with Ωε
v :=

{
sup
s≥v

|q(s, us)| ≤ ε

}
. (4.29)
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As for the proof of (4.19), we can show that the comparison U
(−ε)
s ≤ us ≤ U

(+ε)
s holds a.s. on

Ωε
v, for all s ≥ v. We get from (4.29) and the previous comparison,

F+ε(x) ≤ lim inf
s→∞

P

(
us > x | Ω(ε)

v

)
≤ lim sup

s→∞
P

(
us > x | Ω(ε)

v

)
≤ F−ε(x). (4.30)

Due to (4.28), the set of non-explosion is {σe = ∞} = ∪v≥0Ω
ε
v. By passing to the limit in

(4.30), first as v → ∞, and then as ε → 0, we deduce (4.27) and furthermore X has the
Gaussian typical behaviour under the probability of nonexplosion.

2) Transience. To simplify our computations, let us denote the limit and the exponent of t
in (4.24) respectively by

ℓ :=

(
ρ(1− α)

1− β

) 1
1−α

and ν :=
1− β

1− α
.

If we set St := X2
t /t

2ν , it suffices to verify that limt→∞ St = ℓ2 a.s. That is, for all ε > 0,

lim sup
t→∞

St ≤ ℓ2 + 3ε and lim inf
t→∞

St ≥ ℓ2 − 3ε a.s. (4.31)

We shall prove only the first inequality in (4.31), the second one being obtained in a similar
way. We split the proof in four steps.

Step a). We begin to show that, for all ε > 0,

{t ≥ 1 : St ≤ ℓ2 + ε} is unbounded a.s. (4.32)

For this end, set ηu := inf
{
v ≥ u : Sv ≤ ℓ2 + ε

}
, u ≥ 1. Then, it suffices to prove that for all

u ≥ 1 large enough, ηu < ∞ a.s. By using Ito’s formula, we can see that

St∧ηu = Su +

∫ t∧ηu

u
LV (s,Xs)ds +

∫ t∧ηu

u
∂xV (s,Xs) dBs := Su +Mt +At, (4.33)

where V (t, x) := x2/t2ν and L is given by (3.6). Moreover, we can see that there exist s0 ≥ 1
and c > 0 such that for all s ≥ s0 and x ∈ R, for which V (s, x) ≥ ℓ2 + ε,

LV (s, x) =
2ρ

s

(
V (s, x)

α−1
2 − ℓα−1

)
V (s, x) +

1

s2ν
≤ − c

s
≤ 0. (4.34)

This implies that the local martingale part Su + M of the non-negative semimartingale in
(4.33), together with S·∧ηu itself, are nonnegative supermartingales for all u ≥ s0. Therefore,
the bounded variation part A will be a convergent process as the difference of two convergent
supermartingales. Thanks to (4.34), this is possible if and only if ηu < ∞ a.s. and this fact
is the claim of Step a).

Step b). We introduce an increasing sequence of stopping times as follows:

τ1 := inf{t ≥ s0 : St = ℓ2 + 2ε}, σ1 := inf
{
t ≥ τ1 : St ∈

{
ℓ2 + ε, ℓ2 + 3ε

}}

and for every integer n ≥ 2,

τn := inf{t ≥ σn−1 : St = ℓ2 + 2ε}, σn := inf
{
t ≥ τn : St ∈

{
ℓ2 + ε, ℓ2 + 3ε

}}
.
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Figure 3: The increasing sequence of stopping times

Set F := ∩n≥1{τn < ∞}. Thanks to (4.32), we obtain that

lim sup
t→∞

St ≤ ℓ2 + 2ε a.s. on F c.

Hence, to prove the first inequality in (4.31), we need to show that

lim sup
t→∞

St ≤ ℓ2 + 3ε a.s. on F or equivalently 1F

∑

n≥1

1{Sσn=ℓ2+3ε} < ∞ a.s.

By using a conditional version of Borel-Cantelli’s lemma (see, for instance, Proposition 3.2 in
[6], p. 240) it is equivalent to prove that

∞∑

n=1

P
(
Sσn = ℓ2 + 3ε, τn < ∞ | Fτn

)
< ∞ a.s. (4.35)

Step c). We show that there exist positive constants λ1 and λ2 such that for all integer n ≥ 1,

P
(
Sσn = ℓ2 + 3ε, τn < ∞ | Fτn

)
≤ λ1τ

( 1
2
−ν)

n exp
(
−λ2τ

2ν−1
n

)
a.s. on {τn < ∞}. (4.36)

To this end, let us denote by Ps,x the distribution of the weak solution of (2.1) such that
Xs = x. The strong Markov property applies and this yields

P
(
Sσn = ℓ2 + 3ε, τn < ∞ | Fτn

)
= Pτn,Xτn

(
Sσn = ℓ2 + 3ε

)
a.s. on {τn < ∞}.

As in (4.33), we can write under the conditional probability Pτn,Xτn
, the canonical decompo-

sition St∧σn = Sτn +Mn
t + An

t , sum of a local martingale and a bounded variation process.
Besides, we can show that vn := 〈Mn〉∞ satisfies

vn =

∫ σn

τn

4Su

u2ν
du ≤

∫ ∞

τn

4(ℓ2 + 3ε)

u2ν
du =

4(ℓ2 + 3ε)

(2ν − 1)τ2ν−1
n

≤ 4(ℓ2 + 3ε)

(2ν − 1)s2ν−1
0

=: v0.

Then, by the Dambis-Dubins-Schwarz theorem, there exists a standard Brownian motion W n

(under the conditional probability Pτn,Xτn
) such that Mn = W n

〈Mn〉 and since An is strictly
negative, we can see that

{
sup

0≤t≤vn

W n
t < ε

}
⊂
{
sup
t≥τn

Mn
t < ε

}
⊂
{
Sσn = ℓ2 + ε

}
.
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It is classical that the random variable sup{W n
t : 0 ≤ t ≤ vn}

L
=: Gn

L
= N (0, vn) (under the

conditional probability Pτn,Xτn
) and therefore we obtain

Pτn,Xτn
(Sσn = ℓ2 + 3ε) = 1− Pτn,Xτn

(Sσn = ℓ2 + ε) ≤ 2Pτn,Xτn

(
Gn ≥ ε√

vn

)
.

By the usual estimate for the standard Gaussian tail, we get (4.36).

Step d). To insure the convergence of the series in (4.35) we show that the sequence τn
increases to infinity sufficiently fast. More precisely, we show that there exists λ > 1 such
that τn ≥ τ1λ

n a.s. on F . This inequality will be a consequence of a second conditional
Borel-Cantelli’s Lemma (see, for example, Proposition 4.11 in [6], p. 256) once we show that
there exist some constants q > 1 and p > 0 such that for all n ≥ 1,

P(τn+1 ≥ q τn | Fτn) ≥ Pτn,Xτn
(σn ≥ q τn) ≥ p a.s on {τn < ∞}. (4.37)

In opposite to (4.34), we can see that there exists a constant k > 0 such that for all t ≥ 1
and x ∈ R, for which V (t, x) ≤ ℓ2 +3ε, LV (t, x) ≥ −k/t. We deduce that for all t ∈ [τn, qτn],

−ε

2
≤ k ln

(τn
t

)
≤ An

t ≤ 0, with q := e
kε
2 > 1.

By using this inequality, we can write

{σn ≥ qτn} ⊃
{

sup
τn≤t≤qτn

|Mn
t | <

ε

2

}
⊃
{

sup
0≤t≤v0

|W n
t | <

ε

2

}
.

Therefore, inequality (4.37) is satisfied with the deterministic positive constant

p := Pτn,Xτn

(
sup

0≤t≤v0

|W n
t | <

ε

2

)
= P

(
sup

0≤t≤v0

|Bt| <
ε

2

)
.

Here B denotes a standard Brownian motion. The Borel-Cantelli’s Lemma applies and we
obtain that τn ≥ τ1λ

n a.s. on F . We deduce (4.35) and then we conclude that (4.24) holds.
Finally, we need to prove the statement (4.25). Assume that α ∈ (1,∞), consider h =

Φγ(X) and denote by ηe its explosion time. We can see that hs := hs − Ws satisfies the
(random) ordinary differential equation

ḣs = ρ sgn(hs +Ws)|hs +Ws|α − γϕγ(s)
γ−1hs +Ws

2
. (4.38)

Moreover, it is not difficult to see that

|hs|1−α

α− 1
=

∫ ηe

s

ḣu
hαu

du ∼
s→ηe

ρ (ηe − s) P( · | ηe < ∞)-a.s.

This implies (4.25) by change of time. The proof of the theorem is done, excepted for the
Lemma 4.2. �

Proof of Lemma 4.2. Let us recall that h = Φγ(X) is the pathwise unique strong solution
of (3.9) and that P(τe = ∞) = P(ηe ∈ {t1,∞}), with ηe its explosion time. We show that

lim
t→t1

ht = 0 a.s. on {ηe = ∞} and P(ηe = t1) = 0. (4.39)

26



The first equality in (4.39) is a simple consequence of the Girsanov’s transformation which
gives (3.11) and the fact that the δ-Brownian bridge b defined in (3.10) satisfies bt1 = 0 a.s.
The main difficulty is to prove the second equality in (4.39). Let us introduce

ℓ :=

(
1 + δ(α − 1)

ρ(α− 1)

) 1
α−1

and Zs := (t1 − s)
1

α−1 hs

and note that Z satisfies the following stochastic differential equation

dZs = (t1 − s)
1

α−1 dws +
ρZs

(
|Zs|α−1 − ℓα−1

)

(t1 − s)
α

α−1

ds. (4.40)

We begin by showing that

P (ηe = t1) = P

(
ηe = t1, lim

s→t1
|Zs| ∈ {0, ℓ,∞}

)
. (4.41)

First, let us prove that

P

(
ηe = t1, lim inf

s→t1
Zs < lim sup

s→t1
Zs

)
= 0. (4.42)

Denote by M the local martingale part of Z and by d(s, z) the drift of the equation (4.40).
Since s 7→ Ms is a.s. uniformly continuous on [0, t1],

P

(
lim inf
s,u→t1

|Ms −Mu| > 0

)
= 0. (4.43)

Moreover, the points {0,±∞} are attractive whereas the points {±ℓ} are repulsive since

d(s, z)z ≥ 0 or d(s, z)z ≤ 0 according whether |z| ≥ ℓ or |z| ≤ ℓ. (4.44)

Assume that ηe = t1 and lim infs→t1 Zs < lim sups→t1 Zs. By using (4.44), it is not difficult
to construct two sequences (sn) and (un) of real numbers, belonging to [0, t1) such that

lim
n→∞

sn = lim
n→∞

un = t1 and lim inf
n→∞

|Msn −Mun | > 0.

We deduce from (4.43) the equality (4.42). Then, we obtain equality (4.41) by noting that

lim
s→t1

|d(s, Zs)| = ∞ a.s. on

{
ηe = t1, lim

s→t1
|Zs| /∈ {0, ℓ}

}
.

Second, to prove P(ηe = t1) = 0, it suffices to show that for any λ ∈ {0, ℓ,∞},

P

(
ηe = t1, lim

s→t1
|Zs| = λ

)
= 0. (4.45)

Let us recall that h is a solution of equation (4.38), which can be written

ḣs = ρ sgn(hs + ws)|hs +Ws|α − δ
hs +Ws

t1 − s
.
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Besides, it is a simple calculation to see that there exist two functions ǫi, i = 1, 2, such that

ḣs = −ǫ1(Zs)

[
δ(hs +Ws)

t1 − s

]
, with lim

z→0
ǫ1(z) = 1 (4.46)

and
ḣs = ǫ2(Zs) [ρ sgn(hs +Ws)|hs +Ws|α] , with lim

z→∞
ǫ2(z) = 1. (4.47)

Consider hs := hs −Ws and we analyse three cases.
Case λ = 0. By using (4.46) we can show that there exists u ∈ [0, t1) such that

sup
{
hs ḣs1{|ys|≥c} : u ≤ s < t1

}
≤ 0, with c := sup{|Ws| : 0 ≤ s ≤ t1}.

It is not difficult to see that h, and furthermore h, are bounded on [0, t1). Then, we deduce

P

(
ηe = t1, lim

s→t1
|Zs| = 0

)
≤ P

(
ηe = t1, sup

0≤s<t1

|hs| < ∞
)

= 0.

Case λ = ∞. By using (4.47) we obtain

|hs|1−α

α− 1
=

∫ t1

s

ḣu
sgn(hu)|hu|α

du ∼
s→t1

ρ(t1 − s), which implies lim
s→t1

Zs = (ρ(α − 1))
1

1−α .

Therefore,

P

(
ηe = t1, lim

s→t1
|Zs| = ∞

)
≤ P

(
ηe = t1, lim

s→t1
|Zs| = (ρ(α − 1))

1
1−α = ∞

)
= 0.

Case λ = ℓ. We show that this event is of probability 0 by using the fact that ±ℓ are
repulsive points. Remark that the drift of the equation (4.40) can be written

d(s, z) =: q(z)
z ± ℓ

(t1 − s)
α

α−1

, with lim
z→±ℓ

q(z) =: q∞ = ρ(α− 1)ℓα−1.

By Ito’s formula, we can see that zs := (Zs ± ℓ)2 is the pathwise strong solution of

dzs = 2
√
zs (t1 − s)

1
α−1dws +

(
2q(Zs)

zs

(t1 − s)
α

α−1

+ (t1 − s)
2

α−1

)
ds.

Here w denotes a standard Brownian motion. Let v ∈ [0, t1) and ζ(v) be the pathwise unique
strong solution of

dζs(v) = 2
√

ζs(v) (t1 − s)
1

α−1dws +

(
q∞

ζs(v)

(t1 − s)
α

α−1

+ (t1 − s)
2

α−1

)
ds, ζv(v) = zv1{ηe>v}.

By Ito’s formula, the law of ζ(v) equals to the law of ξ2(v), with

dξs(v) = (t1 − s)
1

α−1 dWs +
ξs(v)

(t1 − s)
α

α−1

ds, ξv(v) =
√
ζv(v).
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Since ξ(v) is the solution of a linear equation, we can see that lims→t1 ξs(v) = ∞ a.s. and
then we deduce that lims→t1 ζs(v) = ∞ a.s. Besides, by using the same arguments as for the
proof of the comparison (4.19), we can show that for all s ∈ [v, t1),

zs ≥ ζs(v) a.s. on Ωv :=

{
ηe = t1, sup

v≤s<t1

|q(Zs)| ≥
q∞
2

}
.

Hence, we obtain

lim
s→t1

|Zs| = ∞ a.s. on

{
ηe = t1, lim

s→t1
|Zs| = ℓ

}
⊂

⋃

0≤v<t1

Ωv.

and we deduce (4.45) for λ = ℓ. We conclude that P(ηe = t1) = 0. �

4.4 Bessel type case

We have already seen that if ρ ∈ (−∞, 0) and α = −1 then the solution of (2.1) is defined up
to the reaching time of 0, which is finite a.s. Hence we need to consider only the repulsive
case ρ ∈ (0,∞). Recall that if β ∈ (0,∞) the set {t ≥ 1 : Xt = 0} is unbounded a.s. and the
we will see that X is recurrent in [0,∞). The proof of the following result is similar to the
proof of Theorem 4.3 and we leave it to the reader.

Theorem 4.4. Assume that ρ ∈ (0,∞), α = −1 and β 6= 0.

1. X is recurrent if and only if β ∈ (0,∞). Moreover X has the Gaussian typical behaviour
(4.1) and it satisfies the iterated logarithm law (4.2).

2. X is transient if and only if β ∈ (−∞, 0) and it satisfies (4.24).

Proof. We give only the main arguments. To get the recurrent feature, it suffices to consider
u2 = Φ2

e(X) and to apply Lemma 4.1 to obtain the convergence in distribution. The pathwise
largest deviation is obtained by comparing u2 with a time-homogeneous diffusion and apply-
ing Motoo’s theorem. The proof of the transience is the same as for the general case. �
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