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Abstract. We study and compare two natural distributions of finitely generated sub-
groups of free groups. One is based on the random generation of tuples of reduced words;
that is the one classically used by group theorists. The other relies on Stallings’ graphical
representation of subgroups and in spite of its naturality, it was only recently consid-
ered. The combinatorial structures underlying both distributions are highly amenable
to the methods of analytic combinatorics. We use these methods to point at the differ-
ences between these distributions. It is particularly interesting that certain important
properties of subgroups that are generic in one distribution, turn out to be negligible
in the other.

1 Introduction

Algorithmic problems in combinatorial group theory have evoked a lot of interest in recent
years, especially in free groups and this has led naturally to an interest in the evaluation of
these algorithms and to enumeration problems. This trend has encountered another rising
interest in group theory for the statistical properties of elements and subgroups of free groups.
This type of investigation was pioneered by Ol’shanskĭı [15] and Arjantseva [2, 1], who centered
their work on the statistical properties of finite presentations of groups, that is, largely, of
finitely generated normal subgroups of free groups, see Section 4.3 for more details.

More recently, the search for innovative group-based cryptographic systems (see [12] for in-
stance) has led to the investigation of the statistical properties of finitely generated subgroups
of free groups, see [10, 7].

In both cases, the implicit distribution was that given by the random choice of a k-tuple
(k fixed) of reduced words of length at most n, with n allowed to tend to infinity. The cited
literature concentrated on the identification of generic (resp. negligible) properties: properties
satisfied by a proportion pn of k-tuples of words of length at most n, such that lim pn = 1
(resp. 0), see Section 2.4.

Bassino, Nicaud and Weil [3] explored another quite natural distribution of finitely gener-
ated subgroups of free groups. As it turns out, these subgroups are uniquely represented by a
finite labeled graph, subject to certain combinatorial constraints (see Section 2.2).
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Fig. 1. Two randomly generated subgroups of F ({a, b}) depicted by their graphical representation.
On the left, a random subgroup for the word-based distribution with 5 words of lengths at most 40.
On the right, a random subgroup with 200 vertices for the graph-based distribution. Only the shape
of the graph is depicted, edges’ labels and directions are not represented. The pictures have been
generated by neato. Note that the scale (average distance between two vertices) is not the same on
the two pictures. The graphical representation of a subgroup is defined in Section 2.2.

Both distributions are amenable to methods from analytic combinatorics. The word-based
distribution can conveniently be studied using analytic results on texts generated by Markov
chains, as done in [13]. On the other hand, properties of subgroups under the graph-based
distribution are directly related to properties of partial injections on [n] = {1, · · · , n}. This
properties are obtained using saddle point technics mainly. The general framework is the fol-
lowing: Given a property on subgroups, find necessary or sufficient conditions for this property
to be satisfied, then use analytic tools to prove negligibility or genericity. Pleasantly, the ques-
tions raised are familiar to combinatorists. For instance, we have to estimate asymptotically
the expected size of the domain of a random injection, the probability that a partial injection
has no cycle in its functional graph, etc. We thus apply to algebra the same technics that were
mostly developed for computer science.

Not surprisingly, the consideration of a different distribution sheds a different light on the
properties of subgroups that are generic or negligible (i.e., frequent or rare). For instance, we
show that an important property like malnormality (see Section 4.1), which is known to be
generic in the word-based distribution, is instead negligible in the graph-based distribution.

The paper is organized as follows. In Section 2, basic algebraic definitions are recalled and
as well as the notions of negligibility and genericity. In Section 3, we present the two distribu-
tions, emphasing their combinatorial properties. In Section 4 we analyze three properties of
subgroups. First, we show that though generic for the word-based distribution, malnormality
is negligible for the graph-based distribution. Then, we present a property that is intermediate
for the graph-based distribution, that is, neither negligible nor generic. Finally we discard the
idea of generating finitely presented groups using the graph-based distribution, by proving
that this representation is generically trivial. This is proved using the fact that generically the
lengths of the cycles in a size n permutation are relatively prime.

2 Definitions

2.1 Free groups and reduced words

Let A be a non-empty set. We consider words on the alphabet A tA−1, the disjoint union of
A and A−1, the alphabet made of formal inverses of the elements of A: A−1 = {a−1 | a ∈ A}.



By convention, (a−1)−1 = a for any a ∈ A. A word written on the alphabet AtA−1 is reduced
when it does not contain the pattern aa−1, for any a ∈ A t A−1. For instance for A = {a, b},
aab−1b−1ab−1a−1 is reduced, but aabb−1a−1 is not. If a word is not reduced, one can reduce it
by iteratively removing every pattern of the form aa−1. The resulting reduced word is uniquely
determined: it does not depend on the order of the cancellations. For instance, u = aabb−1a−1

reduces to aaa−1, and thence to a.
The set F (A) of reduced words is naturally equipped with a structure of group, where the

product u · v is the (reduced) word obtained by reducing the concatenation uv. This group is
called the free group on A. More generally, every group isomorphic to F (A), say, G = ϕ(F (A))
where ϕ is an isomorphism, is said to be a free group, freely generated by ϕ(A). The set ϕ(A)
is called a basis of G. It is important to note that F (A) has infinitely many bases: A is always
a basis, but each set {anbam, a} is one as well (if A = {a, b}). The rank of F (A) (or of any
isomorphic free group) is |A|, and one shows that this notion is well-defined in the following
sense: free groups F (A) and F (B) are isomorphic if and only if |A| = |B|. If r ≥ 1, we will
denote by Fr a free group of rank r.

A group G is generated by a subset X if every element of G can be written as a product of
elements of X and their inverses. It is finitely generated if it admits a finite set X of generators.
In this paper, we are interested especially in the finitely generated subgroups of finite rank
(i.e., finitely generated) free groups. Recall that every subgroup of a free group is free (Nielsen-
Schreier theorem), but that the rank of a subgroup may well be greater than that of the group:
F2 has subgroups of every finite rank.

2.2 Graphical representation

Each finitely generated subgroup of F can be represented uniquely by a finite graph of a
particular type, by means of the technique known as Stallings foldings [16] (see also [18, 9,
17]). This construction is informally described in Section 2.3.

An A-graph is defined to be a pair Γ = (V, E) with E ⊆ V × A × V , such that

– if (u, a, v), (u, a, v′) ∈ E, then v = v′;
– if (u, a, v), (u′, a, v) ∈ E, then u = u′.

The elements of V are called the vertices of Γ , the elements of E are its edges, and we
sometimes write V (Γ ) for V and E(Γ ) for E. We say that Γ is connected if the underlying
undirected graph is connected. If v ∈ V (Γ ), we say that v is a leaf if v occurs at most once
in (the list of triples defining) E(Γ ) and we say that Γ is v-trim if no vertex w 6= v is a leaf.
Finally we say that the pair (Γ, v) is admissible if Γ is a v-trim and connected A-graph. Then
it is known that:

– Stallings foldings associate with each finitely generated subgroup H of F (A) a unique
admissible pair of the form (Γ, 1), which we call the graphical representation or the Stallings
graph of H [16, 18, 9].

– every admissible pair (Γ, 1) is the graphical representation of a unique finitely generated
subgroup of F (A) [16, 18, 9];

– if (Γ, 1) is the graphical representation of H , then rank(H) = |E(Γ )| − |V (Γ )| + 1 [16, 18,
9];

The admissible pair (Γ, 1) can be seen as a finite state machine that represents the subgroup
H . It is very similar to finite state automata representing regular languages. To know whether
a reduced word u is in H , start from vertex 1, then follow a path in the graph by reading u
letter by letter: follow an edge (p, a, q) from vertex p to vertex q when reading letter a ∈ A, and
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Fig. 2. Some steps of the computation of the Stallings graph for B = {b3a−1b−1, aba−1ba−1, b2a−1}.

follow an edge (p, a, q) backward, from vertex q to vertex p, when reading letter a−1 ∈ A−1.
From admissibility conditions, there is at most one such path for u. The reduced word u is in
H if and only if the path exists and ends in 1. Hence, (Γ, 1) is a kind of finite state automaton,
which is deterministic and co-deterministic, having 1 both as initial state and unique final
state, and such that one can use a transition backward while reading the inverse of a letter.
Admissible pairs play a role analogous to that of minimal automata in language theory.

2.3 Stallings foldings

We now present informally the computation of the graphical representation of a subgroup
generated by a subset B = {u1, · · · , uk}. It consists in building an (AtA−1)-graph, changing
it into a A-graph, then reducing it using foldings. First build a vertex 1. Then, for every word
u of length n in B, build a loop with label u from 1 to 1, adding n− 1 vertices. Change every
edge (u, a−1, v) labeled by a letter of A−1 into an edge (v, a, u). Iteratively identify the vertices
v and w whenever there exists a vertex u and a letter a ∈ A such that either both (u, a, v)
and (u, a, w) or both (v, a, u) and (w, a, u) are edges in the graph (the corresponding pair of
edges are folded, in Stallings’s terminology).

The resulting graph Γ is such that (Γ, 1) is admissible and, very much like in the (1-
dimensional) reduction of words, it does not depend on the order used to perform the foldings.
An example is depicted on Figure 2.

2.4 Genericity and negligibility

Let S be a countable set, the disjoint union of finite sets Sn (n ≥ 0), and let Bn =
⋃

i≤n Si.
Typically in this paper, S will be the set of Stallings graphs, of partial injections, of reduced
words or of k-tuples of reduced words, and Sn will be the set of elements of S of size n.

A subset X of S is negligible (resp. generic) if the probability for an element of Bn to be

in X , tends to 0 (resp. to 1) when n tends to infinity; that is, if limn
|X∩Bn|
|Bn| = 0 (resp. = 1).

Much of the literature is also concerned with exponential negligibility or genericity, when

the ratio |X∩Bn|
|Bn| tends to 0 or 1 exponentially fast.

The definition of negligibility and genericity above is given in terms of the balls Bn: the
sets of elements of size at most n. It is sometimes more expedient to reason in terms of



the proportion of elements of X in the spheres Sn. This is possible if the structures under
consideration grow fast enough as stated in the following proposition.

Proposition 1. If lim Bn

B2n

= 0 and limn
|X∩Sn|
|Sn| = 0 (resp. = 1) then X is negligible (resp.

generic). The same result holds for exponential negligibility and genericity.

Naturally, the negligibility or the genericity of a subset X of S depends on the layering of
S into the Sn, that is, on the measure used for the size of an element of S. The main focus
of the article is to compare the distributions coming from two natural choices for the size of
a finitely generated subgroup of a free group.

3 Two natural distributions

In this section, we describe the basic properties of a word-based and a graph-based distribu-
tion of subgroups of free groups, from the point of view of a combinatorist. The word-based
distribution is based on the distribution of tuples of generators, whereas the graph-based dis-
tribution exploits the graphical representation of subgroups. In the following, A is a fixed
alphabet of size r ≥ 2.

3.1 Word-based

The main distribution considered in the literature is the word-based distribution, see [2, 1,
7, 10] for instance. For a fixed k ≥ 1 and for any n ∈ N, the set Bn consists of all k-tuples
(u1, · · · , uk) of reduced words of length at most n. The word-based distribution is, for any n,
the uniform distribution on Bn.

A reduced word of length n can be built in the following way: starting from any letter in
A t A−1, build it from left to right by adding a letter different from the former one’s inverse.
Hence, if Rn denotes the set of reduced words of length n, |Rn| = 2r(2r − 1)n for n ≥ 1 and
|R0| = 1. The set of reduced words is in bijection with Smirnov words on an alphabet of size
2r, the words which have no consecutive equal letters [6, 4]. Reduced words can also be seen
as paths of length n in a Markov chain with 2r states. Each state corresponds to the last
produced letter, and from a state a ∈ A t A−1, the probability to go to any other state but
a−1 is 1

2r−1
. This Markov chain is primitive and the results obtained in [13] applied to this

model prove very fruitful: for any pattern given by a non-degenerated regular expression, the
number of occurrences of the pattern in a random reduced word of length n is asymptotically
Gaussian, with mean and variance growing linearly; a local limit and large deviation bounds
also hold. Large deviation bounds are of great interest here, as they often yield exponential
genericity or negligibility.

In the literature, the computations are done either using elementary calculus, as |Rn| has
a simple expression, or using some large deviation results from probabilistic approaches. For
instance, one can directly prove that each word in a random k-tuple of Bn is generically of
length at least n−f(n), for any f(n) that tends to infinity. One important statement is that if
the construction of Section 2.3 is applied to a random element of Sn, the resulting graph has
exponentially generically more than (1 − ε)kn vertices, for any ε ∈]0, 1[ and the subgroup is
exponentially generically of rank k. These results are proved in [7] and come from the fact that
the folding phase takes only few steps, as two long reduced words only have small common
prefixes or suffixes. Hence the graph is generically made of a small heart that has the shape
of a tree around 1, with 2k leaves, and k long loops, each loop joining two leaves of the heart.
The subgroup generated by a random 5-tuple of words of length at most 40 shown in Figure 1
is representative of this behavior.



3.2 Graph-based

The uniform distribution on the set of size n Stallings graphs was analyzed by Bassino, Nicaud
and Weil [3]. Here we summarize the principles of this distribution and some of its features,
which will be used in this paper.

Let (Γ, 1) be an admissible pair, Γ having n vertices. For every letter a ∈ A, consider the
partial function fa from V to V defined by fa(u) = v when (u, a, v) is an edge of Γ . The
function is correctly defined as the foldings ensure that there are not two edges (u, a, v) and
(u, a, w) with v 6= w. For the same reason, fa is a partial injection: if fa(u) = fa(v) then u = v.
Therefore an admissible pair can be seen as a A-tuple of partial injections on an n-element
set, with a distinguished vertex, and such that the resulting graph (with an a-labeled edge
from i to j if and only j = fa(i)) is connected and has no leaf, except perhaps for the origin.
We may even assume that the n-element set in question is [n] = {1, . . . , n}, with 1 as the
distinguished vertex, as there are no symmetry in the structure and therefore exactly (n− 1)!
ways to label the vertices with [n], keeping 1 as distinguished vertex (see [3, Section 1.2] for
details).

One shows [3, Corollary 2.7] that the probability that an A-tuple (fa)a∈A of partial injec-
tions on [n] induces a Stallings graph tends to 1 as n tends to infinity, and the problem of
randomly generating a Stallings graph then reduces (via an efficient rejection algorithm, see
[3, Section 3]) to the problem of efficiently generating a random partial injection on [n].

The connected components of the functional graph of a partial injection are either cy-
cles or nonempty sequences, hence if In denotes the number of size n partial injections
and I(z) denotes the exponential generating function (EGF) of partial injections, namely
I(z) =

∑

n≥0

In

n!
zn, the following statement holds [3, Section 2.1 and Proposition 2.10].

Proposition 2. The EGF I(z) of partial injections satisfies the following

I(z) =
1

1 − z
exp

(

z

1 − z

)

and
In

n!
=

e−
1

2

2
√

π
e2

√
nn− 1

4 (1 + o(1)).

The proof consist in verifying that I(z) is H-admissible, and therefore amenable to saddle
point methods. Note that I(z) is in [4] as the exponential generating function of tagged
permutations, and used to count the mean number of subsequences in a random permutation.

The random generator is directly computed from the specification of the set of partial
injections as sets of cycles and nonempty sequences, using the recursive method [14, 5]. The
specific nature of the problem provides a linear complexity for the precalculus of the In and
for each random generation [3, Section 3.3].

Let sequence(f) be the number of sequences of the partial injection f . The following was
established in [3, Lemma 2.11 and Corollary 4.1], using a bivariate exponential generating
function and saddle point methods again.

Proposition 3. The expected number of sequences in a randomly chosen partial injection of
size n is asymptotically equivalent to

√
n.

The expected rank of a randomly chosen size n subgroup of Fr is asymptotically equivalent
to (r − 1)n − r

√
n.

If the partial injections constituting a Stallings graph have relatively few sequences, then the
graph has relatively more edges: this is captured in the statement above on the expected rank
of a randomly chosen subgroup, and it is illustrated by the randomly generated Stallings graph
with 200 vertices shown in Figure 1.

Another consequence of Proposition 3 is that the expected size of the domain of a size n
partial injection is n −√

n + o(
√

n).



4 Generic and negligible properties of subgroups

The two distributions we described are very different. The word-based distribution is governed
by two parameters – the number of generators and their length, the latter being allowed to
tend to infinity –; and the graph-based distribution is governed by a single parameter – the size
of the Stallings graph. Yet both allow the discussion of properties of subgroups (of subgroups
of a fixed rank k in the word-based case). There is of course no reason why a property that is
generic or negligible in one distribution should have the same property in the other.

This is trivially true for the property to have rank `, for a fixed integer ` ≥ 1. In the
graph-based distribution, this property is negligible: this can be deduced from Proposition 3,
see [3, Corollary 4.2]. In contrast, this property is exponentially generic in the word-based
distribution of `-generated subgroups, as already stated in Section 3.1.

4.1 Malnormal subgroups

A subgroup H is malnormal if g−1Hg ∩H = 1 for every g 6∈ H . Malnormal subgroups of free
groups have received a lot of attention in group-theoretic literature, in particular because of
their connection with hyperbolicity: Kharlampovich and Myasnikov showed that the amalga-
mated products of free groups Fr and Fs over a finitely generated subgroup H is hyperbolic
if and only either H is malnormal in Fr or H is malnormal in Fs [11]. Finitely generated
malnormal subgroups of free groups have a nice graphical characterization in terms of multi-
ple occurrences of loops in their Stallings graph [8] (whereas malnormality is undecidable in
hyperbolic groups).

Proposition 4. Let (Γ, 1) be the graphical representation of a subgroup H. Then H is non-
malnormal if and only if there exists a non-trivial reduced word u and distinct vertices x 6= y
such that u labels loops at x and at y.

For the word-based distribution, Jitsukawa shows the following [7, Theorem 4 and Lemma
6].

Proposition 5 (Malnormality, word-based distribution). Malnormality is generic in
the word-based distribution.

The proof relies on the fact that generically, given a k-tuple (u1, . . . , uk) of reduced words,
only short words have several occurrences as factors in the ui and u−1

i .
In contrast, we show that malnormality is generically negligible in the graph-based distri-

bution (see Theorem 1 below). For this purpose, we first consider partial injections that have
no cycles, the so-called fragmented permutations, see [4, Section II.4.2]. Let Jn be the number
of size n fragmented permutations and let J(z) =

∑

n
Jn

n!
zn be the corresponding EGF. This

series is studied in detail in [4, Example VIII.7, Proposition VIII.4]. There, it is shown in
particular that

J(z) = exp

(

z

1 − z

)

and
Jn

n!
=

e−
1

2

2
√

π
e2

√
nn− 3

4 (1 + o(1)). (1)

The comparison with the asymptotic equivalent for In

n!
in Proposition 2, immediately yields

the following statement.

Proposition 6. The probability that a size n partial injection is a fragmented permutation is
equivalent to 1√

n
.



We now consider partial injections with a single cycle, which has size 1. Standard technics
and the asymptotic equivalents of Jn and In lead to the following proposition.

Proposition 7. The probability that a random partial injection of size n has a single cycle,
and that cycle is a singleton, is asymptotically equivalent to 1√

n
.

We can now state our statement on malnormality.

Theorem 1 (Malnormality, graph-based distribution). The probability that a random
subgroup of size n is malnormal is O(n− r

2 ).

To prove Theorem 1, first note that if (Γ, 1) is the admissible pair of a malnormal subgroup,
then for any letter a ∈ A, the partial injection fa can either have no cycles, or only one
cycle, of size one. This a consequence of Proposition 4. The negligibility then follows from
Propositions 6 and 7.

4.2 An intermediate property

In this section, we discuss an intermediate property of subgroups, that is, a property such that
the proportion of subgroups of size n with this property has a limit which is neither 0 nor 1
(respectively the negligible and the generic cases). Recall that the conjugates of an element x
are all the elements of the form gxg−1. The intermediate property we identify, concerns the
presence of conjugates of the letters in a given subgroup.

Theorem 2. The probability that a size n subgroup of Fr contains no conjugate of the letters
in A tends to e−r when n tends to infinity.

Remark 1. The property is exponentially negligible in the word-based distribution.

It is easily verified that a subgroup H contains a conjugate of letter a ∈ A if and only if a
labels a loop at some vertex of Γ (H), that is, if and only if the corresponding partial injection
has a fixpoint. Since the drawing of the partial injections corresponding to the r different
letters is independent, the theorem follows directly from the following proposition.

Proposition 8. The probability that a size n partial injection has no fixpoint tends to 1

e when
n tends to infinity.

The sketch of the proof of Proposition 8 is the following. Using the symbolic method, the
EGF of partial injections with no fixed point is L(z) = e−zI(z). Basic computations prove
that L(z) is H-admissible, and saddle point asymptotics give:

[zn]L(z) ∼ e−3/2

2
√

π
n−1/4e2

√
n

4.3 Finitely presented groups

One of the motivations for the study of subgroup distributions has been the investigation
of the statistical properties of finitely presented groups, see [2, 1, 15]. Strictly speaking, this
would require a notion of distribution of these groups, so that one would make a list of non-
isomorphic groups and investigate the frequency of groups with certain properties within that
list. No such notion is available, as far as the authors are aware and current literature operates
rather with a notion of distribution of finite presentations.



Recall that a finite presentation is a pair (A, R), where A is a finite set (the alphabet of
generators) and R is a tuple of elements of F (A) (the relators). The resulting finitely presented
group G, written G = 〈A | R〉, is the quotient G = F (A)/N(R), where N(R) is the normal
subgroup generated by R (that is: the least normal subgroup containing R).

This is the traditional approach of finite presentations, choosing a k-tuple of relators of
length at most n and letting n grow to infinity, that has been used to discuss the statistical
properties of finitely presented groups. The idea we want to discuss in this section, may seem
reasonable in this context, but it turns out to be disappointing. If H is the subgroup generated
by the tuple of relators R, then N(R) = N(H), so the group G = 〈A | R〉 is also specified by
the pair (A, H). We propose to consider finite presentations in this form, a pair of an alphabet
and a finitely generated subgroup H , and to investigate statistical properties based on the
distribution of the graphical representations of subgroups.

It is known that if A and k are fixed and if the maximal length n of the relators tends to
infinity, then generically G = 〈A | R〉 is infinite; more strongly, it is such that every subgroup
generated by |A| − 1 elements is free [2]. It is also known that G is generically hyperbolic
(Ol’shanskii [15], proving a statement of Gromov).

Unfortunately, the graph-based approach to presentations fails at this step, in the sense
that it presents generically the trivial group.

Theorem 3. Generically, the finitely presented group 〈A | H〉 is trivial. Equivalently, gener-
ically, the normal closure of a finitely generated subgroup of Fr is Fr itself.

To prove Theorem 3, we first use elementary algebraic considerations to establish that, if
for every letter a, the lengths of the cycles of the partial injection induced by letter a in Γ (H)
are relatively prime, then the finitely presented group 〈A | H〉 is trivial. Thus it suffices to
prove the following proposition.

Proposition 9. Generically, the lengths of the cycles of a size n partial injection are relatively
prime.

We start with the case of permutations, which is interesting in and of itself. Observe that
if the lengths of the cycles of a permutation are not relatively prime, then these lengths have a
common prime divisor p, which is in particular a divisor of n. The following lemma is proved
by induction on n, by partitioning the size n permutations in which all the cycles have size a
multiple of p according to the size of the cycle that contains 1.

Lemma 1. Let n ≥ 2 and let p be a prime divisor of n. The number of size n permutations

in which all the cycles have size a multiple of p is at most 2n! n
1

p
−1.

Proposition 10 is obtained from Lemma 1, bounding above by log3 n the number of prime
divisors of n that are greater than or equal to 3.

Proposition 10. Let n ≥ 2. The probability that the lengths of the cycles of a size n permu-
tation are not relatively prime is at most 2n−1/2 + 2n−1/3 log3 n.

Note that more precise results can be obtained using singularity analysis, more precisely
uniform bounds in Transfer Theorem, but the asymptotic equivalent must somehow depends
on the smallest non-trivial divisor of n. As stated, the result of Proposition 10 is sufficient for
the purpose of this article.

To prove Proposition 9 observe that isolating the cycles in a size n partial injection, reveals
a permutation (on a subset X of [n]) and a fragmented permutation (i.e., a cycle-less partial
injection) on the complement of X . Moreover, taking uniformly at random a size n partial



injection having a size k permutation, and keeping only the permutation part, one obtain a size
k permutation uniformly at random (after renormalization of the labels). Computations show
that the permutation part of a size n partial injection as size at most n1/3 with probability
bounded above by n−1/6. Then by Proposition 10, the probability that the lengths of the cycles
of a size n partial injection are not relatively prime is proved to be in O(n−1/6), concluding
the proof.
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